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Spaces of ω-limit sets of graph maps
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Abstract. Let (X, f) be a dynamical system. In general the set of all ω-limit sets of
f is not closed in the hyperspace of closed subsets of X. In this paper we study the case
when X is a graph, and show that the family of ω-limit sets of a graph map is closed with
respect to the Hausdorff metric.

1. Introduction. A dynamical system is a pair (X, f), where X is a
compact metric space with a metric d and f is a continuous map from X
to itself. For x ∈ X, {x, f(x), f2(x), . . .} is called the orbit of x and denoted
by O(x, f). The point x is periodic if fn(x) = x for some n ∈ N, and the
smallest such n is called the period of x. If n = 1, then x is also called a fixed

point of f . A system is transitive if there exists a dense orbit. Denote the set
of all limit points of an orbit O(x) by ω(x, f) and call it an ω-limit set of f .
For any x ∈ X, ω(x, f) is a closed non-empty subset of X and it is strongly
invariant (i.e. f(ω(x, f)) = ω(x, f)). Write X(f, ω) = {ω(x, f) : x ∈ X}.

ω-limit sets give fundamental information about asymptotic behavior
of a dynamical system. One of the basic tasks is to give their topological
characterization. This task is very complicated even in the simplest one-
dimensional case of the compact interval ([1]–[4], [6]). Let I be a closed
interval in R and let f : I → I be a continuous map. Then for any x ∈ I,
ω(x, f) is (i) a periodic orbit, or (ii) an infinite compact nowhere dense set,
or (iii) a finite union of connected subintervals which forms a periodic orbit
([3], [6]). Conversely, whenever A ⊆ I has one of the above forms then there
is a continuous map f : I → I such that A is an ω-limit set of f . This
result was generalized to graph maps in [7]. Another related problem is, for
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a given f and a closed strongly f -invariant set A, to find a condition deciding
whether A is an ω-limit set of f or not. One can find such characterizations
of ω-limit sets in [4] and [2].

Let I be a closed interval in R and let f : I → I be a continuous map.
The map ω : I 7→ ω(x, f) was studied in [5] and shown to be far from
continuous. Hence it is somewhat surprising that the image of this map is
closed in the Hausdorff metric. This was proved in [4] and the proof is rather
long but quite elementary and ingenious. In a similar way, this result was
extended to circle maps in [9]. In this paper we show that the family of
ω-limit sets of a graph map is closed in the Hausdorff metric. The proof
we offer is different from [4], [9] and simpler. Also in the proof we give a
characterization of ω-limit sets of a graph map.

2. Preliminaries. In this article, the sets of integers, nonnegative inte-
gers, natural numbers, real numbers and complex numbers are denoted by
Z, Z+, N, R and C respectively.

Let (X, d) be a compact metric space. The hyperspace X is the set of all
nonempty closed subsets of X. The Hausdoff metric dH on X is defined by

dH(V, W ) = max{d(v, W ), d(w, V ) : v ∈ V, w ∈ W}, V, W ∈ X,

where d(x, Y ) = inf{d(x, y) : y ∈ Y } for x ∈ X and Y ⊆ X. It is well known
that (X, dH) is a compact metric space (see [8], for example).

Let (X, f) be a dynamical system. Recall that a subset A ⊆ X is f -

invariant if f(A) ⊆ A, and strongly f -invariant if f(A) = A. Let X1(f)
(X2(f)) be the set of all nonempty (strongly) f -invariant closed subsets.
Obviously, X(f, ω) ⊆ X2(f) ⊆ X1(f). It is easy to verify the following propo-
sition.

Proposition 2.1. X1(f) and X2(f) are closed subspaces of (X, dH). In

particular , both are compact.

But generally the space X(f, ω) need not be closed in X.

Example 2.2. Let D = {reiθ ∈ C : 0 ≤ r ≤ 1, θ ∈ R} be the unit disc
and f : D → D, reiθ 7→ rei(θ+r). Then (D, f) is a dynamical system. It is
easy to verify D(f, ω) is not closed in D.

In the next section it will be shown that when X is a graph, X(f, ω)
is closed. Now we recall some definitions concerning graphs. By a graph we
mean a connected compact one-dimensional polyhedron in R

3. A continuous
map from a graph to itself is called a graph map. An arc is any space which
is homeomorphic to the closed interval [0, 1]. Then a graph G is a continuum
(i.e. a nonempty, compact, connected metric space) which can be written
as the union of finitely many arcs, any two of which are either disjoint or
intersect only in one or both of their endpoints. Each of these arcs is called
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an edge of G, and its ends are called vertices. Since G is a polyhedron in R
3,

there are at least three edges in any circle of G. For a given graph G, a
subgraph of G is a subset of G which is a graph itself. The valence of a
vertex x is the number of edges that are incident to x, and if the number
is n then one writes val(x) = n. A vertex of valence 1 is also called an end

of G, and a vertex x with val(x) ≥ 3 is said to be a branching point of G. The
set of branching points of G is denoted by Br(G). A tree is a graph without
any subset which is homeomorphic to the unit circle. A star is either a tree
having only one branching point or an arc.

For convenience, we assume that the length of every edge of G is greater
than 1. Hence any non-degenerate connected closed subset of G with diam-
eter less than 1 is a star. Let x, y ∈ G. The arc with ends {x, y} is denoted
by [x, y] or [y, x]. Write (a, b) = [a, b] \ {a, b}, and define [a, b) and (a, b]
similarly. [x; y] is also used to denote an arc with ends {x, y}, but in this
case the arc is understood to be directed: it starts from x and ends with y.

For a topological space X, the closure of a subset A ⊆ X is denoted
by A. When (X, d) is a metric space and x ∈ X, Y ⊆ X and ε > 0, one
writes B(x, ε) for the ε-ball {x′ ∈ X : d(x, x′) < ε}, and B(Y, ε) = {x ∈ X :
d(x, Y ) < ε}.

3. Spaces of ω-limit sets of graph maps. The following theorem is
the main result of this paper.

Theorem 3.1. Let G be a graph and let f : G → G be a continuous map.

Then the set of all ω-limit sets of f endowed with the Hausdorff metric is

compact.

Before proving the theorem, one needs some notations and lemmas. Re-
call that G is the hyperspace of G and G(f, ω) is the set of ω-limit sets of G.
Let v1, v2, . . . be an infinite sequence in G. For any n ∈ N write

Vn = O(vn, f), V =

∞
⋃

n=1

Vn, Xn = ω(vn, f), X =

∞
⋃

n=1

Xn.

Assume that {Xn}
∞

n=1 converges to W in (G, dH). To prove that G(f, ω) is
closed, we only need to show that W ∈ G(f, ω).

Let us sketch the idea of the proof. First we reduce the system to the
case satisfying Conditions I–III below. The main reason is to exclude the
easier case when (W, f |W ) is transitive. Then we study the system under
Conditions I–III. Lemma 3.5 gives a condition under which W belongs to
G(f, ω). The rest is to show that this condition is satisfied.

If there are infinitely many elements of {Xn}
∞

n=1 which are equal, then
it is easy to see that W ∈ G(f, ω). So we assume:

Condition I. Xn 6= Xm for n 6= m, and dH(Xn, W ) < 2−n−1 for all n.
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Observe that if Vn ∩ Vm 6= ∅ then Xn = Xm. So in addition one can
assume the following condition holds:

Condition II. Vn ∩ Vm = ∅ for n 6= m, and for all n,

dH(V n, Xn) < 2−n−1, dH(V n, W ) < 2−n.

Lemma 3.2. Assume that Conditions I–II hold. If for any ε > 0 and

N ∈ N, there exist n ≥ N, y ∈ Vn and w ∈ W such that

sup{d(f i(y), f i(w)) : i ∈ Z+} ≤ ε,

then (W, f |W ) is transitive and hence W ∈ G(f, ω).

Proof. Let δ0 = 1/8. By the assumption, there are n1 ≥ 1, y1 ∈ Vn1
and

w1 ∈ W such that dH(V n1
, Xn1

) < δ0, dH(Xn1
, W ) < δ0 and

sup{d(f i(y1), f
i(w1)) : i ∈ Z+} ≤ δ0.

Choose k1 ∈ N such that dH(Ok1
(y1, f), O(y1, f)) < δ0, where Ok(x, f) =

{f j(x) : 0 ≤ j ≤ k} for x ∈ G and k ∈ N. There is some δ1 ∈ (0, δ0/8] such
that for any x ∈ B(w1, 3δ1),

sup{d(f i(x), f i(w1)) : i = 0, 1, . . . , k1} < δ0.

Then for any x ∈ B(w1, 3δ1),

dH(Ok1
(x, f), W ) < δ0 + dH(Ok1

(w1, f), W )(3.1)

≤ 2δ0 + dH(Ok1
(y1, f), W )

< 3δ0 + dH(O(y1, f), W )

≤ 3δ0 + dH(O(y1, f), Xn1
) + dH(Xn1

, W )

≤ 3δ0 + dH(Vn1
, Xn1

) + dH(Xn1
, W ) < 5δ0.

By assumption, there are n2 > n1, y′2 ∈ Vn2
and w′

2 ∈ W such that
dH(Vn2

, Xn2
) < δ1, dH(Xn2

, W ) < δ1 and

sup{d(f i(y′2), f
i(w′

2)) : i ∈ Z+} ≤ δ1.

Choose x2 ∈ Xn2
such that d(w1, x2) = d(w1, Xn2

) ≤ dH(W, Xn2
) < δ1 and

take j2 ∈ Z+ such that d(f j2(y′2), x2) < δ1 − dH(W, Xn2
). Then f j2(y′2) ∈

B(w1, δ1) and f j2(w′

2) ∈ B(w1, 2δ1). Let y2 = f j2(y′2) and w2 = f j2(w′

2).

Choose k2 > k1 such that dH(Ok2
(y2, f), O(y2, f)) < δ1. There is δ2 ∈

(0, δ1/8] such that for any x ∈ B(w2, 3δ2),

sup{d(f i(x), f i(w2)) : i = 0, 1, . . . , k2} < δ1.

Then for any x ∈ B(w2, 3δ2), similarly to (3.1), we get dH(Ok2
(x, f), W )

< 5δ1.

Inductively, we find points w1, w2, . . . in W , positive integers k1 < k2

< · · · and positive numbers δ0 = 1/8 > δ1 > δ2 > · · · such that for any



ω-limit sets of graph maps 95

n ∈ N, we have δn ≤ δn−1/8, wn+1 ∈ B(wn, 2δn) and

dH(Okn
(x, f), W ) < 5δn−1, ∀x ∈ B(wn, 3δn).

Hence it is easy to see that {wn} converges to some w ∈ W and for any
n ∈ N, we have w ∈ B(wn, 3δn) and

B(O(w, f), 5δn−1) ⊇ B(Okn
(w, f), 5δn−1) ⊇ W.

Thus O(w, f) is dense in W and f |W is transitive.

Note that the conclusion of Lemma 3.2 holds for any compact space, not
only for graph maps. By Lemma 3.2, to show W ∈ G(f, ω) one only needs
to consider the case when (W, f |W ) is not transitive. Hence by Lemma 3.2,
one can assume:

Condition III. There exists ε0 ∈ (0, 1/2] such that for any y ∈ V and

w ∈ W,

sup{d(f i(y), f i(w)) : i ∈ Z+} > ε0.

Obviously, if Condition III holds, then V ∩ W = ∅.

Below we always assume that Conditions I–III hold. Fix ε0 as in Condi-
tion III and ε ∈ (0, ε0/2] such that f(B(x, ε)) ⊆ B(f(x), ε0) for all x ∈ G.
Let Y(ε) be the set of all non-degenerate connected closed subsets of G con-
tained in B(W, ε) and with diameter less than ε. By our assumption on G
any element on Y(ε) is a star.

Definition 3.3. Let Y, Y ′ ∈ Y(ε). If there is a finite set {Y0, Y1, . . . , Yn}
⊆ Y(ε), n ∈ N, such that Y = Y0, Y ′ = Yn and f(Yi−1) ⊇ Yi for any

i = 1, . . . , n, then we write Y
(f,ε)
−→ Y ′.

It is easy to verify the following lemma:

Lemma 3.4.

(1) “
(f,ε)
−→” is a transitive relation on Y(ε).

(2) If Y
(f,ε)
−→ Y ′, then there exist a connected closed subset Z and n ∈ N

such that fn(Z) = Y ′ and
⋃n

i=0 f i(Z) ⊆ B(W, ε).

The following lemma offers a sufficient condition for a set to belong to
G(f, ω).

Lemma 3.5. Let ε0/2 ≥ δ1 ≥ δ2 ≥ · · · > 0 with limi→∞ δi = 0 and

let {Yi}
∞

i=1 be a sequence of non-degenerate connected closed subsets of G.

If for any i ∈ N, Yi ∈ Y(δi), Yi
(f,δi)
−→ Yi+1 and W ⊆ B(

⋃

∞

j=i Yj , δi), then

W ∈ G(f, ω).
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Proof. For any i ∈ N, by Lemma 3.4(2) there exist connected closed
subsets Zi of Yi and ni ∈ N such that

fni(Zi) = Yi+1 and

ni
⋃

k=0

fk(Zi) ⊆ B(W, δi).

Let mi = n1 + · · · + ni (m0 = 0). Then
⋂

∞

i=1 f−mi−1(Zi) 6= ∅, so pick x ∈
⋂

∞

i=1 f−mi−1(Zi). Since O(fmi(x), f) ⊆ B(W, δi+1), we have ω(x, f) ⊆ W .

On the other hand, since
⋃

∞

j=i+1 Yj ⊆ B(O(fmi(x), f), δi+1), we have

W ⊆ B
(

∞
⋃

j=i+1

Yj, δi+1

)

⊆ B(O(fmi(x), f), 2δi+1).

Hence W ⊆ ω(x, f). Thus W = ω(x, f) ∈ G(f, ω).

Definition 3.6. Let Y ∈ Y(ε). If {i ∈ N : Y ∩ Vi 6= ∅} is infinite, then
Y is called a (P, ε)-star. Let A = [w; y] ∈ Y(ε) be an arc with w ∈ W and
y ∈ V . If for any x ∈ (w, y] and n ∈ N there is some i ≥ n such that
Vi ∩ (w, x] 6= ∅, then A is called a (P, ε)-arc.

Denote the sets of all (P, ε)-stars and of all (P, ε)-arcs by Y(P, ε) and
A(P, ε) respectively.

By the definition one gets the following lemma readily.

Lemma 3.7.

(1) A(P, ε) ⊆ Y(P, ε).
(2) For any w ∈ W , there exists a point y ∈ B(w, ε)∩V such that [w; y]

is a (P, ε)-arc.
(3) For any Y ∈ Y(P, ε) and ε′ ∈ (0, ε], there exists a (P, ε′)-arc A with

A ⊆ Y .

For Y ∈ Y(P, ε), set

(3.2) Y(ε, Y ) = {Y ′ ∈ Y(ε) : Y
(f,ε)
−→ Y ′ and there exists

Y ′′ ∈ Y(P, ε) such that Y ′ = Y ′′ or Y ′
(f,ε)
−→ Y ′′}.

Lemma 3.8.

(1) For any Y ∈ Y(P, ε), Y(ε, Y ) 6= ∅.

(2) If Y, Y ′ ∈ Y(P, ε) and Y
(f,ε)
−→ Y ′, then Y(ε, Y ′) ⊆ Y(ε, Y ).

(3) If Y ′ ∈ Y(P, ε) and Y ∈ Y(ε, Y ′) with diam f(Y ) < ε, then f(Y ) ∈
Y(ε, Y ′).

Proof. (1) and (2) are easy to verify. We now prove (3). Since diam f(Y )

< ε, one has Y ′
(f,ε)
−→ Y

(f,ε)
−→ f(Y ). If f(Y ) is a (P, ε)-star, then by the

definition f(Y ) ∈ Y(ε, Y ′). Now assume that f(Y ) is not a (P, ε)-star. By the
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definition of Y(ε, Y ′), there is some (P, ε)-star Y ′′ such that Y ′
(f,ε)
−→ Y

(f,ε)
−→

Y ′′. Since f(Y ) is not a (P, ε)-star, f(Y ) 6= Y ′′. Hence by the definition of

Y
(f,ε)
−→ Y ′′ it is easy to see that f(Y )

(f,ε)
−→ Y ′′. Thus f(Y ) ∈ Y(ε, Y ′).

Lemma 3.9. Let A = [w; y] be a (P, ε)-arc and w a periodic point. Then

there exist x ∈ (w, y) and a (P, ε)-star Y such that [x, y]
(f,ε)
−→ Y .

Proof. Let m be the period of w and val(w) = k. Take δ−1 > δ0 > δ1 >
· · · > δ2k > 0 such that δ−1 < min{d(w, y), ε0}, (B(w, δ−1) \ {w}) ∩ Br(G)
= ∅ and for any i = 0, 1, . . . , 2k and j = 1, . . . , m,

(3.3) f j(B(w, δi)) ⊆ B(f j(w), δi−1).

Let δ = min{δ2k, δi−1 − δi : i = 0, 1, . . . , 2k}/2. By Condition II and the
definition of (P, ε)-arc, there is some N ∈ N such that

(3.4) dH(VN , W ) < δ and A ∩ VN ∩ B(w, δ) 6= ∅.

Fix z ∈ A ∩ VN ∩ B(w, δ). By Condition III and (3.3), there are positive
integers n0 < n1 < n2 < · · · < n2k such that for any i = 0, 1, . . . , 2k, we have
fmni(z) ∈ B(w, δ2k−i−1) \ B(w, δ2k−i) and {fmj(z) : j = 0, 1, . . . , ni − 1}
⊆ B(w, δ2k−i). Hence there are integers 0 ≤ p < q < r ≤ 2k such that
fmnp(z), fmnq(z) and fmnr(z) are in the same connected component of
B(w, δ−1) \ {w}. Take x ∈ (w, y) such that

{fmj(x) : j = 0, 1, . . . , nr} ⊆ B(w, δ).

Let Y = [fmnr(x), fmnr(z)]. Then [x, y] ⊇ [x, z]
(f,ε)
−→ Y . By (3.4), there is

some w′ ∈ W such that w′ ∈ B(fmnq(z), δ) ⊆ [w, fmnr(z)) \ B(w, δ) ⊆ Y .
By Lemma 3.7(2), B(fmnp(z), δ) is a (P, ε)-star and hence so is Y .

Corollary 3.10. Let A = [w; y] be a (P, ε)-arc. If there is some n ∈ N

such that fn(w) is a periodic point , then there exist x ∈ (w, y) and a (P, ε)-

star Y such that [x, y]
(f,ε)
−→ Y .

Proof. It is obvious that there exists z ∈ (w, y]∩V such that [fn(w); fn(z)]
is a (P, ε)-arc and diam f i([w, z]) < ε for any i = 1, . . . , n. According to
Lemma 3.9, there exist x′ ∈ (fn(w), fn(z)) and a (P, ε)-star Y such that

[x′, fn(z)]
(f,ε)
−→ Y . Let x ∈ f−n(x′) ∩ (w, z). Then

[x, y] ⊇ [x, z]
(f,ε)
−→ [x′, fn(z)]

(f,ε)
−→ Y.

Lemma 3.11. Let A = [w; y] be a (P, ε)-arc. Then there exist x ∈ (w, y)

and a (P, ε)-star Y such that [x, y]
(f,ε)
−→ Y .

Proof. According to Corollary 3.10, it suffices to consider the case when
O(w, f) is infinite. By the definition of (P, ε)-arc, there are positive integers
k1 < k2 < · · · and points {x1, x2, . . .} ⊆ (w, y] such that xi ∈ Vki

and
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d(xi+1, w) < d(xi, w)/2 for all i ∈ N. By Condition III for every i ∈ N there
is a unique ni ∈ N such that ε/2 ≤ d(fni(xi), f

ni(w)) < ε0 and

d(fn(xi), f
n(w)) < ε/2, ∀n = 0, 1, . . . , ni − 1.

Obviously, limi→∞ ni = ∞. Without loss of generality, one can assume n1 <
n2 < · · · . Let wi = fni(w). Then the wi are mutually distinct. Passing to a
subsequence if necessary one can assume that limi→∞ wi = w′ and for any
i ∈ N,

d(wi+1, w
′) < d(wi, w

′)/2 and wi ∈ [w1, w
′).

Dropping the first finitely many points if necessary one can assume in addi-
tion that

d(w1, w
′) < ε/4 and [w1, w

′) ∩ Br(G) = ∅.

Take δ > 0 such that δ < d(x4, w) and for any n = 0, 1, . . . , n4,

fn(B(w, δ)) ⊆ B(fn(w), d(w5, w4)/2).

Then fn4(x) ∈ (w5, w3) for any x∈B(w, δ) ∩ (w, y]. Since d(fn4(x4), f
n4(w))

= d(fn4(x4), w4) > ε/2 and d(w1, w
′) < ε/4, we have

[x, y] ⊇ [x, x4]
(f,ε)
−→ [w′, w5] or [x, y] ⊇ [x, x4]

(f,ε)
−→ [w3, w1].

As w6 ∈ W ∩ (w′, w5) and w2 ∈ W ∩ (w3, w1), Lemma 3.7(2) shows that

[w′, w5] and [w3, w1] are both (P, ε)-arcs. Thus [x, y]
(f,ε)
−→ Y for Y = [w′, w5]

or Y = [w3, w1].

Let Y ∈ Y(P, ε), and write

(3.5) U(P, ε, Y ) =
⋃

{Y ′ : Y ′ ∈ Y(ε, Y )}.

Lemma 3.12. Let A = [w; y] be a (P, ε)-arc. Then W ⊆ U(P, ε, A).

Proof. Choose ε1 ∈ (0, ε/2] such that f(B(x, ε1)) ⊆ B(f(x), ε/2) for all
x ∈ G. Fix v ∈ V ∩B(w, ε1)∩A. Then [w; v] and f([w; v]) are also (P, ε)-arcs
and f([w; v]) ∈ Y(ε, A). Suppose that Lemma 3.12 does not hold. Then there
are w1 ∈ W and δ ∈ (0, ε1] such that B(w1, δ) ∩ U(P, ε, A) = ∅.

For a subset Z of G define N(Z ∩ V ) = {i ∈ N : Vi ∩ Z 6= ∅} and
N1(Z ∩ X) = {i ∈ N : Xi ∩ X 6= ∅}. Since dH(Xi, W ) → 0 as i → ∞,
N1(B(w1, δ) ∩ X) is cofinite. Hence M = N([w; v] ∩ V ) ∩ N1(B(w1, δ) ∩ X)
is an infinite subset of N. For any i ∈ M, choose xi ∈ Vi ∩ [w, v]. Since
f(xi) ∈ f([w; v]) ⊆ U(P, ε, A) and O(xi, f) ∩ B(w1, δ) 6= ∅, there exists
yi ∈ O(f(xi), f) ∩ U(P, ε, A) such that f(yi) 6∈ U(P, ε, A).

As yi ∈ U(P, ε, A), there is some Yi ∈ Y(ε, A) such that yi ∈ Yi.
By Lemma 3.8(3), diamYi ≥ ε1. Let i1 < i2 < · · · in M be such that
limj→∞ yij = y′, d(yi1 , y

′) < ε1, [yi1 , y
′) ∩ Br(G) = ∅, yik ∈ [yi1 , y

′) and
d(yik+1

, y′) < d(yik , y′)/2 for all k ∈ N.
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It is obvious that y′ ∈ W . If there exists k ∈ N such that y′ ∈ Yik ,
then [yik , y′] is a (P, ε1)-arc contained in Yik and hence f([yik , y

′]) is a (P, ε)-
star. Thus f([yik , y

′]) ∈ Y(ε, A) and f(yik) ∈ f([yik , y′]) ⊆ U(P, ε, A). This
contradicts the definition of {yi}. So y′ 6∈ Yik for any k ≥ 2. This implies
that [yi1 , yik ] ⊆ Yik . By Lemma 3.11, there are x ∈ (y′, yi1), a sufficiently
large k and a (P, ε)-star Y ′ such that

[yik , yi1 ] ⊇ [x, yi1 ]
(f,ε)
−→ Y ′.

Hence [yik , yi1 ] ∈ Y(ε, A). By Lemma 3.8(3), f([yik , yi1 ]) ∈ Y(ε, A) and
f(yik) ∈ f([yik , yi1 ]) ⊆ U(P, ε, A). This also contradicts the definition of
{yi}.

Now it is time to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. As discussed at the beginning of this section, one
can assume Conditions I–III hold. Choose δ1 ≥ δ2 ≥ · · · > 0 such that
δ1 < ε0/2, f(B(x, δ1)) ⊆ B(f(x), ε0) and limn→∞ δn = 0. Choose w1, w2, . . .

in W such that {wn, wn+1, . . .} = W for any n ∈ N. For any n ∈ N, by
Lemmas 3.12 and 3.7(3), there are a (P, δn)-arc An, Yn ∈ Y(δn) and a
(P, δn)-star Y ′

n such that

An
(f,δn)
−→ Yn

(f,δn)
−→ Y ′

n ⊇ An+1 and d(wn, Yn) < δn/2.

It is easy to check Y1, Y2, . . . satisfy the condition of Lemma 3.5. Hence W
is an ω-limit set.
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