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Abstract. A finite group G is called a gap group if there exists an RG-module which
has no large isotropy groups except at zero and satisfies the gap condition. The gap
condition facilitates the process of equivariant surgery. Many groups are gap groups and
also many groups are not. In this paper, we clarify the relation between a gap group and
the structures of its centralizers. We show that a nonsolvable group which has a normal,
odd prime power index proper subgroup is a gap group.

1. Introduction. Let G be a finite group not of prime power order and
p a prime. In this paper we regard the trivial group as a p-group. We denote
by S(G) the set of all subgroups of G, by Pp(G) the set of p-subgroups
of G, by Op(G), called the Dress subgroup of type p, the smallest normal
subgroup of G whose index is a power of p, possibly 1, and by Lp(G) the
set of subgroups L of G which contain Op(G). Let π(G) be the set of prime
divisors of the order of G. Set

P(G) =
⋃

p∈π(G)

Pp(G) and L(G) =
⋃

p∈π(G)

Lp(G).

Let V be an RG-module. We always assume that a module is finite-
dimensional. We denote by PH(G) the set of all pairs (P,H) of subgroups of
G such that P <H≤G, P ∈P(G), and define a function dV : PH(G)→Z by

dV (P,H) = dimV P − 2 dimV H .

An RG-module V is called L(G)-free if dimV L = 0 for any L ∈ L(G). The
group G is called a gap group if there exists an L(G)-free RG-module V
such that dV (P,H) > 0 for all (P,H) ∈ PH(G). Such an RG-module V is
called a gap RG-module. The inequality arose from equivariant surgery theory
[18, 21, 4, 11, 12]. Gap modules play a special role in equivariant surgery,
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and gap groups are the ones for which equivariant surgery techniques are
most likely to have direct application. Laitinen and Pawałowski [10] showed
a sufficient and necessary condition for a finite perfect group, which is a gap
group, to act on a sphere S with just two fixed points, say x and y, such
that the tangential representations Tx(S) and Ty(S) are not isomorphic. This
problem is related to a question posed by Smith [24] and called the Smith
equivalence problem. Many researchers attacked related surgery problems
[22, 19, 20, 15, 1, 25, 3, 6, 5, 16]. In particular, Pawałowski and Solomon [17]
obtained a result on Smith equivalence problem for a gap group G.

If P(G) ∩ L(G) is not empty, then dimV P = 0 for any L(G)-free RG-
module V and any P ∈ P(G)∩L(G), and in particular G is not a gap group.
For examples of gap groups, see [9, 14, 2, 13, 26, 27]. In this paper we give
a necessary and sufficient condition for a group to be a gap group. To state
the main theorems, we need some notations.

For an RG- or CG-module U , we denote by UL(G) the maximal L(G)-free
submodule of U , which is isomorphic to

U/
∑

p∈π(G)

UO
p(G).

Here, the maximality means that if a submodule W of U contains UL(G)

properly then W is not L(G)-free. We define

PH2(G) =
{
(P,H) ∈ PH(G) | [H : P ] = 2 = [O2(G)H : O2(G)P ],

Oq(G)P = G for all odd prime q
}
.

The L(G)-free RG-module R[G]L(G) has dR[G]L(G)
(P,H) nonnegative for

(P,H) ∈ PH(G), and positive if (P,H) /∈ PH2(G) and P /∈ L(G) [8].
Let K be a normal subgroup of G for which K ≥ O2(G). The centralizer

CG(x) of an element x of G is the set of elements of G which commute
with x. A 2 power order element is called a 2-element.

For an element x of G, we denote by ψ(x) the set of odd primes q such
that there exists a subgroup N of G such that x ∈ N and Oq(N) 6= N .

We define E2(G,K) ⊂ G r K to be the set of involutions (elements of
order 2) x such that |ψ(x)| > 1 or |π(CG(x))| = |π(O2(CG(x)))| = 2, and
E4(G,K) to be the subset of 2-elements x of GrK of order ≥ 4 for which
|ψ(x)| > 0. Set E(G,K) = E2(G,K) ∪ E4(G,K). Note that E2(G,K) = ∅
if K > O2(G) and G/O2(G) is cyclic.

We define sets Eo2(G,K), Eo4(G,K) and Eo(G,K) as follows. The set
Eo4(G,K) consists of all 2-elements x of G r K of order > 2 such that
CG(x) is not a 2-group. The set Eo2(G,K) consists of all involutions x of
G r K such that |π(CG(x))| ≥ 3 or |π(O2(CG(x)))| ≥ 2. Set Eo(G,K) =
Eo2(G,K) ∪ Eo4(G,K). Note that Eo2(G,K), Eo4(G,K) and Eo(G,K) are
subsets of E2(G,K), E4(G,K) and E(G,K) respectively.
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Theorem 1.1. Let G be a finite group such that G/O2(G) is a nontrivial
cyclic group. Suppose that G has an index 2 subgroup K which is a gap group.
Then the following claims are equivalent:

(1) G is a gap group.
(2) E(G,K) 6= ∅.
(3) Eo(G,K) 6= ∅.
(4) There exists an L(G)-free RG-module W such that dW (P,H) > 0 for

all (P,H) ∈ PH2(G) with H 6≤ K.

The technique of construction of a gap module is elementary. The ex-
istence of L(G)-free RG-modules W such that dW (P,H) ≥ 0 for (P,H)
in PH(G) plays an important role. If we find such a module W and an
L(G)-free RG-module V satisfying dV (P,H) > 0 for any (P,H) ∈ PH(G)
with dW (P,H) = 0, then

V ⊕W⊕dimV+1

is a gap RG-module.

Theorem 1.2. Let G be a finite group such that G/O2(G) is a nontrivial
cyclic group and P(G) ∩ L(G) = ∅. Then G is a gap group if and only if

Eo(G,K) 6= ∅ and Eo(L,O2(G)) 6= ∅,
where K is an index 2 subgroup of G, and L is a subgroup of G for which
L > O2(G) and [L : O2(G)] = 2.

Theorem 1.3. Let G be a finite group for which P(G)∩L(G) = ∅. Then
G is not a gap group if and only if there exists a pair (L,K) of subgroups
of G such that L > K ≥ O2(G), [L : K] = 2, and E(L,K) = ∅.

As an application of the transfer homomorphism (Lemma 7.5), we have
the following theorem.

Theorem 1.4. A nonsolvable group having a normal, odd (> 1) index
subgroup is a gap group.

Note that the condition thatK has an odd (> 1) index cannot be omitted:
for example, the projective general linear group PGL(2, 7) is not a gap group.

This paper is organized as follows. We discuss the dimension of fixed
point sets in Section 2, and inequalities for the order of normalizers and one
equality for the order of centralizers in Section 3. In Section 4, for a finite
group G not of prime power order and an index 2 subgroup K of G, we show
that there exists an L(G)-free RG-module W such that dW (P,H) ≥ 0 for
any (P,H) ∈ PH(G), and dW (P,H) > 0 if E(G,K) ∩ H 6= E(G,K) ∩ P
and P /∈ L(G). We discuss a gap group G for which G/O2(G) is cyclic by
considering separately the cases [G : O2(G)] > 2 and [G : O2(G)] = 2 in
Section 5. In Section 6, we study groups G for which Eo(G,K) 6= ∅. These
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sections prepare the proofs of Theorems 1.1–1.3, given in Section 7 together
with the proof of Theorem 1.4.

2. Dimension of a fixed point set. Let G be a finite group, K an
index 2 subgroup, and C a cyclic subgroup of G. The normalizer NG(C)
acts on (H\G)C on the right. Let P and H be subgroups of G such that
H > P and [H : P ] = 2. Then H acts on the set P\G/C of double cosets
by h · PgC = PhgC for h ∈ H.

Lemma 2.1. Let (P,H) ∈ PH(G) with [H : P ] = 2. If C is not a subset
of the conjugacy class (P )G =

⋃
g∈G g

−1Pg, then there is a natural injection
from (H\G)C to (P\G/C)H .

Proof. If (P\G/C)H is empty, then C is not a subgroup of g−1Hg for
any g ∈ G, and thus (H\G)C is also empty. Otherwise, we see that

(P\G/C)H = {PgC | g−1Pg ∩ C < g−1Hg ∩ C}
⊃ {PgC | g−1Hg ≥ C} = {Hg | g−1Hg ≥ C} = (H\G)C

since PgC = HgC = HgCg−1g = Hg.

We say that an L(G)-free CG-moduleW satisfying dimCW
P−dimCW

H

> 0 for (P,H) ∈ PH(G) is a gap CG-module, similarly to a gap RG-module.
The complexification of a gap RG-module is a gap CG-module and the re-
alification of a gap CG-module is a gap RG-module. So, we will construct a
gap CG-module instead of a gap RG-module.

By Artin’s theorem [23, §9.2 Corollary], any RG-module can be written in
the real representation ring as a linear combination with rational coefficients
of realifications of CG-modules induced from cyclic subgroups of G.

For a CG-module V we let

dV,C(P,H) = dimC V
P − 2 dimC V

H

for (P,H) ∈ PH(G). Let PH2(G,K) be the subset of PH2(G) consisting of
all (P,H) for which H 6≤ K.

Lemma 2.2 (cf. [13]). Let C be a subgroup of G and (P,H) ∈ PH2(G).
Then

d(IndGC W )L(G),C(P,H) =
∑

PgC∈(P\G/C)H

dW,C(C ∩ g−1Pg,C ∩ g−1Hg)

−
∑

O2(G)PgC∈(O2(G)P\G/C)O
2(G)H

dW,C(C ∩ g−1O2(G)Pg,C ∩ g−1O2(G)Hg)



Centralizers of gap groups 105

for a CC-module W , and similarly

d(IndGC V )L(G)
(P,H) =

∑
PgC∈(P\G/C)H

dV (C ∩ g−1Pg,C ∩ g−1Hg)

−
∑

O2(G)PgC∈(O2(G)P\G/C)O
2(G)H

dV (C ∩ g−1O2(G)Pg,C ∩ g−1O2(G)Hg)

for an RC-module V .

Lemma 2.2 implies the following proposition.

Proposition 2.3. For (P,H) ∈ PH2(G), if O2(G)C = G then

d(IndGC R[C])L(G)
(P,H) = |(P\G/C)H | − 1.

We now estimate d(IndGC C[C])L(G),C(P,H) for an irreducible CC-module ξ
over a cyclic subgroup C of G.

Lemma 2.4. Let C be a cyclic subgroup of G for which C 6≤ K, x a
generator of C, and ξj an irreducible CC-module whose character sends xk
to exp(2jkπ

√
−1/|C|) (0 ≤ j < |C|). Then

d(IndGC ξj)L(G),C(P,H) =


−|(P\G/C)H |+ 1, j = 0,
|(P\G/C)H | − 1, j = |C|/2,
0, j 6= 0, |C|/2,

for any (P,H) ∈ PH2(G,K).

Proof. Note that O2(G)C = G and HrP = HrK. Since C∩K = 〈x2〉,
if g−1(H r P )g ∩ C 6= ∅ then C ≤ g−1Hg. By Lemma 2.2,

d(IndGC ξj)L(G),C(P,H) =
∑

Hg∈(H\G)C

dξj ,C(K ∩ C,C)− dξj ,C(K ∩ C,C)

= −|(P\G/C)
H | − 1

|C|/2

|C|/2∑
k=1

χξj (x
2k−1)

= −2(|(P\G/C)H | − 1)

|C|
exp

(
2jπ
√
−1

|C|

) |C|/2∑
k=1

exp

(
4j(k − 1)π

√
−1

|C|

)

=


−|(P\G/C)H |+ 1, j = 0,
|(P\G/C)H | − 1, j = |C|/2,
0, j 6= 0, |C|/2.

3. Cardinality of the fixed point set. In this section, we show one
equality for the orders of centralizers and two inequalities for the orders of
normalizers.
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Let G be a finite group, K an index 2 subgroup of G, and A the set of
conjugacy classes represented by elements of G r K. We denote by (x)G,
or simply (x), the conjugacy class of x in G. By counting the number of
elements of G contained in each conjugacy class, we have∑

(g)∈A

|G|
|CG(g)|

= |GrK| = |G|
2
,

and so

(3.1)
∑
(g)∈A

2

|CG(g)|
= 1.

Let {Cj | j ∈ J} be the set of representatives of all conjugacy classes in G
of cyclic subgroups C of G for which C 6≤ K. Let J(2) be the subset of J
containing all j ∈ J such that Cj is a 2-group. For each j ∈ J , we put

sj = |NG(Cj)|/|Cj |,

where NG(Cj) is the normalizer of the cyclic group Cj :

NG(Cj) := {a ∈ G | a−1Cja = Cj}.

Lemma 3.1. We have ∑
j∈J

2ϕ(|Cj |)
|NG(Cj)|

= 1,

where ϕ is the Euler function; in particular,∑
j∈J(2)

s−1j ≤ 1,

and equality holds if and only if J = J(2).

Proof. For a cyclic group C = 〈g〉 6≤ K, the group NG(C)/CG(g) acts
freely on the set of generators of C consisting of ϕ(|C|) elements. Then
there are just ϕ(|C|)/|NG(C)/CG(g)| conjugacy classes (x)G such that 〈x〉
is conjugate to C. Therefore we have

1 =
∑
(y)∈A

2

|CG(y)|
=
∑
j∈J

2

|CG(Cj)|
· ϕ(|Cj |)
|NG(Cj)/CG(Cj)|

=
∑
j∈J

2ϕ(|Cj |)
|NG(Cj)|

.

If j ∈ J(2) then 2ϕ(|Cj |) = |Cj |. Thus,∑
j∈J(2)

|Cj |
|NG(Cj)|

≤ 1.

Now it is clear that the equality
∑

j∈J(2) s
−1
j = 1 implies J = J(2).
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Lemma 3.2. Let H be a subgroup of G for which HK = G. Then∑
j∈J

s−1j |(H\G)
Cj | ≥ 1.

Equality holds if and only if J = J(2).

Proof. We consider NG(C)-orbits of (H\G)C . Let

(H\G)C =
∐
i

HgiNG(C).

Note that giCg−1i ≤ H. Since the isotropy subgroup at gi isNG(C)∩gi−1Hgi,
we have

|(H\G)C | =
∑
i

|HgiNG(C)| =
∑
i

|NG(C)|
|NG(C) ∩ gi−1Hgi|

(3.2)

=
∑
i

|NG(C)|
|NH(giCgi−1)|

=
∑

HgNG(C)∈(H\G)C/NG(C)

|NG(C)|
|NH(gCg−1)|

.

Let {C ′j | j ∈ JH} be the set of representatives of all conjugacy classes in
H of cyclic subgroups C ′ of H for which C ′K = G. For a cyclic group Cj
(j ∈ J), if C ′i (i ∈ JH) is conjugate to Cj in G, say C ′i = gCjg

−1 for some
g ∈ G, then Hg ∈ (H\G)Cj since gCjg−1 ≤ H. Combining this with (3.2),
we have ∑

i∈JH

|C ′i|
|NH(C ′i)|

=
∑
j∈J

∑
HgNG(Cj)∈(H\G)Cj /NG(Cj)

|Cj |
|NH(gCjg−1)|

(3.3)

=
∑
j∈J

s−1j |(H\G)
Cj |.

Let {yi ∈ H | i ∈ I} be a set of representatives of all conjugacy classes
(yi)H in H of elements yi outside K. By applying Lemma 3.2 for (H,H ∩K)
instead of (G,K), we have

(3.4)
∑
j∈JH

2ϕ(|C ′j |)
|NH(C ′j)|

= 1.

Note that 2ϕ(n) ≤ n for every even integer n, and equality implies that n is
a power of 2. Thus by (3.3) and (3.4),∑

j∈J
s−1j |(H\G)

Cj | ≥ 1,

and equality holds if and only if J = J(2).



108 T. Sumi

Next we obtain a result for Eo(G,K) = ∅.
Proposition 3.3. Let G{2} be a Sylow 2-subgroup of G. Suppose that

Eo(G,K) = ∅.
If x, y ∈ G{2} rK are conjugate in G, then they are also conjugate in G{2}.

Proof. First suppose that CG(x) is a 2-group for any x ∈ G r K. Let
S ⊂ G{2} consist of representatives x of elements (x) of A such that CG(x)
is a subgroup of G{2}. Then∑

x∈S

2

|CG{2}(x)|
= 1

by (3.1), since CG(x) = CG{2}(x). By applying again (3.1) for G{2} we find
that distinct elements x and y of S are not conjugate in G{2}.

Next, suppose that there exists an x ∈ G rK such that CG(x) is not a
2-group. Let A1 be the set of conjugacy classes (x) of elements x ∈ GrK of
order not divisible by 4, and A2 the set of conjugacy classes of elements of
order divisible by 4. Let A0

1 be the subset of A1 consisting of (x) represented
by involutions x. We have assumed that A1 6= A0

1 6= ∅. Note that CG(x) =
CCG(y)(x) for every involution y of G and every element x of G with y ∈ 〈x〉.
Then

(3.5)
∑

(x)∈A

2

|CG(x)|
=

∑
(y)∈A0

1

∑
(x)∈A1

y∈〈x〉

2

|CCG(y)(x)|
+
∑

(x)∈A2

2

|CG(x)|
.

Let y ∈ G with (y) ∈ A0
1. If two elements x and x′ with (x), (x′) ∈ A1 and

y ∈ 〈x〉 ∩ 〈x′〉 are conjugate in G, then they are conjugate in CG(y). Since
Eo2(G,K) = ∅, |x2| is a power of an odd prime, possibly 1, for (x) ∈ A1.
Noting that CCG(y)(x) = CCG(y)(x

2), we have

(3.6)
∑

(x)∈A1

y∈〈x〉

2

|CCG(y)(x)|
=

∑
(z)∈B(y)

2

|CCG(y)(z)|
,

where B(y) is the set of conjugacy classes in CG(y) which are represented
by elements of O2(CG(y)). Since O2(CG(y)) is a normal, prime power order
subgroup of CG(y), we have

(3.7)
∑

(z)∈B(y)

|CG(y)|
|CCG(y)(z)|

= |O2(CG(y))|.

Consequently, by (3.1) and (3.5)–(3.7) together with Eo4(G,K) = ∅, we have∑
(y)∈A0

1

2

|CG(y){2}|
+
∑

(x)∈A2

2

|CG(x){2}|
= 1,
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where CG(z){2} is a Sylow 2-subgroup of CG(z) for z = x, y. By comparing
this and (3.1) for G{2}, if two elements of G{2}rK are conjugate in G then
they are also conjugate in G{2}. This completes the proof.

4. Properties involving E(G,K) and Eo(G,K). Let G be a finite
group not of prime power order and K an index 2 subgroup of G (so G has
even order). Recall that dimWP = 0 if P ∈ L(G) for any L(G)-free RG-
module W . We denote by PH0(G) (resp. PH0(G,K)) the subset of PH(G)
(resp. PH(G,K)) consisting of all pairs (P,H) for which P /∈ L(G), and by
PH2

0(G) (resp. PH2
0(G,K)) the intersection of PH0(G) and PH2(G) (resp.

PH2(G,K)). We say that an RG-module V is nonnegative if dV (P,H) ≥ 0
for all (P,H) ∈ PH(G). Note that IndGH(R[H]L(H)) is a nonnegative RG-
module for any H ≤ G.

Let B1 be the set of conjugacy classes (x)G represented by involutions x
of GrO2(G) such that CG(x) is not a 2-group, and B2 the set of conjugacy
classes represented by 2-elements x of G r O2(G) of order > 2 such that
CG(x) is not a 2-group. Let Q(x) = O2(CG(x))〈x〉 for (x) ∈ B1 and Q(x) a
subgroup L〈x〉 of G not of 2 power order for (x) ∈ B2, where p is taken as
an odd prime dividing |CG(x)| so that L is a nontrivial Sylow p-subgroup of
CG(x). Put

(4.1) W (G) =
⊕

(x)∈B1∪B2

IndGQ(x)(R[Q(x)]L(Q(x)))⊕ R[G]L(G).

This RG-module W (G) is nonnegative.

Proposition 4.1. dW (G)(P,H) is positive if (P,H) ∈ PH0(G) is such
that (P,H) /∈ PH2

0(G), or (H r P ) ∩ E(G,K) 6= ∅, or P 6≥ O2(CG(x)) for
some involution x of H r P .

Proof. For (P,H) ∈ PH0(G)r PH2
0(G), dR[G]L(G)

(P,H) is positive. For
(x) ∈ B2, dIndGQ(x)(R[Q(x)]L(Q(x)))

(P,H) is positive if (P,H) ∈ PH2
0(G) and

H ∩ (x) 6= P ∩ (x) (cf. [27, Proposition 4.1]). Also we see that for (x) ∈ B1,
dIndGQ(x)(R[Q(x)]L(Q(x)))

(P,H) is positive if (P,H) ∈ PH2
0(G) and H ∩ (x) 6=

P ∩ (x) (cf. [27, Lemma 4.3]).

5. The cases [G : O2(G)] > 2 and [G : O2(G)] = 2. Let G be a finite
group not of prime power order for which G/O2(G) is nontrivial cyclic and
K an index 2 subgroup of G.

First, suppose that K > O2(G), since O2(G) ≤ K < G. Note that
Eo2(G,K) = ∅. We will show that Eo4(G,K) 6= ∅ if and only if there exists an
L(G)-free RG-module U such that dU (P,H) > 0 for all (P,H) ∈ PH0(G,K).
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Let W (G) be the L(G)-free nonnegative RG-module in (4.1). Let

U0 =
⊕
j∈J(2)

(
(IndGCj

R[Cj ])L(G)

)⊕ns−1
j and U = U0 ⊕W (G)⊕m,

where n =
∏
j∈J(2) sj ∈ Z and m = dimU0 + 1 ∈ Z.

Theorem 5.1. If E4(G,K) 6= ∅ then

dU (P,H) > 0 for (P,H) ∈ PH0(G,K).

Proof. Let (P,H) ∈ PH0(G,K). If dW (G)(P,H) > 0 then

dU (P,H) = (dimUP0 − dimUH0 ) +mdW (G)(P,H)− dimUH0

≥ m− dimU0 > 0.

Suppose that dW (G)(P,H) = 0. Then [H : P ] = [O2(G)H : O2(G)P ] = 2

and (H r P ) ∩ E(G,K) = ∅. The latter implies that (P\G/Cj)H = ∅ for
j ∈ J r J(2). Noting that J(2) 6= J , we have

dU (P,H) = n
∑
j∈J(2)

s−1j
(
|(P\G/Cj)H | − 1

)
= n

(∑
j∈J

s−1j |(P\G/Cj)
H | −

∑
j∈J(2)

s−1j

)
≥ n

(∑
j∈J

s−1j |(H\G)
Cj | −

∑
j∈J(2)

s−1j

)
> 0

by Lemmas 2.1, 3.1 and 3.2.

On the other hand, we have the following

Lemma 5.2. Let V be an L(G)-free RG-module such that dV (P,H) ≥ 0
for all (P,H) ∈ PH2

0(G,K). If Eo4(G,K) is empty then dV (Cj , Cj ∩K) = 0
for all j ∈ J .

Proof. For an L(G)-free RG-module V ′ which is the realification of the
complexification W of V , we have dV ′(P,H) = 2dW,C(P,H) = 2dV (P,H).
Thus it suffices to show that if Eo4(G,K) is empty then dW,C(Cj , Cj∩K) = 0
for all j ∈ J . There exist a rational number nj , a CCj-module ξj for j ∈ J ,
a rational number q, and a CK-module η such that

W =
∑
j∈J

nj Ind
G
Cj
ξj + q IndGK η

in Q⊗Z R(G). Since V is L(G)-free, we have

W =WL(G) =
∑
j∈J

nj(Ind
G
Cj
ξj)L(G) + q(IndGK η)L(G).
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For (P,H) ∈ PH2
0(G,K), H is a 2-group and we must have

dW,C(P,H) =
∑
j∈J

njtj
(
|(P\G/Cj)H | − 1

)
≥ 0

for some integers tj by Lemma 2.4. Note that |((Ci ∩ K)\G/Cj)Ci | 6= 0 if
and only if i = j, and |((Cj∩K)\G/Cj)Cj | = sj . Since Eo4(G,K) = ∅ implies
J = J(2), we have∑

i∈J
s−1i dW,C(Ci ∩K,Ci) =

∑
j∈J

njtj
∑
i∈J

s−1i
(
|((Ci ∩K)\G/Cj)Ci | − 1

)
=
∑
j∈J

njtj

(
1−

∑
i∈J

s−1i

)
= 0

by Lemma 3.1. Therefore dW,C(Ci ∩K,Ci) = 0 for i ∈ J .

Theorem 5.3. If Eo4(G,K) = ∅ then there exists no L(G)-free RG-
module V such that dV (P,H) > 0 for all (P,H) ∈ PH0(G,K).

Proof. Assume that, on the contrary, there is an L(G)-free RG-module V
such that dV (P,H) > 0 for all (P,H) ∈ PH0(G,K). Then dV (Ci, Ci∩K) = 0
by Lemma 5.2 and so Ci ∩K ∈ L(G) for all i ∈ J . We show that this leads
to a contradiction. Note that J is not an empty set. The facts that Ci 6≤ K
and K > O2(G) imply Ci∩K 6≤ O2(G). Since Ci 6= Ci∩K, Ci∩K 6= Op(G)
for all odd primes p. Therefore Ci ∩K /∈ L(G).

Proposition 5.4. Let L1 and L2 be subgroups of G for which [L2 :
L1] = 2 and L1 > O2(G). If E4(G,K) 6= ∅ then E4(L2, L1) 6= ∅, and if
Eo4(G,K) 6= ∅ then Eo4(L2, L1) 6= ∅.

Proof. Suppose that there exists an element x of G r K not of prime
power order. Then x[G:L2] is an element of L2rL1 not of prime power order.
Therefore, Eo4(G,K) 6= ∅ implies Eo4(L2, L1) 6= ∅. Since ψ(y) is a subset of
ψ(z) for z ∈ 〈y〉, E4(G,K) 6= ∅ implies E4(L2, L1) 6= ∅.

Proposition 5.5. Suppose that |G/O2(G)| = 2t > 2. Let Ga for 0 ≤
a ≤ t be subgroups of G for which G0 = O2(G), Gs < Gs+1 and [Gs+1 : Gs]
= 2 for 0 ≤ s ≤ t − 1, and Gt = G. Then E(G,G0) = ∅ if and only if
E4(G2, G1) = E(G1, G0) = ∅, and Eo(G,G0) = ∅ if and only if Eo4(G2, G1)
= Eo(G1, G0) = ∅.

Proof. By Proposition 5.4, it is easy to see that E4(G,G0) = ∅ is equiv-
alent to E4(G2, G1) = ∅ = E4(G1, G0), and Eo4(G,G0) = ∅ is equivalent to
Eo4(G2, G1) = ∅ = Eo4(G1, G0). We clearly see that E2(G,G0) = ∅ (resp.
Eo2(G,G0) = ∅) implies E2(G1, G0) = ∅ (resp. Eo2(G1, G0) = ∅). Since
E2(G1, G0) = ∅ implies E2(G,G0) = ∅, we have E(G,G0) = ∅ if and only if
E4(G2, G1) = E(G1, G0) = ∅.
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We now show that Eo2(G1, G0) = ∅ implies Eo2(G,G0) = ∅. Suppose
that Eo2(G1, G0) = ∅. Let h be an involution of GrG0. Then h ∈ G1. Since
O2(CG1(h)) has odd prime power order,O2(CG1(h)) is the set of all odd order
elements of CG1(h). Every odd order element of G belongs to G0. Therefore,
the set of all odd order elements of CG(h) is O2(CG1(h)) and so O2(CG1(h))
is a normal subgroup of CG(h), which means that Eo2(G,G0) = ∅. Therefore,
Eo2(G1, G0) = ∅ implies Eo2(G,G0) = ∅.

Second, suppose that K = O2(G). The group G is called an almost gap
group if there exists an L(G)-free RG-module V such that dV (P,H) > 0
for all (P,H) ∈ PH0(G). Such an RG-module V is called an almost gap
RG-module. Clearly if P(G) ∩ L(G) = ∅ then an almost gap group G is a
gap group.

LetW (G) be the RG-module in (4.1). Let J1 be the subset of J consisting
of j ∈ J such that a generator of Cj does not belong to E(G,K), and J2 the
subset consisting of j ∈ J1 such that Cj is a 2-group. Then J2 ⊆ J1 ⊆ J . Let

U0 =
⊕
j∈J2

(
(IndGCj

R[Cj ])L(G)

)⊕ns−1
j and U = U0 ⊕W (G)⊕m,

where n =
∏
j∈J2 sj ∈ Z and m = dimU0 + 1 ∈ Z.

Theorem 5.6. If E(G,K) 6= ∅ then U is an almost gap RG-module and
G is an almost gap group.

Proof. Let (P,H) ∈ PH0(G). We will show that dU (P,H) > 0.
If dW (G)(P,H) > 0 then

dU (P,H) = (dimV P
0 − dimV H

0 ) +mdW (G)(P,H)− dimV H
0

≥ m− dimV0 > 0.

Suppose now that dW (G)(P,H) = 0. It follows from (H r P ) ∩ E(G,K)

= ∅ that (P\G/Cj)H = ∅ for j ∈ J r J1. Note that

dU (P,H) = n
∑
j∈J2

s−1j
(
|(P\G/Cj)H | − 1

)
.

We consider three cases.
The first case is that H is not a 2-group. Since [H : P ] = 2, all involutions

of H are conjugate. There is a unique k ∈ J2 such that Ck is subconjugate
to H. Note that Ck is an order 2 group. By [28, Lemma 4.4],

|(P\G/Ck)H | = sk.

Therefore,
dU (P,H) = n

(
1−

∑
j∈J2

s−1j

)
> 0

by Lemma 3.1.
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The second case is thatH is a 2-group of order> 2. Since (P\G/Cj)H = ∅
for j ∈ J r J2, we have

dU (P,H) ≥ n
(∑
j∈J

s−1j |(H\G)
Cj | −

∑
j∈J2

s−1j

)
> 0

by Lemmas 2.1, 3.1 and 3.2.
The third case is that H is an order 2 cyclic group. Let h be a gen-

erator of H. Then O2(CG(h)) ≤ P = {1} since dW (G)(P,H) = 0. Thus,
(P\G/Cj)H 6= ∅ implies that Cj and H are conjugate. We can apply the
argument of the first case and get dU (P,H) > 0. Therefore, U is an almost
gap RG-module.

6. More properties involving Eo(G,K). In this section, we assume
that G is a finite group not of prime power order and K an index 2 subgroup
of G.

Lemma 6.1. Let V be an L(G)-free RG-module such that dV (P,H) ≥ 0
for all (P,H) ∈ PH2

0(G,K). If Eo(G,K) is empty then dV (Pj , Hj) = 0 for
all j ∈ J(2), where

Pj = O2(CG(Cj))(Cj ∩K) and Hj = O2(CG(Cj))Cj .

Proof. Let W be an L(G)-free CG-module such that dW (P,H) ≥ 0 for
all (P,H) ∈ PH2

0(G,K). Then it suffices to show that if Eo(G,K) is empty
then dW (Pj , Hj) = 0 for all j ∈ J(2). We write W as∑

i∈J
ni Ind

G
Ci
ξi + q IndGK η

in Q ⊗Z R(G), where ni, q ∈ Q, ξi is a CCi-module for i ∈ J , and η is a
CK-module. Since W is L(G)-free, we have

W =
∑
j∈J

nj(Ind
G
Cj
ξj)L(G) + q(IndGK η)L(G).

Fix a Sylow 2-subgroup G{2} of G. For each j ∈ J(2), we may assume that Cj
is a subgroup of G{2} and furthermore so is NG(Cj) if NG(Cj) is a 2-group
without loss of generality. Moreover, we may assume that for i ∈ J and
j ∈ J(2), if Cj is subconjugate to Ci then Cj ≤ Ci. For each j ∈ J(2), we let

s′j = |NG{2}(Cj)|/|Cj |.

Then [Hj : Pj ] = [O2(G)Hj : O
2(G)Pj ] = 2. If Cj is a 2-group of order > 2

then CG(Cj) is also a 2-group, since Eo4(G,K) = ∅. If Cj is an order 2 group
then O2(CG(Cj)) ∈ P(G), since Eo2(G,K) = ∅. Therefore (Pj , Hj) ∈ PH(G)
for j ∈ J(2).
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Let PjgCi ∈ (Pj\G/Ci)Hj . Then g−1Pjg ∩ Ci is an index 2 subgroup
of g−1Hjg ∩ Ci. We show that Cj ≤ Ci and (g−1Pjg ∩ Ci, g−1Hjg ∩ Ci) =
(K ∩ Ci, Ci) by considering two cases.

The first case is where |Cj | is divisible by 4. In this case, (Pj , Hj) =
(K ∩ Cj , Cj). Moreover, (Pj\G/Ci)Hj is not empty if and only if i = j and

(Pj\G/Cj)Hj = Pj\NG(Cj)/Cj = NG(Cj)/Cj = NG{2}(Ci)/Ci.

In particular, we have g−1Hjg ∩ Cj = Cj , g−1Pjg ∩ Cj = K ∩ Cj and
|(Pj\G/Cj)Hj | = s′j .

The other case is where |Cj | = 2. Then
(Pj , Hj) =

(
O2(CG(Cj)), O

2(CG(Cj))Cj
)
.

Since g−1Pjg has odd order, for i ∈ J , if |(Pj\G/Ci)Hj | 6= ∅ then Cj is
subconjugate to Ci. Let hj be the generator of Cj . For PjgCi ∈ (Pj\G/Ci)Hj ,
there exist p ∈ Pj and d ∈ Ci such that phj = gdg−1. Since |d|/2 is odd,
p|d|/2hj = ghjg

−1. Since (p|d|/2)2 is the identity element and Pj has odd
order, p|d|/2 itself is the identity element. Thus hj = ghjg

−1, which implies
that g ∈ CG(Cj). Therefore, (g−1Pjg ∩Ci, g−1Hjg ∩Ci) = (K ∩Ci, Ci) and

(Pj\G/Ci)Hj = Pj\NG(Cj)/Ci.

In particular, |(Pj\G/Ci)Hj | = |NG(Cj)|/|O2(NG(Cj))Cj | = s′j .
For each i ∈ J(2), let I(i) be the set of all k ∈ J such that Ci ≤ Ck and

define
mi =

∑
k∈J(i)

nkdξk(K ∩ Ck, Ck).

Since J is a disjoint sum of I(j) for j ∈ J(2), we have

dW (Pi, Hi) = s′imi −
∑
j∈J(2)

mj

for each i ∈ J(2). Then∑
i∈J(2)

s′i
−1
dW (Pi, Hi) =

∑
i∈J(2)

mi

(
1−

∑
j∈J(2)

s′j
−1
)
= 0

by Proposition 3.3. Therefore dW (Pi, Hi) = 0 for i ∈ J(2).
Theorem 6.2. If G is an almost gap group then either Eo(G,K) 6= ∅,

or K ∈ P(G) and G is isomorphic to K×D2, where D2 is an order 2 group.

Proof. Assume that Eo(G,K) = ∅. If K is an odd prime power order
group then K × D2 is an almost gap group. Thus we may assume that if
K is an odd prime power order group then G is not isomorphic to K ×D2.
Towards a contradiction, we assume that V is an almost gap RG-module.
By Lemma 6.1, Pi ∈ L(G) for i ∈ J(2), where

Pi = O2(CG(Ci))(Ci ∩K) and Hi = O2(CG(Ci))Ci.
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We show that this leads to a contradiction. Recall that G is not of prime
power order. Suppose that Hi is a 2-group. Then Pi < Hi ≤ Op(G) and
thus Pi < Op(G) for any odd prime p. Since Pi is also a 2-group, we have
Pi < O2(G). Hence Pi /∈ L(G), a contradiction. Suppose now that Hi is
not a 2-group. Note that Ci is isomorphic to an order 2 group. Since Pi has
odd prime power order > 1, we have Pi < Op(G) for any odd prime p. If
Pi = O2(G) then Pi = O2(CG(Ci)) = K and G = Hi, which is isomorphic to
the direct product group ofK with an order 2 cyclic group, a contradiction.

7. Proofs of main theorems. Let G be a finite group such that
G/O2(G) is a nontrivial cyclic group. If P(G) ∩ L(G) = ∅ then the sub-
group L of G with L > O2(G) and [L : O2(G)] = 2 is not isomorphic to a
direct product group of an odd prime power order group and an order 2 cyclic
group, since O2(L) = O2(G). We use this fact in the proofs of Theorems 1.1
and 1.2.

In Theorem 1.1, the assumption that K is a gap group implies that
P(G) ∩ L(G) = ∅. If G is a gap group then O2(G) is an almost gap group.
Thus, we slightly extend Theorem 1.1 as follows.

Theorem 7.1. Let G be a finite group such that G/O2(G) is a nontrivial
cyclic group. Suppose that G has an index 2 subgroup K which is an almost
gap group not of prime power order. Then the following claims are equivalent:

(1) G is an almost gap group.
(2) E(G,K) 6= ∅.
(3) Eo(G,K) 6= ∅.
(4) There exists an L(G)-free RG-module W such that dW (P,H) > 0 for

all (P,H) ∈ PH2
0(G) with H 6≤ K.

Proof. Clearly, (3) implies (2), and (1) implies (4).
We show that (4)⇒(1). Suppose that (4) holds. Let

V =W ⊕
(
IndGK(WK)⊕ R[G]L(G)

)⊕ dimW+1
,

where WK is an almost gap RK-module. For (P,H) ∈ PH0(G), if (P,H) /∈
PH2

0(G), (P,H) ∈ PH2
0(G)rPH2

0(G,K) and (P,H) ∈ PH2
0(G,K), respec-

tively, then dR[G]L(G)
(P,H), dIndGK(WK)(P,H) and dW (P,H), respectively, are

positive. Therefore, dV (P,H) > 0 and V is an almost gap RG-module. Thus
(1) and (4) are equivalent.

If K > O2(G) then (4)⇒(3) follows from Theorem 5.3, and (2)⇒(4)
follows from Theorem 5.1. If K = O2(G), then (2)⇒(1) by Theorem 5.6 and
(1)⇒(3) by Theorem 6.2.

Thus, (1)–(4) are equivalent.

Theorem 1.2 is a direct corollary of the following theorem.
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Theorem 7.2. Let G be a finite group not of prime power order such that
G/O2(G) is a nontrivial cyclic group, K an index 2 subgroup of G, and L the
subgroup of G for which L > O2(G) and [L : O2(G)] = 2. The group G is an
almost gap group if and only if either Eo(L,O2(G)) 6= ∅, or O2(G) ∈ P(G)
and L is isomorphic to a direct product group of O2(G) with an order 2
group, and in addition Eo4(G,K) 6= ∅ in the case where |G/O2(G)| > 2.

Proof. Suppose that G is an almost gap group. Any subgroup H of G
with H ≥ O2(G) is also an almost gap group by [13, Proposition 3.1]. Thus
we have the “only if” part by Theorems 5.3 and 6.2.

We now show the “if” part. Let [G : O2(G)] = 2t and

G = Gt > K = Gt−1 > · · · > L = G1 > G0 = O2(G)

be a sequence of subgroups of G for which [Gj+1 : Gj ] = 2 for j = 0, 1, . . .
. . . , t− 1. By the assumption on L the group G1 is an almost gap group by
Theorem 5.6.

Now assume that t > 1. Let V1 be an almost gap RG1-module. Since
Eo4(G,K) is not empty, Eo(Ga, Ga−1) is not empty for a = 2, . . . , t by
Proposition 5.4. By Theorem 5.1, for a = 2, . . . , t, there is an L(Ga)-free
RGa-module Va such that dVa(P,H) is positive for (P,H) ∈ PH0(Ga, Ga−1).
Put W1 = V1 and inductively

Wa = Va ⊕
(
IndGa

Ga−1
Wa−1 ⊕ R[Ga]L(Ga)

)⊕ dimVa+1

for a = 2, . . . , t. Then dWa(P,H) ≥ 0 for (P,H) ∈ PH(Ga). Put

V =
⊕

1≤a≤t
IndGGa

Wa ⊕ R[G]L(G).

We show that V is an almost gap RG-module. Let (P,H) ∈ PH0(G).
Note that dIndGGa

Wa
(P,H) ≥ 0. If (P,H) /∈ PH2

0(G) then dV (P,H) ≥
dR[G]L(G)

(P,H) > 0. Suppose that (P,H) ∈ PH2
0(G). Since G/O2(G) is a

cyclic group, there exists 1 ≤ a ≤ t such that [H ∩Ga : P ∩Ga] = 2. In par-
ticular, P ∩Ga is not a Sylow 2-subgroup of Ga. Moreover, P ∩Ga 6= O2(Ga),
since if not, P = O2(G) ∈ L(G). Therefore P /∈ L(Ga) and

dV (P,H) ≥ dIndGGa
Wa

(P,H) ≥ dWa(P ∩Ga, H ∩Ga) > 0.

Hence V is an almost gap RG-module.

Theorem 7.3. Let G be a finite group not of prime power order. The
group G is an almost gap group if and only if so is L for any subgroup L
with L > O2(G) and L/O2(G) cyclic.

Proof. Recall that R[O2(G)]L(O2(G)) is an almost gap RO2(G)-module if
O2(G) is not of prime power order. Let N be the set of subgroups L of G
such that L > O2(G) and L/O2(G) is a cyclic group, and let Nc be the
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minimal subset of N such that for any L ∈ N , there is Q ∈ Nc satisfying
(Q) ⊃ (L), that is, L is subconjugate to Q in G. Suppose that VL is an
almost gap RL-module for L ∈ Nc. We show that

V =
⊕

(L)∈Nc

IndGL VL ⊕ R[G]L(G)

is an almost gap RG-module. It is easy to see that IndGL VL is L(G)-free and
dIndGL VL

(P,H) ≥ 0 for (P,H) ∈ PH(G) (cf. [13, Lemmas 1.2 and 1.7]). Let
(P,H) ∈ PH0(G). If (P,H) /∈ PH2

0(G) then dR[G]L(G)
(P,H) > 0. Suppose

that (P,H) ∈ PH2
0(G). There exist Q ∈ Nc and g ∈ G such that (H r P ) ∩

g−1Qg 6= ∅. Then (gPg−1 ∩Q, gHg−1 ∩Q) ∈ PH(Q).
We claim that gPg−1 ∩ Q /∈ L(Q). Indeed, assume otherwise. Then

gPg−1 ∩Q = O2(Q) or gPg−1 ∩Q = Op(Q) for an odd prime p. If gPg−1 ∩
Q = Op(Q) for an odd prime p, then Op(Q) is a Sylow 2-subgroup of Q and
thus gHg−1 ∩Q = gPg−1 ∩Q, which is a contradiction.

Since O2(Q) = O2(G), if gPg−1∩Q = O2(Q) then gPg−1 = O2(G). This
contradicts P /∈ L(G). Therefore, dVQ(gPg−1 ∩ Q, gHg−1 ∩ Q) > 0. Then⊕

(L)∈Nc
IndGL VL ⊕ R[G]L(G) is an almost gap RG-module. The converse

follows from [13, Proposition 3.1].

Now it is easy to deduce Theorem 1.3 from Theorems 7.2 and 7.3.
Let PH(2)(G) be the subset of PH2(G) consisting of (P,H) such that

O2(CG(h)) is a subgroup of P for any 2-element h ∈ H r P . Note that for
(P,H) ∈ PH(2)(G), if a 2-element h of H r P has order > 2 then CG(h)
is a 2-group. There exists an L(G)-free nonnegative RG-module W such
that dW (P,H) > 0 if (P,H) ∈ PH0(G)r PH(2)(G) [28, Theorem 2.3]. Put
PH(2)(G,K) = PH2(G,K) ∩ PH2(G).

Proposition 7.4. Let G be a finite group such that G/O2(G) is non-
trivial cyclic and P(G)∩L(G) = ∅, and let K be an index 2 subgroup of G. If
there exists an L(G)-free nonnegative RG-moduleW such that dW (P,H) > 0
for some (P,H) ∈ PH(2)(G,K), then Eo(G,K) is not empty.

Proof. Let (P,H) ∈ PH(2)(G,K) and letW be an L(G)-free nonnegative
RG-module for which dW (P,H) > 0. We show the assertion by considering
two cases.

The first case is when [G : O2(G)] > 2. Let C be the set of all conjugacy
classes (C) in G of cyclic 2-groups C for which C ≤ H and C 6≤ P . Note
that H is a 2-group and P = H ∩K. Since [H : P ] = 2, it follows that

H r P =
∐

(C)∈C

(C) ∩H r P =
∐

(C)∈C

∐
NG(C)gH∈NG(C)\(G/H)C

g−1Cg r P.
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By using the character χW of W , we see that

dW (P,H) = − 1

|H|
∑

h∈HrP

χW (h)

= − 1

|H|
∑

(C)∈C

∑
NG(C)gH∈NG(C)\(G/H)C

∑
h∈g−1CgrP

χW (h)

=
1

|H|
∑

(C)∈C

|g−1Cg|
∑

NG(C)gH∈NG(C)\(G/H)C

dW (g−1Cg ∩ P, g−1Cg)

=
1

|H|
∑

(C)∈C

|C| |NG(C)\(G/H)C |dW (C ∩ P,C) > 0.

Note that dW (C∩K,C) ≥ 0, since C∩K = C∩P . Therefore, by Lemma 5.2,
Eo4(G,K) is not empty.

The second case is when [G : O2(G)] = 2. If H is a 2-group, similarly to
the first case, we have Eo(G,K) 6= ∅. Indeed, suppose that Eo(G,K) = ∅.
Then we may assume that HrP has an involution h such that |O2(CG(h))|
6= 1 and P ≥ O2(CG(h)). Recall that

(P\G/〈h〉)H/P = P\PCG(h)/〈h〉 ∼= H\PCG(h)
by [28, Lemma 4.4]. Take k ∈ J(2) such that Ck = 〈h〉. In Lemma 6.1 we
replace (Pk, Hk) by (P,H) and proceed as in the proof of Lemma 6.1. Then
we see that dW (P,H) must be zero. Therefore Eo(G,K) is not empty.

If K is an almost gap group then G is a gap group by Theorem 7.2.

Now, we show that a nonsolvable group G for which Op(G) 6= G for some
odd prime p is a gap group (Theorem 1.4). We prepare two lemmas.

The following is an application of a transfer homomorphism (cf. [7, The-
orem 3.4]).

Lemma 7.5. Let N be a normal subgroup of a finite group G for which
N ≥ O2(G), and G{2} a Sylow 2-subgroup of G. Let H be the subgroup of
G generated by all elements of the commutator subgroup [G{2}, G{2}] of G{2}
and by all elements a−1b such that a, b ∈ G{2}rN and a and b are conjugate
in G. If involutions of G{2} outside N generate G{2}, then H = G{2}∩[G,G].

Proof. The group H is a normal subgroup of G{2} with G{2}/H abelian,
since N ∩ G{2} is normal in G{2}. Consider the transfer f : G → G{2}/H.
Since P/H is abelian, it follows that ker f ≥ [G,G] and so

(7.1) H ≤ G{2} ∩ [G,G] ≤ G{2} ∩ ker f.

We show that f is an epimorphism. Since [G : N ] is 2 power and G{2} is a
Sylow 2-subgroup of G, the set P rN is not empty. Let x be an involution
of G{2} outside N . Then there exist elements tj of G, for 1 ≤ j ≤ [G : G{2}],
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such that

tjxt
−1
j ∈ G{2} and f(x) =

[G:P ]∏
j=1

(tjxt
−1
j )H,

since |x| = 2 (cf. [7, Theorem 3.3]). Thus we obtain

f(x) =

[G:G{2}]∏
j=1

x(x−1tjxt
−1
j )H = x[G:G{2}]H = xH,

since x and tjxt−1j are elements of G{2} outside N which are conjugate. Since
involutions of G{2}rN generate G{2}, we have f(y) = yH for any y ∈ G{2},
and so f is an epimorphism. Therefore,
(7.2) [G : ker f ] = [G{2} : H].

Since ker f is a normal, 2 power index subgroup of G, we have G{2}(ker f) =
G and so G/ker f = G{2}(ker f)/ker f ∼= G{2}/(G{2} ∩ ker f). It follows that
(7.3) [G : ker f ] = [G{2} : G{2} ∩ ker f ].

By (7.1)–(7.3), we have
H = G{2} ∩ [G,G] = G{2} ∩ ker f.

Lemma 7.6. Let G be a finite group not of prime power order for which
[G : O2(G)] = 2. Suppose that Op(G) 6= G for some odd prime p, and G is
not an almost gap group. Then O2(G) is an odd order group.

Proof. Let G{2} be a Sylow 2-subgroup of G. Since G is not an al-
most gap group, there is a unique odd prime p such that Op(G) 6= G and
E(G,O2(G)) = ∅. Therefore any 2-element of GrO2(G) is an involution. By
Lemma 7.5, the focal subgroup G{2} ∩ [G,G] is generated by all elements of
[G{2}, G{2}] and all elements x−1y for which x, y ∈ G{2}rO2(G) and x is con-
jugate to y inG. By Proposition 3.3, we find thatG{2}∩[G,G] = [G{2}, G{2}],
and it is an index 2 subgroup of G{2}.

Now, we show that [K : [K,K]] > 2 for every 2-subgroup K of order
> 2. Recall that every 2-group is solvable. Take an index 2 subgroup K1 of
K and an index 2 subgroup K2 of K1.

If there exists an index 2 subgroup H of G such that K2 = K1 ∩H, then
K2 is a normal subgroup ofK andK/K2 is abelian and thus [K : [K,K]] > 2.

Now assume that there does not exist such an index 2 subgroup H.
There exists an element x of G such that K = K2 ∪ xK2 ∪ x2K2 ∪ x3K2.
If K2 ∩ xK2x

−1 = K2 then K2 is an index 4 normal subgroup of G so that
G/K2 is cyclic and thus [K : [K,K]] > 2. Suppose that K2 ∩ xK2x

−1 6= K2.
Since K2 ∪ x2K2 = K1, H := K2 ∩ xK2x

−1 is an index 8 normal subgroup
of K. For every group P of order 8, we see that [P : [P, P ]] > 2. Then
[K : [K,K]] > 2 since [K : [K,K]] ≥ [K/H : [K/H,K/H]] > 2.
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Since [G{2} : G{2} ∩ [G,G]] = 2, G{2} is an order 2 group, which implies
that O2(G) is an odd order group.

Theorem 1.4 follows from the following theorem.

Theorem 7.7. Let G be a finite group not of prime power order such
that G 6= O2(G) and G has an odd index > 1 normal subgroup. If O2(G) is
an even order group, then G is an almost gap group.

Proof. Let K be an odd index > 1 normal subgroup of G. Since an odd
order group is solvable, there exists a prime p such that Op(G) 6= G. Then
any 2-element of H outside P is an involution for any pair (P,H) ∈ PH2

0(G).
Let L be a subgroup of G for which L > O2(G) and [L : O2(G)] = 2. Since
L ∩ Op(G) 6= L, it follows that Op(L) 6= L. By Lemma 7.6, L is an almost
gap group. For every pair (P,H) ∈ PH2

0(G), there exists an almost gap sub-
group L of G such that L > O2(G), [L : O2(G)] = 2 and H ≤ L. Therefore
G is an almost gap group.
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