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Universal acyclic resolutions for arbitrary coefficient groups
by

Michael Levin (Be’er Sheva)

Abstract. We prove that for every compactum X and every integer n > 2 there are
a compactum Z of dimension < n 4+ 1 and a surjective UV”fl—map r: Z — X such that
for every abelian group G and every integer k > 2 such that dimg X < k& < n we have
dimg Z < k and r is G-acyclic.

1. Introduction. This paper is devoted to proving the following theo-
rem which was announced in [8].

THEOREM 1.1. Let X be a compactum. Then for every integer n > 2
there are a compactum Z of dimension < n + 1 and a surjective UV"1-
map r : Z — X having the property that for every abelian group G and
every integer k > 2 such that dimg X < k < n we have dimg Z < k and r
is G-acyclic.

The cohomological dimension dimg X of X with respect to an abelian
group G is the least number n such that H"T1(X, A; G) = 0 for every closed
subset A of X. A space is G-acyclic if its reduced Cech cohomology groups
modulo G are trivial; a map is G-acyclic if every fiber is G-acyclic. By the
Vietoris—Begle theorem a surjective G-acyclic map of compacta cannot raise
the cohomological dimension dimg. A compactum X is approzimately n-
connected if any embedding of X into an ANR has the UV "-property, i.e. for
every neighborhood U of X there is a smaller neighborhood X C V' C U such
that the inclusion V' C U induces the zero homomorphism of the homotopy
groups in dimensions < n. An approximately n-connected compactum has
trivial reduced Cech cohomology groups in dimensions < n with respect to
any group G. A map is called a UV™map if every fiber is approximately
n-connected.

Theorem 1.1 generalizes the following results of [6, 7].
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THEOREM 1.2 ([6]). Let G be an abelian group and let X be a compactum
with dimg X < n, n > 2. Then there are a compactum Z with dimg Z < n
and dim Z <n+1 and a G-acyclic map r : Z — X from Z onto X.

THEOREM 1.3 ([7]). Let X be a compactum with dimz X <n > 2. Then
there exist a compactum Z with dim Z < n and a cell-like map r : Z — X
from Z onto X such for every integer k > 2 and every group G such that
dimg X < k we have dimg Z < k.

Theorem 1.2 obviously follows from Theorem 1.1. Theorem 1.3 can be
derived from Theorem 1.1 as follows. Recall that a compactum is cell-like
if any map from the compactum to a CW-complex is null-homotopic. A
map is cell-like if its fibers are cell-like. Let X have dimz X < oo and let
r: Z — X satisfy the conclusions of Theorem 1.1 for n = dimyz X 4+ 1. Then
dimyz Z < dimz X < n — 1 and because Z is finite-dimensional we have
dimZ = dimy Z < n—1. Since 7 is UV" ! and dim Z < n — 1 we find that
r is cell-like. Let dimg X < k > 2 for a group G. If £ < n then dimg Z < k
by Theorem 1.1, and if £ > n then dimg Z < k since dim Z < n — 1. Thus
Theorem 1.1 implies Theorem 1.3.

It was observed in [7] that the restriction k£ > 2 in Theorem 1.3 cannot
be omitted. Therefore Theorem 1.1 does not hold for k£ = 1.

Let us discuss possible generalizations of Theorem 1.1. One is tempted
to reduce the dimension of Z to n. This is partially justified by

THEOREM 1.4 ([8]). Let X be a compactum. Then for every integer n>2
there are a compactum Z of dimension < n and a surjective UV '-map
r: Z — X having the property that for every finitely generated abelian group
G and every integer k > 2 such that dimg X < k < n we have dimg Z < k
and r is G-acyclic.

However, Theorem 1.4 does not hold for arbitrary groups G. Indeed, one
can show that a Q-acyclic UV !-map from a compactum of dimension < 2
must be Z-acyclic (even cell-like). Thus a compactum X with dimz X = 3
and dimg Z = 2 cannot be the image of a compactum of dimension < 2
under a Q-acyclic UV -map.

The situation becomes more complicated if we drop in Theorem 1.1 the
requirement that r is UV"~! and consider

PROBLEM 1.5. Given a compactum X, an integer n > 2 and a collection
G of abelian groups such that dimg X < n for every G € G, do there exist a
compactum Z of dimension < n and a G-acyclic surjective map r : Z — X
such that dimg Z < max{dimg X, 2} for every G € G? (The G-acyclicity
means the G-acyclicity for every G € G.)

In general the answer to Problem 1.5 is negative [5]. Indeed, let X be
a compactum with dimz X = 3, dimg X = 2 and dimgz, X = 2 for every
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prime p and let G = Q @ (Q/Z). Clearly dimg X = 2 and the G-acyclicity
implies both the Q- and (Q/Z)-acyclicity. Then it follows from the Bockstein
sequence generated by

0-2—-Q—Q/Z—0

that the G-acyclicity implies the Z-acyclicity and therefore there is no G-
acyclic resolution for X from a compactum of dimension < 2.

The situation described in the example can be interpreted in terms of
Bockstein theory. Let G be a collection of abelian groups. Denote by o(G)
the union of the Bockstein bases o(G) of all G € G. Based on the Bockstein
inequalities define the closure o(G) of o(G) as a collection of abelian groups
containing ¢(G) and possibly some additional groups determined by:

o Z, € 0(G) if Zy~ € a(G);

o Zys € 0(G) if Z, € 0(G);

e Qe a(G)if Zy) € 0(G);

o Zy € 0(G) if Q,Zy~ € o(G).

One can show that for compact metric spaces the G-acyclicity implies
the o(G)-acyclicity. This motivates the following

CONJECTURE 1.6. Problem 1.5 can be answered positively if dimg X <n
for every E € o(G).

The key open case of this conjecture seems to be constructing a Q-acyclic
resolution r : Z — X for a compactum X with dimg X <n, n > 2, from a
compactum Z of dimension < n.

2. Preliminaries. All groups are assumed to be abelian, and functions
between groups are homomorphisms. P stands for the set of primes. For a
non-empty subset A of P let

S(A) = {py'ps* ...pp* i pi € A, n; > 0}

be the set of positive integers with prime factors from A, and for the empty
set define S(0)) = {1}. Let G be a group and g € G. We say that g is
A-torsion if there is n € S(A) such that ng = 0, and g is A-divisible if for
every n € S(A) there is h € G such that nh = g. Tor 4 G is the subgroup
of A-torsion elements of G. The group G is A-torsion if G = Tor 4 G; G is
A-torsion free if Tor4 G = 0; and G is A-divisible if every element of G is
A-divisible.

G is A-local if it is (P \ A)-divisible and (P \ A)-torsion free. The A-
localization of G is the homomorphism G — G ® Z( 4) defined by g — g®1,
where Z4) = {n/m :n € Z,m € S(P\ A)}. G is A-local if and only if the
A- locahzatlon of G is an isomorphism. A simply connected CW-complex is
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A-local if its homotopy groups are A-local. A map between two simply con-
nected CW-complexes is an A-localization if the induced homomorphisms of
the homotopy and (reduced integral) homology groups are A-localizations.

The extensional dimension of a compactum X is said not to exceed a
CW-complex K, written e-dim X < K, if for every closed subset A of X
and every map f : A — K there is an extension of f over X. It is well
known that dim X < n is equivalent to e-dim X < S", and dimg X < n is
equivalent to e-dim X < K (G, n), where K(G,n) is an Eilenberg-Mac Lane
complex of type (G,n).

A map between CW-complexes is said to be combinatorial if the preim-
age of every subcomplex of the range is a subcomplex of the domain. Let M
be a simplicial complex and let M*! be the k-skeleton of M (= the union of
all simplexes of M of dimension < k). By a resolution of M we mean a CW-
complex EW (M, k) and a combinatorial map w : EW (M, k) — M such that
w is 1-to-1 over M¥ Let f : N — K be a map of a subcomplex N of M into
a CW-complex K. The resolution is said to be suitable for f if fo w\w_l(N)
extends to a map f': EW (M, k) — K. We call f" a resolving map for f. The
resolution is said to be suitable for a compactum X if e-dim X < w™1(A)
for every simplex A of M. Note that if w : EW(M,k) — M is a res-
olution suitable for X then for every map ¢ : X — M there is a map
Y X — EW(M,k) such that (wo)(¢~1(A)) C A for every simplex A
of M. We call ¥ a combinatorial lifting of ¢.

Let M be a finite simplicial complex and let f : N — K be a cellular
map from a subcomplex N of M to a CW-complex K such that MH* c N.
A standard way of constructing a resolution suitable for f is described in [7].
Such a resolution w : EW (M, k) — M is called the standard resolution of
M for f and it has the following properties:

o EW (M, k) is (k — 1)-connected if so are M and K;

e w is a surjective map and for every simplex A of M, w™!(A) is either
contractible or homotopy equivalent to K;

e for every subcomplex T' of M, w|,-1(p): EW(T,k) = w Y T) — T is
the standard resolution of T" for fiynr: NNT — K.

Let G be a group, let o : L — M be a surjective combinatorial map of
a CW-complex L and a finite simplicial complex M, and let n be a positive
integer such that H;(a=1(A);G) = 0 for every i < n and every simplex A
of M. One can show by induction on the number of simplexes of M using
the Mayer—Vietoris sequence and the Five Lemma that o, : H;(L;G) —

H;(M;G) is an isomorphism for i < n. We will refer to this fact as the
combinatorial Vietoris—Begle theorem.

PROPOSITION 2.1 ([2]). Let G be a group and p € P. The following con-
ditions are equivalent:
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o (G is p-divisible;
o Ext(Zp~,G) is p-divisible;
o Ext(Zy~,G) = 0.

PROPOSITION 2.2. Let G be a group, let 2 < k < n be integers and let
F CPandp e P\F. Let M be an (n — 1)-connected finite simplicial
complex such that Hy(M) is F-torsion, and let w : L = EW (M, k) — M
be the standard resolution of M for a cellular map f: N — K(G, k) from a
subcomplex N of M containing M. Then L is (k — 1)-connected and for
everyl <1 <n—1:

(i) m(L) and m,(L)/Torx m,(L) are p-torsion if G = Zyp;
(ii) m(L) and m,(L)/Torg mp (L) are p-torsion and wi(L) is p-divisible
’l,f G = Zpoo;
(iii) m;(L) and mp(L)/Torr my(L) are q-divisible and w;(L) is q-torsion
Jree for every q € P, q # p if G = Zp;
(iv) mi(L) and mp(L)/Torr m,(L) are q-divisible and w;(L) is q-torsion
free for every q € P if G = Q.

Proof. Recall that w is a combinatorial surjective map, w=!(A) is either
contractible or homotopy equivalent to K (G, k) for every simplex A of M,
and L is (k — 1)-connected because so are M and K(G,k). Since M is
(n — 1)-connected and H, (M) is F-torsion we have H,(M;Q) = 0 and
Hp(M;Zq) = 0, Hy(M;Zg)) = 0 for ¢ € P\ F and H,(M;Zs~) = 0 for
every q € P.

(i) By the generalized Hurewicz theorem H. (K (Zy, k)) is p-torsion. Then
H,(K(Zp,k); Q) = 0. Hence by the combinatorial Vietoris-Begle theorem
H;(L;Q) =0 for i < n and therefore H;(L) is torsion for ¢ < n.

i

Let ¢ € P and g # p and i < n—1. Note that I:T*(K(Zp, k); Zg)) = 0 and
hence by the combinatorial Vietoris—Begle theorem ﬁi(L; Z(q)) = 0. Then

Hi(L)® Zg = 0. Thus H;(L) is torsion and g-torsion free and hence H;(L)
is p-torsion.

Now let ¢ € P\ F and q # p. Recall H,(M;Z)) = 0. Then using
the previous argument we conclude that H, (L) is ¢g-torsion free and hence
H, (L) is (F U{p})-torsion.

By the generalized Hurewicz theorem m;(L) is p-torsion for i < n — 1
and m,(L) is (F U {p})-torsion. Thus 7, (L)/Torr m,(L) is p-torsion and (i)
follows.

(i) The argument used in (i) applies to show that m;(L), i<n —1,
and 7, (L)/Tory my(L) are p-torsion. Note that 7 (L) = Hy(L). We will
show that Hj(L) is p-divisible and this will imply (ii). Observe that
Hy(K(Zpo,k); Zyp) = Ly~ @ Zy, = 0. Then since Hy(M;Z,) = 0 the combi-
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natorial Vietoris-Begle theorem implies that Hy(L;Z,) = 0. Thus Hy(L) ®
Zyp = 0 and therefore Hy(L) is p-divisible.

(iii) Since Z,) is p-local we deduce that I;T*(K(Z(p), k)) is p-local and
therefore H,(K(Z ), k); Zq) = H.(K(Zgy), k);Zg<) = 0 for every q € P,
q 7 p- N

Let ¢ € P, g # p. Recall that H;(M;Zgy~) = 0 for i < n. Then by the
combinatorial Vietoris—Begle theorem ﬁi(L;Zqoo) = 0 for ¢ < n. Hence by
the universal coefficient theorem H;(L) x Zg> = 0 and Hi(L)® Zgoo = 0 for
i <n—1 and therefore H;(L) is g-torsion free and g-divisible for i <n — 1.

Let ¢ € P, ¢ # p and q¢ ¢ F. Recall that H,(M;Z;) = 0. By the
combinatorial Vietoris-Begle theorem H,, (L;Z4) = 0. Hence H,,(L)®Zy = 0
and therefore H, (L) is g-divisible.

Let ¢ € P, ¢ # p and ¢ € F. Then H,(M;Zy~) = 0. By the combinato-
rial Vietoris-Begle theorem H,,(L;Zg~) = 0. Hence H,, (L) ® Zg~ = 0 and
therefore H,,(L)/Torq H, (L) is g-divisible.

Now using completion and localization theories [1] we will pass to the
homotopy groups of L.

Let ¢ € P. Define A = P\ {¢}. Let o : L — L, be an A-localization
of L. Recall that I:Q(L) is g-torsion free and ¢-divisible for ¢ < n — 1. Then
o induces an isomorphism of the groups H, (L) and H,(L,) in dimensions
< n — 1. Hence by the Whitehead theorem, « induces an isomorphism of
the homotopy groups in dimensions < n — 1 and therefore m;(L) is A-local
(that is, g-divisible and g¢-torsion free) for i <n — 1.

Letqe P,q#pandq € F.Let 8 : L — Lg be a g-completion of L. Then
3 induces an isomorphism of H,(L; Zg) and PNI*(LB; Zq); since Hy,(L; Zq) = 0
we get H,,(Lg;Zq) = 0 and therefore H,,(Lg) is g-divisible. Now since m;(L)
is g-divisible and g-torsion free we have Hom(Zge,m;(L)) =0, ¢ < n—1, and
by Proposition 2.1, Ext(Zge,m;(L)) = 0, ¢ < n—1. Then the exact sequence

0 — Ext(Zge,m(L)) — mi(Lg) — Hom(Zgeo, mi—1(L)) — 0
implies that Lg is (n — 1)-connected and Ext(Zgeo, mp(L)) = m,(Lg). Thus
(L) = Hy(Lg) and hence Ext(Zgeo, m,(L)) is ¢g-divisible. Then by Propo-
sition 2.1, 7, (L) is g-divisible and therefore m,,(L)/Tor, m,(L) is g-divisible.

Now assume that ¢ € F. Once again let A =P\ {¢} and let a: L — L,
be an A-localization of L. Recall that ﬁZ(L) is g-torsion free and ¢-divisible

p)

for i <mn — 1 and therefore « induces an isomorphism of the groups H, (L)
and H,(Ly) in dimensions < n — 1. Note that H, (L) ® Zigy = Hn(L) ®
Z[1/q] = (Hn(L)/Tory Hy(L)) ® Z[1/q] and hence since Hy(L)/Torq H, (L)
is g-divisible we infer that the A-localization of H, (L) is an epimorphism.
Then by the Whitehead theorem « induces an epimorphism of the nth ho-
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motopy groups of L and L, and therefore the A-localization of 7, (L) is an
epimorphism. This happens only if 7, (L)/Tor, 7, (L) is g-divisible, and (iii)
is proved.

(iv) The proof is similar to the proof of (iii). =

Let X be a compactum and let n be a positive integer. The Bockstein
basis of abelian groups is the collection o = {Q, Ly Lop>= s Ly = P € P} of
groups. Define the Bockstein basis of X in dimensions < n as o(X,n) =
{E € 0 : dimg X < n}. Following [6] define:

T(X,n)={peP:Z,or Ly~ € o(X,n)};
() if o(X,n) contains only torsion groups,
D(X,n) =< P ifQeo(X,n)but Zy) € o(X,n) fornop € P,
P\{peP:Zy €o(X,n)} otherwise;
F(X,n)=D(X,n)\T(X,n).

Note that for every group G such that dimg X < n, G is F(X,n)-torsion
free.

PROPOSITION 2.3. Let X be a compactum such that D(X,n) # (). Then
dimy X <n for every group H such that H is D(X, n)-divisible and F(X,n)-
torsion free.

Proof. Let G = @{E : E € 0(X,n)}. Then dimg X < n. One can easily
verify that in the notations of Proposition 2.4 of [6], D(G) = D(X,n) and
F(G) = F(X,n). Then the result follows from Proposition 2.4 of [6]. =

In the proof of Theorem 1.1 we will also use the following facts.

PROPOSITION 2.4 ([7]). Let K be a simply connected CW-complex such
that K has only finitely many non-trivial homotopy groups. Let X be a
compactum such that dimy, ) X < i fori>1. Then e-dim X < K.

Let K’ be a simplicial complex. We say that maps h: K — K', g : L— L/,
a:L—K and o/ : L' = K' combinatorially commute if (o’ o g)((hoa)~1(A))
C A for every simplex A of K’. Recall that a map ' : K — L' is a
combinatorial lifting of h to L' if (o/ o ')(h~1(A)) C A for every simplex A
of K'.

For a simplicial complex K and a € K, st(a) denotes the union of all the
simplexes of K containing a.

PROPOSITION 2.5 ([7]). (i) Let a compactum X be represented as the
inverse limit X = lim K; of finite simplicial complexes K; with bonding
maps hy : Kj — K;. Fiz i and let w : EW(K;,k) — K; be a resolution of
K; which is suitable for X. Then there is a sufficiently large j such that h;
admits a combinatorial lifting to EW (K, k).
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(ii) Let h : K — K', b/ : K — L' and o : L' — K’ be maps of a
simplicial complex K' and CW-complexes K and L' such that h and o/ are
combinatorial and h' is a combinatorial lifting of h. Then there is a cellular
approzimation of h' which is also a combinatorial lifting of h.

(iii) Let K and K' be simplicial complezes, let maps h : K — K', g :
L—L,a:L— K andd : L — K' combinatorially commute and let h be
combinatorial. Then

gla™ (st(x))) C o/ (st(h(x))) and h(st((a(2))) C st((a’ 0 g)(2))
for every x € K and z € L.

3. Proof of Theorem 1.1. Write D = D(X,n) and F = F(X,n).
Represent X as the inverse limit X = @(KZ, h;) of finite simplicial com-
plexes K; with combinatorial bonding maps h;y1 : K;+1 — K; and the
projections p; : X — K; such that diam(p; '(A)) < 1/i for every simplex
A of K;. Following A. Dranishnikov [3, 4] we construct by finite induction

CW-complexes L; and maps g;11 : Liy1 — L;, o; : L; — K; such that:

(a) L; is (n+1)-dimensional and obtained from K i[nﬂ] by replacing some
(n + 1)-simplexes by (n + 1)-cells attached to the boundary of the replaced
simplexes by a map of degree € S(F). Then «; is a projection of L; taking
the new cells to the original ones such that a; is 1-to-1 over K i[n]. We define
a simplicial structure on L; for which «; is a combinatorial map and refer
to this simplicial structure while constructing resolutions of L;. Note that
for F = () we do not replace simplexes of K i[n“} at all.

(b) The maps hjt+1, gi+1, @i+1 and a; combinatorially commute. Recall
that this means that (c; o giy1)((hir1 0 aiy1)~H(A)) C A for every simplex
A of Kl

We will construct L; in such a way that Z = liLn(Ll-, g;) will admit a map
r: Z — X such that Z and r satisfy the conclusions of the theorem.

Let £ € o be such that dimg X < k, 2 < k < n,and let f: N —
K(E,k) be a cellular map from a subcomplex N of L; with Lyc] C N. Let
wr, : EW(L;, k) — L; be the standard resolution of L; for f. We are going
to construct from wy, a resolution w : EW (K, k) — K; of K; suitable for X.
IfdimK; <ksetw=qa;owp: EW(KZ,k) = EW(LZ,k) — K;.

If dimK; > k set wy = oy owy : EW(K;, k) = EW(L;, k) — K;. We
will construct by induction resolutions w; : EW;(K;, k) — K;, k+1<j <
dim Kj;, such that EW;(Kj;, k) is a subcomplex of EW; (K, k) and wjiq
extends w; for every k < j < dim Kj.

Assume that w; : EW;(K;, k) — K;, k < j < dim Kj, is constructed.
For every (j + 1)-simplex A of K; consider the subcomplex w; 1(A) of
EW;(K;, k). Enlarge w;~(A) by attaching (n + 1)-cells in order to kill the
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elements of Torz m,(w; "1 (A)), and attaching cells of dimension > n + 1 in
order to get a subcomplex with trivial homotopy groups in dimensions > n.
Let EW;j1(K;, k) be EW;(K;, k) with all the cells attached for all (j 4 1)-
simplexes A of K; and let wjiq : EWj1(K;, k) — K; be an extension of
w; sending the interior points of the attached cells to the interior of the
corresponding A.

Finally, define EW (K, k) = EW;(K;, k) and w = w; : EW;(K;, k) — K;
for j = dim K;. Note that since we attach cells only of dimension > n, the
n-skeleton of EW (K, k) coincides with the n-skeleton of EW (L, k).

Let us show that EW (K;, k) is suitable for X. Fix a simplex A of K.
Since w™1(A) is contractible if dim A < k, assume that dim A > k. Set
T = a; '(A). Note that it follows from the construction that T is (n —1)-
connected, H,(T) is F-torsion, w™1(A) is (k — 1)-connected, 7, (w™1(A4)) =
Tn(wp H(T))/Tor g mp(wp H(T)), (w1 (A)) = 0for j > n+1and m;(w™'(A))
= mj(w;N(T)) for j <n— 1.

Consider the following cases.

CASE 1: E =7Z,. By (i) of Proposition 2.2, m;(w; (T)), j <n — 1, and

Tn(w; H(T))/Tor g mp(wy 1(T)) are p-torsion. Then 7;(w™'(A)) is p-torsion
for J < n. Therefore dim, (- 1(A))X < dimgz, X < k for j > k and hence
by Proposition 2.4, e-dim X < w™1(A).

CASE 2: E = Zp=. Then by (ii) of Proposition 2.2, 7j(w; '(T)), j <
n — 1, and 7, (w; 1(T))/Torg mp(w;*(T)) are p-torsion and 7 (w; (7)) is
p-divisible. Then m;(w™1(A)) is p-torsion for 5 < n and m(w™(4)) is
p-divisible. Therefore by the Bockstein theorem we have the inequalities
dimwk(w—l(A)) X < dimzpoo X <k and dimﬂ.].(w—l(A)) X < dimzpoo X+1<
k+1 for j > k+ 1. Hence e-dim X < w™!(A) by Proposition 2.4.

CASE 3: E = Z,. Then by (iii) of Proposition 2.2, mi(w (), j <
n — 1, is p-local and 7, (w; }(T))/TorF 7, (w;*(T)) is g-divisible for every
q € P, q¢ # p. Then 7j(w1(4)), j < n—1, is p-local and m,(w™1(4)) is
D-divisible and F-torsion free. Therefore dim (,-1(a)) X <k for j <n—1
and by Proposition 2.3, dim_(,-1(a)) X < n. Hence e-dim X < w™(A) by
Proposition 2.4.

CASE 4: E = Q. This case is similar to the previous one.

Thus we have shown that EW (K, k) is suitable for X. Now replacing
K1 by K; with a sufficiently large j we may assume by Proposition 2. 5( )
that there i 1s a combinatorial lifting of h;yq to b, : Kit1 — EW(K;, k). B
Proposition 2.5(ii) we replace h 41 by its cellular approximation preserving
the property of hj, , of being a combinatorial lifting of h; 1.
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Let A be a simplex of K; and let 7 : (o o wp) 1 (A) — w™1(A) be
the inclusion. Note that from the construction it follows that the kernel
of the induced homomorphism 7, : m,((c; o wr)~H(A)) — T (w™1(AQ)) is
F-torsion. Using this fact and the reasoning in the proof of Theorem 1.2 of

[

[6] one can construct from Kiffl] a CW-complex L;;q by replacing some

(n+ 1)-simplexes of KZ-[TIL” by (n+ 1)-cells attached to the boundary of the

replaced simplexes by a map of degree € S(F) such that hj _, restricted to
KZ[TI extends to a map gj : Lit1 — EW(L;,n) such that g, ;, aiy1, hiy1
and «; o wy, combinatorially commute, where «;;1 is a projection of L;;
into K;41 taking the new cells to the original ones in such a way that a;41
is 1-to-1 over K.

Now define gj+1 = wr, o g} 41 Liy1 — L; and finally define a simplicial
structure on L;41 for which a;11 is a combinatorial map. It is easy to check
that the properties (a) and (b) are satisfied. Since the triangulation of L;;1
can be replaced by any of its barycentric subdivisions we may also assume
that

(c) diam gg+1(A) < 1/i for every simplex A in L;1; and j < i,

where gf :gj—l-logj—i-?o“-ogi:Li_)Lj-

Define Z = lim(L;, g;) and let r; : Z — L; be the projections. Clearly
dim Z < n+1. To construct L;11 we used an arbitrary map f : N — K(FE, k)
such that F € o, dimg X < k, 2 < k < n and N is a subcomplex of L;
containing L,Ek}. By a standard reasoning described in detail in the proof of
Theorem 1.6 of [7] one can show that choosing E' and f in an appropriate
way for each ¢ we can achieve that dimg Z < k for every integer 2 < k <n
and every E € o such that dimz, X < k. Then by the Bockstein theorem
dimg Z < k for every group G such that dimg X <k, 2 <k < n.

By Proposition 2.5(iii), properties (a) and (b) imply that for every z € X
and z € Z the following holds:

(d1) gis1(azy (st(piv1(2)))) © a7 (st(pi(2))),

(d2) hia(st((cipr o rip1)(2))) C st((ai o ri)(2))-

Define amap r : Z — X by 7(2) = ({p; (st((asor)(2))) 1 i =1,2,...}.
Then (d2) implies that r is indeed well defined and continuous.

Properties (d1) and (d2) also imply that for every =z € X,

r i (z) = @(a;l(st(pi(x))),gi]a;l(st(pi(x))))

where the map g;|... is considered as a map to ;' (st(pi—1(x))).
Since r~1(x) is not empty for every x € X, r is onto. Fix z € X and
let us show that r~!(x) satisfies the conclusions of the theorem. Since T' =

a; Y(st(pi(x))) is (n — 1)-connected we see that r—'(x) is approximately
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(n — 1)-connected as the inverse limit of (n — 1)-connected finite simplicial
complexes.

Let a group G be such that dimg X < n. Note that H,(T) is F-
torsion and G is F-torsion free. Then by the universal coeflicient theorem

H"(T;G) = Hom(Hy(T),G) = 0. Thus H*(r~'(2);G) = 0 for k < n and
since dimg Z < n, we have H¥(r~1(2);G) = 0 for k > n + 1. Hence 7 is
G-acyclic and this completes the proof. =
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