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On finite groups acting on a connected sum
of 3-manifolds S2 × S1
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Abstract. Let Hg denote the closed 3-manifold obtained as the connected sum of g
copies of S2×S1, with free fundamental group of rank g. We prove that, for a finite group
G acting on Hg which induces a faithful action on the fundamental group, there is an
upper bound for the order of G which is quadratic in g, but there does not exist a linear
bound in g. This implies then a Jordan-type bound for arbitrary finite group actions on
Hg which is quadratic in g. For the proofs we develop a calculus for finite group actions
on Hg, by codifying such actions by handle-orbifolds and finite graphs of finite groups.

1. Introduction. All finite group actions in the present paper will be
faithful, smooth and orientation-preserving, and all manifolds and orbifolds
will be orientable. For the case of surfaces, the famous Hurwitz bound states
that the order of a finite group acting on a closed surface of genus g > 1 is
bounded above by 84(g − 1). In a similar spirit, the order of a finite group
acting on a 3-dimensional handlebody Vg of genus g > 1 is bounded by
12(g − 1) ([Z1], [MMZ, Theorem 7.2]).

We consider finite groupsG acting on the connected sumHg = ]g(S2×S1)
of g copies of S2 × S1; we will call Hg a closed handle or just a handle
of genus g in the following. Similar as for a handlebody of genus g, the
fundamental group of a closed handle Hg is the free group Fg of rank g. For a
handlebody Vg of genus g > 1, a finite group G acting on Vg acts faithfully on
its fundamental group, meaning that it induces an injection G→ Outπ1(Vg)
into the outer automorphism group Outπ1(Vg) (see Proposition 2), and
hence induces a subgroup of OutFg of order at most 12(g−1). However, the
maximum order of a general finite subgroup of OutFg is 2gg! for g > 2 and
12 for g = 2 ([WZ]) (based on the result in [Z2] that each finite subgroup
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of OutFg can be induced by an action of the group on a finite graph, and
then also on some handlebody of sufficiently high dimension).

Since Hg admits S1-actions (see [R]), it admits finite cyclic group actions
of arbitrarily large order acting trivially on the fundamental group (i.e., in-
ducing the trivial homomorphism to OutFg), so in contrast to the situation
for handlebodies of genus g > 1 there is no upper bound for the orders of
finite groups G acting on a closed handle Hg. However, let G0 denote the
normal subgroup of all elements of G acting trivially on π1(Hg); then G0 is
cyclic for g > 1 (Proposition 2), the quotient Hg/G0 is again a closed handle
of the same genus g, and the factor group G/G0 acts faithfully on the fun-
damental group of the quotient Hg/G0

∼= Hg. Hence one is led to consider
actions of finite groups G on Hg which act faithfully on the fundamental
group; in Section 4, we prove the following:

Theorem 1. Let G be a finite group acting on a closed handle Hg of
genus g such that the induced action on the fundamental group is faithful.
Then, for g ≥ 15, there is the quadratic bound

|G| ≤ 24g(g − 1).

If G is cyclic then, for g ≥ 3,

|G| ≤ 4(g − 1)2.

There does not exist a linear bound in g for the order of G.

By the above, Theorem 1 implies the following Jordan-type bound for
arbitrary finite groups acting on a closed handle (i.e., not necessarily faithful
on the fundamental group):

Corollary. Let G be a finite group acting on a closed handle Hg of
genus g > 1. Then G has a cyclic normal subgroup C (the subgroup acting
trivially on the fundamental group) such that, for g ≥ 15, the order of G/C
is bounded above by 24g(g − 1).

We note that by the classical Jordan bound each finite subgroup G of a
linear group GL(n,C) has a normal abelian subgroup A such that the order
of G/A is bounded by a constant depending only on n; by [C], for n ≥ 71,
the optimal bound here is (n + 1)!, realized by the symmetric group Sn+1

occurring as a subgroup of GL(n,C).
After the various linear bounds for finite group actions on surfaces and

handlebodies, Theorem 1 seems to present the first instance of a quadratic
bound in such a situation. There remains the problem to determine the
optimal quadratic bound (the optimal coefficient for g2), both for cyclic and
arbitrary finite groups; in Section 3 we will construct some explicit examples
of finite cyclic and finite group actions on closed handles which seem to come
close to these optimal bounds.



Finite group actions 133

In order to prove Theorem 1, in Section 2 we shall develop a calculus
for finite group actions on closed handles Hg (see Theorem 2), in analogy
with the theory of finite group actions on handlebodies Vg [MMZ] (see also
[MZ] for applications to group actions of large order on handlebodies and
[Z3] for the case of closed 3-manifolds). This uses the language of handle-
orbifolds and of finite graphs of finite groups which codify the quotient
orbifolds Hg/G.

We note that the maximum order of a finite cyclic group acting on a
closed surface of genus g > 1 is 4g+ 2, for a handlebody of genus g > 1 it is
2g+2 if g is even, and 2g−2 if g is odd [MMZ]. By contrast, for general finite
cyclic subgroups of OutFg, it is proved in [LN] and [B] that the maximum
order behaves approximatively like the Landau estimate exp(

√
g log g) for

the maximum orders of elements of the symmetric group of degree g. The
maximum orders of the finite cyclic subgroups of Aut(Fg) and Out(Fg), for
g ≤ 300, can be found in [LN, Table 1].

We close the Introduction with the question of what happens for the
higher-dimensional analogues ]g(Sd × S1) of a closed handle Hg for d > 2
(all with free fundamental group of rank g). In analogy with Theorem 1,
is there a polynomial bound in g for the order of G, and of what degree?
(See also [Z2] for a discussion of finite group actions on higher-dimensional
analogues of handlebodies.)

2. Handle orbifolds and associated finite graphs of finite groups.
Let G be a finite group acting faithfully and orientation-preservingly on a
handle Hg = ]g(S2×S1) of genus g. Denoting by E the group generated by
all lifts of elements of G to the universal covering of Hg and by Fg the normal
subgroup of covering transformations, we have a group extension 1→ Fg →
E → G → 1 which belongs to the abstract kernel G → Outπ1(Hg) ∼=
OutFg induced by the action of G on π1(Hg). Using the equivariant sphere
theorem (see [MSY] for an approach by minimal surface techniques, and
[Du] and [JR] for purely topological-combinatorial proofs), we will associate
to the action of G a handle-orbifold H and a finite graph of finite groups
(Γ,G) whose fundamental group π1(Γ,G) is isomorphic to the extension E.

By the equivariant sphere theorem there exists an embedded, homo-
topically nontrivial 2-sphere S2 in H = Hg such that x(S2) = S2 or
x(S2) ∩ S2 = ∅ for all x ∈ G. We cut H along the system of disjoint
2-spheres G(S2), by removing the interiors of G-equivariant regular neigh-
bourhoods S2 × [−1, 1] of each of these 2-spheres, and call each of these
regular neighbourhoods S2× [−1, 1] a 1-handle. The result is a collection of
3-manifolds with 2-sphere boundaries, with an induced action of G. We close
each of the 2-sphere boundaries by a 3-ball and extend the action of G by
taking the cone over the center of each of these 3-balls, so G permutes these
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3-balls and their centers. The result is a finite collection of closed handles
of lower genus on which G acts. Applying inductively the procedure of cut-
ting along 2-spheres, we finally end up with a finite collection of 3-spheres
which we call 0-handles (these are just the closed handles of genus 0). Note
that the construction gives a finite graph Γ̃ on which G acts, whose vertices
correspond to the 0-handles and the edges to the 1-handles.

On each 3-sphere (0-handle) there are finitely many points which are
the centers of the attached 3-balls (their boundaries are the 2-spheres along
which the 1-handles are attached). For each of these 3-spheres we consider
its stabilizer Gv in G. By the recent geometrization of finite group actions
on 3-manifolds following Thurston and Perelman, we can assume that the
action of a stabilizer Gv on the corresponding 3-sphere is standard, i.e.
orthogonal; we call such a quotient S3/Gv a 0-handle orbifold (we note
that the geometrization is not really essential for the construction and its
applications, it just says that each 0-handle orbifold is standard). Similarly,
considering the stabilizers Ge in G of the 1-handles S2 × [−1, 1], we can
assume that each stabilizer Ge preserves the product structure of S2×[−1, 1].
If some element of a stabilizer Ge acts as a reflection on [−1, 1], we split the
1-handle into two 1-handles by introducing a new 0-handle obtained form
a small regular neighbourhood S2 × [−ε, ε] of S2 × {0} by closing up with
two 3-balls. Hence we can assume that each stabilizer Ge of a 1-handle
S2 × [−1, 1] does not interchange its two boundary 2-spheres; equivalently,
G acts without inversions on the graph Γ̃ . We call such a quotient (S2 ×
[−1, 1])/Ge

∼= (S2/Ge)× [−1, 1] a 1-handle orbifold.

As a result, the quotient orbifold H = H/G is obtained from a finite
collection of 0-handle orbifolds S3/Gv by removing the interiors of disjoint
3-ball neighbourhoods of finitely many points and attaching 1-handle orb-
ifolds along the resulting 2-sphere boundaries (respecting singular sets and
branching orders as well as orientations); we call such a structure a closed
handle-orbifold or just a handle-orbifold. Summarizing, we have:

Proposition 1. The quotients of closed handles Hg by finite group ac-
tions have the structure of closed handle-orbifolds.

We note also the following easy but crucial observation:

Observation. If around a point of a 0-handle S3 of H a 1-handle is
attached, then the stabilizer Ge of the 1-handle is exactly the subgroup of
the stabilizer Gv of the 0-handle which fixes the considered point (since
otherwise, some larger subgroup of Gv would stabilize the 1-handle).

To each handle-orbifold H = H/G a graph of groups (Γ,G) is associ-
ated in a natural way. The underlying graph Γ is just the quotient Γ̃ /G.
The vertices (resp. edges) of the graph Γ correspond to 0-handle orbifolds
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S3/Gv (resp. 1-handle orbifolds (S2/Ge)× [−1, 1]), and to each vertex (resp.
edge) the corresponding stabilizer Gv (resp. Ge) is associated (choosing an
isomorphic lift of a maximal tree of Γ to Γ̃ , and then also lifts of the re-
maining edges). In particular, the vertex groups Gv of (Γ,G) are isomorphic
to finite subgroups of the orthogonal group SO(4), and the edge groups Ge

to finite subgroups of SO(3). We can also assume that the graph of groups
has no trivial edges, i.e. has no edges with two different vertices such that
the edge group coincides with one of the two vertex groups (by collapsing
the edge, i.e. amalgamating the two 0-handles into a single 0-handle). We
say that such a handle-orbifold H and the associated graph of groups are in
normal form.

We have associated to each handle-orbifold H = H/G a graph of groups
(Γ,G) in normal form. By the orbifold version of Van Kampen’s theorem
(see [HD]), the orbifold fundamental group π1(H) is isomorphic to the fun-
damental group π1(Γ,G) of the graph of groups (Γ,G) (which is the iterated
free product with amalgamation and HNN-extension of the vertex groups
over the edge groups, starting with a maximal tree in Γ ; see [Se], [ScW] or
[Z4] for the standard theory of graphs of groups, their fundamental groups
and the connection with groups acting on trees and graphs). We also have a
canonical surjection φ : π1(H) ∼= π1(Γ,G)→ G, injective on vertex and edge
groups, whose kernel is isomorphic to the fundamental group π1(H) ∼= Fg

of the handle H, and the group extension

1→ π1(H) ∼= Fg → π1(H) ∼= π1(Γ,G)→ G→ 1

is equivalent to the group extension 1 → Fg → E → G → 1. In particular,
H is the orbifold covering of H associated to the kernel of the surjection φ.

Conversely, suppose we have a finite graph of finite groups (Γ,G) associ-
ated to a handle-orbifold H and a surjection φ : π1(Γ,G)→ G onto a finite
group G which is injective on the vertex groups. Then the orbifold covering
of H associated to the kernel of φ is a closed handle Hg of some genus g on
which G acts as the group of covering transformations. The genus g can be
computed as follows. Denoting by

χ(Γ,G) =
∑ 1

|Gv|
−
∑ 1

|Ge|
the Euler characteristic of the graph of groups (Γ,G) (the sum is taken over
all vertex groups Gv resp. edge groups Ge of (Γ,G)), we have

g − 1 = −χ(Γ,G)|G|
(see [ScW], [Z4]).

Finally, we note that the induced action of G on the fundamental group
of H is effective (faithful) if and only if the corresponding group extension
1 → Fg → E → G → 1 is effective (i.e., by considering Fg as a subgroup
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of E, the homomorphism G → OutFg induced by conjugation of Fg by
preimages in E of elements in G is injective). It is easy to see that this is
the case if and only if the extension group E ∼= π1(Γ,G) has no nontrivial
finite normal subgroups: If a preimage e ∈ E of an element x ∈ G induces
by conjugation an inner automorphism of Fg, then another preimage of x
in E induces the trivial or identity automorphism of Fg; since a power of
e lies in Fg and the center of Fg is trivial, e must have finite order, and
clearly the subgroup of elements of E acting by conjugation trivially on Fg

is a finite normal subgroup of E.

Summarizing, we have:

Theorem 2. A finite group G acts on a closed handle Hg of genus g
if and only if there is a finite graph of finite groups (Γ,G) in normal form
associated to a handle-orbifold H, and a surjection φ : π1(Γ,G)→ G which
is injective on the vertex groups such that

g = −χ(Γ,G)|G|+ 1.

The induced action of G on the fundamental group of Hg is faithful if and
only if π1(Γ,G) has no nontrivial finite normal subgroups.

See Section 3 for some significant examples. As noted in the Introduction,
the following also holds:

Proposition 2.

(i) Let G be a finite group acting on closed handle Hg of genus g > 1.
Then the normal subgroup G0 of all elements of G inducing a trivial
action on the fundamental group is cyclic, and the quotient Hg/G0

is again homeomorphic to a closed handle of genus g.
(ii) Let G be a finite group acting faithfully on a handlebody Vg. If g > 1

then the induced action of G on the fundamental group is faithful.

Proof. (i) Consider the action of G on a graph Γ̃ associated to a handle-
decomposition of Hg as before; in particular, Γ̃ has no vertices of degree 1.
Since g > 1, by [Z5, Lemma 1] (considering homology and the Hopf trace
formula) the action of G0 on Γ̃ has to be trivial (or by a direct combinatorial
argument). Hence G0 maps each 1-handle S2× [−1, 1] and each 0-handle S3

to itself, and is isomorphic to a subgroup of SO(3). Moreover, G0 has to
be a cyclic group since a noncyclic group G0 would have only two global
fixed points in each 0-handle S3 around which a 1-handle can be attached,
so the graph Γ̃ would be a circular graph and g = 1 (a cyclic group instead
has a circle of fixed points in each 0-handle along which arbitrarily many
1-handles can be attached).

(ii) This follows, as in the proof of (i), from the analogous theory of finite
group actions on handlebodies, replacing the equivariant sphere theorem
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by the equivariant Dehn lemma/loop theorem. Denoting by Bn the closed
n-ball, now the stabilizers of the 1-handles B2× [−1, 1] are finite subgroups
of SO(2), the stabilizers of the 0-handles B3 are finite subgroups of SO(3),
and each 1-handle is attached along its two boundary components to the
boundary of one or two 0-handles B3; since g > 1, G0 has to be trivial now
(alternatively, one may apply [Z1, Korollar 1.3]).

3. Examples. We construct first an infinite series of finite cyclic group
actions on closed handles, faithful on the fundamental group. For large g,
this realizes the maximum order for cyclic group actions which we know at
present.

For an odd positive integer a which is divisible by 3, consider G ∼= Zn

where n = a(a+ 1). Let (Γ,G) be the graph of groups which consists of two
edges with edge groups Za and Za+1, and three vertices with vertex groups
Z2a, Z3(a+1) (both of valence 1) and Za(a+1) (the middle vertex of valence 2);
its fundamental group is the free product with amalgamation

π1(Γ,G) ∼= Z2a ∗Za Za(a+1) ∗Za+1 Z3(a+1);

note that π1(Γ,G) has no nontrivial finite normal subgroups (cf. Theorem 2).
Choose an orthogonal action of Za(a+1) on S3 such that the subgroups

Za and Za+1 have two disjoint circles of fixed points, and associate a handle-
orbifoldH to (Γ,G), with 0-handles S3/Za(a+1), S

3/Z2a and S3/Z3(a+1) such
that π1H ∼= π1(Γ,G) (cf. the Observation after Proposition 1).

There is an obvious surjection φ : π1(Γ,G) → Zn, injective on vertex
groups, which defines an action of Zn on a closed handle Hg (the orbifold
covering of the handle-orbifold H corresponding to the kernel of φ). Now

−χ = −χ(Γ,G) =
1

a
+

1

a+ 1
− 1

2a
− 1

a(a+ 1)
− 1

3(a+ 1)
=

7a− 3

6a(a+ 1)
,

g − 1 = −χn =
7a− 3

6
, a =

6g − 3

7
,

and finally

n = a(a+ 1) =
6g − 3

7

6g + 4

7
which is quadratic in g. In particular, there cannot exist a linear bound in g
for the order of G, proving the final assertion of Theorem 1.

Next we discuss an infinite series of actions of noncyclic groups on closed
handles, faithful on the fundamental group; again for large values of g, this
realizes the maximum order for arbitrary finite group actions which we know
at present.

For arbitrary finite groups G, the vertex groups of a graph of groups
(Γ,G) as in Theorem 2 are finite subgroups of the orthogonal group SO(4),
and the edge groups are finite subgroups of SO(3). The orthogonal group
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SO(4) is isomorphic to the central product S3 ×Z2 S
3 of two copies of the

unit quaternions S3 (i.e., with identified centers Z2); for a fixed pair of
unit quaternions (q1, q2) ∈ S3 × S3, the orthogonal action on S3 is given
by x 7→ q−11 xq2. There is a 2-fold covering S3 → SO(3) whose kernel is
the central subgroup Z2 = {±1} of S3, and the finite subgroups of S3

are exactly the binary polyhedral groups which are the preimages of the
polyhedral groups in SO(3); we denote by D∗4a the binary dihedral group of
order 4a which is the preimage of the dihedral group D2a of order 2a, with
D∗4a/Z2

∼= D2a.

For an integer a ≥ 2, let (Γ,G) be the graph of groups consisting of a
single edge and two vertices, with vertex groups D∗4a ×Z2 D∗4a ⊂ S3 ×Z2 S

3

(of order 8a2) and D2a × Z2 (of order 4a), where D2a denotes the diagonal
subgroup of D∗4a ×Z2 D∗4a (which is the maximal subgroup fixing the points
±1 ∈ S3) and Z2 is the central subgroup of S3; the edge group is the dihedral
group D2a. Its fundamental group is the free product with amalgamation

π1(Γ,G) ∼= (D∗4a ×Z2 D
∗
4a) ∗D2a (D2a × Z2),

and there is an obvious surjection, injective on vertex groups,

φ : π1(Γ,G)→ D∗4a ×Z2 D
∗
4a.

Any finite group G onto which π1(Γ,G) surjects, injectively on vertex groups,
has some order 8xa2. Now

−χ = −χ(Γ,G) =
1

2a
− 1

8a2
− 1

4a
=

2a− 1

8a2
,

g − 1 = −χ8xa2 = x(2a− 1), g = x(2a− 1) + 1,

|G|
g2

=
8xa2

x2(2a− 1)2 + 1 + 2x(2a− 1)

≤ 8a2

(2a− 1)2 + 1 + 2(2a− 1)
=

8a2

4a2
= 2.

It follows that |G| ≤ 2g2, and

|G| = 2g2

if and only if x = 1 and G ∼= D∗4a ×Z2 D∗4a.

4. Proof of Theorem 1. Suppose that the finite group G of order n
acts on a closed handle H = Hg of genus g > 1, faithfully on the fundamental
group. By Theorem 2, there is a finite graph of finite groups (Γ,G) in normal
form associated to a handle-orbifold H whose fundamental group π1(H) ∼=
π1(Γ,G) has no nontrivial finite normal subgroups, and there is a surjection
φ : π1(Γ,G) → G, injective on vertex groups, such that the action of G
on H is given by the orbifold covering of H associated to the kernel of φ.
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The edge groups of (Γ,G) are finite subgroups of SO(3), that is, cyclic,
dihedral, tetrahedral of order 12, octahedral of order 24 or dodecahedral of
order 60. Let χ = χ(Γ,G) denote the Euler characteristic of (Γ,G); note
that −χ > 0 since g > 1, and that for any graph of groups (Γ,G) in normal
form associated to a handle-orbifold H one has −χ ≥ 0 unless Γ consists of
a single vertex v, i.e. H consists just of a single 0-handle orbifold S3/Gv.

Let e be any edge of Γ and denote by a the order of its edge group; we
will show that n/a ≤ 6(g − 1).

Suppose first that e is a closed edge (i.e., an edge that is a closed loop).
If e is the only edge of (Γ,G), then

−χ ≥ 1

a
− 1

2a
=

1

a
, g − 1 = −χn ≥ n

2a
,

n

a
≤ 2(g − 1).

If e is closed and not the only edge, then

−χ ≥ 1

a
, g − 1 = −χn ≥ n

a
,

n

a
≤ g − 1.

Suppose that e is not closed. If e is the only edge of (Γ,G), then both vertices
of e are isolated and

−χ ≥ 1

a
− 1

2a
− 1

3a
=

1

6a
, g − 1 = −χn ≥ n

6a
,

n

a
≤ 6(g − 1).

If e is not closed, not the only edge, and has exactly one isolated vertex,
then

−χ ≥ 1

a
− 1

2a
=

1

2a
, g − 1 = −χn ≥ n

2a
,

n

a
≤ 2(g − 1).

Finally, if e is not closed, not the only edge, and has no isolated vertex, then

−χ ≥ 1

a
, g − 1 = −χn ≥ n

a
,

n

a
≤ g − 1.

Concluding, in all cases we have
n

a
≤ 6(g − 1).

In particular, if (Γ,G) has an edge whose edge group has order a ≤ 60, then
n ≤ 6a(g− 1) ≤ 360(g− 1), which is linear in g; in particular, the quadratic
bound of Theorem 1 holds if g ≥ 15. So for the proof of the first part of the
theorem we can assume that all edge groups of (Γ,G) are cyclic or dihedral.

Again, let e be any edge of Γ ; its edge group is either cyclic of order
a = b or dihedral of order a = 2b. In each case this gives a cyclic subgroup
Zb of G which has a global fixed point in Hg. Let (Γ ′,G′) be a graph of
groups in normal form associated to the action of Zb on Hg (applying again
Theorem 2), and χ′ = χ(Γ ′,G′). Since Zb has a global fixed point in Hg,
the graph of groups (Γ ′,G′) must have a vertex v with vertex group Zb

such that, for the corresponding 0-handle orbifold S3/Zb, the action of the
vertex group Zb on the 0-handle S3 has a global fixed point. Since no cyclic
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subgroup of prime order can have two circles of fixed points, any nontrivial
subgroup of Zb has exactly the same circle of fixed points on the 0-handle S3.
Hence all edges of (Γ ′,G′) which have v as a vertex have either trivial edge
group or edge group Zb (by the Observation). We will show that b ≤ 2g.

If all edges of (Γ ′,G′) with vertex v are closed, then one must have triv-
ial edge group (since π1(Γ

′,G′) has no nontrivial finite normal subgroups),
hence

−χ′ ≥ 1− 1

b
=
b− 1

b
, g − 1 = −χ′b ≥ b− 1, b ≤ g.

Otherwise there is a nonclosed edge e′ in (Γ ′,G′) with vertex v, and the
edge group of e′ must be trivial (since (Γ ′,G′) is in normal form, i.e. without
trivial edges).

If no vertex of e′ is isolated then

−χ′ ≥ 1, g − 1 = −χ′b ≥ b, b ≤ g − 1.

If exactly one vertex of e′ is isolated then

−χ′ ≥ 1− 1

2
=

1

2
, g − 1 = −χ′b ≥ b

2
, b ≤ 2(g − 1).

If both vertices of e′ are isolated then

−χ′ ≥ 1− 1

2
− 1

b
=
b− 2

2b
, g − 1 = −χ′b ≥ b− 2

2
, b ≤ 2g.

In conclusion, in all cases we have

b ≤ 2g.

Combining this with the inequality
n

a
≤ 6(g − 1)

from above, we obtain (since a = b or a = 2b)

n = |G| = n

a
· a ≤ 6(g − 1) · 4g = 24g(g − 1).

This proves the first part of Theorem 1.
Now suppose that G is a finite cyclic group of order n; then all vertex

and edge groups of (Γ,G) are cyclic groups whose orders divide n. Consider
an edge e of (Γ,G) with edge group Ge

∼= Za whose order a realizes the
minimum order over all edge groups. If e is the only edge of (Γ,G) (with
one or two distinct vertices), then a = 1 (otherwise Za would be a nontrivial
finite normal subgroup of π1(Γ,G)), hence

−χ ≥ 1− 1

2
− 1

3
=

1

6
, g − 1 = −χn ≥ n

6
, n ≤ 6(g − 1);

in particular, the quadratic bound of Theorem 1 in the cyclic case holds if
g ≥ 3.
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Suppose then that e is not the only edge of Γ ; consider another edge with
edge group Zb which has a common vertex v with e. The vertex v corresponds
to a 0-handle S3/Gv of H. The action of the finite cyclic group Gv on S3 is
orthogonal, so the union of the fixed point sets of nontrivial elements of Gv

consists of at most two disjoint circles S1; also, a nontrivial subgroup of Gv

of prime order cannot fix two circles (if we do not assume that the action
of Gv is orthogonal, this follows from Smith fixed point theory). Since by the
Observation each edge group is a maximal subgroup of a vertex group Gv

fixing the point around which the corresponding 1-handle is attached, this
implies that either a = b or (a, b) = 1 (the greatest common divisor).

If a = b, since the edge group Ge
∼= Za is not normal in π1(Γ,G), there

must occur a situation of two edges with a common vertex, one with edge
group Za and the other with some edge group Zb such that (a, b) = 1. This
implies ab ≤ n and a ≤

√
n (since a ≤ b). If the edge with edge group Za

has an isolated vertex (i.e., of degree or valency 1), then

−χ ≥ 1

a
− 1

2a
=

1

2a
≥ 1

2
√
n
, g−1 = −χn ≥ n

2
√
n

=

√
n

2
, n ≤ 4(g−1)2.

If the edge has no isolated vertex, one obtains stronger inequalities

−χ ≥ 1

a
≥ 1√

n
, g − 1 ≥

√
n, n ≤ (g − 1)2.

This proves Theorem 1 also in the cyclic case.
Since the final assertion of Theorem 1 about the nonexistence of a linear

bound follows from the examples constructed in Section 3, this completes
the proof of Theorem 1.
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