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Supercompactness and partial level by level equivalence
between strong compactness and strongness

by

Arthur W. Apter (New York)

Abstract. We force and construct a model containing supercompact cardinals in
which, for any measurable cardinal δ and any ordinal α below the least beth fixed point
above δ, if δ+α is regular, δ is δ+α strongly compact iff δ is δ+α+1 strong, except possibly
if δ is a limit of cardinals γ which are δ+α strongly compact. The choice of the least beth
fixed point above δ as our bound on α is arbitrary, and other bounds are possible.

1. Introduction and preliminaries. In [1], the following theorem was
proven.

Theorem 1. Let V � “ZFC + κ is supercompact + There is no pair of
cardinals δ < λ such that δ is λ supercompact and λ is measurable”. There
is then a partial ordering P ⊆ V such that V P � “ZFC + GCH + There is
no pair of cardinals δ < λ such that δ is λ supercompact and λ is measurable
+ κ is both the least strongly compact and least strong cardinal (so κ is not
2κ supercompact) + No cardinal λ > κ is measurable + For δ < κ, if δ+α

is regular , then δ is δ+α strongly compact iff δ is δ + α+ 1 strong”.

This theorem provides a counterpoint to the main result of [5], which is
as follows.

Theorem 2. Let V � “ZFC + K 6= ∅ is the class of supercompact car-
dinals”. There is then a partial ordering P ⊆ V such that V P � “ZFC +
GCH + K is the class of supercompact cardinals + For every pair of regular
cardinals κ < λ, κ is λ strongly compact iff κ is λ supercompact , except
possibly if κ is a limit of cardinals δ which are λ supercompact”.
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Whenever the conclusions of Theorem 2 are true, we will say that level by
level equivalence between strong compactness and supercompactness holds.
Whenever the conclusions of Theorem 1 are true, we will say that level by
level equivalence between strong compactness and strongness holds. Observe
that in any model witnessing the conclusions of Theorem 2, the Kimchi–
Magidor property [13] holds, i.e., the strongly compact and supercompact
cardinals coincide, except possibly at measurable limit points.

Notice that in the model constructed for Theorem 1, there are no
supercompact cardinals. In fact, the number of large cardinals in the uni-
verse witnessing the conclusions of Theorem 1 is severely restricted. This
raises the following questions: Is it possible to get a model in which there is
level by level equivalence between strong compactness and strongness and
in which there are supercompact cardinals? More generally, is it possible
to get a model in which there is level by level equivalence between strong
compactness and strongness and in which there is more than one strongly
compact cardinal?

The purpose of this paper is to provide a partial affirmative answer to the
first of the preceding questions. Specifically, we prove the following theorem.

Theorem 3. Let V � “ZFC + K 6= ∅ is the class of supercompact car-
dinals”. There is then a partial ordering P ⊆ V such that V P � “ZFC +
GCH + K is the class of supercompact cardinals + The strongly compact and
supercompact cardinals coincide, except possibly at measurable limit points
+ For any measurable cardinal δ and any α below the least beth fixed point
above δ, if δ+α is regular , δ is δ+α strongly compact iff δ is δ+α+ 1 strong ,
except possibly if δ is a limit of cardinals γ which are δ+α strongly compact”.

The choice of the least beth fixed point above δ as the bound on α in
Theorem 3 is done purely as a matter of convenience. Larger bounds on α
are also possible. This will be discussed in greater detail at the end of this
paper.

We note that by Lemma 1.1 of [3] and the succeeding remark, it is impos-
sible for the least measurable cardinal δ which is a limit of cardinals γ which
are either δ+ strongly compact or δ+ supercompact to be δ+ 2 strong. This
generalizes a result of Menas [14], who also showed that this cardinal δ must
be δ+ strongly compact. Thus, when there are large enough cardinals in the
universe, it is impossible for there to be a precise level by level equivalence
between strong compactness and strongness. (By Lemma 1.2 of [1], a precise
level by level equivalence between strong compactness and strongness in the
sense that δ is δ+α strongly compact iff δ is δ + α + 1 strong for arbitrary
α is impossible if there are supercompact cardinals in the universe.)

We observe also that in any model witnessing the conclusions of The-
orem 3, level by level equivalence between strong compactness and super-
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compactness must fail. To see this, note that by either Proposition 26.11 of
[12] or Lemma 2.1 of [4], if δ is 2δ supercompact, {γ < δ : γ is superstrong
with target δ} is unbounded in γ. Any such γ will of course be γ+α strong
for every α below the least beth fixed point above γ. Thus, in a universe in
which the conclusions of Theorem 3 hold, below the least cardinal κ which
is 2κ = κ+ supercompact, there will be many cardinals γ which are γ+α

strongly compact but not γ+α supercompact, where α is any ordinal below
the least beth fixed point above γ.

Before presenting the proof of our theorem, we briefly mention some
preliminary information. Essentially, our notation and terminology are stan-
dard, and when this is not the case, this will be clearly noted. For α < β
ordinals, [α, β], [α, β), (α, β], and (α, β) are as in standard interval notation.

When forcing, q ≥ p will mean that q is stronger than p. If G is V -
generic over P, we will abuse notation somewhat and use both V [G] and V P

to indicate the universe obtained by forcing with P. If x ∈ V [G], then ẋ will
be a term in V for x. If moreover κ is inaccessible and P = 〈〈Pα, Q̇α〉 : α < κ〉
is an Easton support iteration of length κ such that at stage α, a non-trivial
forcing is done adding a subset of δα, then we will say that δα is in the field
of P. We may, from time to time, confuse terms with the sets they denote
and write x when we actually mean ẋ or x̌, especially when x is some variant
of the generic set G, or x is in the ground model V .

Let κ be a regular cardinal. The partial ordering P is κ-directed closed
if for every cardinal δ < κ and every directed set 〈pα : α < δ〉 of elements
of P (where 〈pα : α < δ〉 is directed if for any two distinct elements p%, pν ∈
〈pα : α < δ〉, p% and pν have a common upper bound of the form pσ) there is
an upper bound p ∈ P. P is κ-strategically closed if in the two-person game
in which the players construct an increasing sequence 〈pα : α ≤ κ〉, where
player I plays odd stages and player II plays even and limit stages (choosing
the trivial condition at stage 0), player II has a strategy which ensures the
game can always be continued. Note that if P is κ-strategically closed and
f : κ→ V is a function in V P, then f ∈ V . P is <κ-strategically closed if P is
δ-strategically closed for all cardinals δ < κ. P is ≺κ-strategically closed if in
the two-person game in which the players construct an increasing sequence
〈pα : α < κ〉, where player I plays odd stages and player II plays even and
limit stages, player II has a strategy which ensures the game can always be
continued.

Suppose now that κ is a Mahlo cardinal. A partial ordering P(κ) to
be used in the proof of Theorem 3 is the partial ordering for adding a
non-reflecting stationary set of ordinals of a certain type to κ. Specifically,
P(κ) = {p : For some α < κ, p : α → {0, 1} is a characteristic function
of Sp, a subset of α not stationary at its supremum nor having any initial
segment which is stationary at its supremum, such that if β < sup(Sp) is
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inaccessible, then Sp−Sp∩β is composed of ordinals of cofinality at least β},
ordered by q ≥ p iff q ⊇ p and Sp = Sq ∩ sup(Sp), i.e., Sq is an end extension
of Sp. By Lemmas 1.1–1.3 of [2] and the succeeding remarks, we have the
following facts:

1. P(κ) is ≺κ-strategically closed.
2. Forcing with P(κ) adds a non-reflecting stationary set of ordinals to κ.
3. For any inaccessible cardinal δ < κ, the partial ordering P(κ/δ) =
{p ∈ P(κ) : p is either the characteristic function of the empty set, or
is such that Sp contains an ordinal above δ} with the inherited partial
ordering is dense in P(κ) and is δ-directed closed.

In addition, since κ is Mahlo, it easily follows that |P(κ)| = κ. By (1) above
therefore, if GCH holds in our ground model, it then easily follows that
forcing with P(κ) preserves GCH.

We mention that we are assuming familiarity with the large cardinal
notions of measurability, strongness, superstrongness, strong compactness,
and supercompactness. Interested readers may consult [12] for further de-
tails. We note explicitly that the cardinal κ is <λ supercompact if κ is δ
supercompact for every cardinal δ < λ. Also, unlike [12], we will say that
the cardinal κ is λ strong for λ > κ if there is j : V → M an elementary
embedding having critical point κ such that j(κ) > |Vλ| and Vλ ⊆M . If |Vλ|
is regular, then we may assume that Mκ ⊆M as well. In addition, it is easily
seen that any cardinal κ which is κ+α supercompact is κ+ α+ 1 strong.

2. The proof of Theorem 3. Let V � “ZFC + K is the class of su-
percompact cardinals”. Without loss of generality, by first forcing GCH and
then forcing with the partial ordering of [5], we may also assume that GCH
and level by level equivalence between strong compactness and supercom-
pactness hold in V .

We are now in a position to define the partial ordering P that will be used
in the proof of Theorem 3. Let D be the collection of V -measurable cardinals
δ such that for some α below the least beth fixed point above δ, in V , δ+α is
regular, δ is δ+α+ 1 strong, yet δ is not δ+α supercompact. P is then taken
as the Easton support iteration which begins by adding a Cohen subset of
ω and then adds, to every δ ∈ D, a non-reflecting stationary set of ordinals
using the partial ordering P(δ) defined in Section 1. By the usual Easton
arguments, regardless of whether P is a set or a proper class, V P � ZFC.
Further, it is easily shown by an induction similar to the one given in the
proof of Lemma 8 of [5] (see also [1]) that V P � GCH and forcing with
P preserves cardinals and cofinalities. This means that henceforth, without
fear of ambiguity, we will write δ+α without specifying explicitly whether
we are working in V , V P, or some V with V ⊆ V ⊆ V P.
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Lemma 2.1. V P � “K is the class of supercompact cardinals”.

Proof. The argument we give is very similar to the one presented in
the proof of Lemma 3.1 of [2]. Write P = P′ ∗ Ṗ′′, where |P′| = ω, P′ is non-
trivial, and P′ “Ṗ′′ is ℵ1-strategically closed”. In the terminology of [9]–[11],
P “admits a gap at ℵ1”, so by the results of [9]–[11], any supercompact
cardinal in V P had to have been supercompact in V . This means the proof
of Lemma 2.1 will be complete once we have shown that V P � “If κ ∈ K,
then κ is supercompact”.

To do this, fix κ ∈ K. Let A be an arbitrary (possibly empty) set of
V -measurable cardinals above κ. Take η = max(sup(A), κ), and define η∗ as
the least V -measurable cardinal above η if this cardinal exists, or the class
of all ordinals if no cardinal above η is measurable in V . Let λ ∈ (η, η∗)
be any successor cardinal above the least beth fixed point above η. Let
γ = |2[λ]<κ |, and fix j : V → M an elementary embedding witnessing the γ
supercompactness of κ.

Write P = P0 ∗ Ṗ1 ∗ Ṗ2, where P0 is the portion of P defined through
stage κ, Ṗ1 is a term for the portion of P defined between stages κ and λ,
and Ṗ2 is a term for the rest of P. By the definition of P, it will be the
case that P0∗Ṗ1 “Ṗ2 is γ-strategically closed”. Thus, since λ may be chosen
arbitrarily large, to prove Lemma 2.1, it will suffice to show that V P

0∗Ṗ1 �
“κ is λ supercompact”.

If this is not the case, then let p = 〈p0, ṗ1〉 ∈ P0 ∗ Ṗ1 be such that
p  “κ is not λ supercompact”. By using Lemma 1.2 of [2] if necessary to
find the necessary terms to extend coordinatewise, we assume without loss
of generality that each non-trivial coordinate of p1 is a term for a condition
in the appropriate P(δ/κ).

Let G0 be V -generic over P0 such that p0 ∈ G0. Working in V [G0] and
once again using Lemma 1.2 of [2], let P3 be the Easton support iteration of
partial orderings which, for every V -measurable cardinal δ ∈ (κ, λ) which is
an element of D, add non-reflecting stationary sets of ordinals using P(δ/κ).

Note now that if G1 is V [G0]-generic over P3 and p1 ∈ G1, then G1 must
also generate a V [G0]-generic filter G∗1 over P1. To see this, it clearly suffices
to show that G1 meets all dense open subsets of P1 above p1. If D is such
a set, then let D1 = {q ∈ P3 : q extends some element of D}. D1 is clearly
open. If q ∈ P3, then q ∈ P1, so by density, there is q′ ≥ q, q′ ∈ D. By using
Lemma 1.2 of [2] if necessary to find a term which is forced to extend each
term denoting a non-trivial coordinate of q′ to a term for an element of the
appropriate P(δ/κ), we obtain q′′ ≥ q′ ≥ q, q′′ ∈ D1. Thus, G1 meets D1
and hence meets D, so G1 generates a V [G0]-generic filter G∗1 over P1.

By the definition of P and the closure properties of M , j(P0 ∗ Ṗ1) = P0 ∗
Ṗ1∗Q̇∗Ṙ, where Q̇ is a term for the portion of j(P0∗Ṗ1) defined inM between
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stages λ and j(κ), and Ṙ is a term for j(Ṗ1), i.e., the portion of j(P0∗ Ṗ1) de-
fined in M between stages j(κ) and j(λ). If G1 is V [G0]-generic over P3 and
p1 ∈ G1, then by the preceding paragraph, G1 generates a V [G0]-generic fil-
ter G∗1 over P1. We can therefore take G2 as a V [G0][G∗1]-generic object over
Q and use the usual Easton arguments to infer that M [G0][G∗1][G2] remains
γ closed with respect to V [G0][G∗1][G2] and that j lifts in V [G0][G∗1][G2] to
j : V [G0]→M [G0][G∗1][G2]. Further, since G1 ⊆ G∗1 and G1 is V [G0]-generic
over a partial ordering (namely P3) that is κ-directed closed in V [G0], j′′G1

generates in V [G0][G∗1][G2] a compatible set of conditions of cardinality
smaller than γ < j(κ) in a partial ordering (namely j(P3)) that is j(κ)-
directed closed in M [G0][G∗1][G2]. Therefore, by the fact M [G0][G∗1][G2] is γ
closed with respect to V [G0][G∗1][G2], we can let r be a master condition for
j′′G1 and take G3 to be a V [G0][G∗1][G2]-generic object over j(P3) containing
r. By elementarity, it will be the case that G3 generates a V [G0][G∗1][G2]-
generic object G∗3 over R = j(P1). As usual, in V [G0][G∗1][G2][G∗3], j will
then lift to j : V [G0][G∗1] → M [G0][G∗1][G2][G∗3], so κ is λ supercompact in
V [G0][G∗1][G2][G∗3]. Since Q ∗ Ṙ is γ-strategically closed in V [G0][G∗1], it will
be the case that κ is λ supercompact in V [G0][G∗1]. This, however, contra-
dicts the fact that p = 〈p0, p1〉 ∈ G0∗G∗1 and p  “κ is not λ supercompact”.
This contradiction completes the proof of Lemma 2.1.

We remark that the proof of Lemma 2.1 actually shows that any cardi-
nal δ which is in V both regular and a limit of cardinals κ which are <δ
supercompact remains in V P regular and a limit of cardinals κ which are
<δ supercompact. To see this, let δ > λ > κ be such that V � “κ is <δ
supercompact and δ is regular”. Work in V = Vδ, and take Q = Pδ. Fix
j : V → M an elementary embedding witnessing the λ supercompactness
of κ. The same proof as just given shows that V Q � “κ is λ supercompact”.
Since writing P = Pδ ∗ Ṗδ tells us Pδ “Ṗδ is <δ-strategically closed”, we
can now immediately infer that V Pδ∗Ṗ

δ
= V P � “δ is regular and κ is <δ

supercompact”. As κ and λ were arbitrary, in V P, δ is regular and is a limit
of <δ supercompact cardinals.

We note also that the proof of Lemma 2.1 does not necessarily show,
however, that if λ > δ and δ is in V both regular and a limit of cardinals
κ which are λ supercompact, then δ remains in V P a limit of cardinals κ
which are λ supercompact. To see this, let κ < δ be λ supercompact in V ,
and fix j : V → M an elementary embedding witnessing the λ supercom-
pactness of κ. It is possible that the closure properties of M with respect to
V are not enough to guarantee that V and M make the same decision as
to whether a non-reflecting stationary set of ordinals must be added to δ. If
the decisions differ, then the proof of Lemma 2.1 suitably modified will not
remain valid.
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Lemma 2.2. V P � “The strongly compact and supercompact cardinals
coincide, except possibly at measurable limit points”.

Proof. Suppose V P � “δ is strongly compact”. Write P = Pδ ∗ Ṗδ. Using
this factorization, it is easy to see by P’s definition that P is, in the termi-
nology of [10] and [11], “mild with respect to δ”. This means that any set of
ordinals x in V P of size below δ has a “nice” name τ in V of size below δ, i.e.,
there is a set y in V , |y| < δ, such that any ordinal forced by a condition in P
to be in τ is an element of y. Since we have already seen that P “admits a gap
at ℵ1”, by the results of [10] and [11], δ had to have been strongly compact
in V . Thus, in V , δ is either an element of K or a measurable limit of elements
of K, so by Lemma 2.1, in V P, δ is either supercompact or a measurable limit
of supercompact cardinals. This completes the proof of Lemma 2.2.

Lemma 2.3. V P � “For any measurable cardinal δ and any α below the
least beth fixed point above δ, if δ+α is regular and δ is δ+α+1 strong , then
δ is δ+α strongly compact”.

Proof. We begin by observing we may assume without loss of generality
that α > 0. This is since if δ is δ + 0 + 1 = δ + 1 strong, δ is measurable, so
by definition, δ is both δ+0 = δ strongly compact and δ supercompact.

Suppose now that α > 0, α is below the least beth fixed point above δ,
and V P � “δ is δ + α+ 1 strong and δ+α is regular”. Since we have already
observed that P “admits a gap at ℵ1”, by the results of [9]–[11], δ had to
have been δ+α+ 1 strong in V as well. Therefore, δ was δ+α supercompact
in V also, since otherwise, the definition of P tells us we can write P =
Pδ ∗ Ṗ(δ) ∗ Ṗδ. We may then infer that Pδ “Ṗ(δ) adds a non-reflecting
stationary set of ordinals to δ” and Pδ∗Ṗ(δ) “Ṗδ is η-strategically closed
for η the least inaccessible above δ”. This means that V Pδ∗Ṗ(δ)∗Ṗδ = V P � “δ
contains a non-reflecting stationary set of ordinals and hence is not weakly
compact”, a contradiction to the fact that V P � “δ is δ + α + 1 strong”.
Thus, we can actually write P = Pδ ∗ Ṗδ, where Pδ “Ṗδ is η-strategically
closed for η the least inaccessible above δ”. Hence, since α is below the least
beth fixed point above δ, to show that V P � “δ is δ+α strongly compact”, it
suffices to show that V Pδ � “δ is δ+α strongly compact”.

To show V Pδ � “δ is δ+α strongly compact”, we use an argument of
Magidor for the preservation of strong compactness. Although the essentials
of this argument can be found in [2] and [4] (as well as elsewhere), for com-
pleteness and for the benefit of readers, we give the argument here as well.
Let λ = δ+α, and let k1 : V → M be an elementary embedding witnessing
the λ supercompactness of δ such that M � “δ is not λ supercompact”.
Since M � “δ is measurable”, we may choose a normal ultrafilter of Mitchell
order 0 over δ such that k2 : M → N is an elementary embedding witness-
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ing the measurability of δ definable in M with N � “δ is not measurable”.
It is the case that if k : V → N is an elementary embedding with critical
point δ and for any x ⊆ N with |x| ≤ λ, there is some y ∈ N such that
x ⊆ y and N � “|y| < k(δ)”, then k witnesses the λ strong compactness
of δ. Using this fact, it is easily verifiable that j = k2 ◦ k1 is an elementary
embedding witnessing the λ strong compactness of δ. We show that j lifts
to j : V Pδ → N j(Pδ). Since this lifted embedding witnesses the λ strong
compactness of δ in V Pδ , this proves Lemma 2.3.

To do this, write j(Pδ) as Pδ ∗Q̇0 ∗ Ṙ0, where Q̇0 is a term for the portion
of j(Pδ) between δ and k2(δ) and Ṙ0 is a term for the rest of j(Pδ), i.e., the
part above k2(δ). Note that since N � “δ is not measurable”, δ 6∈ field(Q̇0).
Thus, the field of Q̇0 is composed of all N -measurable cardinals γ ∈ (δ, k2(δ)]
for which in N , for some β below the least beth fixed point above γ, γ+β is
regular, γ is γ + β + 1 strong, yet γ is not γ+β supercompact. This means
k2(δ) ∈ field(Q̇0), since by either Proposition 26.11 of [12] or Lemma 2.1
of [4], M � “δ is superstrong” yet M � “δ is not δ+α supercompact and α is
below the least beth fixed point above δ”, so by elementarity, N � “There
is some β below the least beth fixed point above j(δ) for which j(δ) is
j(δ) + β + 1 strong yet j(δ) is not (j(δ))+β supercompact”. Also, the field
of Ṙ0 is composed of all N -measurable cardinals γ ∈ (k2(δ), k2(k1(δ))) for
which in N , for some β below the least beth fixed point above γ, γ+β is
regular, γ is γ + β + 1 strong, yet γ is not γ+β supercompact.

Let G0 be V -generic over Pδ. We construct in V [G0] an N [G0]-generic
object G1 over Q0 and an N [G0][G1]-generic object G2 over R0. Since Pδ is
an Easton support iteration of length δ, a direct limit is taken at stage δ, and
no forcing is done at stage δ, the construction of G1 and G2 automatically
guarantees that j′′G0 ⊆ G0 ∗ G1 ∗ G2. This means that j : V → N lifts to
j : V [G0]→ N [G0][G1][G2] in V [G0].

To build G1, note that since k2 is generated by an ultrafilter U over δ
and since in both V and M , 2δ = δ+, |k2(δ+)| = |k2(2δ)| = |{f : f : δ → δ+

is a function}| = |[δ+]δ| = δ+. Thus, as N [G0] � “|℘(Q0)| = k2(2δ)”, we can
let 〈Dβ : β < δ+〉 enumerate in V [G0] the dense open subsets of Q0 found
in N [G0]. For the purpose of the construction of G1 to be given below, we
further assume that for every dense open subset D ⊆ Q0 present in N [G0],
for some odd ordinal γ+1, D = Dγ+1. Since the δ closure of N with respect
to either M or V implies the least element of the field of Q0 is above δ+, the
definition of Q0 as given above implies that N [G0] � “Q0 is ≺δ+-strategically
closed”. By the fact the standard arguments show that forcing with the δ-
c.c. partial ordering Pδ preserves that N [G0] remains δ-closed with respect
to either M [G0] or V [G0], Q0 is ≺δ+-strategically closed in both M [G0]
and V [G0].
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We can now construct G1 in either M [G0] or V [G0] as follows. Players
I and II play a game of length δ+. The initial pair of moves is generated
by player II choosing the trivial condition q0 and player I responding by
choosing q1 ∈ D1. Then, at an even stage β + 2, player II picks qβ+2 ≥ qβ+1
by using some fixed strategy S, where qβ+1 was chosen by player I to be such
that qβ+1 ∈ Dβ+1 and qβ+1 ≥ qβ. If β is a limit ordinal, player II uses S to
pick qβ extending each qγ for γ < β. By the ≺δ+-strategic closure of Q0 in
both M [G0] and V [G0], the sequence 〈qβ : β < δ+〉 as just described exists.
By construction, G1 = {p ∈ Q0 : ∃β < δ+[qβ ≥ p]} is our N [G0]-generic
object over Q0.

It remains to construct in V [G0] the desired N [G0][G1]-generic object
G2 over R0. To do this, we first note that as M � “δ is superstrong but δ is
not δ+α supercompact and α is below the least beth fixed point above δ”,
we can write k1(Pδ) as Pδ ∗ Ṡ0 ∗ Ṫ0, where Pδ “Ṡ0 = Ṗ(δ)”, and Ṫ0 is a term
for the rest of k1(Pδ).

Note now that M � “No cardinal γ ∈ (δ, λ] is measurable”. Thus,
the field of Ṫ0 is composed only of M -measurable cardinals in the inter-
val (λ, k1(δ)), which implies that in M , Pδ∗Ṡ0 “Ṫ0 is ≺λ+-strategically

closed”. Further, since V �GCH and λ is regular, |[λ]<δ| = λ and 2λ = λ+.
Therefore, as k1 can be assumed to be generated by an ultrafilter U over
Pδ(λ), |k1(δ+)| = |2k1(δ)| = |{f : f : Pδ(λ) → δ+ is a function}| = |[δ+]λ| =
|[λ]λ| = λ+.

Work until otherwise specified in M . Consider the “term forcing” partial
ordering T∗ (see [8] for the first published account of term forcing or [6,
Section 1.2.5, p. 8]; the notion is originally due to Laver) associated with Ṫ0,
i.e., τ ∈ T∗ iff τ is a term in the forcing language with respect to Pδ ∗ Ṡ0

and Pδ∗Ṡ0 “τ ∈ Ṫ0”, ordered by τ ≥ σ iff Pδ∗Ṡ0 “τ ≥ σ”. Although T∗
as defined is technically a proper class, it is possible to restrict the terms
appearing in it to a sufficiently large set-sized collection, with the additional
crucial property that any term τ forced to be in Ṫ0 is also forced to be equal
to an element of T∗. As we will show below, this can be done in such a way
that M � “|T∗| = k1(δ)”.

Clearly, T∗ ∈ M . Also, since Pδ∗Ṡ0 “Ṫ0 is ≺λ+-strategically closed”, it
can easily be verified that T∗ itself is ≺λ+-strategically closed in M and,
since Mλ ⊆M , in V as well.

To show that we may restrict the number of terms so that M � “|T∗| =
k1(δ)”, we observe that since Pδ∗Ṡ0 “|Ṫ0| = k1(δ)”, there is a set {τβ :

β < k1(δ)} of terms such that for any other term τ , if Pδ∗Ṡ0 “τ ∈ Ṫ”,

then there is a dense set of conditions in Pδ ∗ Ṡ0 forcing “τ = τβ” for var-
ious β. While {τβ : β < k1(δ)} may not itself be adequate, we enlarge
it by choosing, for each maximal antichain A ⊆ Pδ ∗ Ṡ0 and each function
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s : A→ {τβ : β < k1(δ)}, a term τs such that p  “τβ = τs(p)” for each p ∈ A.
τs exists using arguments from elementary forcing. Let T∗ be the collection
of all such terms τs, ranging over all maximal antichains of Pδ ∗ Ṡ0. Since
M � “|Pδ ∗ Ṡ0| < k1(δ) and k1(δ) is measurable”, the number of such terms
in M is k1(δ). Finally, if Pδ∗Ṡ0 “τ ∈ Ṫ”, then once again, elementary forcing
arguments establish that for some s, Pδ∗Ṡ0 “τ = τs”. Therefore, as we now
know that M � “|T∗| = k1(δ)”, and as M � “2k1(δ) = (k1(δ))+ = k1(δ+)”,
this means we can let 〈Dβ : β < λ+〉 enumerate in V the dense open subsets
of T∗ found in M , such that as before, for every dense open subset D ⊆ T∗
present in M , for some odd ordinal γ + 1, D = Dγ+1, and argue as we did
earlier when building the generic object G1 to construct in V an M -generic
object H2 over T∗.

Note now that since N is given by an ultrapower of M via a normal
ultrafilter U ∈ M over δ, Fact 2 of Section 1.2.2 of [6] tells us that k′′2H2
generates an N -generic object G∗2 over k2(T∗). By elementarity, k2(T∗) is the
term forcing in N defined with respect to k2(k1(Pδ)δ+1) = Pδ∗Q̇0. Therefore,
since j(Pδ) = k2(k1(Pδ)) = Pδ ∗ Q̇0 ∗ Ṙ0, G∗2 is N -generic over k2(T∗), and
G0∗G1 is k2(Pδ∗Ṡ0)-generic over N , Fact 1 of Section 1.2.5 of [6] (see also [8])
tells us that for G2 = {iG0∗G1(τ) : τ ∈ G∗2}, G2 is N [G0][G1]-generic over R0.
Thus, in V [G0], j : V → N lifts to j : V [G0] → N [G0][G1][G2], i.e., V P �
“δ is λ = δ+α strongly compact”. This completes the proof of Lemma 2.3.

Lemma 2.4. V P � “For any measurable cardinal δ and any α below the
least beth fixed point above δ, if δ+α is regular and δ is δ+α strongly compact
but δ is not a limit of cardinals γ which are δ+α strongly compact , then δ is
δ + α+ 1 strong”.

Proof. As in the proof of Lemma 2.3, we may assume without loss of
generality that α > 0. This is since δ is measurable iff δ is δ+0 = δ strongly
compact iff δ is δ supercompact, so any elementary embedding j : V → M
witnessing the measurability of δ which is generated by a normal ultrafilter
over δ also witnesses that δ is δ + 0 + 1 = δ + 1 strong.

We therefore suppose δ is as in the hypotheses of Lemma 2.4, i.e., in V P,
α is below the least beth fixed point above δ, δ+α is regular, δ is δ+α

strongly compact, yet δ is not a limit of cardinals γ which are δ+α strongly
compact. Assume further towards a contradiction that in V , δ is a limit of
cardinals γ which are δ+α supercompact. Since any cardinal γ which is δ+α

supercompact is automatically <δ supercompact, by the remarks immedi-
ately following the proof of Lemma 2.1, we know that in V P, δ is a limit of
cardinals γ which are <δ supercompact. As V P � “δ is δ+α strongly com-
pact”, by a theorem of DiPrisco [7], V P � “Any cardinal γ which is either <δ
supercompact or<δ strongly compact is δ+α strongly compact”. Thus, in V P,
δ is a limit of cardinals γ which are δ+α strongly compact, a contradiction.
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We now know that in V , δ is not a limit of cardinals γ which are δ+α

supercompact. Also, as in the proof of Lemma 2.2, by writing P = Pδ ∗ Ṗδ,
it is readily seen that P “admits a gap at ℵ1 and is mild with respect to δ”.
By the results of [10] and [11], δ is therefore δ+α strongly compact in V .
This means, by level by level equivalence between strong compactness and
supercompactness, that in V , δ is δ+α supercompact. Hence, as in the proof
of Lemma 2.3, Pδ “Ṗδ is η-strategically closed for η the least inaccessible
above δ”. Therefore, since α is below the least beth fixed point above δ, to
show that V P � “δ is δ + α+ 1 strong”, it suffices to show that V Pδ � “δ is
δ + α+ 1 strong”.

To do this, we argue now in an analogous fashion to the proof of Lem-
ma 2.2 of [1]. (See also the proof of Lemma 2.4 of [4].) We use for the proof
of this lemma notation and terminology from the introductory section of [6].
Let λ = α+ 1. Let j : V → M be an elementary embedding witnessing the
δ + λ strongness of δ generated by a (δ, δ+λ)-extender of width δ with j(δ)
minimal so that M � “δ is not δ + λ strong”, and let i : V → N be the
elementary embedding witnessing the measurability of δ generated by the
normal ultrafilter U = {x ⊆ δ : δ ∈ j(x)}. We then have the commutative
diagram

V
j //

i   AAAAAAA M

N

k

>>||||||||

where j = k ◦ i and the critical point of k is above δ.
Observe that M � “No cardinal % ∈ (δ, δ+λ] is measurable”. This is since

Vδ+λ ⊆ M and V � “Both α and λ = α + 1 are below the least beth fixed
point above δ”. Also, since Vδ+λ ⊆M , (δ+λ)V = (δ+λ)M . This means in M ,
the least measurable cardinal δ0 > δ in the field of j(Pδ) is so that δ0 > δ+λ.
In addition, it is the case that δ 6∈ field(j(Pδ)). This is since, by choice of λ,
M � “For every % < α so that δ+% is regular, δ is δ+% supercompact and
δ+%+1 strong”. As M � “δ is not δ+λ strong”, there are no other degrees
of either supercompactness or strongness that could affect whether δ is an
element of field(j(Pδ)).

Define now f : δ → δ by

f(%) = The least measurable cardinal above %.

We then have δ < δ+λ < j(f)(δ) < δ0. This last inequality is since the least
measurable cardinal γ above any % is not γ+ 2 strong, and by GCH in both
V and M , γ is not 2γ = γ+ supercompact either. Thus, γ is both γ+0 = γ
supercompact and γ + 0 + 1 = γ + 1 strong and shows no further degrees of
either supercompactness or strongness.
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Note that M = {j(g)(a) : a ∈ [δ+λ]<ω, dom(g) = [δ]|a|, g : [δ]|a| → V }
= {k(i(g))(a) : a ∈ [δ+λ]

<ω
, dom(g) = [δ]|a|, g : [δ]|a| → V }. By defining

γ = i(f)(δ), we have k(γ) = k(i(f)(δ)) = j(f)(δ) > δ+λ. This means
j(g)(a) = k(i(g))(a) = k(i(g)�[γ]|a|)(a), i.e., M = {k(h)(a) : a ∈ [δ+λ]<ω,
h ∈ N , dom(h) = [γ]|a|, h : [γ]|a| → N}. By elementarity, we must have
N � “δ 6∈ field(i(Pδ)) and δ < γ = i(f)(δ) < ζ = The least element of
the field of i(Pδ) − δ”, since M � “k(δ) = δ is not in the field of j(Pδ)
and k(δ) = δ < k(γ) = k(i(f)(δ)) = j(f)(δ) < k(ζ) = δ0”. Therefore, k is
generated by an N -extender of width γ ∈ (δ, ζ).

Write i(Pδ) = Pδ ∗ Q̇0, where Q̇0 is a term for the portion of i(Pδ) whose
field is composed of ordinals in the interval [δ, i(δ)). By our previous work,
the field of Q̇0 is actually composed of ordinals in the interval (δ, i(δ)),
or more precisely, of ordinals in the interval [ζ, i(δ)). This means that if
G0 is once again V -generic over Pδ, the argument from Lemma 2.3 for the
construction of the generic object G1 can be applied here as well to construct
in V [G0] an N [G0]-generic object G∗1 over Q0. Since i′′G0 ⊆ G0 ∗G∗1, i lifts
in V [G0] to i : V [G0] → N [G0][G∗1], and since k′′G0 = G0 and k(δ) = δ,
k lifts in V [G0] to k : N [G0] → M [G0]. By Fact 3 of Section 1.2.2 of [6],
k : N [G0]→M [G0] is also generated by an extender of width γ ∈ (δ, ζ).

In analogy to the preceding paragraph, write j(Pδ) = Pδ ∗ Q̇1. By the
last sentence of the preceding paragraph and the fact ζ is the least ordinal
in the field of Q̇0, we can use Fact 2 of Section 1.2.2 of [6] to infer that
H = {p ∈ Q1 : ∃q ∈ k′′G∗1[q ≥ p]} is M [G0]-generic over k(Q1). Thus, k lifts
in V [G0] to k : N [G0][G∗1] → M [G0][H], and we get the new commutative
diagram

V [G0]
j //

i %%LLLLLLLLLL
M [G0][H]

N [G0][G∗1]
k

77ppppppppppp

As in the proofs of Lemma 2.2 of [1] and Lemma 2.4 of [4], since Vδ+λ ⊆
M and G0 ∈ M [G0][H], we can deduce that (V [G0])δ+λ ⊆ M [G0][H], i.e.,
that j remains a δ+λ strong embedding after forcing with Pδ. This completes
the proof of Lemma 2.4.

Lemmas 2.1–2.4, along with the intervening remarks, complete the proof
of Theorem 3.

3. Concluding remarks. In conclusion to this paper, we make several
remarks. The first is that, as noted immediately following the statement of
Theorem 3, larger degrees of level by level equivalence between strong com-
pactness and strongness are possible, assuming the definition of our partial
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ordering P has been suitably modified. To see this, suppose the set or class
D used in the definition of P is changed to be the collection of V -measurable
cardinals δ such that for some α below the second V -measurable cardinal
above δ, in V , δ+α is regular, δ is δ + α + 1 strong, yet δ is not δ+α su-
percompact. P is then defined as before, using this new D as the collection
of measurable cardinals to which non-reflecting stationary sets of ordinals
are added. Because our ground model V satisfies level by level equivalence
between strong compactness and supercompactness, no non-reflecting sta-
tionary sets of ordinals will be added to either the first or second measurable
cardinal above any measurable cardinal. This is since these cardinals will not
manifest any non-trivial degree of either strong compactness or supercom-
pactness. Thus, as readers may easily verify for themselves, the proofs of
Lemmas 2.1–2.4 suitably modified all remain valid, and produce a model
V P in which for any measurable cardinal δ and any α below the second
measurable cardinal above δ, if δ+α is regular, δ is δ+α strongly compact iff
δ is δ + α+ 1 strong, except possibly if δ is a limit of cardinals γ which are
δ+α strongly compact.

There are limits, though, to the modifications that can be made to the
set or class D that still allow our methods of proof to go through. As an ex-
ample, we may come to a point where the different non-reflecting stationary
set forcings begin to interfere with one another, such as if a non-reflecting
stationary set of ordinals has to be added to some cardinal γ, where δ <
γ < λ and δ is λ supercompact. This would require a significant change in
proof in the appropriate analogues of Lemmas 2.3 and 2.4.

Thus, we conclude this paper by restating the questions we asked in Sec-
tion 1, i.e., how much level by level equivalence between strong compactness
and strongness is possible in a model containing supercompact cardinals,
or more generally, in a model containing more than one strongly compact
cardinal? In particular, is it possible to have a model containing more than
one strongly compact cardinal in which there is unrestricted level by level
equivalence between strong compactness and strongness, i.e., in which for
every measurable cardinal δ, if δ+α is regular, δ is δ+α strongly compact iff
δ is δ + α+ 1 strong, except possibly if δ is a measurable limit of cardinals
γ which are δ+α strongly compact? (Recall that this question is answered
in the case of a model containing one strongly compact cardinal by Theo-
rem 1.) These seem like very difficult questions to answer, and constructing
models in which these properties are true would require significantly differ-
ent proof methods from those of this paper. In particular, in such models,
not only would there not be level by level equivalence between strong com-
pactness and supercompactness, but because every strong cardinal would
have to be strongly compact and every supercompact cardinal has to have a
normal measure concentrating on strong cardinals (see Lemma 2.1 of [4] for
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a proof of this fact), the Kimchi–Magidor property would fail as well, i.e.,
there would be non-supercompact strongly compact cardinals which are not
measurable limits of strongly compact cardinals.
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