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Abstract. Let J ⊂ R2 be the set of couples (x, q) with q > 1 such that x has at
least one representation of the form x =

P∞
i=1 ciq

−i with integer coefficients ci satisfying
0 ≤ ci < q, i ≥ 1. In this case we say that (ci) = c1c2 . . . is an expansion of x in base q.
Let U be the set of couples (x, q) ∈ J such that x has exactly one expansion in base q.
In this paper we deduce some topological and combinatorial properties of the set U. We
characterize the closure of U, and we determine its Hausdorff dimension. For (x, q) ∈ J,
we also prove new properties of the lexicographically largest expansion of x in base q.

1. Introduction. Let J be the set consisting of all elements (x, q) ∈
R × (1,∞) such that there exists at least one sequence (ci) = c1c2 . . . of
integers satisfying 0 ≤ ci < q for all i, and

(1.1) x =
c1
q

+
c2
q2

+ · · · .

If (1.1) holds, we say that (ci) is an expansion of x in base q, and if the
base q is understood from the context, we sometimes simply say that (ci) is
an expansion of x. The numbers ci of an expansion (ci) are usually referred
to as digits. We denote by dqe the smallest integer larger than or equal
to q. The alphabet Aq is the set of “admissible” digits in base q, i.e., Aq =
{0, . . . , dqe − 1}.

If q > 1 and 0 ≤ x ≤ (dqe − 1)/(q − 1), then a particular expansion of
x in base q, the so-called quasi-greedy expansion (ai(x, q)), may be defined
recursively as follows. For x = 0 we set (ai(x, q)) := 0∞. If x > 0 and ai(x, q)
has already been defined for 1 ≤ i < n (no condition if n = 1), then an(x, q)
is the largest element of Aq satisfying

a1(x, q)
q

+ · · ·+ an(x, q)
qn

< x.
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One easily verifies that (ai(x, q)) is indeed an expansion of x in base q.
Therefore

(x, q) ∈ J ⇔ q > 1 and x ∈ Jq :=
[
0,
dqe − 1
q − 1

]
.

Let us denote by U the set of couples (x, q) ∈ J such that x has exactly
one expansion in base q. For example, (0, q) ∈ U for every q > 1, but U
has many more elements. The main purpose of this paper is to describe
the topological and combinatorial nature of U. We will prove the following
theorem:

Theorem 1.1.

(i) The set U is not closed. Its closure U is a Cantor set (1).
(ii) Both U and U are two-dimensional Lebesgue null sets.
(iii) Both U and U have Hausdorff dimension two.

As far as we know, this two-dimensional univoque set has not yet been
investigated. There exist, however, a number of papers devoted to the study
of its one-dimensional sections

U := {q > 1 : (1, q) ∈ U}
and

Uq := {x ∈ Jq : (x, q) ∈ U}, q > 1.

The study of U started with the paper of Erdős, Horváth and Joó [6]
and continued in [4], [5], [7], [8], [15], [16], [17]. We recall in particular that
U and its closure U have Lebesgue measure zero and Hausdorff dimension
one.

The sets Uq have been investigated in [3], [4], [5], [11], [13], [14]. It is
known (see [5]) that Uq is closed if and only if q does not belong to the null
set U , and that the closure Uq has Lebesgue measure zero for all noninteger
bases q > 1. Moreover, the set of numbers x ∈ Jq having a continuum of
expansions in base q has full Lebesgue measure for each noninteger q > 1
(see [2], [20], [21]).

The key to the proof of Theorem 1.1 is an algebraic characterization
of U by using the quasi-greedy expansions (ai(x, q)). We write for brevity
αi(q) := ai(1, q), i ∈ N := {1, 2, . . .}, q > 1. Note that α1(q) = dqe − 1,
the largest admissible digit in base q. In the statement of the following
theorem we use the lexicographic order between sequences and we define
the conjugate (in base q) of a digit c ∈ Aq by c := α1(q) − c. If ci ∈ Aq,
i ≥ 1, we shall also write c1 . . . cn instead of c1 . . . cn and c1c2 . . . instead of
c1 c2 . . . .

(1) We recall that a Cantor set is a nonempty closed set having neither interior nor
isolated points.
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Theorem 1.2. A point (x, q) ∈ J belongs to U if and only if

an+1(x, q)an+2(x, q) . . . ≤ α1(q)α2(q) . . . whenever an(x, q) > 0.

Along with the quasi-greedy expansion, we also need the notion of the
greedy expansion (bi(x, q)) for x ∈ Jq, introduced by Rényi [19]. It can be
defined by a slight modification of the above recursion: if bi(x, q) has already
been defined for all 1 ≤ i < n (no condition if n = 1), then bn(x, q) is the
largest element of Aq satisfying

b1(x, q)
q

+ · · ·+ bn(x, q)
qn

≤ x.

Note that the greedy expansion (bi(x, q)) of a number x ∈ Jq is the lexico-
graphically largest expansion of x in base q. We denote the greedy expansion
of 1 in base q by (βi(q)) := (bi(1, q)).

The rest of this paper is organized as follows. In the next section we give a
short overview of some basic results on greedy and quasi-greedy expansions,
and we prove some new results concerning the coordinatewise convergence
of sequences of these expansions. We shall prove (see Theorem 2.7) that the
set of numbers x ∈ Jq for which the greedy expansion of x in base q is not the
greedy expansion of a number belonging to Jp in any smaller base p ∈ (1, q)
is of full Lebesgue measure and its complement in Jq is a set of first category
and Hausdorff dimension one. We shall also prove (see Theorem 2.8) that
for each word v := b`+1(x, q) . . . b`+m(x, q) (` ≥ 0, m ≥ 1, x ∈ [0, 1)) there
exists a set Yv ⊂ Jq of first category and Hausdorff dimension less than
one such that the word v occurs in the greedy expansion in base q of every
number belonging to Jq \ Yv. Using (some of) the results of Section 2 we
prove Theorem 1.2 in Section 3 and Theorem 1.1 in Section 4.

2. Greedy and quasi-greedy expansions. In this paper we consider
only one-sided sequences of nonnegative integers. We equip this set of se-
quences {0, 1, . . .}N with the topology of coordinatewise convergence. We
say that an expansion is infinite if it has infinitely many nonzero elements;
otherwise it is called finite. Using this terminology, the quasi-greedy ex-
pansion (ai(x, q)) of a number x ∈ Jq \ {0} is the lexicographically largest
infinite expansion of x in base q. Moreover, if the greedy expansion of x ∈ Jq
is infinite, then (ai(x, q)) = (bi(x, q)).

The family of all quasi-greedy expansions is characterized by the follow-
ing propositions (see [1] or [5] for a proof):

Proposition 2.1. The map q 7→ (αi(q)) is an increasing bijection from
the open interval (1,∞) onto the set of all infinite sequences (αi) satisfying

αk+1αk+2 . . . ≤ α1α2 . . . for all k ≥ 1.
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Proposition 2.2. For each q > 1, the map x 7→ (ai(x, q)) is an in-
creasing bijection from Jq \ {0} onto the set of all infinite sequences (ai)
satisfying

an ∈ Aq for all n ≥ 1

and
an+1an+2 . . . ≤ α1(q)α2(q) . . . whenever an < α1(q).

The quasi-greedy expansions have a lower semicontinuity property for
the order topology induced by the lexicographic order. More precisely, we
have the following result.

Lemma 2.3. Let (x, q) ∈ J and (yn, rn) ∈ J, n ∈ N. Then

(i) for each positive integer m there exists a neighborhood W ⊂ R2 of
(x, q) such that

(2.1) a1(y, r) . . . am(y, r) ≥ a1(x, q) . . . am(x, q) for all (y, r) ∈W ∩ J;

(ii) if yn ↑ x and rn ↑ q, then (ai(yn, rn)) converges to (ai(x, q)).

Proof. (i) We may assume that x 6= 0. By definition of the quasi-greedy
expansion we have

n∑
i=1

ai(x, q)
qi

< x for all n = 1, 2, . . . .

For any fixed positive integer m, if (y, r) ∈ J is sufficiently close to (x, q),
then r > dqe − 1, i.e., Aq ⊂ Ar, and

n∑
i=1

ai(x, q)
ri

< y, n = 1, . . . ,m.

These inequalities imply (2.1).
(ii) If yn ≤ x and rn ≤ q, we deduce from the definition of the quasi-

greedy expansion that

(ai(x, q)) ≥ (ai(yn, rn))

for every n. Equivalently, we have

a1(x, q) . . . am(x, q) ≥ a1(yn, rn) . . . am(yn, rn)

for all positive integers m and n. It remains to notice that by the previous
part the reverse inequality also holds for each fixed m if n is large enough.

The family of greedy expansions has already been characterized by
Parry [18]:

Proposition 2.4. For a given base q > 1, the map x 7→ (bi(x, q)) is an
increasing bijection from Jq onto the set of all sequences (bi) satisfying

bn ∈ Aq for all n ≥ 1
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and
bn+1bn+2 . . . < α1(q)α2(q) . . . whenever bn < α1(q).

The greedy expansions have the following upper semicontinuity property:

Lemma 2.5. Let (x, q) ∈ J, (yn, rn) ∈ J, n ∈ N and suppose q /∈ N.
Then

(i) for each positive integer m there exists a neighborhood W ⊂ R2 of
(x, q) such that

(2.2) b1(y, r) . . . bm(y, r) ≤ b1(x, q) . . . bm(x, q) for all (y, r) ∈W ∩ J;

(ii) if yn ↓ x and rn ↓ q, then (bi(yn, rn)) converges to (bi(x, q)).

Proof. (i) By the definition of greedy expansions we have
n∑
i=1

bi(x, q)
qi

> x− 1
qn

whenever bn(x, q) < α1(q).

If (y, r) ∈ J is sufficiently close to (x, q), then Ar = Aq, α1(r) = α1(q), and
n∑
i=1

bi(x, q)
ri

> y − 1
rn

whenever n ≤ m and bn(x, q) < α1(r).

These inequalities imply (2.2).
(ii) If yn ≥ x and rn ≥ q, we deduce from the definition of the greedy

expansion that
(bi(x, q)) ≤ (bi(yn, rn))

for every n. Equivalently, we have

b1(x, q) . . . bm(x, q) ≤ b1(yn, rn) . . . bm(yn, rn)

for all positive integers m and n. It remains to notice that by the previous
part the reverse inequality also holds for each fixed m if n is large enough.

From Lemmas 2.3 and 2.5 we deduce the following result:

Proposition 2.6. Consider (x, q) ∈ J with a noninteger base q and
assume that the greedy expansion (bi(x, q)) is infinite. If (yn, rn) converges
to (x, q) in J, then both (ai(yn, rn)) and (bi(yn, rn)) converge to (bi(x, q)) =
(ai(x, q)).

Proof. For each positive integer m there exists a neighborhood W ⊂ R2

of (x, q) such that for all (y, r) ∈W ∩ J,

a1(x, q) . . . am(x, q) ≤ a1(y, r) . . . am(y, r) ≤ b1(y, r) . . . bm(y, r)
≤ b1(x, q) . . . bm(x, q).

The result follows from our assumption that (ai(x, q)) = (bi(x, q)).
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Theorem 2.7. Let q > 1 be a real number. Then

(i) for each r ∈ (1, q), the Hausdorff dimension of the set

Gr,q :=
{ ∞∑
i=1

bi(x, r)
qi

: x ∈ Jr
}

equals log r/log q;
(ii) the set

Gq :=
⋃
{Gr,q : r ∈ (1, q)}

is of first category, has Lebesgue measure zero and Hausdorff dimen-
sion one.

Proof. (i) It is well known (see, e.g., [17], [18]) and easy to prove that
the set of numbers r > 1 for which (βi(r)) is finite is dense in [1,∞).
Moreover, if (βi(r)) is finite and βn(r) is its last nonzero element, then
(αi(r)) = (β1(r) . . . βn−1(r)β−n (r))∞ (where β−n (r) := βn(r) − 1). By virtue
of Propositions 2.1 and 2.4 we have Gs,q ⊂ Gt,q whenever 1 < s < t < q.
Hence it is enough to prove that dimHGr,q = log r/log q for those values
r ∈ (1, q) for which (αi(r)) is periodic.

Fix r ∈ (1, q) such that (αi) := (αi(r)) is periodic and let n ∈ N be such
that (αi) = (α1 . . . αn)∞. Let us denote by Wr the set consisting of the finite
words

wij := α1 . . . αj−1i, 0 ≤ i < αj , 1 ≤ j ≤ n,
and

wαnn := α1 . . . αn−1αn.

Let F ′r be the set of sequences (ci) = c1c2 such that for each k ≥ 0 the
inequality ck+1 . . . ck+n ≤ α1 . . . αn holds. Note that the set F ′r consists of
those sequences (ci) such that each tail of (ci) (including (ci) itself) starts
with a word belonging to Wr. It follows from Propositions 2.1 and 2.4 that
a sequence (bi) is greedy in base r if and only if bm ∈ Ar for all m ≥ 1 and

bm+k+1bm+k+2 . . . < α1α2 . . . for all k ≥ 0, whenever bm < α1.

Therefore, any greedy expansion (bi) 6= α∞1 in base r can be written as
α`1c1c2 . . . for some ` ≥ 0 (where α0

1 denotes the empty word) and some
sequence (ci) belonging to F ′r. Conversely, if no tail of a sequence belonging
to F ′r equals (αi), then it is the greedy expansion in base r of some x ∈ Jr.
Hence if we set

Fr,q :=
{ ∞∑
i=1

ci
qi

: (ci) ∈ F ′r
}
,

then Fr,q \ Gr,q is countable and Gr,q can be covered by countably many
sets similar to Fr,q. Since the union of countably many sets of Hausdorff
dimension s is still of Hausdorff dimension s, we have dimHGr,q = dimHFr,q.
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We associate with each word wij ∈Wr a similarity Sij : Jq → Jq defined
by the formula

Sij(x) :=
α1

q
+ · · ·+ αj−1

qj−1
+

i

qj
+
x

qj
, x ∈ Jq.

It follows from Proposition 2.1 and the definition of Fr,q that

(2.3) Fr,q =
⋃
Sij(Fr,q)

where the union runs over all i and j for which wij ∈Wr. Applying Propo-
sition 2.1 again, it follows that r is the largest element of the set of numbers
t > 1 for which αi(t) = αi, 1 ≤ i ≤ n. Hence α1 . . . αn < α1(q) . . . αn(q)
and therefore each sequence in F ′r is the greedy expansion in base q of some
x ∈ Fr,q. It follows that the sets Sij(Fr,q) on the right side of (2.3) are
disjoint. Moreover, the function x 7→ (bi(x, q)) that maps Fr,q onto F ′r is
increasing. Using the definition of F ′r it is easily seen that the limit of each
monotonic sequence of elements in Fr,q belongs to Fr,q. We conclude that
the closed set Fr,q is the (nonempty compact) invariant set of this system
of similarities. An application of Propositions 9.6 and 9.7 in [9] yields

dimHFr,q = dimHGr,q = s,

where s is the real solution of the equation
α1

qs
+ · · ·+ αn−1

q(n−1)s
+
αn + 1
qns

= 1.

Since
α1

r
+ · · ·+ αn−1

rn−1
+
αn + 1
rn

= 1

we have s = log r/log q.
(ii) It follows at once from (i) that dimHGq = 1. Let r ∈ (1, q) be such

that (αi(r)) is periodic. The proof of (i) shows that

Gr,q ⊂
∞⋃
n=1

(an + bnFr,q)

for some constants an, bn ∈ R (n ∈ N). Since Fr,q is a closed set of Hausdorff
dimension less than one, it follows in particular that the sets an+ bnFr,q are
nowhere dense null sets. Since Gs,q ⊂ Gt,q whenever 1 < s < t < q, the set
Gq is a null set of first category.

Theorem 2.8. Let q > 1 be a real number.

(i) Let v := b`+1(y, q) . . . b`+m(y, q) for some y ∈ [0, 1) and some inte-
gers ` ≥ 0 and m ≥ 1. The set Yv of numbers x ∈ Jq for which the
word v does not occur in the greedy expansion of x in base q has
Hausdorff dimension less than one.
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(ii) The set Y of numbers x ∈ Jq for which at least one word of the form
b`+1(y, q) . . . b`+m(y, q) (` ≥ 0, m ≥ 1, y ∈ [0, 1)) does not occur in
the greedy expansion of x in base q is of first category, has Lebesgue
measure zero and Hausdorff dimension one.

Proof. (i) Using the inequality (bi(y, q)) < (αi(q)), it follows from Propo-
sition 2.4 that for some k ∈ N, there exist positive integers m1, . . . ,mk and
nonnegative integers `1, . . . , `k satisfying αmj (q) > 0 and `j < αmj (q) for
each 1 ≤ j ≤ k, such that v is a subword of

w := α1(q) . . . αm1−1(q)`1 . . . α1(q) . . . αmk−1(q)`k.

Let Wq and F ′q be the same as the sets Wr and F ′r defined in the
proof of the previous theorem, but now with (αi) := (αi(q)) and n ≥
max{m1, . . . ,mk} large enough that

(2.4)
(

1 +
1
qn

)k
< 1 +

1
qm1+···+mk

.

If wi1j1 , . . . , wikjk are k words belonging to Wq such that

i1j1 . . . ikjk 6= `1m1 . . . `kmk,

we associate with them a similarity Si1j1...ikjk : Jq → Jq defined by

Si1j1...ikjk(x) =
α1

q
+ · · ·+ αj1−1

qj1−1
+

i1
qj1

+
α1

qj1+1
+ · · ·+ αj2−1

qj1+j2−1
+

i2
qj1+j2

+ · · ·

+
α1

qj1+···+jk−1+1
+ · · ·+ αjk−1

qj1+···+jk−1
+

ik
qj1+···+jk

+
x

qj1+···+jk
, x ∈ Jq.

Let G′q denote the set of those sequences belonging to F ′q which do not
contain the word w, and let

Gq :=
{ ∞∑
i=1

ci
qi

: (ci) ∈ G′q
}
.

Since (αi) = (αi(q)), a sequence belonging to F ′q is not necessarily the
greedy expansion in base q of a number x ∈ Jq, but this does not affect
our proof. It is important, however, that any greedy expansion (bi) 6= α∞1
in base q can be written as α`1c1c2 . . . for some ` ≥ 0 and some sequence
(ci) belonging to F ′q. If Yw denotes the set of numbers x ∈ Jq for which the
word w does not occur in (bi(x, q)) then the latter fact implies that the set
Yw \ {α1/(q − 1)} can be covered by countably many sets similar to Gq.
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It follows from the definition of Gq that

Gq ⊂
⋃
Si1j1...ikjk(Gq)

where the union runs over all i1j1 . . . ikjk for which the similarity Si1j1...ikjk
is defined above. Hence

Gq ⊂
⋃
Si1j1...ikjk(Gq)

and thus Gq ⊂ Hq where Hq is the (nonempty compact) invariant set of this
system of similarities. Let α̃i := αi for 1 ≤ i < n and α̃n := αn + 1. From
Proposition 9.6 in [9] we know that dimHHq ≤ s where s is the real solution
of the equation

(2.5)
n∑

j1=1

n∑
j2=1

· · ·
n∑

jk=1

( ∏k
i=1 α̃ji

q(j1+···+jk)s

)
− 1
q(m1+···+mk)s

= 1.

Denoting the left side of (2.5) by C(s), we have

C(1) +
1

qm1+···+mk
=
( n∑
i=1

α̃i
qi

)k
<

(
1 +

1
qn

)k
.

By (2.4) we have C(1) < 1, and thus dimH Yv ≤ dimH Yw ≤ dimHHq < 1.
(ii) The proof of (i) shows that

Yv ⊂ Yw ⊂
∞⋃
n=1

(cn + dnHq)

for some constants cn, dn ∈ R (n ∈ N). Arguing as in the proof of Theo-
rem 2.7(ii) we may conclude that Yv is a null set of first category. Since Y
is a countable union of sets of the form Yv the same properties hold for Y .
Let r ∈ (1, q) and let Gr,q be the set defined in Theorem 2.7. Due to Theo-
rem 2.7(i) it is now sufficient to show that Gr,q ⊂ Y . By Proposition 2.1 there
exists an integer n ∈ N such that α1(r) . . . αn(r) < α1(q) . . . αn(q). Note that
the greedy expansion in base q of a number x ∈ Gr,q equals (bi(x′, r)) for
some x′ ∈ Jr by Proposition 2.4. Applying Propositions 2.1 and 2.4 once
more we conclude that the sequence 0α1(q) . . . αn(q)0∞ equals (bi(y, q)) for
some y ∈ [0, 1) while the word b1(y, q) . . . bn+1(y, q) = 0α1(q) . . . αn(q) does
not occur in the greedy expansion in base r of any number belonging to Jr.

Remark. In this remark we will briefly sketch a proof of Theorems 2.7(i)
and 2.8(i) that was pointed out to us by the anonymous referee. For q > 1,
let Bn(q) be the number of possible blocks of length n that may occur
in (bi(x, q)) for some x ∈ Jq. Since bn+1(x, q)bn+2(x, q) . . . is the greedy
expansion of

∑∞
i=1 bn+iq

−i for each n ∈ N and x ∈ Jq, we have

Bn(q) = |{(b1(x, q), . . . , bn(x, q)) : x ∈ Jq}|.
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Let σq be the one-sided left shift on the set {(bi(x, q)) : x ∈ Jq}. It is well
known (see [12]) that its topological entropy htop(σq), defined by

(2.6) htop(σq) := lim
n→∞

log(Bn(q))
n

,

equals log q. By some modifications of the proof of Proposition III.1 in [10],
one shows that dimHGr,q = htop(σr)/log q = log r/log q. Theorem 2.8(i)
may also be deduced from (2.6) and Proposition III.1 in [10]. On the other
hand, our proof of these results enables us to show that the sets Gq and Y in
Theorem 2.7(ii) and 2.8(ii) are of first category. Moreover, Theorem 2.7(i)
combined with the formula dimHGr,q = htop(σr)/log q gives an alternative
proof of the fact that htop(σq) = log q for each q > 1.

3. Proof of Theorem 1.2. The following characterization of unique
expansions readily follows from Proposition 2.4.

Proposition 3.1. Fix q > 1. A sequence (ci) of integers ci ∈ Aq is the
unique expansion of some x ∈ Jq if and only if

cn+1cn+2 . . . < α1(q)α2(q) . . . whenever cn < α1(q)

and
cn+1cn+2 . . . < α1(q)α2(q) . . . whenever cn > 0.

In what follows we use the notation (ai(x, q)), (bi(x, q)), (αi(q)) and
(βi(q)) as introduced in Section 1. If x and q are clear from the context,
then we omit these arguments and we simply write ai, bi, αi and βi. If two
couples (x, q) and (x′, q′) are considered simultaneously, then we also write
a′i, b

′
i, α

′
i and β′i in place of ai(x′, q′), bi(x′, q′), αi(q′) and βi(q′).

Lemma 3.2. Given (x, q) ∈ J, the following two conditions are equiva-
lent:

an+1an+2 . . . ≤ α1α2 . . . whenever an > 0;
an+1an+2 . . . ≤ β1β2 . . . whenever an > 0.

Proof. Since (αi) ≤ (βi), it suffices to show that if there exists a positive
integer n such that

an > 0 and an+1an+2 . . . > α1α2 . . . ,

then there also exists a positive integer m such that

am > 0 and am+1am+2 . . . > β1β2 . . . .

If the greedy expansion (βi) is infinite, then (βi) = (αi) and we may choose
m = n. If (βi) has a last nonzero digit β`, then (αi) = (α1 . . . α`)∞ with
α1 . . . α`−1α` = β1 . . . β`−1β

−
` (where β−` := β`− 1), and thus α` < α1. Since

we have
an+1an+2 . . . > (α1 . . . α`)∞
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by assumption, there exists a nonnegative integer j satisfying

an+1 . . . an+j` = (α1 . . . α`)j and an+j`+1 . . . an+(j+1)` > α1 . . . α`.

Putting m := n+ j` it follows that

am > 0 and am+1 . . . am+` ≥ β1 . . . β`.

Our assumption an+1an+2 . . . > α1α2 . . . implies (αi) < α∞1 and (ai) 6= α∞1 .
It follows from Proposition 2.2 that (ai) has no tail equal to α∞1 , so that
am+`+1am+`+2 . . . > 0∞. We conclude that

am+1am+2 . . . > β1β2 . . . .

Definition. We say that (x, q) ∈ J belongs to the set V if the condi-
tions of the preceding lemma are satisfied. Moreover, we define

Vq := {x ∈ Jq : (x, q) ∈ V}, q > 1.

It follows from Proposition 3.1 that U ⊂ V ⊂ J.

Proof of Theorem 1.2. We need to prove that U ∩ J = V.
First we show that V ⊂ U. To this end we introduce for each fixed q > 1

the sets U ′q and V ′q, defined by

U ′q := {(ai(x, q)) : x ∈ Uq} and V ′q := {(ai(x, q)) : x ∈ Vq}.

Observe that U ′q is simply the set of unique expansions in base q. It follows
easily from Propositions 2.1, 2.2 and 3.1 that U ′q ⊂ V ′q for each q > 1,
and that V ′q ⊂ U ′r for each r > q such that dqe = dre. Since we also have
Uq = Vq = [0, 1] if q > 1 is an integer, the result follows.

Next we show that U∩J ⊂ V. Since U ⊂ V it is sufficient to prove that
if (x, q) ∈ J \V, then (x′, q′) /∈ V for all (x′, q′) ∈ J close enough to (x, q).
By Lemma 3.2 there exist two positive integers n and m such that

(3.1) an > 0 and an+1 . . . an+m > β1 . . . βm.

This implies in particular that q is not an integer, because otherwise (αi) =
(βi) = β∞1 . Hence, if q′ is sufficiently close to q, then

(3.2) β′1 . . . β
′
m ≤ β1 . . . βm

by Lemma 2.5. It follows from the definition of quasi-greedy expansions that

a1

q
+ · · ·+ aj−1

qj−1
+
a+
j

qj
+

1
qj+m

> x whenever aj < α1,

where a+
j := aj +1. If (x′, q′) ∈ J is sufficiently close to (x, q), then α1 = α′1,

the inequality (3.2) is satisfied, a′1 . . . a
′
n+m ≥ a1 . . . an+m by Lemma 2.3,
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and

(3.3)
a1

q′
+ · · ·+ aj−1

(q′)j−1
+

a+
j

(q′)j
+

1
(q′)j+m

> x′

whenever j ≤ n+m and aj < α1.

Now we distinguish two cases.
If a′1 . . . a

′
n+m = a1 . . . an+m, then we have

a′n > 0 and a′n+1 . . . a
′
n+m > β1 . . . βm ≥ β′1 . . . β′m

by (3.1) and (3.2). This proves that (x′, q′) /∈ V.
If a′1 . . . a

′
n+m > a1 . . . an+m, then let us consider the smallest j for which

a′j > aj . It follows from (3.2) and (3.3) that

a′j = a+
j > 0 and a′j+1 . . . a

′
j+m = βm1 > β1 . . . βm ≥ β′1 . . . β′m.

Hence (x′, q′) /∈ V again.

Remark. It is the purpose of this remark to describe the set U \J. For
each m ∈ N, we define the number qm ∈ (m,m+ 1) by the equation

1 =
m

qm
+

1
q2m
.

Fix q ∈ (m, qm]. Since α1(q) = m and α2(q) = 0, Proposition 3.1 implies
that a sequence (ci) ∈ {0, . . . ,m}N belongs to U ′q if and only if for each
n ∈ N, we have

cn < m ⇒ cn+1 < m and cn > 0 ⇒ cn+1 > 0.

Denoting the set of all such sequences by D′m and putting, for m > 1 (note
that D′1 = {0∞, 1∞}),

Dm :=
{ ∞∑
i=1

ci
mi

: (ci) ∈ D′m
}
,

one may verify that

U \ J = {(0, 1)} ∪
∞⋃
m=2

(Dm \ [0, 1])× {m}.

For x ≥ 0, let U(x) = {q > 1 : (x, q) ∈ U}, and denote its closure by
U(x). With this notation, the set U introduced in Section 1 equals U(1).
The following corollary implies in particular that the sets U(x) \ U(x) are
(at most) countable.

Corollary 3.3. Each element q ∈ U(x) \ U(x) is algebraic over the
field Q(x).

Proof. If q ∈ U(x) \ U(x) and q /∈N, then (x, q)∈ J and thus (x, q)∈V
by Theorem 1.2. If the sequence (bi(x, q)) is infinite, then it ends with
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α1(q)α2(q) . . ., as follows from the definition of V and Propositions 2.4
and 3.1. Hence x has a finite expansion in base q or x can be written as

x =
b1(x, q)

q
+ · · ·+ bn(x, q)

qn
+

1
qn

(
α1

q − 1
− 1
)

for some n ≥ 0, whence q is algebraic over Q(x).

4. Proof of Theorem 1.1. We need some results on the Hausdorff
dimension of the sets Uq and Vq for q > 1. It follows from Theorem 1.2 that
Uq ⊂ Uq ⊂ Vq. Moreover, if an element x ∈ Vq \ Uq has an infinite greedy
expansion in base q, then (bi(x, q)) must end with α1(q)α2(q) . . ., as follows
from Propositions 2.4 and 3.1; hence Vq \ Uq is (at most) countable and
the sets Uq, Uq and Vq have the same Hausdorff dimension for each q > 1.
Proposition 4.1 below is contained in the works of Daróczy and Kátai [4],
Kallós [13], [14], Glendinning and Sidorov [11], and Sidorov [21]; for the
reader’s convenience we provide here an elementary proof.

Proposition 4.1. We have

(i) limq↑2 dimH Uq = 1;
(ii) dimH Uq < 1 for all noninteger q > 1.

Proof. (i) Assume that q ∈ (1, 2) is larger than the tribonacci number,
i.e.,

1
q

+
1
q2

+
1
q3

< 1,

and let N = N(q) ≥ 2 be the largest integer satisfying

1
q

+ · · ·+ 1
q2N−1

< 1.

Hence α1(q) = · · · = α2N−1(q) = 1. Let us denote by Iq the set of numbers
x ∈ Jq which have an expansion (ci) in base q satisfying 0 < ckN+1 + · · ·+
c(k+1)N < N for every nonnegative integer k. Since in such expansions (ci),
a zero (resp. one) is followed by at most 2N − 2 consecutive ones (resp.
zeros), it follows from Proposition 3.1 that Iq ⊂ Uq. It now suffices to prove
that

(4.1) dimH Iq =
log(2N − 2)
N log q

;

indeed, q ↑ 2 implies N → ∞, hence dimH Iq → 1 and consequently
dimH Uq → 1.

Observe that

(4.2) Iq =
⋃
Sc1...cN (Iq)
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where the union is over the words c1 . . . cN of length N consisting of zeros
and ones satisfying 0 < c1 + · · ·+ cN < N , and Sc1...cN : Jq → Jq is given by

Sc1...cN (x) :=
(
c1
q

+ · · ·+ cN
qN

)
+

x

qN
, x ∈ Jq.

Moreover, the set Iq is closed (and thus compact) because the limit of a
monotonic sequence in Iq converges to an element of Iq. In other words,
Iq is the (nonempty compact) invariant set of the iterated function system
formed by these 2N − 2 similarities. The sets Sc1...cN (Iq) on the right side
of (4.2) are disjoint because Sc1...cN (Iq) ⊂ Iq ⊂ Uq, and since all similarity
ratios are equal to q−N , it follows from Propositions 9.6 and 9.7 in [9] that
the Hausdorff dimension s of Iq is the real solution of the equation

(2N − 2)q−Ns = 1,

which is equivalent to (4.1).
(ii) Let q > 1 be a noninteger and let n ∈ N be such that αn(q) < α1(q). It

follows from Proposition 3.1 that the word 1(0)n does not occur in (bi(x, q))
if x belongs to Uq. Applying Theorem 2.8(i) with y = q−1, ` = 0 and
m = n+ 1, we conclude that dimH Uq < 1.

Proof of Theorem 1.1. (ii) Let q > 1 be a noninteger. Since Vq \ Uq is
countable, Proposition 4.1(ii) yields that dimH Vq < 1. This implies in par-
ticular that the set Vq is a one-dimensional null set. Applying Theorem 1.2
(and the Remark following its proof) and Fubini’s theorem we conclude that
U is a two-dimensional null set.

(i) Since Uq is not closed for all q > 1, U cannot be closed. Since U is a
two-dimensional null set, it has no interior points. It remains to show that
U (and thus U) has no isolated points. If q > 1 is an integer, then, as is
well known, Uq is dense in Jq = [0, 1]. If q > 1 is a noninteger, then each
(x, q) ∈ U is not isolated because U ′q ⊂ U ′r whenever q < r and dqe = dre.

(iii) From Corollary 7.10 in [9] we may conclude that for almost all q > 1,

dimH Uq ≤ max{0, dimH U− 1},

which would contradict Proposition 4.1(i) if we had dimH U < 2.
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