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Universal acyclic resolutions for arbitrary coefficient groups

by

Michael Levin (Be’er Sheva)

Abstract. We prove that for every compactum X and every integer n ≥ 2 there are
a compactum Z of dimension ≤ n+ 1 and a surjective UV n−1-map r : Z → X such that
for every abelian group G and every integer k ≥ 2 such that dimGX ≤ k ≤ n we have
dimG Z ≤ k and r is G-acyclic.

1. Introduction. This paper is devoted to proving the following theo-
rem which was announced in [8].

Theorem 1.1. Let X be a compactum. Then for every integer n ≥ 2
there are a compactum Z of dimension ≤ n + 1 and a surjective UV n−1-
map r : Z → X having the property that for every abelian group G and
every integer k ≥ 2 such that dimGX ≤ k ≤ n we have dimG Z ≤ k and r
is G-acyclic.

The cohomological dimension dimGX of X with respect to an abelian
group G is the least number n such that Ȟn+1(X,A;G) = 0 for every closed
subset A of X. A space is G-acyclic if its reduced Čech cohomology groups
modulo G are trivial; a map is G-acyclic if every fiber is G-acyclic. By the
Vietoris–Begle theorem a surjective G-acyclic map of compacta cannot raise
the cohomological dimension dimG. A compactum X is approximately n-
connected if any embedding of X into an ANR has the UV n-property , i.e. for
every neighborhood U ofX there is a smaller neighborhoodX ⊂ V ⊂ U such
that the inclusion V ⊂ U induces the zero homomorphism of the homotopy
groups in dimensions ≤ n. An approximately n-connected compactum has
trivial reduced Čech cohomology groups in dimensions ≤ n with respect to
any group G. A map is called a UV n-map if every fiber is approximately
n-connected.

Theorem 1.1 generalizes the following results of [6, 7].
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Theorem 1.2 ([6]). Let G be an abelian group and let X be a compactum
with dimGX ≤ n, n ≥ 2. Then there are a compactum Z with dimG Z ≤ n
and dimZ ≤ n+ 1 and a G-acyclic map r : Z → X from Z onto X.

Theorem 1.3 ([7]). Let X be a compactum with dimZX ≤ n ≥ 2. Then
there exist a compactum Z with dimZ ≤ n and a cell-like map r : Z → X
from Z onto X such for every integer k ≥ 2 and every group G such that
dimGX ≤ k we have dimG Z ≤ k.

Theorem 1.2 obviously follows from Theorem 1.1. Theorem 1.3 can be
derived from Theorem 1.1 as follows. Recall that a compactum is cell-like
if any map from the compactum to a CW-complex is null-homotopic. A
map is cell-like if its fibers are cell-like. Let X have dimZX < ∞ and let
r : Z → X satisfy the conclusions of Theorem 1.1 for n = dimZX + 1. Then
dimZ Z ≤ dimZX ≤ n − 1 and because Z is finite-dimensional we have
dimZ = dimZ Z ≤ n− 1. Since r is UV n−1 and dimZ ≤ n− 1 we find that
r is cell-like. Let dimGX ≤ k ≥ 2 for a group G. If k ≤ n then dimG Z ≤ k
by Theorem 1.1, and if k > n then dimG Z ≤ k since dimZ ≤ n − 1. Thus
Theorem 1.1 implies Theorem 1.3.

It was observed in [7] that the restriction k ≥ 2 in Theorem 1.3 cannot
be omitted. Therefore Theorem 1.1 does not hold for k = 1.

Let us discuss possible generalizations of Theorem 1.1. One is tempted
to reduce the dimension of Z to n. This is partially justified by

Theorem 1.4 ([8]). Let X be a compactum. Then for every integer n≥2
there are a compactum Z of dimension ≤ n and a surjective UV n−1-map
r : Z → X having the property that for every finitely generated abelian group
G and every integer k ≥ 2 such that dimGX ≤ k ≤ n we have dimG Z ≤ k
and r is G-acyclic.

However, Theorem 1.4 does not hold for arbitrary groups G. Indeed, one
can show that a Q-acyclic UV 1-map from a compactum of dimension ≤ 2
must be Z-acyclic (even cell-like). Thus a compactum X with dimZX = 3
and dimQ Z = 2 cannot be the image of a compactum of dimension ≤ 2
under a Q-acyclic UV 1-map.

The situation becomes more complicated if we drop in Theorem 1.1 the
requirement that r is UV n−1 and consider

Problem 1.5. Given a compactum X, an integer n ≥ 2 and a collection
G of abelian groups such that dimGX ≤ n for every G ∈ G, do there exist a
compactum Z of dimension ≤ n and a G-acyclic surjective map r : Z → X
such that dimG Z ≤ max{dimGX, 2} for every G ∈ G? (The G-acyclicity
means the G-acyclicity for every G ∈ G.)

In general the answer to Problem 1.5 is negative [5]. Indeed, let X be
a compactum with dimZX = 3, dimQX = 2 and dimZp X = 2 for every
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prime p and let G = Q ⊕ (Q/Z). Clearly dimGX = 2 and the G-acyclicity
implies both the Q- and (Q/Z)-acyclicity. Then it follows from the Bockstein
sequence generated by

0→ Z→ Q→ Q/Z→ 0

that the G-acyclicity implies the Z-acyclicity and therefore there is no G-
acyclic resolution for X from a compactum of dimension ≤ 2.

The situation described in the example can be interpreted in terms of
Bockstein theory. Let G be a collection of abelian groups. Denote by σ(G)
the union of the Bockstein bases σ(G) of all G ∈ G. Based on the Bockstein
inequalities define the closure σ(G) of σ(G) as a collection of abelian groups
containing σ(G) and possibly some additional groups determined by:

• Zp ∈ σ(G) if Zp∞ ∈ σ(G);

• Zp∞ ∈ σ(G) if Zp ∈ σ(G);

• Q ∈ σ(G) if Z(p) ∈ σ(G);

• Z(p) ∈ σ(G) if Q,Zp∞ ∈ σ(G).

One can show that for compact metric spaces the G-acyclicity implies
the σ(G)-acyclicity. This motivates the following

Conjecture 1.6. Problem 1.5 can be answered positively if dimE X≤n
for every E ∈ σ(G).

The key open case of this conjecture seems to be constructing a Q-acyclic
resolution r : Z → X for a compactum X with dimQX ≤ n, n ≥ 2, from a
compactum Z of dimension ≤ n.

2. Preliminaries. All groups are assumed to be abelian, and functions
between groups are homomorphisms. P stands for the set of primes. For a
non-empty subset A of P let

S(A) = {pn1
1 pn2

2 . . . pnkk : pi ∈ A, ni ≥ 0}
be the set of positive integers with prime factors from A, and for the empty
set define S(∅) = {1}. Let G be a group and g ∈ G. We say that g is
A-torsion if there is n ∈ S(A) such that ng = 0, and g is A-divisible if for
every n ∈ S(A) there is h ∈ G such that nh = g. TorAG is the subgroup
of A-torsion elements of G. The group G is A-torsion if G = TorAG; G is
A-torsion free if TorAG = 0; and G is A-divisible if every element of G is
A-divisible.

G is A-local if it is (P \ A)-divisible and (P \ A)-torsion free. The A-
localization of G is the homomorphism G→ G⊗Z(A) defined by g 7→ g⊗ 1,
where Z(A) = {n/m : n ∈ Z,m ∈ S(P \ A)}. G is A-local if and only if the
A-localization of G is an isomorphism. A simply connected CW-complex is
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A-local if its homotopy groups are A-local. A map between two simply con-
nected CW-complexes is an A-localization if the induced homomorphisms of
the homotopy and (reduced integral) homology groups are A-localizations.

The extensional dimension of a compactum X is said not to exceed a
CW-complex K, written e-dimX ≤ K, if for every closed subset A of X
and every map f : A → K there is an extension of f over X. It is well
known that dimX ≤ n is equivalent to e-dimX ≤ Sn, and dimGX ≤ n is
equivalent to e-dimX ≤ K(G,n), where K(G,n) is an Eilenberg–Mac Lane
complex of type (G,n).

A map between CW-complexes is said to be combinatorial if the preim-
age of every subcomplex of the range is a subcomplex of the domain. Let M
be a simplicial complex and let M [k] be the k-skeleton of M (= the union of
all simplexes of M of dimension ≤ k). By a resolution of M we mean a CW-
complex EW (M,k) and a combinatorial map ω : EW (M,k)→M such that
ω is 1-to-1 over M [k]. Let f : N → K be a map of a subcomplex N of M into
a CW-complex K. The resolution is said to be suitable for f if f ◦ ω|ω−1(N)
extends to a map f ′ : EW (M,k)→ K. We call f ′ a resolving map for f . The
resolution is said to be suitable for a compactum X if e-dimX ≤ ω−1(∆)
for every simplex ∆ of M . Note that if ω : EW (M,k) → M is a res-
olution suitable for X then for every map φ : X → M there is a map
ψ : X → EW (M,k) such that (ω ◦ ψ)(φ−1(∆)) ⊂ ∆ for every simplex ∆
of M . We call ψ a combinatorial lifting of φ.

Let M be a finite simplicial complex and let f : N → K be a cellular
map from a subcomplex N of M to a CW-complex K such that M [k] ⊂ N .
A standard way of constructing a resolution suitable for f is described in [7].
Such a resolution ω : EW (M,k) → M is called the standard resolution of
M for f and it has the following properties:

• EW (M,k) is (k − 1)-connected if so are M and K;
• ω is a surjective map and for every simplex ∆ of M , ω−1(∆) is either

contractible or homotopy equivalent to K;
• for every subcomplex T of M , ω|ω−1(T ) : EW (T, k) = ω−1(T ) → T is

the standard resolution of T for f |N∩T : N ∩ T → K.

Let G be a group, let α : L → M be a surjective combinatorial map of
a CW-complex L and a finite simplicial complex M , and let n be a positive
integer such that H̃i(α−1(∆);G) = 0 for every i < n and every simplex ∆
of M . One can show by induction on the number of simplexes of M using
the Mayer–Vietoris sequence and the Five Lemma that α∗ : H̃i(L;G) →
H̃i(M ;G) is an isomorphism for i < n. We will refer to this fact as the
combinatorial Vietoris–Begle theorem.

Proposition 2.1 ([2]). Let G be a group and p ∈ P. The following con-
ditions are equivalent :
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• G is p-divisible;
• Ext(Zp∞ , G) is p-divisible;
• Ext(Zp∞ , G) = 0.

Proposition 2.2. Let G be a group, let 2 ≤ k ≤ n be integers and let
F ⊂ P and p ∈ P \ F . Let M be an (n − 1)-connected finite simplicial
complex such that Hn(M) is F-torsion, and let ω : L = EW (M,k) → M
be the standard resolution of M for a cellular map f : N → K(G, k) from a
subcomplex N of M containing M [k]. Then L is (k − 1)-connected and for
every 1 ≤ i ≤ n− 1:

(i) πi(L) and πn(L)/TorF πn(L) are p-torsion if G = Zp;
(ii) πi(L) and πn(L)/TorF πn(L) are p-torsion and πk(L) is p-divisible

if G = Zp∞ ;
(iii) πi(L) and πn(L)/TorF πn(L) are q-divisible and πi(L) is q-torsion

free for every q ∈ P, q 6= p if G = Z(p);
(iv) πi(L) and πn(L)/TorF πn(L) are q-divisible and πi(L) is q-torsion

free for every q ∈ P if G = Q.

Proof. Recall that ω is a combinatorial surjective map, ω−1(∆) is either
contractible or homotopy equivalent to K(G, k) for every simplex ∆ of M ,
and L is (k − 1)-connected because so are M and K(G, k). Since M is
(n − 1)-connected and Hn(M) is F-torsion we have Hn(M ;Q) = 0 and
Hn(M ;Zq) = 0, Hn(M ;Z(q)) = 0 for q ∈ P \ F and Hn(M ;Zq∞) = 0 for
every q ∈ P.

(i) By the generalized Hurewicz theorem H̃∗(K(Zp, k)) is p-torsion. Then
H̃∗(K(Zp, k);Q) = 0. Hence by the combinatorial Vietoris–Begle theorem
H̃i(L;Q) = 0 for i ≤ n and therefore H̃i(L) is torsion for i ≤ n.

Let q ∈ P and q 6= p and i ≤ n−1. Note that H̃∗(K(Zp, k);Z(q)) = 0 and
hence by the combinatorial Vietoris–Begle theorem H̃i(L;Z(q)) = 0. Then
H̃i(L)⊗Z(q) = 0. Thus H̃i(L) is torsion and q-torsion free and hence H̃i(L)
is p-torsion.

Now let q ∈ P \ F and q 6= p. Recall Hn(M ;Z(q)) = 0. Then using
the previous argument we conclude that Hn(L) is q-torsion free and hence
Hn(L) is (F ∪ {p})-torsion.

By the generalized Hurewicz theorem πi(L) is p-torsion for i ≤ n − 1
and πn(L) is (F ∪ {p})-torsion. Thus πn(L)/TorF πn(L) is p-torsion and (i)
follows.

(ii) The argument used in (i) applies to show that πi(L), i≤n− 1,
and πn(L)/TorF πn(L) are p-torsion. Note that πk(L) = Hk(L). We will
show that Hk(L) is p-divisible and this will imply (ii). Observe that
Hk(K(Zp∞ , k);Zp) = Zp∞ ⊗ Zp = 0. Then since Hk(M ;Zp) = 0 the combi-
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natorial Vietoris–Begle theorem implies that Hk(L;Zp) = 0. Thus Hk(L)⊗
Zp = 0 and therefore Hk(L) is p-divisible.

(iii) Since Z(p) is p-local we deduce that H̃∗(K(Z(p), k)) is p-local and
therefore H̃∗(K(Z(p), k);Zq) = H̃∗(K(Z(p), k);Zq∞) = 0 for every q ∈ P,
q 6= p.

Let q ∈ P, q 6= p. Recall that H̃i(M ;Zq∞) = 0 for i ≤ n. Then by the
combinatorial Vietoris–Begle theorem H̃i(L;Zq∞) = 0 for i ≤ n. Hence by
the universal coefficient theorem H̃i(L) ∗ Zq∞ = 0 and H̃i(L)⊗ Zq∞ = 0 for
i ≤ n− 1 and therefore H̃i(L) is q-torsion free and q-divisible for i ≤ n− 1.

Let q ∈ P, q 6= p and q 6∈ F . Recall that Hn(M ;Zq) = 0. By the
combinatorial Vietoris–Begle theorem Hn(L;Zq) = 0. Hence Hn(L)⊗Zq = 0
and therefore Hn(L) is q-divisible.

Let q ∈ P, q 6= p and q ∈ F . Then Hn(M ;Zq∞) = 0. By the combinato-
rial Vietoris–Begle theorem Hn(L;Zq∞) = 0. Hence Hn(L) ⊗ Zq∞ = 0 and
therefore Hn(L)/TorqHn(L) is q-divisible.

Now using completion and localization theories [1] we will pass to the
homotopy groups of L.

Let q ∈ P. Define A = P \ {q}. Let α : L → Lα be an A-localization
of L. Recall that H̃i(L) is q-torsion free and q-divisible for i ≤ n− 1. Then
α induces an isomorphism of the groups H̃∗(L) and H̃∗(Lα) in dimensions
≤ n − 1. Hence by the Whitehead theorem, α induces an isomorphism of
the homotopy groups in dimensions ≤ n − 1 and therefore πi(L) is A-local
(that is, q-divisible and q-torsion free) for i ≤ n− 1.

Let q ∈ P, q 6= p and q 6∈ F . Let β : L→ Lβ be a q-completion of L. Then
β induces an isomorphism of H̃∗(L;Zq) and H̃∗(Lβ;Zq); since Hn(L;Zq) = 0
we get Hn(Lβ;Zq) = 0 and therefore Hn(Lβ) is q-divisible. Now since πi(L)
is q-divisible and q-torsion free we have Hom(Zq∞ , πi(L)) = 0, i ≤ n−1, and
by Proposition 2.1, Ext(Zq∞ , πi(L)) = 0, i ≤ n−1. Then the exact sequence

0→ Ext(Zq∞ , πi(L))→ πi(Lβ)→ Hom(Zq∞ , πi−1(L))→ 0

implies that Lβ is (n − 1)-connected and Ext(Zq∞ , πn(L)) = πn(Lβ). Thus
πn(Lβ) = Hn(Lβ) and hence Ext(Zq∞ , πn(L)) is q-divisible. Then by Propo-
sition 2.1, πn(L) is q-divisible and therefore πn(L)/Torq πn(L) is q-divisible.

Now assume that q ∈ F . Once again let A = P \ {q} and let α : L→ Lα
be an A-localization of L. Recall that H̃i(L) is q-torsion free and q-divisible
for i ≤ n − 1 and therefore α induces an isomorphism of the groups H̃∗(L)
and H̃∗(Lα) in dimensions ≤ n − 1. Note that Hn(L) ⊗ Z(A) = Hn(L) ⊗
Z[1/q] = (Hn(L)/TorqHn(L))⊗ Z[1/q] and hence since Hn(L)/TorqHn(L)
is q-divisible we infer that the A-localization of Hn(L) is an epimorphism.
Then by the Whitehead theorem α induces an epimorphism of the nth ho-
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motopy groups of L and Lα and therefore the A-localization of πn(L) is an
epimorphism. This happens only if πn(L)/Torq πn(L) is q-divisible, and (iii)
is proved.

(iv) The proof is similar to the proof of (iii).

Let X be a compactum and let n be a positive integer. The Bockstein
basis of abelian groups is the collection σ = {Q,Zp,Zp∞ ,Z(p) : p ∈ P} of
groups. Define the Bockstein basis of X in dimensions ≤ n as σ(X,n) =
{E ∈ σ : dimE X ≤ n}. Following [6] define:

T (X,n) = {p ∈ P : Zp or Zp∞ ∈ σ(X,n)};

D(X,n) =





∅ if σ(X,n) contains only torsion groups,

P if Q ∈ σ(X,n) but Z(p) ∈ σ(X,n) for no p ∈ P,

P \ {p ∈ P : Z(p) ∈ σ(X,n)} otherwise;

F(X,n) = D(X,n) \ T (X,n).

Note that for every group G such that dimGX ≤ n, G is F(X,n)-torsion
free.

Proposition 2.3. Let X be a compactum such that D(X,n) 6= ∅. Then
dimH X≤n for every group H such that H is D(X,n)-divisible and F(X,n)-
torsion free.

Proof. Let G =
⊕{E : E ∈ σ(X,n)}. Then dimGX ≤ n. One can easily

verify that in the notations of Proposition 2.4 of [6], D(G) = D(X,n) and
F(G) = F(X,n). Then the result follows from Proposition 2.4 of [6].

In the proof of Theorem 1.1 we will also use the following facts.

Proposition 2.4 ([7]). Let K be a simply connected CW-complex such
that K has only finitely many non-trivial homotopy groups. Let X be a
compactum such that dimπi(K)X ≤ i for i > 1. Then e-dimX ≤ K.

Let K ′ be a simplicial complex. We say that maps h :K→K ′, g : L→L′,
α :L→K and α′ :L′→K ′ combinatorially commute if (α′ ◦g)((h◦α)−1(∆))
⊂ ∆ for every simplex ∆ of K ′. Recall that a map h′ : K → L′ is a
combinatorial lifting of h to L′ if (α′ ◦h′)(h−1(∆)) ⊂ ∆ for every simplex ∆
of K ′.

For a simplicial complex K and a ∈ K, st(a) denotes the union of all the
simplexes of K containing a.

Proposition 2.5 ([7]). (i) Let a compactum X be represented as the
inverse limit X = lim←−Ki of finite simplicial complexes Ki with bonding
maps hij : Kj → Ki. Fix i and let ω : EW (Ki, k) → Ki be a resolution of
Ki which is suitable for X. Then there is a sufficiently large j such that hij
admits a combinatorial lifting to EW (Ki, k).
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(ii) Let h : K → K ′, h′ : K → L′ and α′ : L′ → K ′ be maps of a
simplicial complex K ′ and CW-complexes K and L′ such that h and α′ are
combinatorial and h′ is a combinatorial lifting of h. Then there is a cellular
approximation of h′ which is also a combinatorial lifting of h.

(iii) Let K and K ′ be simplicial complexes, let maps h : K → K ′, g :
L→ L′, α : L→ K and α′ : L′ → K ′ combinatorially commute and let h be
combinatorial. Then

g(α−1(st(x))) ⊂ α′−1(st(h(x))) and h(st((α(z))) ⊂ st((α′ ◦ g)(z))

for every x ∈ K and z ∈ L.

3. Proof of Theorem 1.1. Write D = D(X,n) and F = F(X,n).
Represent X as the inverse limit X = lim←−(Ki, hi) of finite simplicial com-
plexes Ki with combinatorial bonding maps hi+1 : Ki+1 → Ki and the
projections pi : X → Ki such that diam(p−1

i (∆)) ≤ 1/i for every simplex
∆ of Ki. Following A. Dranishnikov [3, 4] we construct by finite induction
CW-complexes Li and maps gi+1 : Li+1 → Li, αi : Li → Ki such that:

(a) Li is (n+1)-dimensional and obtained from K
[n+1]
i by replacing some

(n+ 1)-simplexes by (n+ 1)-cells attached to the boundary of the replaced
simplexes by a map of degree ∈ S(F). Then αi is a projection of Li taking
the new cells to the original ones such that αi is 1-to-1 over K [n]

i . We define
a simplicial structure on Li for which αi is a combinatorial map and refer
to this simplicial structure while constructing resolutions of Li. Note that
for F = ∅ we do not replace simplexes of K [n+1]

i at all.
(b) The maps hi+1, gi+1, αi+1 and αi combinatorially commute. Recall

that this means that (αi ◦ gi+1)((hi+1 ◦ αi+1)−1(∆)) ⊂ ∆ for every simplex
∆ of Ki.

We will construct Li in such a way that Z = lim←−(Li, gi) will admit a map
r : Z → X such that Z and r satisfy the conclusions of the theorem.

Let E ∈ σ be such that dimE X ≤ k, 2 ≤ k ≤ n, and let f : N →
K(E, k) be a cellular map from a subcomplex N of Li with L

[k]
i ⊂ N . Let

ωL : EW (Li, k) → Li be the standard resolution of Li for f . We are going
to construct from ωL a resolution ω : EW (Ki, k)→ Ki of Ki suitable for X.
If dimKi ≤ k set ω = αi ◦ ωL : EW (Ki, k) = EW (Li, k)→ Ki.

If dimKi > k set ωk = αi ◦ ωL : EWk(Ki, k) = EW (Li, k) → Ki. We
will construct by induction resolutions ωj : EWj(Ki, k) → Ki, k + 1 ≤ j ≤
dimKi, such that EWj(Ki, k) is a subcomplex of EWj+1(Ki, k) and ωj+1
extends ωj for every k ≤ j < dimKi.

Assume that ωj : EWj(Ki, k) → Ki, k ≤ j < dimKi, is constructed.
For every (j + 1)-simplex ∆ of Ki consider the subcomplex ωj

−1(∆) of
EWj(Ki, k). Enlarge ωj−1(∆) by attaching (n+ 1)-cells in order to kill the
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elements of TorF πn(ωj−1(∆)), and attaching cells of dimension > n+ 1 in
order to get a subcomplex with trivial homotopy groups in dimensions > n.
Let EWj+1(Ki, k) be EWj(Ki, k) with all the cells attached for all (j + 1)-
simplexes ∆ of Ki and let ωj+1 : EWj+1(Ki, k) → Ki be an extension of
ωj sending the interior points of the attached cells to the interior of the
corresponding ∆.

Finally, define EW (Ki, k) = EWj(Ki, k) and ω = ωj : EWj(Ki, k)→ Ki

for j = dimKi. Note that since we attach cells only of dimension > n, the
n-skeleton of EW (Ki, k) coincides with the n-skeleton of EW (Li, k).

Let us show that EW (Ki, k) is suitable for X. Fix a simplex ∆ of Ki.
Since ω−1(∆) is contractible if dim∆ ≤ k, assume that dim∆ > k. Set
T = α−1

i (∆). Note that it follows from the construction that T is (n − 1)-
connected, Hn(T ) is F-torsion, ω−1(∆) is (k− 1)-connected, πn(ω−1(∆)) =
πn(ω−1

L (T ))/TorF πn(ω−1
L (T )), πj(ω−1(∆)) = 0 for j ≥ n+1 and πj(ω−1(∆))

= πj(ω−1
L (T )) for j ≤ n− 1.

Consider the following cases.

Case 1: E = Zp. By (i) of Proposition 2.2, πj(ω−1
L (T )), j ≤ n− 1, and

πn(ω−1
L (T ))/TorF πn(ω−1

L (T )) are p-torsion. Then πj(ω−1(∆)) is p-torsion
for j ≤ n. Therefore dimπj(ω−1(∆))X ≤ dimZp X ≤ k for j ≥ k and hence
by Proposition 2.4, e-dimX ≤ ω−1(∆).

Case 2: E = Zp∞ . Then by (ii) of Proposition 2.2, πj(ω−1
L (T )), j ≤

n − 1, and πn(ω−1
L (T ))/TorF πn(ω−1

L (T )) are p-torsion and πk(ω
−1
L (T )) is

p-divisible. Then πj(ω−1(∆)) is p-torsion for j ≤ n and πk(ω−1(∆)) is
p-divisible. Therefore by the Bockstein theorem we have the inequalities
dimπk(ω−1(∆))X ≤ dimZp∞ X ≤ k and dimπj(ω−1(∆))X ≤ dimZp∞ X + 1 ≤
k + 1 for j ≥ k + 1. Hence e-dimX ≤ ω−1(∆) by Proposition 2.4.

Case 3: E = Z(p). Then by (iii) of Proposition 2.2, πj(ω−1
L (T )), j ≤

n − 1, is p-local and πn(ω−1
L (T ))/TorF πn(ω−1

L (T )) is q-divisible for every
q ∈ P, q 6= p. Then πj(ω−1(∆)), j ≤ n − 1, is p-local and πn(ω−1(∆)) is
D-divisible and F-torsion free. Therefore dimπj(ω−1(∆))X ≤ k for j ≤ n− 1
and by Proposition 2.3, dimπn(ω−1(∆))X ≤ n. Hence e-dimX ≤ ω−1(∆) by
Proposition 2.4.

Case 4: E = Q. This case is similar to the previous one.

Thus we have shown that EW (Ki, k) is suitable for X. Now replacing
Ki+1 by Kj with a sufficiently large j we may assume by Proposition 2.5(i)
that there is a combinatorial lifting of hi+1 to h′i+1 : Ki+1 → EW (Ki, k). By
Proposition 2.5(ii) we replace h′i+1 by its cellular approximation preserving
the property of h′i+1 of being a combinatorial lifting of hi+1.
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Let ∆ be a simplex of Ki and let τ : (αi ◦ ωL)−1(∆) → ω−1(∆) be
the inclusion. Note that from the construction it follows that the kernel
of the induced homomorphism τ∗ : πn((αi ◦ ωL)−1(∆)) → πn(ω−1(∆)) is
F-torsion. Using this fact and the reasoning in the proof of Theorem 1.2 of
[6] one can construct from K

[n+1]
i+1 a CW-complex Li+1 by replacing some

(n+ 1)-simplexes of K [n+1]
i+1 by (n+ 1)-cells attached to the boundary of the

replaced simplexes by a map of degree ∈ S(F) such that h′i+1 restricted to

K
[n]
i+1 extends to a map g′i+1 : Li+1 → EW (Li, n) such that g′i+1, αi+1, hi+1

and αi ◦ ωL combinatorially commute, where αi+1 is a projection of Li+1

into Ki+1 taking the new cells to the original ones in such a way that αi+1

is 1-to-1 over K [n]
i+1.

Now define gi+1 = ωL ◦ g′i+1 : Li+1 → Li and finally define a simplicial
structure on Li+1 for which αi+1 is a combinatorial map. It is easy to check
that the properties (a) and (b) are satisfied. Since the triangulation of Li+1
can be replaced by any of its barycentric subdivisions we may also assume
that

(c) diam gji+1(∆) ≤ 1/i for every simplex ∆ in Li+1 and j ≤ i,
where gji = gj+1 ◦ gj+2 ◦ . . . ◦ gi : Li → Lj .

Define Z = lim←−(Li, gi) and let ri : Z → Li be the projections. Clearly
dimZ ≤ n+1. To construct Li+1 we used an arbitrary map f : N → K(E, k)
such that E ∈ σ, dimE X ≤ k, 2 ≤ k ≤ n and N is a subcomplex of Li
containing L[k]

i . By a standard reasoning described in detail in the proof of
Theorem 1.6 of [7] one can show that choosing E and f in an appropriate
way for each i we can achieve that dimE Z ≤ k for every integer 2 ≤ k ≤ n
and every E ∈ σ such that dimZp X ≤ k. Then by the Bockstein theorem
dimG Z ≤ k for every group G such that dimGX ≤ k, 2 ≤ k ≤ n.

By Proposition 2.5(iii), properties (a) and (b) imply that for every x ∈ X
and z ∈ Z the following holds:

(d1) gi+1(α−1
i+1(st(pi+1(x)))) ⊂ α−1

i (st(pi(x))),
(d2) hi+1(st((αi+1 ◦ ri+1)(z))) ⊂ st((αi ◦ ri)(z)).

Define a map r : Z → X by r(z) =
⋂{p−1

i (st((αi ◦ri)(z))) : i = 1, 2, . . .}.
Then (d2) implies that r is indeed well defined and continuous.

Properties (d1) and (d2) also imply that for every x ∈ X,

r−1(x) = lim←−(α−1
i (st(pi(x))), gi|α−1

i (st(pi(x))))

where the map gi|... is considered as a map to α−1
i−1(st(pi−1(x))).

Since r−1(x) is not empty for every x ∈ X, r is onto. Fix x ∈ X and
let us show that r−1(x) satisfies the conclusions of the theorem. Since T =
α−1
i (st(pi(x))) is (n − 1)-connected we see that r−1(x) is approximately
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(n− 1)-connected as the inverse limit of (n− 1)-connected finite simplicial
complexes.

Let a group G be such that dimGX ≤ n. Note that Hn(T ) is F-
torsion and G is F-torsion free. Then by the universal coefficient theorem

Hn(T ;G) = Hom(Hn(T ), G) = 0. Thus ˜̌H k(r−1(x);G) = 0 for k ≤ n and

since dimG Z ≤ n, we have ˜̌H k(r−1(x);G) = 0 for k ≥ n + 1. Hence r is
G-acyclic and this completes the proof.
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