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Bounded geometry of quadrilaterals
and variation of multipliers for rational maps

by

Kevin M. Pilgrim (Bloomington, IN)

Abstract. Let Q be the unit square in the plane and h : Q→ h(Q) a quasiconformal
map. When h is conformal off a certain self-similar set, the modulus of h(Q) is bounded
independent of h. We apply this observation to give explicit estimates for the variation of
multipliers of repelling fixed points under a “spinning” quasiconformal deformation of a
particular cubic polynomial.

1. Introduction. Grötzsch’s length-area argument shows that if h :
Q → h(Q) is a side-preserving K-quasiconformal map between Euclidean
rectangles, then

mod(h(Q))
mod(Q)

≤
�
QKh(z) dA

�
Q dA

= averageQ(Kh(z)),

where
Kh(z) =

1 + |µh(z)|
1− |µh(z)|

and µh = hz/hz is the complex dilatation of h (see e.g. [GL, Prop. 1.4.3]).
Thus, mod(h(Q))/mod(Q) ≤ K. The distortion of moduli may also be con-
trolled if area(supp(µh))/area(Q) is small relative to K. Furthermore, if h
is conformal off a fixed compact subset M of Q, then mod(h(Q))/mod(Q)
is bounded above by a constant depending only on M. To see this, simply
compute lower bounds on the extremal lengths of horizontal and vertical
path families using the Euclidean metric.

The following result, however, is somewhat surprising. It was used by
Yoccoz in unpublished work proving local connectivity of the Mandelbrot
set at certain parameters, and seems to have been common knowledge also
to Douady, Hubbard, and McMullen at the same time. Thus, we shall refer
to it as the DHMY bound.
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Let
Q = {z ∈ C : 0 < Im(z),Re(z) < 1}

denote the unit square in the complex plane. Subdivide Q into nine congru-
ent squares of side 1/3, and denote the bottom three squares L,M,R, from
left to right; see the upper-left image of Figure 1 (in §2). Let F : LtR→ Q
be given by F (z) = 3z if z ∈ L and F (z) = 3(z − 1) + 1 if z ∈ R. Let
Mn = F−n(M) and M =

⋃
nMn, n ≥ 0.

Theorem 1.1 (Douady–Hubbard–McMullen–Yoccoz (DHMY) bound).
Let h : Q→ C be a homeomorphism onto its image which is quasiconformal
on Q and conformal on Q−M. Then the modulus of the quadrilateral h(Q)
is bounded above and below by positive constants independent of h.

In §2 below we give a proof of the DHMY bound following an idea
of A. Douady, and of a more general version suitable for application to dy-
namics. In §3 we apply this to a concrete problem concerning variation of
multipliers under certain quasiconformal deformations called spins. Com-
puter pictures aid significantly in visualizing the decomposition of the dy-
namical plane needed in order to apply the bound; see Figure 3.

The problem we consider is a very special case of the following general
situation. For relevant definitions, see [MS]. Let Ratd denote the space of
degree d rational maps from the complex projective line P1 to itself. Let
f ∈ Ratd be generic and hyperbolic. Then the Teichmüller space Teich(f)
is isomorphic to a product

∏
i Teich(Ti) of classical Teichmüller spaces of

punctured tori Ti arising from attracting basins. There is a natural holo-
morphic map η : Teich(f) → Ratd /Aut(P1) obtained via the Measurable
Riemann Mapping Theorem. The map η is in fact the universal orbifold cov-
ering of the open subspace of Möbius conjugacy classes of maps which are
quasiconformally conjugate to f on all of P1. The deck group Mod(f) is an
infinite index subgroup of the product of classical modular groups Mod(Ti)
which acts on Teich(f) by holomorphic isometries via precomposition of
markings. By a result of Makienko ([Mak, Thm. 1]) Mod(f) is infinitely
generated if and only if some basin attracts at least two critical points. In
this case, the map η is necessarily very wild. It is natural to ask e.g. what
happens to a sequence of the form fn = η([ω]n.f0), n = 0, 1, . . . , where
[ω] ∈∏i Mod(Ti)−Mod(f).

Spinning. Consider the one-parameter family

fa(z) =
1
2
z + az2 − 1

3
z3, a ∈ C,

of normalized cubic polynomials for which the origin is an attracting fixed
point of constant multiplier 1/2. Here, 1/2 is chosen merely for concreteness.
Note that the maps f±a are conjugate via z 7→ −z.
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The basepoint f0(z) = z/2− z3/3 is odd, and both critical points c± =
±1/
√

2 lie in the immediate basin Ω0 of the origin. By Königs’ Theorem,
there is a unique holomorphic map φ : Ω0 → C such that φ ◦ f(z) = φ(z)/2
and normalized so that φ′(0) = 1. Let T be the torus (C−{0})/〈w 7→ w/2〉,
let p : C − {0} → T denote the projection, and put S = T − (p ◦ φ)(c±).
Then S is a twice-punctured torus. Let A± be the image of the domain
{w ∈ C − {0} : ±Arg(w) ∈ (π/4, 3π/4)} under the projection p. Then A±

is a pair of disjoint, symmetric, open annuli compactly contained in S.
Let A be the annulus [0, 2π]×[0, 1] where the first coordinate is read mod-

ulo 2π, equipped with the counterclockwise orientation inherited from R2.
The standard affine positive/negative Dehn twist is given by (θ, t) 7→ (θ ±
2πt, t). Thus, the image of a curve of the form {θ0} × [0, 1] under a posi-
tive/negative Dehn twist bends right/left as the curve is traversed, indepen-
dent of orientation of the curve.

Let ω : S → S be the homeomorphism which is the identity off A±, and
is the standard affine positive/negative Dehn twist on A±. The homeomor-
phism ω is called a spin. See [PT], [GK], [Cui] for spinning in the context
of rational maps. We consider the sequence η([ω]n.f0). Recalling that the
action is by precomposition of markings, note that the image of the base-
point S under the action of [ω]n is represented by (ω−n : S → S) where
ω−1 is now a negative Dehn twist on A+ and a positive Dehn twist on A−.
Let νn denote the complex dilatation of ωn = ω◦−n on S, and let µn be the
Beltrami differential on C given by (p ◦ φ)∗(νn) on Ω0 and zero elsewhere.

By the Measurable Riemann Mapping Theorem, there is a unique quasi-
conformal map Hn : C→ C whose complex dilatation is µn a.e., normalized
by Hn(0) = 0 and H(z) = z+ O(1) near infinity. Since the maps ωn extend
to maps of T , Hn ◦f0 ◦H−1

n = fan for some an ∈ C. Since µn(z) = µn(z), we
have an ∈ R, and in fact an > 0. For each n, the map fan has a pair v+

n , v
−
n

of repelling fixed points in the upper and lower half-planes, respectively. Let
λ±n = f ′an(v±n ). When n = 0, λ±0 = 2. There are two unique components Ã±

of (p ◦ φ)−1(A±) which join the origin to v±0 .

Theorem 1.2. As n→∞,

λ±n = exp
(
−2πi

τ0

±nτ0 + 1

)
+ O

(
1
n2

)
= 1∓ 2πi

1
n

+ O
(

1
n2

)

where τ0 = (i ln 2)/2π. More precisely , for sufficiently large n, the indices
ι±n = 1/(1− λ±n ) satisfy

ι±n = ± n

2πi
+
(

1
2
− 1

ln 2

)
+O(1)

where the real part of the constant is strictly less than 1/ln 2.
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An easy application of the Holomorphic Fixed Point Formula ([Mil, Thm.
12.4]) and a bit of algebra yields

Corollary 1.1. As n → ∞, fan → fa, where a =
√

6/3. More pre-
cisely ,

• an =

√
6

3
− π
√

6
3

1
n2 + O

(
1
n3

)
,

• the repelling fixed points v±n collide to a common parabolic fixed point
of fa of multiplier 1.

In particular, fn 6→ f horocyclically in the sense of McMullen [McM],
since τ0/(±nτ0 + 1) → 0 along a horocycle in the upper half-plane model
of the hyperbolic plane. A non-quantitative version of this corollary was
obtained in much greater generality in [PT], using indirect methods.

Remarks. Versions of the DHMY bound appear in several other places.
In [Häı, Prop. 3.6] it is stated more or less as above; the proof given there
is very different. There, the DHMY bound is used to prove uniform moduli
of continuity of quasiconformal conjugacies under “pinching” deformations.
Spinning, however, produces parabolic implosions and equicontinuity fails.
G. Z. Cui [Cui], J. Kahn [K], and J. Rivera-Letelier [R] have more general
rigidity statements. Cui’s proof uses some novel estimates for conformal
distortion, while the latter two rely on certain Sobolev estimates.

Acknowledgements. I thank A. Douady for the idea of the proof of
Theorem 1.1, L. Keen for useful conversations, and Tan L. for a critical
reading of a first draft and communicating A. Douady’s proof. I also thank
P. Häıssinsky and M. Shishikura for pointing out errors in earlier versions.

2. Proof of DHMY bound. We prove the DHMY bound first, fol-
lowed by a quasiconformally distorted version suitable for our application.

Let Γhor/ver denote the families of rectifiable paths joining respectively
the vertical and horizontal sides of Q. It is enough to establish lower bounds
on the extremal lengths Λ(h(Γhor/ver)) of the horizontal and vertical path
families h(Γhor/ver) for h(Q), since these quantities are reciprocals of one
another. Let U0 = Q ∩ {Im(z) > 1/3}, let Un = F−n(U0), n = 1, 2, . . . , and
let U = int(

⋃
n≥0 Un). Since h is conformal on U , Λ(h(Γhor/ver)) is bounded

below by

sup
%

(infγ∈Γhor/ver

�
γ |dz|)2

�
Q %

2 |dz|2 ,

where % ≥ 0 is square-integrable and supported on U . Letting % ≡ 1 on U
shows that Λ(h(Γver)) ≥ 2/3.
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U

L M R

U

L M R

Fig. 1. U is the complement of the gray region at lower left. Û is the complement of the
vertical segments at the lower right. The map ψ sends the unit square continuously to
itself so that ψ(U) = Û and ψ|U is K-qc.

To find a lower bound for Λ(h(Γhor)), we use an idea of A. Douady; see
Figure 1. By postcomposing h with a Riemann map to a rectangle followed
by a conformal affine map, we may assume h is a side-preserving homeo-
morphism from Q to the rectangle [0, l] × [0, 1], so that Λ(h(Γhor)) = l =
area(h(Q)). To bound the area from below, we claim there exists a continu-
ous map ψ : Q→ Q such that ψ collapses each component ofMn to a vertical
segment of the form {i/2−(n+1)}×

[
0, 3

4 ·2−n
]

and which is K-quasiconformal
on the complement of U of the closure of M; see Figure 1. Assuming this
claim for the moment, we reason as follows. Let Û = ψ(U).

Let H = h ◦ ψ−1|Û . Then H is K-quasiconformal on Û . Thus

area(h(Q)) ≥ area(h(U)) = area(H(Û)) = �
Û

Jac(H) dA

≥ 1
K

���
Û

∣∣∣∣
∂H

∂y

∣∣∣∣
2

dy dx since H is K-qc

≥ 1
K

(
���
Û

∣∣∣∣
∂H

∂y

∣∣∣∣ dy dx
)2/ ���

Û

1 dy dx by Schwarz’ ≤.

Each vertical segment of the form {x} × [0, 1], where x 6= i/2k, i, k ∈ N,
is mapped by H to a continuous path joining the top and bottom edges
of the rectangle h(Q) = [0, l] × [0, 1] and thus has length ≥ 1. By Fubini’s
Theorem the integral in the numerator is therefore at least one. The domain
Û has area 1, so area(h(Q)) ≥ 1/K.
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To find ψ is straightforward but tedious; we merely sketch the idea. Let

L̂, R̂ be as shown in Figure 1. Combinatorially, the map F̂ : L̂ t R̂ → Q

given by F̂ (z) = 2z on L̂ and by 2(z − 1) + 1 on R̂ is the same as F .
Let Û be the slit rectangle at the top of Figure 1. Let ψ send the top,

left, and right sides of ∂U to the corresponding sides of ∂Û via affine maps.
Fold the middle third of the bottom to the slit, and send the bottom left
third and right third via pulling back so that ψ commutes with the dynamics

there. Extend ψ to a continuous map ψ : U → Û via piecewise-linear maps
on U . The maps on the sides of M will be determined by the dynamics;
extend to the interior of M by a continuous collapsing map. By insisting
that ψ be continuous and conjugate F to F̂ , ψ is determined on all of Q.
Since both F and F̂ are conformal, ψ will be K-qc on U .

In practice, the setup in Theorem 1.1 must be applied in a slightly dis-
torted context.

Assumptions.

(1) Q′ is a quadrilateral bounded by a quasicircle. Suppose Q′ is sub-
divided into nine quadrilaterals, each bounded by quasicircles, in
a manner combinatorially the same as that described in §1. Let
L′,M ′, R′, U ′ be defined similarly.

(2) Suppose U ′L, U
′
R, V

′ are open Jordan domains such that L′ ⊂ U ′L,
R′ ⊂ U ′R, Q′ ⊂ V ′, and that U ′L and U ′R are compactly contained
in V ′. Assume we are given a proper holomorphic map F ′ : U ′L t
U ′R → V ′, univalent on each component, such that F (L′) = Q′ =
F (R′). It follows that the bottom corners of Q′ are repelling fixed
points of F ′. LetM′ = ⋃n≥0(F ′)−n(M ′). We also assume that there
exists an anticonformal involution of V ′ sending Q′ to itself which
interchanges L′ and R′, sends U ′,M ′ to themselves, and commutes
with F ′ (this is the analog of reflection in the line x = 1/2 for Q).

(3) The four arcs comprising ∂Q are analytic.

Theorem 2.1. Under assumptions (1)–(3) above, let h′ : Q′ → C be a
homeomorphism onto its image which is quasiconformal on Q′ and confor-
mal on Q′−M′. Then the modulus of h′(Q′) is bounded above and below by
positive constants independent of h′.

Proof. It suffices to show the existence of a side-preserving quasiconfor-
mal map φ : Q→ Q′ sending M to M′. The only difficult point is that we
may no longer use a piecewise-affine extension to the interior to get a qc
map—we must be careful, since the gluing of two quasisymmetric maps at
a point need not be quasisymmetric.
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Assume first that there exists a side-preserving K-quasiconformal map
φ0 : Q→ Q′ with the following properties:

• φ0 sends U,L,M,R to U ′, L′,M ′, R′,
• φ0 ◦ F = F ′ ◦ φ0 on the left, right, and top sides of L and R.

For n ≥ 0, let Un = F−n(U), Mn = F−n(M), and define U ′n, etc. similarly.
Inductively define φn+1 : Q → Q′ by setting φn+1 = φn on Un

⋃
Mn and

by (F ′)−1 ◦ φn ◦ F on Q′ − Un
⋃
Mn. For each n, φn is a side-preserving

K-quasiconformal map from Q to Q′. By compactness properties of K-
quasiconformal mappings, after passing to a subsequence, there is a limit
φ : Q→ Q′ which conjugates F to F ′, hence sends M to M′.

We now show the existence of φ0. We shall use repeatedly the fact that
quasisymmetric maps between quasicircles extend over the complementary
components to quasiconformal maps.

Consider the quotient tori TL, TR, T ′L, T
′
R for the repelling fixed points of

F and F ′; see Figure 2.

U

L M R

U’

L’ M’ R’

TL TR T’L T’R

AL AR A’L A’R

Fig. 2. Finding φ0. Send A′L/R to AL/R via a qc map which sends the crosscut curves to
curves homotopic to crosscut curves.

The anticonformal involutions of Q,Q′ descend to anticonformal isomor-
phisms TL ↔ TR and T ′L ↔ T ′R. The domains L,R,L′, R′ project to annuli
AL, AR, etc. bounded by real analytic closed curves. Each such annulus con-
tains a distinguished piecewise-analytic crosscut curve (the projection of
the union of the top and side of L,R) which joins the two boundary com-
ponents. Moreover, the projection of the bottom of M ′ (and of M) project
to distinguished segments on the boundary components of AL, AR, etc.

Condition (3) implies that there exists a C1, hence qc map T ′L → TL
sending A′L → AL, mapping the distinguished crosscut curves to curves ho-
motopic to the corresponding crosscut curves, and sending the distinguished
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segments to the corresponding segments. By conjugating with the anticon-
formal involution, we get a similar map T ′R → TR.

Lifting to the dynamical plane, we obtain a continuous map defined on
the bottom, left, and right sides of Q′ to the corresponding sides of Q, which
commutes with the dynamics on the left and bottom (respectively, right and
bottom) of L′ and R′, and which sends the corners of L′, R′ lying on ∂Q′

to the corresponding corners in ∂Q. The resulting map is quasisymmetric
since it arises as the boundary values of a locally defined qc map. This map
extends to a quasisymmetric map ∂Q′ → ∂Q, which in turn extends to a
quasiconformal map Q′ → Q′ which we denote by φ−1.

Set φ0|L′/R′ = F−1
L/R ◦ φ−1 ◦ F ′L′/R′ . The resulting map extends, using

the boundary values of φ−1, continuously to L′ t R′⋃ ∂Q′ such that the
restriction to ∂Q′ is quasisymmetric. Extend φ0 over the complement of Q′

in the Riemann sphere to a quasiconformal map of the quasidisk (Ĉ−Q′)∪
L′ ∪R′ onto (Ĉ−Q) ∪L ∪R. It remains only to extend φ0 over U ′ ∪M ′ so
that φ0(U ′) = U and φ0(M ′) = M . The Corollary to Lemma 2.1 below says
precisely that this is possible, and the proof is complete.

Lemma 2.1. Suppose two Jordan domains V± ⊂ C share a common
boundary arc, and that each component of Ĉ − (∂V+ ∪ ∂V−) is a quasi-
circle. Let f+ : Ĉ → Ĉ be a quasiconformal homeomorphism for which
f(∆+) = V+. Then there is a quasiconformal homeomorphism f : Ĉ → Ĉ
such that f(∆±) = V± and f = f+ on ∆+.

Proof. Recall that ∆ denotes the open unit disk in C, and ∆± the upper
and lower halves. Then ∆± are both quasidisks, i.e. each is the image of
∆ under a quasiconformal homeomorphism g± of all of C, and without loss
of generality we may assume that g+ and g− send the lower and upper
semicircles, respectively, onto the interval [−1, 1].

Let f+ be a quasiconformal map of the plane sending ∆+ to V+. The
composition f−1

− ◦ f+|[−1,1] is a homeomorphism of the interval [−1, 1] to
itself. The composition g−1

− ◦ (f−1
− ◦ f+|[−1,1]) ◦ g− is a quasisymmetric map

of the upper semicircle to itself. Extend this map over the lower semicircle by
complex conjugation. Lemma 5.1 of [Leh] implies that the resulting map h :
∂∆→ ∂∆ is quasisymmetric. Applying e.g. the Ahlfors–Beurling extension,
we obtain a quasiconformal extension H : ∆→ ∆.

Let f : ∆→ C be given by f+ on ∆+∪(−1, 1) and by f−◦g−◦H ◦g−1
− on

∆+∪ (−1, 1). The map f is a homeomorphism on ∆, and quasiconformal on
∆+ and ∆−, hence is quasiconformal on ∆ by the removability properties
of analytic arcs for qc maps. The map f extends to a homeomorphism of ∆
sending the quasicircle ∂∆ to a quasicircle, by assumption. It follows from
[LV, Thm. II.8.2] that f extends to a quasiconformal map on a neighborhood
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of ∆, which then by [LV, Thm. II.8.1] extends to a quasiconformal map on
the entire plane.

Corollary 2.1. Suppose two Jordan domains V± ⊂ C share a common
boundary arc, and that each component of Ĉ− (∂V+ ∪ ∂V−) is a quasicircle.
Let W = Ĉ− (V + ∪ V −), and suppose f : Ĉ−∆→W is a quasiconformal
map. Then there exists a quasiconformal extension of f to the whole sphere
such that f(∆±) = V±.

The proof follows by letting W correspond to V+ in Lemma 2.1.

3. Proof of Theorem 1.2. We prove the bound for λ+
n ; the other is

similar. Let φ+ : (C, 0) → (P1, v+
0 ) denote the Königs linearizing map for

the repelling fixed point v+
0 , and let p+ : C−{0} → T+

0 be projection to the
quotient torus T+

0 . Identify T+
0 with C/〈z 7→ z + 1, z 7→ z + τ0〉 where τ0 =

(ln 2)i/2π. Let α, β be generators of π1(T+
0 , 0) corresponding to translation

by 1 and translation by τ0, respectively. Thus, a lift of α under p+ ◦φ+ goes
once around v+

0 counterclockwise, while a lift of β points in toward v+
0 .

Let H denote the upper half-plane and T the Teichmüller space of com-
plex tori modeled on T+

0 . A point of T is represented by a complex torus
T+ = C/〈1, τ〉, τ ∈ H, equipped with a quasiconformal homeomorphism
h : T+

0 → T+ such that a lift of h to C conjugates translation by 1 and by
τ0 to translation by 1 and by τ , respectively. The map sending a marked
torus (h : T+

0 → T+) to the point τ is an isomorphism between T and the
upper half-plane H and is an isometry with respect to the Teichmüller and
hyperbolic metrics.

The mapping class group acts on T by precomposition of markings. Sup-
pose ω : T+

0 → T+
0 is an arbitrary quasiconformal map. Let [ω] denote the

corresponding mapping class element and ω∗ the induced linear map on
H1(T+

0 ,Z), equipped with the ordered basis [α, β]. Then

[ω].τ =
aτ + b

cτ + d

where
(
a b
c d

)
is the matrix for ω−1

∗ . If ω is a positive Dehn twist in an annulus
with core curve β, then ω−1

∗ sends β 7→ β and α 7→ α+ β on homology and
so [ω].τ = τ/(τ + 1).

Now let ω : S → S be a spin on the quotient twice-punctured torus S
corresponding to the attractor at the origin, ωn = ω−n, and let µn be the
Beltrami differential of ωn lifted to the sphere (recall the discussion in §1).
The Beltrami differentials µn are f0-invariant, hence descend to Beltrami
differentials on T+

0 which we denote by µ+
n . Then the µ+

n determine tori

T+
n = C/〈z 7→ z + 1, z 7→ z + τ+

n 〉, τ+
n ∈ H,
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and quasiconformal maps h+
n : T+

0 → T+
n , i.e. points τ+

n in Teichmüller
space. The multipliers satisfy λ+

n = exp(−2πiτ+
n ).

The map (p+ ◦ φ+) ◦ (p ◦ φ|A+)−1 : A+ → A is a conformal isomorphism
from the annulus A+ in the quotient torus S for the attractor at the origin
to an annulus A in the quotient torus T+

0 for the repellor at v+
0 . Write

µ+
n = µAn +κn, where κn ≡ 0 on A. The key observation is that the Beltrami

differential µAn agrees with that of ω+
n = ω◦−n : T+

0 → T+
0 , where ω is a

positive Dehn twist on A. Let t+n = [ω]−n.τ0 = τ0/(nτ0 + 1) ∈ H.

Lemma 3.1. There is a constant C0 such that for all n ∈ N,

d(t+n , τ
+
n ) ≤ C0,

where d is the hyperbolic (Teichmüller) distance.

Given the lemma, let us now prove the theorem. The composition

H λ=exp(−2πiτ)−−−−−−−→ {λ : |λ| > 1} ι=1/(1−λ)−−−−−→ {ι : Re(ι) < 1/2} − {0}
is an isometry with respect to the hyperbolic metrics. On the last domain,
for large imaginary values, the hyperbolic metric is comparable to the metric
dx/(x−1/2). This observation and a routine power series computation yields
the second conclusion.

To prove the first estimate, note that the point on a hyperbolic circle
in H which is Euclidean furthest away from the center lies directly above
the center. Thus

d(z, w) ≤ C ⇒ |z − w| ≤ (eC − 1) Im(z)

and so
|t+n − τ+

n | ≤ (eC0 − 1) Im(t+n ).

Putting C1 = eC0 − 1 and substituting t+n = τ0/(nτ0 + 1) yields

|t+n − τ+
n | ≤ C1

ln 2
2π

n2
( ln 2

2π

)2 + 1
.

As n → ∞, both t+n and τ+
n tend to zero, where the map τ 7→ exp(−2πiτ)

is nearly a Euclidean affine map with derivative −2πi. Since λ+
n =

exp(−2πiτn), this yields after cancelling 2π’s

| exp(−2πit+n )− λ+
n | < C2

ln 2

n2
( ln 2

2π

)2
+ 1

= O
(

1
n2

)
.

Proof of Lemma 3.1. In T , the point τ+
n is represented by h+

n : T+
0 → T+

n ,
while t+n is represented by ω+

n : T+
0 → T+

0 . By construction, h+
n ◦ω−1

n : T+
0 →

T+
n is a quasiconformal map which is holomorphic off a subset K which is

independent of n.
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Let h : T+
0 → T+ be an arbitary quasiconformal mapping whose di-

latation µ is supported on K. By the definition of Teichmüller distance, it
suffices to show that there are lower bounds, independent of h, on the mod-
uli of annuli in h(T+

0 ) whose core curves are homotopic to h(α) and to h(β).
The lower bound for h(β) is immediate from the Grötzsch inequality, since
µ = 0 on A by hypothesis.

Let µ̃ be the Beltrami differential given by (p+ ◦φ+)∗(µ) on Ω0 and zero
elsewhere. Then µ̃ is supported on K̃ = (p+ ◦ φ+)−1(K), which is the grand
orbit of Ã−1. Let Hµ̃ : P1 → P1 be a straightening map for µ̃.

Let D be an annulus in the dynamical plane which is a fundamental
domain for the action of f0 near v+

0 . Finding a lower bound on the modulus
of an annulus in h(T+

0 ) about h(α) is equivalent to finding a lower bound
on the extremal length of the path family joining the boundary components
of Hµ̃(D).

It will be convenient to deal with a more symmetric object. Let s(z) =
1/z denote inversion in the unit circle. Let Φ : (∆, 0) → (Ω0, 0) be the
unique Riemann map for which Φ′(0) > 0. Then Φ conjugates f0 on Ω0 to
the Blaschke product

B0(z) = −z z2 − a2

1− a2z2 , a =
1√
2
.

By reflection, Φ extends to a quasiconformal conjugacy in a neighborhood
of the Julia set. It suffices to prove the analogous result for B0, where now
the Beltrami differential µ is supported on the s-symmetric set K̃ ∪ s(K̃),
but where we do not assume that µ̃ = s∗µ̃.

L
M

RU

L

M

R

U
L

M

R U

L

M
R

U

µ

µ µ

E

Fig. 3. Four copies of Q near the repelling fixed point v+
0 . The Beltrami differential µ̃ is

supported on the grand orbit of Ã−, indicated by the letter µ.
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Consider the dynamical plane for B0; see Figure 3. It is easy to prove
the existence of a quadrilateral Q′ and subdomains U ′, L′,M ′, R′ as in Theo-
rem 2.1 in e.g. the upper right-hand corner of the figure. (The anticonformal
involution comes from the fact that B0|Q′ is univalent, and the image B0(Q′)
is symmetric with respect to the real axis.) The domains will be quasicircles:
since the annuli A± can be fattened slightly, arcs which meet at the Julia set
or at a point in the grand orbit of the origin do so in definite angles, while
the remaining corners are intersections of analytic arcs meeting transversely.

Let
R = int(closure(Q′ ∪ s(Q′) ∪ r(Q′) ∪ rs(Q′) ∪E ∪ s(E)))

where E is the fundamental domain for the restriction of B0 to the lift Ã+

indicated in the figure. ThenR is an annulus surrounding v+
0 . A fundamental

domain D for the action of B0 near v+
0 is the region between the dashed

curves in Figure 3. Combinatorially, the situation is as depicted in Figure 4.

U

RML

U

RML

U

R M L

U

R M L

E

E

Fig. 4. An annulus surrounding the repelling fixed point is decomposed combinatorially
as shown above. The grey curves are typical elements of the path families Γ±

h/v
.

To complete the argument, we use an observation of G. Cui. As suggested
in Figure 4, let Γ+

h consist of those paths lying in the rectangle which is the
union of the top two copies of U and the top copy of E, and which join the
horizontal sides of this rectangle. Let Γ−h be the corresponding family in the
bottom half. Let Γ+

v consist of those paths lying in the rectangle which is
the union of the right copies of U,M,R and which join the extreme top and
bottom sides of this rectangle. Let Γ−v be the corresponding family in the
left half.

Since µ̃ = 0 on U ∪E, the extremal lengths of h(Γ±h ) in the annulus h(D)
are independent of µ. By the DHMY bound and the subadditivity properties
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of extremal length, the extremal lengths of h(Γ±v ) are bounded from above
independent of µ. Thus

max{Λ(h(Γ±h )), Λ(h(Γ±v ))} ≤ k

for some constant k.

Let Γ now be the family of paths γ in D joining the inner and outer
boundary components of D. Given any γ, among the four families Γ±v , Γ

±
h ,

there is at least one such family with the property that γ intersects every
path in this family. Since extremal lengths of horizontal and vertical path
families in rectangles are reciprocal quantities, we have

Λ(h(Γ )) ≥ 1
k

and the proof of the bound is complete.

References

[Cui] G. Z. Cui, Geometrically finite rational maps with given combinatorics, manu-
script, 2000.

[GL] F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory , Math. Surveys
Monogr. 76, Amer. Math. Soc., Providence, RI, 2000.

[GK] L. R. Goldberg and L. Keen, The mapping class group of a generic quadratic
rational map and automorphisms of the 2-shift , Invent. Math. 101 (1990), 335–
372.

[Häı] P. Häıssinsky, Pincement de polynômes, Comment. Math. Helv. 77 (2002), 1–23.
[K] J. Kahn, Holomorphic removability of Julia sets, preprint, ArXiv math.DS/

9812164, 1998.
[Leh] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math.

109, Springer, New York, 1987.
[LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed.,

Grundlehren Math. Wiss. 126, Springer, New York, 1973.
[Mak] P. M. Makienko, Modular groups of certain rational functions, Dokl. Akad. Nauk

SSSR 310 (1990), 793–794 (in Russian); English transl.: Soviet Math. Dokl. 41
(1990), 126–127.

[McM] C. T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically
finite rational maps, Comment. Math. Helv. 75 (2000), 535–593.

[MS] C. T. McMullen and D. P. Sullivan, Quasiconformal homeomorphisms and dy-
namics. III. The Teichmüller space of a holomorphic dynamical system, Adv.
Math. 135 (1998), 351–395.

[Mil] J. Milnor, Dynamics in One Complex Variable, Vieweg, Braunschweig, 1999.
[PT] K. M. Pilgrim and L. Tan, Spinning deformations of rational maps, Conform.

Geom. Dyn. 8 (2004), 52–86.



150 K. M. Pilgrim

[R] J. Rivera-Letelier, Rigid annuli , Thurston’s pull-back argument and Collet–
Eckmann condition, preprint, 2000.

Department of Mathematics
Indiana University
Bloomington, IN 47401, U.S.A.
E-mail: pilgrim@indiana.edu

Received 18 May 2003;
in revised form 14 June 2004


