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Miller spaces and spherical resolvability of finite complexes
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Abstract. Let A be a fixed collection of spaces, and suppose K is a nilpotent space
that can be built from spaces in A by a succession of cofiber sequences. We show that,
under mild conditions on the collection A, it is possible to construct K from spaces in A
using, instead, homotopy (inverse) limits and extensions by fibrations. One consequence
is that if K is a nilpotent finite complex, then ΩK can be built from finite wedges of
spheres using homotopy limits and extensions by fibrations. This is applied to show that
if map∗(X,S

n) is weakly contractible for all sufficiently large n, then map∗(X,K) is
weakly contractible for any nilpotent finite complex K.

Introduction. A Miller space is a CW complex X with the property
that the space map∗(X,K) of pointed maps from X to K is weakly con-
tractible for any nilpotent finite complex K (cf. [8, p. 46]). They are named
for Haynes Miller, who proved in his landmark paper [16] that if G is a (lo-
cally) finite group, then the classifying space BG is a Miller space. In this
paper we prove the following simple recognition principle for Miller spaces.

Theorem (Corollary 11). Let X be a space and let N ∈ N. Then the
following are equivalent :

(a) map∗(X,K) ∼ ∗ for every nilpotent finite complex K,
(b) map∗(X,S

n) ∼ ∗ for all n ≥ N .

In the stable category, one can define a Miller spectrum by the property
that the mapping spectrum F (X,K) is contractible for every finite spec-
trum K. Since cofiber sequences and fiber sequences are the same in the
stable category, a finite spectrum K with m cells is the fiber in a fiber se-
quence K → L→ Sn in which L has only m− 1 cells; in the terminology of
[6, 14], this means that K is spherically resolvable with weight m. An easy
induction shows that X is a Miller spectrum if and only if F (X,S0) ' ∗.
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Thus our theorem is the unstable analog of an elementary stable ob-
servation. Of course, the proof of the stable version is not available to us
because cofiber sequences are not fiber sequences, unstably. To prove our re-
sult, it is necessary to determine the extent to which a finite complex can be
constructed from spheres in a more general way, i.e., by arbitrary homotopy
(inverse) limits [4, Ch. XI] and extensions by fibrations.

We call a class R of spaces a strong resolving class if it is closed under
weak equivalence, homotopy limits and extensions by fibrations. The prin-
cipal example is the class {K | map∗(X,K) ∼ ∗}, for a fixed space X.
We derive Corollary 11 from the following property of strong resolving
classes.

Theorem 10 Let R be a strong resolving class and let N ∈ N. Then the
following are equivalent :

(a) K ∈ R for every nilpotent finite complex K,

(b)
∨
Sn ∈ R for every finite wedge of spheres with n ≥ N .

Another corollary of Theorem 10 is that ifK is a nilpotent finite complex,
then ΩK is spherically resolvable in the following sense: ΩK belongs to
R(S), the smallest strong resolving class that contains Sn for each n.

We now summarize the organization of the paper. In Section 1 we recall
the notion of cone length with respect to a collection A of spaces. The prin-
cipal result of the section is an upper bound for the cone length of the sus-
pension of certain homotopy fibers. Section 2 is where we introduce (strong)
resolving classes and prove that some special strong resolving classes are
closed under certain finite type wedges. Section 3 contains the statement
of the main theorem of the paper in its full generality and the derivation
from it of the results described in the introduction. The main theorem is
finally proved in Section 4. The last section contains a simple proof of a
desuspension result that plays a key role in the proof of the main theo-
rem.
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statement and proof of Proposition 7. Thanks are also due to Daniel Tanré
for bringing Proposition 4 to my attention. Wojciech Chachólski offered
several helpful remarks, including the simple proof of Theorem 14 given in
Section 5.
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1. Cone length and collections of spaces. The proof of our main
theorem proceeds by induction on a certain kind of cone length. In this
section we recall the notion of cone length with respect to a collection A of
spaces and derive the basic properties that we will need later.

Definition 1. Let A be a collection of spaces. The A-cone length of a
space K, denoted clA(K), is the least integer n for which there are cofiber
sequences

Ai → Ki → Ki+1 for 0 ≤ i < n,

with K0 ∼ ∗, Kn ∼ K and each Ai ∈ A. If K ∼ ∗ then clA(K) = 0; if no
such n exists, then clA(K) =∞.

Here, and throughout the paper, ∼ denotes weak equivalence. Intuitively,
clA(X) is the number of steps it takes to build X from A using cofibrations
[7, 1].

If A is a collection of spaces, then we denote by ΣA the collection of all
suspensions of spaces in A. We will be concerned with the following closure
properties of collections A: A is closed under suspension if ΣA ⊆ A; A is
closed under smash products if A ∧ B ∈ A whenever A,B ∈ A; and A is
closed under wedges if A ∨B ∈ A whenever A,B ∈ A.

The following result is easily checked, and we omit the proof.

Proposition 2. Let A be a collection of spaces and let K be a space.
Then

(a) clΣA(ΣK) ≤ clA(K),
(b) if A is closed under suspension, then clA(ΣK) ≤ clA(K),
(c) if A is closed under smash products and A ∈ A, then clA(A ∧K) ≤

clA(K),
(d) if A is closed under wedges, and L is any space, then clA(K ∨ L) ≤

max(clA(K), clA(L)).

A finite type wedge of spaces in A is a space W that is weakly equivalent
to
∨
Ai with each Ai ∈ A and such that, for each n, all but finitely many

of the Ai are n-connected. If A is a collection of spaces, then we write A∨
for the collection of all finite type wedges of spaces in A. Notice that A∨ is
closed under finite type wedges.

Remark. A space W is a finite type wedge of spaces in A if it has
such a wedge decomposition. This does not mean that W does not have
another decomposition which is not of finite type. For example, let A be the
two-member collection {S2,

∨∞
n=1 S

2}. Then W =
∨∞
n=1 S

2 is a member of
A∨ since, in fact, W ∈ A. However, W can also be considered as an infinite
(and not of finite type) wedge of S2 with itself.
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Examples. The following examples are of particular interest.

(a) We write S = {Sn | n ≥ 0}. Clearly S is closed under smash products.
Then clS(K) <∞ if and only if K is a connected finite complex.

(b) The collection S∨ is closed under smash products and finite type
wedges. It follows that any finite type wedge K of suspensions of a given
connected finite complex has clS∨(K) <∞.

(c) Let S∞ = {∨α∈I S
n | n ≥ 0, I an index set} denote the collection

of all unidimensional wedges of spheres. Then S∨∞ is simply the collection of
all wedges of spheres. If K is a wedge of suspensions of a given connected
finite-dimensional space, then clS∨∞(K) <∞.

We are now ready to prove two key results. The first is a formal result
about collections which follows easily from the Hilton–Milnor theorem.

Proposition 3. If A is closed under smash products and suspension,
then ΣΩ(Σ2A∨) ⊆ Σ3A∨.

Proof. Let A =
∨
Σ2Ai ∈ Σ2A∨. By the Hilton–Milnor theorem [12],

ΩA is a finite type product of the form

ΩA ∼
∏

Ω(Σ2Ai1 ∧ . . . ∧Σ2Aik).

The splitting of the product after one suspension and the James splitting of
ΣΩΣX when X is simply connected imply that ΣΩA ∈ Σ3A∨.

The second result of this section gives an upper bound for the cone length
of the suspension of the homotopy fiber of certain maps.

Proposition 4. Let L → V → W be a cofiber sequence and let F be
the homotopy fiber of V →W . Then

ΣF ' ΣL ∨ (L ∧ΣΩW ).

Proof. Convert the maps L ∗→ W , V → W and W
=→ W to fibrations.

The total spaces and fibers form the commutative diagram

L×ΩW

��

%%KKKKKKKKKK
// F

  AAAAAAAA

��

ΩW

��

// ∗

��

L

%%KKKKKKKKKKKK // V

  AAAAAAAA

∗ //W



Miller spaces and spherical resolvability 101

in which the bottom square is a homotopy pushout. Since all the fibrations
have the same base (namely W ), the fibers of the vertical maps in the cube
have the same fiber (namely ΩW ). Therefore each vertical face of the cube
is a homotopy pullback square and it follows from Mather’s cube theorem
[15] that the top square is also a homotopy pushout. (Alternatively, one
can simply appeal to a result of V. Puppe [17] to conclude that the top
square is a homotopy pushout.) Hence, the cofiber ΣF of the map F → ∗
has the same homotopy type as the cofiber of L × ΩW → ΩW , namely
ΣL ∨ (L ∧ΣΩW ), as can be seen from the diagram

L×ΩW //

homotopy
pushout

��

ΩW

��

// ΣF

L ∗
// L ∗ΩW // ΣL ∨ (L ∧ΣΩW )

whose rows are cofiber sequences.

Corollary 5. Let A be a collection of spaces that is closed under smash
products and suspension. Let L → V → W be a cofiber sequence with W ∈
Σ2A∨ and let F be the homotopy fiber of V → W . Then clA∨(ΣF ) ≤
clA∨(L).

Proof. By Proposition 4, ΣF ' ΣL∨ (L∧ΣΩW ). Now ΣΩW ∈ Σ3A∨
by Proposition 3, so

clA∨(ΣF ) ≤ clA∨(ΣL) ≤ clA∨(L)

by parts (d), (c) and (b) of Proposition 2, in that order.

2. Resolving classes. The second piece of terminology that we need
to state our main theorem is the notion of (strong) resolving classes.

Definition 6. We call a nonempty class R of spaces a resolving class
if it is closed under weak equivalences and pointed homotopy limits. It is a
strong resolving class if it is further closed under extensions by fibrations;
i.e., if whenever F → E → B is a fiber sequence with F,B ∈ R, then E ∈ R.

Resolving classes are dual to closed classes as defined in [5] and [8, p. 45].
Every resolving class R contains the one-point space ∗ (cf. [8, p. 47]).

From this, it follows that if F → E → B is a fiber sequence with E,B ∈ R,
then F ∈ R.

Examples. (a) The class {K | K ∼ ∗} is a strong resolving class.
(b) If R is a (strong) resolving class, then the class {K | map∗(X,K)

∈ R} is also a (strong) resolving class. In particular, {K | map∗(X,K) ∼ ∗}
is a strong resolving class.
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(c) If f : A → B is any map then the class of all f -local spaces is a
resolving class [8, p. 5]. This includes, for example, the class of all h∗-local
spaces, where h∗ is a homology theory. If P is a set of primes, then the class
of all P -local spaces is a strong resolving class.

If A is a collection of spaces, then R(A) denotes the smallest resolving
class which contains A, andR(A) denotes the smallest strong resolving class
which contains A. We say that a space K is A-resolvable if K ∈ R(A).

The collection S of all spheres is of particular interest. A space K is
spherically resolvable if K ∈ R(S). This concept is related to, but not the
same as, the notion of spherical resolvability described in [6, 14].

We now show that if R = {K | map∗(X,K) ∼ ∗} for some space X,
then R is closed under the operation of taking certain finite type wedges of
suspensions of members of R. The statement and proof of Proposition 7 in
the representative special case A = S are due to Bill Dwyer [9].

Proposition 7. Let A be a collection of spaces that is closed under sus-
pension and smash products and let N ≥ 2. Let R = {K | map∗(X,K)∼∗}
for some space X. If ΣNA ⊆ R, then ΣNA∨ ⊆ R.

Proof. Define a relation < on ΣNA∨ as follows: V < W if either

(1) the connectivity of V is greater than the connectivity of W , or
(2) the connectivity of V equals the connectivity of W (say both are

(n−1)-connected) and the minimum number of (n−1)-connected summands
of V in any wedge decomposition of V is less than the minimum number of
(n− 1)-connected summands of W in any wedge decomposition of W .

Claim. Suppose that V ∈ ΣNA∨ is (n − 1)-connected. Then there is a
map f : V → ΣNA with A ∈ A such that the homotopy fiber U of f belongs
to ΣNA∨ and U < V .

Proof of Claim. Write V ∼ V ′ ∨ΣNA with ΣNA (n− 1)-connected and
V ′ < V . Let f : V → ΣNA be the map which collapses V ′. By [12], the
homotopy fiber of f is

(V ′ × ΩΣNA)/(∗ × ΩΣNA) ∼ V ′ ∧ (ΩΣNA)+

∼ V ′ ∨
(
V ′ ∧

∞∨

m=0

(ΣN−1A)∧m
)
∈ ΣNA∨,

using the James splitting of ΣΩΣZ, which applies because ΣNA is a simply
connected suspension and V ′ is a suspension. This completes the proof of
the Claim.

Now let V = V0 ∈ ΣNA. For n ≥ 0, define Vn+1 as the fiber of a map
f : Vn → ΣNAn as in the Claim. The result is a tower of spaces

V0 ← V1 ← . . .← Vn ← Vn+1 ← . . .
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with Vn ∈ ΣNA∨ and Vn+1 < Vn for each n. Since the spaces in this tower
become arbitrarily highly connected as n increases, holimn Vn ∼ ∗.

For each n the fiber sequence Vn → Vn+1 → ΣNAn gives rise to a fiber
sequence

map∗(X,Vn+1)→ map∗(X,Vn)→
∗︷ ︸︸ ︷

map∗(X,Σ
NAn) .

It follows by induction that each map Vn → V induces a weak equivalence
map∗(X,Vn) ∼ map∗(X,V ). Finally, we compute

map∗(X,V ) ∼ holimn map∗(X,V ) ∼ holimn map∗(X,Vn)

∼ map∗(X,holimn Vn) ∼ map∗(X, ∗) ∼ ∗.

3. The main results. We can now state our main result.

Theorem 8. Let A be a collection of spaces that is closed under sus-
pension and smash products and let N ∈ N. If K is a nilpotent space with
clA∨(K) = n <∞, then

(a) K ∈ R(ΣNA∨),
(b) ΩnK ∈ R(ΣNA∨).

The proof will be given in Section 4.
The collections S and S∞ satisfy the conditions of Theorem 8. For the

collection S, the theorem implies that every nilpotent finite complex is S∨-
resolvable. Our first corollary shows that the loop space of a nilpotent finite
complex is spherically resolvable.

Corollary 9. If K is a nilpotent finite complex , then ΩK is spherically
resolvable.

Proof. Let R = {K | ΩK ∈ R(S)}, which is a strong resolving class.
If
∨
Snα is a simply connected finite type wedge of spheres, then by the

Hilton–Milnor theorem [12], Ω
∨
Snα is a product of loop spaces of spheres,

and so is in R(S). Thus Σ2S∨ ⊆ R, and Theorem 8(a) guarantees that
every nilpotent finite complex is in R(Σ2S∨) ⊆ R.

We also obtain the following general version of our recognition principle
for Miller spaces.

Theorem 10. Let A be a collection of spaces that is closed under suspen-
sion and smash products and let N ≥ 1. Then the following are equivalent :

(a) map∗(X,Σ
NA) ∼ ∗ for each A ∈ A,

(b) map∗(X,K) ∼ ∗ for every nilpotent space K with clA∨(K) <∞.

Proof. LetM be the class of all spaces K such that map∗(X,K) ∼ ∗; we
have already seen that M is a strong resolving class. We have ΣNA ⊆ M
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by assumption, so R(ΣNA∨) ⊆ M by Proposition 7. By Theorem 8(a),
R(ΣNA∨) contains every nilpotent space K with clA∨(K) <∞.

We obtain the theorem cited in the introduction by specializing toA = S.

Corollary 11. Let X be a space and let N ∈ N. Then the following
are equivalent :

(a) map∗(X,K) ∼ ∗ for every nilpotent finite complex K,
(b) map∗(X,S

n) ∼ ∗ for all n ≥ N .

If X is simply connected then Theorem 10 can be strengthened some-
what. If L is a space with a nilpotent covering space K having clA(K) <∞,
then it is easy to see that map∗(X,L) ∼ ∗. The same sort of argument proves
the following reduction of Miller’s theorem.

Corollary 12. For any N ∈ N the following are equivalent :

(a) map∗(BZ/p,K) ∼ ∗ for every finite-dimensional complex K,
(b) map∗(BZ/p,

∨
Sn) ∼ ∗ for each wedge of n-spheres with n ≥ N .

Proof. Let K be a finite-dimensional CW complex and let K̃ be its
(finite-dimensional) universal cover. Applying Theorem 10 in the case A =
S∞, we see that map∗(BZ/p, K̃) ∼ ∗. But according to [16, Thm. 10.1], the
induced map

π∗(map∗(BZ/p, K̃))→ π∗(map∗(BZ/p,K))

is surjective, so map∗(BZ/p,K) ∼ ∗.
Actually, since BZ/p is a countable CW complex, it suffices to check

that map∗(BZ/p,
∨
Sn) ∼ ∗ for countable wedges of spheres.

4. Proof of Theorem 8. We will make essential use of the following
desuspension result.

Proposition 13. Let R be a resolving class and let N ∈ N. If K is a
connected nilpotent space and

∨m
i=1Σ

NK ∈ R for each m, then K ∈ R.

We defer further discussion of Proposition 13 until Section 5, and proceed
directly to the proof of Theorem 8.

Proof of Theorem 8. Since A is closed under suspension, we may, and
do, assume that N ≥ 2.

We prove assertion (a) by induction on clA∨(K). If clA∨(K) = 1, then
K ∈ ΣA∨. Therefore each finite wedge

∨m
i=1Σ

NK is in ΣNA∨ and Propo-
sition 13 proves the assertion in the initial case.

Now assume that the result is known for all nilpotent spaces with A∨-
cone length less than n, and that K is nilpotent with clA∨(K) = n. By
Proposition 13, it is enough to show

∨m
i=1Σ

NK ∈ R(ΣNA∨) for each m.
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Write V =
∨m
i=1Σ

NK. By parts (a) and (d) of Proposition 2, we have
clΣNA∨(V ) ≤ clA∨(K) = n. Thus V has a ΣNA∨-cone decomposition

Ai → Vi → Vi+1 for 0 ≤ i < n

with Ai∈ΣNA∨ for each i. Hence, there is a cofiber sequence L→V →W of
simply connected spaces with clA∨(L) ≤ clΣNA∨(L) < n and W ∈ ΣN+1A∨
(specifically, L = Vn−1 and W = ΣAn−1).

Let F denote the homotopy fiber of V →W . By Corollary 5, clA∨(ΣF ) ≤
clA∨(L) < n. Consequently, clA∨(

∨m
i=1ΣF ) < n for each m by Proposition

2(d). By the inductive hypothesis,
∨m
i=1ΣF ∈ R(ΣNA) for each m. Since

W is 2-connected and V is simply connected, F is at least simply connected,
and hence nilpotent. Now Proposition 13 implies that F ∈ R(ΣNA).

Since W and F are in the strong resolving class R(ΣNA∨), we conclude
that V ∈ R(ΣNA∨). This completes the proof of (a).

The proof of (b) is similar. To prove the inductive step, we write V =∨m
i=1Σ

NK and show that ΩnV ∈ R(ΣNA). As before, we consider the
cofiber sequence L → V → W with W ∈ ΣA and the corresponding fiber
sequence F → V →W . This gives us a fiber sequence

ΩnV → ΩnW → Ωn−1F

with ΩnW ∈ R(ΣNA). It now suffices to prove that Ωn−1F ∈ S, which
follows by induction using Proposition 13.

5. Desuspension in resolving classes. Proposition 13 is an immedi-
ate consequence of the following theorem, various incarnations of which can
be found in work of Barratt, Hopkins and Bousfield [2, 13, 3]. It has also
been studied by Goerss [10].

Theorem 14. If K is a nilpotent space, then K is homotopy equivalent
to the homotopy limit of a tower

M1 ←M2 ← . . .←Mn ←Mn+1 ← . . .

of spaces, each of which is a homotopy limit of a natural diagram of spaces
of the form

∨m
i=1ΣK.

This has the following consequence in our terminology.

Corollary 15. Let A be a collection of nilpotent spaces and let R be a
resolving class. If A is closed under wedges and ΣA ⊆ R, then A ⊆ R.

It is difficult to find a satisfactory (that is, complete and fairly elemen-
tary) account of this resolution of K by finite wedges

∨
ΣK in the literature.

The resolution was first described (for simply connected spaces) in lecture
notes by M. Barratt [2]. It is stated (without proof) for nilpotent spaces in
Hopkins’ paper [13]. In [3, Ex. 4.9], Bousfield uses a deep theorem on the con-
vergence of the homology spectral sequence of a cosimplicial space to show
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that, for any space K, the homotopy limit of the tower is weakly equivalent
to the Z-completion Z∞(K). This completion is weakly equivalent to K if
K is nilpotent.

In view of Bousfield’s work, it is not strictly necessary to provide a proof
of Theorem 14. However there is a simple geometric proof of Theorem 14
(suggested by Wojciech Chachólski) under the additional assumption that
K is simply connected. We include that proof here.

We begin by recalling Goodwillie’s generalization of the classical Blakers–
Massey excision theorem. Let Sp∗ denote a reasonable category of pointed
topological spaces and let Cn denote the category of subsets of {1, . . . , n}
whose morphisms are inclusions. A diagram X : Cn → Sp∗ is called a cubical
diagram. Such a diagram is strongly cocartesian if every 2-dimensional face
is a homotopy pushout square. Write fi : X (∅) → X ({i}); if X is strongly
cocartesian, then X is completely determined by the maps fi.

Let C̃n = {A ⊆ {1, . . . , n} | A 6= ∅} and write X̃ = X|C̃n.

Theorem [11, Thm. 3.21]. Let X be a strongly cocartesion cubical di-
agram. Let Fi denote the homotopy fiber of the map fi : X (∅) → X ({i})
and assume that Fi is ci-connected. Then the homotopy fiber of the natural
map

X (∅)→ holim X̃
is at least (

∑
i ci)-connected.

Proof of the simply connected case of Theorem 14. Let Xn denote the
n-dimensional strongly cocartesian diagram which is determined by the in-
clusions fi : K ↪→ CiK of K into the cone on K. For the case n = 3, this is
the diagram

K

f3

��

f2

''NNNNNNNNNNNN
f1 // C1K

��

**TTTTTTTTTTTTTTTTT

C2K

��

// C1K ∪K C2K

��

C3K

''NNNNNNNNNNN
// C1K ∪K C3K

**TTTTTTTTTTTTTTTT

C2K ∪K C3K // C1K ∪K C2K ∪K C3K

It is easy to see that Xn(A) is homotopy equivalent to a wedge of sus-
pensions of K if A 6= ∅ (simply collapse one of the cones to a point). Fur-
thermore, the homotopy fiber of fi (namely K) is 1-connected for each i by
assumption.
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Define Mn = holim X̃n. Using naturality of homotopy limits, we obtain
a commutative ladder

K

h1
��

K

h2
��

· · · K

hn
��

K

hn+1
��

· · ·

M1 M2oo · · ·oo Mn
oo Mn+1oo · · ·oo

Goodwillie’s theorem implies that the homotopy fiber of the map hn is
at least n-connected. It follows that the fiber of the natural map
h : K → holimnMn is weakly contractible—in other words, h is a weak
equivalence.
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[6] F. R. Cohen, J. R. Harper and R. Levi, On the homotopy theory associated to certain
finite groups of 2-rank two, in: Homotopy Theory and its Applications (Cocoyoc,
1993), Contemp. Math. 188, Amer. Math. Soc., Providence, RI, 1995, 65–79.

[7] O. Cornea, Cone-length and Lusternik–Schnirelmann category , Topology 33 (1994),
95–111.

[8] E. Dror Farjoun, Cellular Spaces, Null Spaces and Homotopy Localization, Lecture
Notes in Math. 1622, Springer, Berlin, 1996.

[9] W. Dwyer, private communication.
[10] P. G. Goerss, Barratt’s desuspension spectral sequence and the Lie ring analyzer ,

Quart. J. Math. Oxford Ser. (2) 44 (1993), 43–85.
[11] T. G. Goodwillie, Calculus, II. Analytic functors, K-Theory 5 (1991/92), 295–332.
[12] B. Gray, A note on the Hilton–Milnor theorem, Topology 10 (1971), 199–201.
[13] M. J. Hopkins, Formulations of cocategory and the iterated suspension, Algebraic

Homotopy and Local Algebra (Luminy, 1982), Astérisque 113-114 (1984),
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261–269.

[15] M. Mather, Pull-backs in homotopy theory , Canad. J. Math. 28 (1976), 225–263.
[16] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math.

120 (1984), 39–87.



108 J. Strom

[17] V. Puppe, A remark on “homotopy fibrations”, Manuscripta Math. 12 (1974), 113–
120.

Western Michigan University
Kalamazoo, MI 49008, U.S.A.
E-mail: Jeffrey.Strom@wmich.edu

Received 7 May 2002;
in revised form 4 March 2003


