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Stable cohomotopy groups of compact spaces

by

Sławomir Nowak (Warszawa)

Abstract. We show that one can reduce the study of global (in particular cohomo-
logical) properties of a compact Hausdorff space X to the study of its stable cohomotopy
groups πks (X).

Any cohomology functor on the homotopy category of compact spaces factorizes via
the stable shape category ShStab. This is the main reason why the language and technique
of stable shape theory can be used to describe and analyze the global structure of compact
spaces.

For a given Hausdorff compact space X, there exists a metric compact space with the
same stable shape iff the stable cohomotopy groups of X are countable. If πns (X) = 0
for almost all n > 0 and the integral cohomology groups of X are countable (respectively
finitely generated) for all n, then the k-fold suspension of X has the same stable shape as a
finite-dimensional compact metric space (respectively a finite CW complex) for sufficiently
large k.

There is a duality between compact Hausdorff spaces and CW spectra under which
stable cohomotopy groups of X correspond to homotopy groups of the CW spectrum WX

assigned to X and the class of all X with Cs(X) = max{k : πks (X) 6= 0} <∞ corresponds
to the class of spectra bounded below.

The notion of the cohomological dimension H-dimX with respect to a generalized
cohomology theory H is studied. In particular we show that π-dimX ≥ H-dimX for every
H and π-dimX =∞ if π-dimX > dimZX, where π is the stable cohomotopy theory and
dimZX is the integral cohomological dimension. The following question remains open:
does π-dimX coincide with dimX?

Consider a reduced generalized cohomology theory H∗ = {hn} defined on
the homotopy categoryHCWf of finite pointed CW complexes. It consists of
a family of contravariant functors hn : HCWf → AB together with a family
of natural equivalences εn : hn+1 → hn · S, where AB denotes the category
of Abelian groups and S the reduced suspension functor ([Sw, p. 124]).

The Čech cohomology groups hn(X) of a compact Hausdorff space X are
equal to the direct limit of the system {hn(|N(α)|)}, where α varies over the
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finite open coverings of X. The generalized Čech cohomology groups com-
mute with limits of compact spaces (the continuity property). Cohomology
functors are particularly suited for applications in which compact spaces are
mapped into locally nice spaces such as CW complexes and ANR’s.

Suppose that the reduced cohomology theory H∗ = {hn} is associated
with a CW spectrum

�
= {En} and X is a compact Hausdorff space. The

nth cohomology group hn(X) of X is isomorphic to the direct limit of the
sequence {[X,En] → [S(X), En+1] → [S2(X), En+2] → . . .}. In particular
the stable cohomotopy groups πns (X) of X are isomorphic to the direct limit
lim−→{[S

k(X), Sn+k]}.
Shape theory (respectively stable shape theory) is a modification of ho-

motopy theory (respectively stable homotopy theory), specially designed
for the study of spaces with complicated local properties. The stable shape
category ShStab is a proper framework for studying properties of Čech co-
homology functors and relationships between them. It is convenient because
each stable shape morphism induces a homomorphism of cohomotopy groups
and the morphism induced by a homotopy class depends only on the stable
shape morphism which is induced by this class.

In the late eighties it was realized that the Čech S-category, introduced
thirty years before (and nine years before the advent of shape theory) by
E. Lima (see [L, p. 112]), was indeed the stable shape category. The paper
[L] contains results important for shape theory in general. One of them cor-
responds to the Whitehead theorem in homotopy theory and states that the
stable shape morphism between compact metric spaces is an isomorphism
of the stable shape category if and only if it induces isomorphisms of all
stable cohomotopy groups. This implies that if the stable shape morphism
induces isomorphisms of stable cohomotopy groups, then it must induce
isomorphisms of cohomology groups for any generalized cohomology theory.

For classical shape theory there are results analogous to the Whitehead
Theorem for the homotopy category of CW complexes. Roughly speaking, a
shape morphism is an isomorphism if and only if it induces isomorphisms of
homotopy progroups (see [Ma-Se, p. 143]). In contrast to the classical case,
we must assume that the spaces are finite-dimensional in a certain sense.
T. Miyata and J. Segal have shown (see [Mi-Se1]) that under reasonable
assumptions the same theorem holds for the generalized stable shape cate-
gory whose objects are spaces and spectra (this category contains the stable
shape category as a subcategory [Mi-Se1]). Instead of homotopy progroups
they consider stable homotopy progroups. In this case a variant of finite-
dimensionality is also essential (see [Mi-Se1, Example 6.3, p. 163]).

The Lima Theorem covers the case of infinite-dimensional compacta.
It generalizes the Co-Whitehead Theorem in stable homotopy theory ([F,
p. 136]) and is a suitable version of the Whitehead Theorem for stable shape.
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The present paper contains a generalization of the Lima Theorem to the
case of all compact Hausdorff spaces (see also Remark 8). Additionally we
find conditions which guarantee that the stable cohomotopy groups can be
replaced by the cohomology groups with integer coefficients (see Example 1).

Suppose that H∗ = {hn} is a reduced generalized cohomology theory and
X 6= ∅ is a compact Hausdorff space. The global generalized cohomological
dimension of X with respect to H is −∞ if hm(X) = 0 for every m, and
otherwise it is max{n : hn(X) 6= 0}. In particular, if X has trivial stable
shape (i.e. ShStab(X) = ShStab({point})), then the global dimension of X
with respect to H is −∞.

The global generalized cohomological dimension of X with respect to the
stable cohomotopy theory is denoted by Cs(X). Observe that Cs(S0) = 0
and Cs(X) is either nonnegative (possibly ∞) or −∞.

Theorem A (cf. Theorem 3.2.2 and Corollary 7.2.5). Let X and Y be
compact Hausdorff spaces. A morphism f ∈ ShStab(X,Y ) is an isomorphism
iff it induces isomorphisms of stable cohomotopy groups in dimensions ≥ 0.
If Cs(X),Cs(Y ) <∞, then f induces isomorphisms of all stable cohomotopy
groups if and only if it induces isomorphisms of all Čech cohomology groups
with integer coefficients.

As an application we find that the inclusion i : A→ X of a closed subset
A of a compact Hausdorff space X is a stable shape equivalence if and only
if X/A has trivial stable shape.

In ShStab it is often useful and important to be able to replace a compact
Hausdorff space by a simpler one (metrizable, finite-dimensional, a finite CW
complex).

Theorem B (cf. Theorems 7.1.1, 2.3.4, 7.2.1 and Corollaries 7.2.3, 7.2.4).
Let X be a compact Hausdorff space. Then:

(1) X has the stable shape of a compactum (i.e. compact metric space)
if and only if the stable cohomotopy groups of X are countable.

(2) If Cs(X) <∞, then Cs(X) = max{n : Hn(X;Z) 6= 0}.
(3) If Cs(X) < ∞, then the stable cohomotopy groups are countable

(respectively finitely generated) if and only if the integral cohomology groups
are countable (respectively finitely generated).

(4) If Cs(X) <∞, then the integral cohomology groups of X are finitely
generated if and only if there exists a finite CW complex P with the same
stable shape as the k-fold suspension of X for some k ≥ 0.

(5) If max{0,Cs(X)} = N < ∞ and the integral cohomology groups of
X are countable then there exists a compact metric space Y with the same
stable shape as the (N + 2)-fold suspension of X such that dimY ≤ 2N + 2.
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There is a curious duality between the class of all compact spaces and
CW spectra. The class of all spaces satisfying Cs(X) < ∞ corresponds to
the class of spectra that are bounded below.

The main purpose of [L] was to generalize the Spanier–Whitehead Dual-
ity to the case of compact subsets of Sn. E. Lima proved that the complement
Sn \X is a dual object of X and that the group [Sn \ Y, Sn \X]w of weak
homotopy classes is isomorphic to ShStab(X,Y ). The papers [Ba1], [Ba2],
[D-P], [H-N], [H] contain generalizations or strengthenings of Lima’s result,
but their authors focus attention on the case of finite-dimensional spaces.

The existence of an embedding of the stable shape category ShStab into
the weak homotopy category of spectra was shown by J. Segal and T. Miy-
ata in [Mi-Se2]. The method of proof suggests (compare [Sw, p. 165 and
Remark 2 on p. 331]) that they use a different notion of weak homotopy
classes between CW spectra than defined here (see also Remark 4).

In 1999 T. Miyata [Mi] obtained an extension of the Spanier–Whitehead
Duality to the generalized stable shape category (see Remark 7) and proved
that for every compactum X there exists a dual object, a CW spectrum.
In general, the papers [Mi], [Mi-Se1] and [Mi-Se2] contain results which are
similar or parallel to those presented here (see Remarks 4 and 7).

In 1998, during the Dubrovnik Conference on Geometric Topology,
the author presented another construction of the dual CW spectrum for
a metrizable compact space. The next theorem generalizes that result.

Theorem C (cf. Theorems 6.1.1, 6.4.1, Corollaries 6.1.3 and 7.1.3). Let
X and Y be compact Hausdorff spaces and let � X and � Y be CW substitutes
of the function spectra (respectively) � (X) and � (Y ). Then:

(i) There exists an isomorphism DX,Y( � X , � Y ) = D : ShStab(X,Y ) →
〈 � Y , � X〉 of the Abelian group ShStab(X,Y ) onto the group 〈 � Y , � X〉 of
all natural transformations from the associated cohomology theory H � Y to
H � X . Both cohomology theories are defined on the homotopy category HCWf

of finite CW complexes.
(ii) If � Y is countable or Cs(X),Cs(Y ) <∞, then 〈 � Y , � X〉 is canon-

ically isomorphic to the group [ � Y , � X ]w of weak homotopy classes.
(iii) hnY (X) ∼= hnX(Y ), where H � Y = {hnY } and H � X = {hnX}.
(iv) If Y is a metrizable space, then hn� (X ∧ Y ) ∼= hn� ∧ � Y (X), where

{hn� } and {hn� ∧ � Y } denote the cohomology theories associated with
�

and
� ∧ � Y .

(v) If Y is a movable metrizable space, then 〈 � Y , � X〉 is isomorphic
to the group [ � Y , � X ] of homotopy classes.

(vi) X has the stable shape of a compactum if and only if � X is iso-
morphic to a countable spectrum.
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(vii) � X is isomorphic to a finite CW spectrum iff there exist k > 0 and
a finite CW complex P such that Sk(X) has the same stable shape as P .

(viii) � X is isomorphic to a countable CW spectrum bounded below if
and only if there exist k > 0 and a compactum Y such that Sk(X) has the
same stable shape as Y .

The Lima Theorem for stable shape corresponds to the Whitehead The-
orem for category of spectra under the isomorphism D. In light of this fact
it also becomes clear why the finite-dimensionality conditions must be ful-
filled in the main results of [Mi-Se1]. In [Li] it is proved that there exists a
nontrivial CW spectrum with all stable cohomotopy groups vanishing. The
existence of such a spectrum corresponds to the existence of the Adams–
Kahn compactum (see [K], [Ma-Se, p. 153] and [Mi-Se1, p. 163]) with trivial
(stable) homotopy progroups and nontrivial stable cohomotopy groups.

With all these facts in mind we are naturally facing the problem of find-
ing a characterization of CW spectra which are isomorphic to the images
of the compact spaces under the isomorphism D. It is easy to characterize
countable CW spectra having this property in geometric terms (cf. Propo-
sitions 5.3.1 and 5.3.2). We also prove (cf. Theorem 5.4.1) that if � is a
countable CW spectrum bounded below with no cells in dimensions > 0,
then there are m and a finite-dimensional compactum X such that Sm( � )
is a CW substitute for � (X).

Here is an example of application of the above theorems. If X and Y are
continua with Cs(X),Cs(Y ) <∞ and with one nontrivial reduced cohomol-
ogy group in dimension n, then ShStab(X) = ShStab(Y ) iff Hn(X;Z) ∼=
Hn(Y ;Z).

T. Miyata and J. Segal [Mi-Se1] have introduced the notion of the stable
shape dimension sdspec(X) of a compactum X. We study the relationships
between sdspec(X) and Cs(X).

Let H = {hn} be a reduced generalized cohomology theory. Replacing the
ordinary cohomology by H in the definition of the cohomological dimension,
we get the notion of the generalized cohomological dimension of X with
respect to H (denoted by H-dimX). In other words the property of having
H-dimX ≤ n is obtained as a localization of the property of having the
global cohomological dimension with respect to H less than or equal to n. It
is reasonable to assume that hn(X) = 0 for sufficiently large n if dimX <
∞ or (at least) that the global cohomological dimension dH = max{n :
hn(S0) 6= 0} of the 0-sphere S0 is finite. If H does not satisfy this condition
then H-dim I = ∞, where I denotes the closed interval [0, 1]. Since we may
reindex H by adding −dH to all indices it suffices to consider cohomology
theories with dH = 0. In this case H-dimσ = n for every n-dimensional
closed simplex σ.
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It is natural to ask whether there is a cohomology theory H with dH = 0
such that H-dimX =∞ if dimX =∞. We prove that if X is a compactum
and there exists H such that H-dimX = ∞ then the generalized cohomo-
logical dimension of X with respect to stable cohomotopy is also infinite,
π-dimX =∞.

1. PRELIMINARIES

1.1. Prerequisites. We shall assume that the reader is familiar with
the classical shape theory (see [Bo], [Ma-Se]) for compact Hausdorff spaces,
and with basic elements of stable homotopy theory ([A1], [Ma] and [Sw]).

We recall that “compactum” means a compact metric space.

1.2. Spectra. All spaces considered are pointed. If (X,x0) is a space
then S(X) = X × [−1, 1]/X × {−1} ∪ {x0} × [−1, 1] ∪X × {1} denotes the
reduced suspension of X. For (x, t) ∈ X × [−1, 1] we use x ∧ t to denote
the corresponding point of S(X) under the quotient map. If (x, t) does not
belong to X × {−1} ∪ {x0} × [−1, 1] ∪X × {1}, then we shall also use the
notation (x, t) = x ∧ t.

The (n+ 1)-sphere is the reduced suspension S(Sn) of the n-sphere, and
the 0-sphere consists of two points: −1 and 1 (the first is the base point
of S0). It is convenient to regard Sn as the equator of Sn+1. The base points
of Sn and Sn+1 are the same. We shall also identify S(X) with the smash
product X ∧ S1.

The set {X,Y } of stable homotopy classes from X to Y is the direct
limit of the sequence {[X,Y ] → [S(X),S(Y )] → [S2(X),S2(Y )] → . . .}.
The element represented by a map f : Sk(X) → Sk(Y ) is denoted by {f}.
The set {X,Y } is equipped with the structure of an Abelian group. In
particular the group πsn(X) = {Sn,X} is called the n-dimensional stable
homotopy group of X. Similarly the group πns (X) = {X,Sn} is called the
n-dimensional stable cohomotopy group of X.

A spectrum
�

is a sequence of spaces En and maps εn : S(En)→ En+1.
If F = {Fn, δn} is a spectrum such that En ⊃ Fn and εn(x) = δn(x) for

x ∈ Fn and k = 1, 2, . . . , then we say that F is a subspectrum of E.
We say

�
is a CW spectrum if En are CW complexes and each εn is a

cellular inclusion. A subspectrum F ⊂ �
consists of subcomplexes Fn ⊂ En

such that S(Fn) ⊂ Fn+1.
Let Cn be the set of cells in En other than the base point. Elements of the

direct limit of the sequence {. . .
Suspension
−−−−−−→Cn

Suspension
−−−−−−→ Cn+1

Suspension
−−−−−−→ . . .}

are stable cells (or cells). Each cell in En is a member of exactly one cell of
�
.

If the stable cell σ is represented by a cell σ of En, then dimσ = dimσ−n.
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A CW spectrum
�

is called finite (respectively countable) if it has only
finitely (countably) many cells.

A subspectrum � ⊂ �
is called cofinal if � and

�
have the same sets of

stable cells, i.e. for any cell e of En there is m such that Sm(e) is a cell of
Fm+n.

Let
�

= {En} be a CW spectrum indexed by n ∈ Z. The spectrum
� ′ = {E′n} with

E′n =
{
En for n ≥ 0,

{point} for n < 0,

is cofinal in
�
. For this reason it does not really make any difference whether

we consider spectra indexed by n ∈ Z or by n ∈ {0, 1, 2, . . .}. Describing a
new CW spectrum

�
it suffices to define its terms En for n ≥ 0 and to set

En = {point} for n < 0.
By S = {Sn} we denote the CW spectrum consisting of all spheres.

1.3. Morphisms of spectra and weak homotopy classes. A func-
tion f from a CW spectrum

�
to a spectrum F is a sequence of maps

fn : En → Fn such that the following diagram is strictly commutative for
each n:

S(En)
εn //

S(fn)
��

En+1

fn+1

��
S(Fn)

δn // Fn+1

A map from
�

to � is the equivalence class of functions defined on cofinal
subspectra of

�
with values in � . A morphism from

�
to � is the homotopy

class of a map.
In the classical case ([L], cf. [N]) one can also introduce the notion of

weakly homotopic maps. Maps α,β :
� → � are weakly homotopic if for

every finite spectrum
�

0 and every map γ :
�

0 →
�

the compositions αγ
and βγ are homotopic as maps of spectra. The homotopy class (respectively
weak homotopy class) of α is denoted by [α] (respectively [α]w).

By [
�
, � ] (respectively [

�
, � ]w) we denote the set of morphisms from

�

to � (respectively weak homotopy classes of maps from
�

to � ). The sets
[

�
, � ] and [

�
, � ]w are Abelian groups.

For every spectrum
�

we can define its suspension S(
�
) = {Fn}, where

Fn = En+1. This operation has an inverse S−1 defined by S−1(
�
) = {Gn}

and Gn = En−1. This allows us to define Sn for every integer n.
We define a spectrum F to be a suspension spectrum if εn is a weak ho-

motopy equivalence for sufficiently large n. For every space X we denote by
Sus(X) its suspension spectrum (i.e. the spectrum with the j-fold suspension
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of X as the jth term). If X and Y are finite CW complexes then

{X,Y } ∼= [Sus(X),Sus(Y )] = [Sus(X),Sus(Y )]w.

Let SCW and SCWf be the categories of all CW spectra and of all finite
CW spectra.

Proposition 1.3.1. Let { �
n}∞n=1 and { � n}∞n=1 be filtrations of CW spec-

tra
�

and � such that
�
n and � n are finite spectra for every n. Then:

(a) There is an exact sequence

0→ lim1 [S(
�
n), � ]→ [

�
, � ]→ lim←−[

�
n, � ]→ 0.

(b) lim←−[
�
n, � ] ∼= [

�
, � ]w ∼= lim←−n lim−→m [

�
n, � m].

Proof. Part (a) is proved in [Sw, p. 173].
If

�
is a suspension CW spectrum with compact terms, then the set of

all morphisms from
�

to any CW spectrum F can be identified (see [Sw,
p. 146]) with the direct limit of the direct sequence {. . . → [En, Fn] →
[En+1, Fn+1]→ [En+2, Fn+2]→ . . .}. This implies (b).

1.4. Categories of inverse and direct systems. Stable shape. If
C is a category, then by Pro-C we denote the category of inverse systems
in C. For abbreviation we write {Xσ, p

τ
σ} or {Xσ} instead of {Xσ, p

τ
σ, Σ} ∈

Ob Pro-C. The set of morphisms from X = {Xσ} to Y = {Xτ} is defined by

Pro-C(X,Y ) = lim←−τ lim−→σ C(Xσ, Yτ ).

Every compact Hausdorff space X is the limit of an inverse system X =
{Xσ, p

τ
σ} of compact polyhedra with PL bonding maps ([Ma-Se, p. 61]). If

X is a compactum then we may assume that X = {Xn, p
n+1
n } is an inverse

sequence such that dimX ≥ dimXn.
The system X is mapped into an inverse system X̂ = {Xσ, [pτσ]} ∈

Ob Pro-HCWf by the homotopy functor, where HCWf denotes the homo-
topy category of finite CW complexes. This system is an expansion of X (or
is associated with X). The functor Sus assigns to every X ∈ Ob Pro-HCWf

the system Sus(X) = {Sus(Xσ),Sus([pτσ])} ∈ Ob Pro-SCWf .
Exactly as in the ordinary shape theory (see [Ma-Se, p. 25]) one can

define the stable shape category ShStab. The only difference is that we use
Sus(X) instead of X ∈ Ob Pro-HCWf associated with X. Roughly speaking,
if X and Y are objects of Pro-HCWf associated respectively with compact
Hausdorff spaces X and Y then the morphisms of the stable shape category
ShStab from X to Y are represented by the elements of the Abelian group

Pro-SCWf (Sus(X),Sus(Y))

= lim←−τ lim−→σ SCWf (Sus(Xσ),Sus(Yτ )) ∼= ShStab(X,Y ).
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We write ShStab(X) = ShStab(Y ) if X and Y are isomorphic objects in
ShStab.

Proposition 1.4.1. If Sh(Sk(X)) = Sh(Sk(Y )) for a nonnegative inte-
ger k, then ShStab(X) = ShStab(Y ).

The description of Pro-C may be dualized (see [E-H, p. 8]) to yield a
category Inj-C of direct systems over C. Morphisms of Inj-C are defined by
the formula

Inj-C(X,Y) = lim←−σ lim−→µ C(Xσ, Yµ),

where X = {Xσ} and Y = {Yµ} (in this case we use the same convention
as previously, i.e. {Xσ, p

τ
σ, Σ} ∈ Ob Inj-C will be denoted also by {Xσ, p

τ
σ}

or {Xσ}).
Consider a reduced generalized cohomology theory H∗ = {hn} defined

on the category SCWf ([Sw, p. 124]). Together with H∗ we shall also use
the corresponding reduced generalized homology theory H∗ = {hn}.

If X = { � σ,ατσ} ∈ Ob Pro-SCWf and A = {Aσ, f τσ} ∈ Ob Inj-SCWf we
set

hn(X) = lim−→{h
n( � σ), hn(ατσ)}, hn(A) = lim−→{hn(Aσ), hn(f τσ )}.

In particular if we consider the cohomology and homology theories as-
sociated with the sphere spectrum S, then we get the stable cohomotopy
groups πn(X) of the inverse system X ∈ Ob Pro-SCWf and the stable ho-
motopy groups πs(A) of A ∈ Ob Inj-SCWf .

In analogy with the classical case every morphism α ∈ Pro-SCWf (X,Y)
(respectively every f ∈ Inj-SCWf (A,B) induces a well-defined homomor-
phism hn(α) : hn(Y)→ hn(X) (or hn(f) : hn(A)→ hn(A)). Moreover, the
nth generalized cohomology group hn(X) is a contravariant functor from
Pro-SCWf to AB, and the nth homology group hn(A) is a covariant func-
tor from Inj-SCWf to AB.

For every CW spectrum
�

we denote by H∗� the cohomology theory associ-
ated with

�
and defined on SCWf . The group of all natural transformations

from H∗� to H∗� is denoted by 〈 �
, � 〉.

Let � be a CW spectrum and F = { � µ, iνµ} ∈ Ob Inj-SCWf be a direct
system consisting of all finite CW subspectra � µ of � (ordered by inclusion)
and let α ∈ Inj-SCWf (E,F). For every G ∈ Ob Inj-SCWf the morphism α
induces a homomorphism α∗n : [G,Sn(

�
)] = hn� (G) → hn� (G) = [G,Sn( � )].

It is clear that α∗n commutes with the suspension isomorphism, i.e. the
collection {α∗n}n∈Z is a natural transformation from H∗� to H∗� (see [Sw,
pp. 115 and 166]).

On the other hand, if {α∗n}n∈Z : H∗� → H∗� is a natural transformation,
then for every finite CW subspectrum

�
σ of

�
the transformation α∗0 assigns

to
�
σ a homomorphism α �

σ : h0� (
�
σ) = [

�
σ,

�
]→ [

�
σ, � ] = h0� (

�
σ).
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Let f �
σ = α �

σ(i) :
�
σ → � , where i denotes the inclusion of

�
σ into

�
.

The family {f �
σ} represents an element of Inj-SCWf (E,F), where

�
σ runs

through all finite subspectra of
�
. This allows us to identify 〈 �

, � 〉 with
Inj-SCWf (E,F). Denote by 〈α〉 the element of 〈 �

, � 〉 represented by
α ∈ [

�
, � ]w.

Proposition 1.4.2. Let � be a CW spectrum and consider a system E =
{ �

σ,α
τ
σ, Σ} ∈ Ob Inj-SCWf . Then Inj-SCWf ({ �

σ,α
τ
σ, Σ},F) can be iden-

tified with the inverse limit of the system {[ �
σ, � ], (ατσ)?, Σ}, where the func-

tion (ατσ)? : [ � τ , � ]→ [ � σ, � ] is induced by αστ .

Proof. We know ([Sw, p. 146]) that ifσ is fixed then [
�
σ, � ]=lim−→{[

�
σ, � µ]},

where F = { � µ, iνµ} ∈ Ob Inj-SCWf is the direct system consisting of all
finite CW subspectra � µ of � .

Proposition 1.4.3. Let
�

and � be CW spectra. Then:

(a) [
�
, � ] = [

�
, � ]w = 〈 �

, � 〉 if
�

is a finite spectrum.
(b) 〈 �

, � 〉 = lim←−[
�
α, � ], where

�
α runs through all finite subspectra of

�
.

(c) 〈 �
, � 〉 = [

�
, � ]w if

�
is a countable CW spectrum.

(d) 〈 �
, � 〉 = [

�
, � ]w if

�
and � are bounded below.

Proof. Part (b) is a special case of the previous proposition, (c) is a
simple consequence of the Homotopy Extension Theorem ([Sw, p. 139]);
and (d) is a consequence of Theorem (9.30) of [Sw].

2. COMPRESSIBILITY OF MAPS AND SHAPE DIMENSIONS

2.1. Compressibility of maps. E. Spanier and J. H. C. Whitehead
([S-W2, p. 92] or [S-W3, p. 359]) studied the problem of compressing f :
(X,A)→ (Y,B) into Y ′ ⊃ B by a homotopy φ : (X×I,A×I)→ (Y,B) and
described obstructions to compressing f into Y (n−1)∪B if f(X) ⊂ Y (n)∪B.

Let us mention the following elementary consequence of their methods
(see for instance Theorem (2.1) of [S-W2]).

Lemma 2.1.1. Let f : (X,A) → (Y,B) be a map of pairs of finite CW
complexes such that dimX ≤ n+ r− 1 and Y = Y (n−1) ∪B is r-connected ,
where 2 ≤ r ≤ n − 1. If πn(f) : πn(Y,B) → πn(X,A) is a null homomor-
phism, then there exists g : (X,A) → (Y,B) such that f is homotopic to g
rel A and g(X) ⊂ Y (n−1) ∪B.

Lemma 2.1.2. Let fi : (Sξ(i)(Pi),Sξ(i)(Qi)) → (Sξ(i)(Pi−1),Sξ(i)(Qi−1)),
where ξ(i) is a natural number and (Pi, Qi) is a pair of connected finite CW
complexes for i = 0, 1, . . . , n. Suppose also that :

(a) P (r)
i = Q

(r)
i for i = 0, 1, . . . , n.

(b) dimP0 ≤ n+ r.
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(c) πn+r−i+1
s ({fi}) : πn+r−i+1

s (Pi−1/Qi−1) → πn+r−i+1
s (Pi/Qi) is a null

homomorphism for i = 1, . . . , n.

Then for every m ≥ max(dimP0, . . . ,dimPn, ξ(1), . . . , ξ(n)) there exists
a map g : (Sm(Pn),Sm(Qn)) → (Sm(P0),Sm(Q0)) such that g(Sm(Pn))
⊂ Sm(Q0) and g is homotopic to the composition h1 . . . hn, where hi =
Sm−ξ(i)(fi) for i = 1, . . . , n.

Proof. The Suspension Theorem (see [S2, p. 458]) and the Excision The-
orem for cohomotopy (see [Hu, p. 207]) give

πl+m(Sm(Pk),Sm(Qk)) = πl+ms (Sm(Pk)/Sm(Qk)) = πls(Pk/Qk)

for l = r + 1, . . . , n+ r.
We give Sm a CW structure with a single 0-cell and a single m-cell.
Since P (r)

0 =Q
(r)
0 we infer that Sm(P0)(m+r) =(P0∧Sm)(m+r)= P

(r)
0 ∧Sm

= Q
(r)
0 ∧ Sm = (Q0 ∧ Sm)(m+r) = Sm(Q0)(m+r).

Let Y1 = Sm(P0) and B = Sm(Q0), and let Yk be the union of the
(n+ r + m+ 1− k)-skeleton of Y1 and B for k = 1, . . . , n+ 1. We infer by
(a) that Yn+1 = B.

Let jk : (Yk+1, B)→ (Yk, B) be the inclusion for k = 1, . . . , n.
Let g0 = id : (Y1, B) → (Y1, B). Applying Lemma 2.1.1 for (Y,B) =

(Y1, B), f = g0h1 we get a map g1 : (Sm(P1),Sm(Q1)) → (Y2, B) such that
j1g1 is homotopic to g0h1 rel Sm(Q1).

Assume that for k ≥ i ≥ 0 we have a map gi : (Sm(Pi),Sm(Qi)) →
(Yi+1, B) such that

gihi+1 ' ji+1gi+1 rel Sm(Qi+1) for i = 1, . . . , k − 1.(1)

Applying Lemma 2.1.1 for (Y,B) = (Yk+1, B), f = gkhk+1 we obtain a map
gk+1 : (Sm(P1),Sm(Q1))→ (Yk+2, B) such that (1) is satisfied for 0 ≤ i ≤ k.
This yields the following diagram:

(Y1, B)

id=g0

��

(Sm(P1),Sm(Q1))
h1oo

g1

��

. . .h2oo (Sm(Pn),Sm(Qn))

gn
��

hnoo

(Y1, B) (Y2, B)
j1oo . . .j2oo (Yn+1, B) = (B,B)

jnoo

It is clear that g = j1j2 . . . jngn satisfies the required conditions.

2.2. Shape dimensions of compact spaces. As in the classical shape
theory (see [Ma-Se, pp. 106 and pp. 130]) one can introduce the notion
of the nth stable homotopy pro-group Pro-πsn(X) of a compact Hausdorff
space X, defined to be the pro-group Pro-πsn(X) = {πsn(Xσ), πsn(pτσ)}, where
X = {Xσ, p

τ
σ} is an inverse system of finite CW complexes such that X

is homeomorphic to the inverse limit of X. More precisely, Pro-πsn(X) is
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actually a class of naturally isomorphic pro-groups (see [Ma-Se, p. 121]) and
for simplicity we identify Pro-πsn(X) with Pro-πsn(X).

The stable connectivity of X is defined as Cs(X) = min{n : Pro-πsn(X)
6= 0} − 1. It is an invariant of stable shape. We know that Cs(A) = Cs(A)
= ∞, where A denotes the Adams–Kahn continuum (see [A2], [K] and
[Ma-Se, p. 153]). We also have Cs(X) = −∞, Cs(X) = ∞ for every X
with trivial stable shape.

The notion of the stable shape dimension was introduced by T. Miyata
and J. Segal in [Mi-Se1] (see [Mi-Se1, p. 159]). Suppose thatX = {Xσ, p

τ
σ, Σ}

is an inverse system in the homotopy category of finite CW complexes asso-
ciated with a compact Hausdorff space X and k, n ∈ Z, where k ≤ n. The
stable shape dimension, sdspec(X), satisfies k ≤ sdspec(X) ≤ n if for every
σ ∈ Σ there exist τ ≥ σ, m and maps g : Sm(Xτ ) → P , h : P → Sm(Xσ)
such that the homotopy class of hg equals Sm(pστ ), where P is a CW com-
plex with dimP ≤ n+m and with no cells of dimension ≤ k+m except for
a single 0-cell ∗.

Theorem 2.2.1. Let X be a compact Hausdorff space with Cs(X) <∞.
If Cs(X) ≥ Cs(X), then ShStab(X) = ShStab({point}). If ShStab(X) 6=
ShStab({point}), then r ≤ sdspec(X) ≤ Cs(X) for every r ≤ Cs(X). If
k ≤ sdspec(X) ≤ n, then πms (X) = 0 for every m > n.

Proof. Suppose that {Xσ, p
τ
σ, Σ} is an inverse system in the homotopy

category of finite CW complexes associated with X. For a given index σ
we can find σ′ ≥ σ such that pσ

′
σ induces a trivial homomorphism of stable

homotopy groups in dimensions ≤ r (compare [Ma-Se, p. 137, Lemma 2]).
We first assume that dimXσ′ > Cs(X).
Since the stable cohomotopy groups of finite CW complexes are finitely

generated we infer that there exists a finite sequence of indices σ′ = τ0 <
τ1 < . . . < τl = τ such that pτi+1

τi induces a trivial homomorphism of stable
cohomotopy groups πj−is (Xτi) → πj−is (Xτi+1) for every i = 0, . . . , l = j −
Cs(X) − 1, where j = dimXτ0 > Cs(X). By Lemma 2.1.2 there exist m
and g : Sm(Xτ ) → Q such that the homotopy class of ig is equal to pτσ,
where Q is the (m+Cs(X))-skeleton of Sm(Xσ′) and i denotes the inclusion
Q ⊂ Sm(Xσ′).

Since Sm(pσ
′
σ ) induces a trivial homomorphism of homotopy groups in

dimensions≤ m+r (for sufficiently largem), we can extend i : Q→ Sm(Xσ′)
over the union of Q and the cone over the (m+ r)-skeleton of Q. This CW
complex has the same homotopy type as P = P/P (m+r).

If dimXσ′ ≤ Cs(X) the proof is similar, but simpler. Indeed in this case
the space P = Sm(Xσ′)/(Sm(Xσ′))(m+r) satisfies the requirements of the
definition of sdspec(X).

In both cases if r ≥ Cs(X), then P is contractible.
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Hence r ≤ sdspec(X) ≤ Cs(X) when ShStab(X) 6= ShStab({point}), and
ShStab(X) = ShStab({point}) when Cs(X) ≥ Cs(X).

The third assertion is a consequence of the fact that πns (X) is the direct
limit of {πns (Xσ)}.

2.3. Compacta X with Cs(X) <∞
Lemma 2.3.1. Let X be a compactum with Cs(X) < ∞ and set N =

max{Cs(X), 0}. Then there exists a compactum Y such that dimY ≤2N + 2
and ShStab(Y ) = ShStab(SN+2(X)).

Proof. We may assume that X is homeomorphic to the inverse limit of
a sequence X = {Xk, p

k+1
k } of finite CW complexes such that πns (pk+1

k ) :
πns (Xk)→ πns (Xk+1) is a null homomorphism for n > N .

Let Pi = S2(Xk+i), Qi = S2(X(N)
k+i ) and fi+1 = S2(pk+i+1

k+i ) : (Pi, Qi) →
(Pi−1, Qi−1) for i = 0, . . . , l − k. The exactness of the sequence . . . →
πq−1
s (Qi) → πqs(Pi/Qi) → πqs(Pi) → . . . implies that πqs(fi) : πqs(Pi/Qi) →
πqs(Pi+1/Qi+1) is a null homomorphism for q > N + 2. This means that
Pi, Qi and fi satisfy the conditions (a)–(c) of Lemma 2.1.2. Hence for every
k there exists

g : Sm(Xl)→ Sm(X(N)
k ) such that jkg ' Sm(plk),(2)

where jk : Sm(X(N)
k ) → Sm(Xk) is the inclusion, m = dimXl + 2 and

l = max{k + 1, k +N − dimXk}.
Using (2) and replacing X by a suitable subsequence we can require that

for every k there exists a cellular map gk : Sm(Xk+1) → Sm(X(N)
k ) such

that gk+1
k = jkgk ' Sm(pk+1

k ), where m = dimXk+1 + 2.

By the Freudenthal Suspension Theorem there exists qk+1
k : SN+2(X(N)

k+1)

→ SN+2(X(N)
k ) such that qk+1

k ' Sm−N−2(gk+1
k |

X
(N)
k+1

). Let Yk =

SN+2(X(N)
k ) and Y = lim←−{Yk, q

k+1
k }.

We denote respectively by gk+1
k : Sus(Xk+1) → Sus(Xk),

qk+1
k : Sus(Xk+1) → Sus(Xk), jk : Sus(X(N)

k ) → Sus(Xk) and

gk : Sus(Xk+1) → Sus(X(N)
k ) the morphisms of spectra represented by the

maps gk+1
k : Sm(Xk+1) → Sm(Xk), q

k+1
k : SN+2(X(N)

k+1) → SN+2(X(N)
k ),

jk : Sm(X(N)
k )→ Sm(Xk) and gk : Sm(Xk+1)→ Sm(X(N)

k ). We have

gk+1
k = jkgk, qk+1

k = gkjk+1 for every k.(3)

It is evident that Sus(X) = {Sus(Xk),Sus(pk+1
k )} and {Sus(Xk),g

k+1
k }

are isomorphic objects of Pro-SCWf .

By (3) we see that τ = {jk} : {Sus(X(N)
k ),qk+1

k } → {Sus(Xk),gk+1
k }

is an isomorphism in the category Pro-SCWf with inverse υ = {gk} :
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{Sus(Xk),gk+1
k }→{Sus(X(N)

k ),qk+1
k }. Hence SN+2(X) = {SN+2(Sus(Xk)),

SN+2(gk+1
k )} and {Sus(Yk),Sus(qk+1

k )} = {SN+2(Sus(X(N)
k )),SN+2(qk+1

k )}
are isomorphic and SN+2(X) has the same stable shape as Y .

Lemma 2.3.2. Let X be a shape r-connected continuum with Cs(X) ≥
2r ≥ 2. Then X is shape 2r-connected.

Proof. We may assume that X is homeomorphic to the inverse limit of
a sequence {Xk, p

k+1
k } such that Xk is an r-connected CW complex and

πsl (p
k+1
k ) : πsl (Xk+1) → πsl (Xk) is a null homomorphism for every k and

l ≤ 2r. This means that

πl+m(pk+1
k ) : πl+m(Xk+1) = [Sl+m,Sm(Xk+1)]→ [Sl+m,Sm(Xk)]

= πl+m(Xk)

is a null homomorphism for sufficiently large m and l ≤ 2r. The Freudenthal
Suspension Theorem implies that [Sl+m,Sm(Xk)] ∼= [Sl,Xk] for every k.

Lemma 2.3.3. Let X be a shape r-connected continuum with dimX =
m < 2r, where 1 < r ≤ m. Then there exists a continuum Y such that
S2r−m(Y ) is shape equivalent to X and dimY ≤ 2m− 2r.

Proof. We may assume that X is homeomorphic to the inverse limit of
a sequence {Xk, p

k+1
k }, where each Xk is an r-connected CW complex with

dimXk ≤ m. It is known (see for example [S2, p. 461, Exercise D1]) that
for every r-connected CW complex Q with dimQ < 2r there exists a CW
complex P such that S(P ) is homotopy equivalent to Q.

The above fact and the Freudenthal Suspension Theorem imply that for
every k there exist a CW complex Yk and a map qk+1

k : Yk+1 → Yk such that
the diagram

Xk+1

��

pk+1
k // Xk

��
S2r−m(Yk+1)

S2r−m(qk+1
k )

// S2r−m(Yk)

commutes up to homotopy. The vertical arrows are homotopy equivalences.
We can assume (see [W, Proposition 4.1, p. 68]) that dimYk ≤ 2m− 2r for
every k. The inverse limit Y of the sequence {Yk, qk+1

k } satisfies the required
conditions.

Theorem 2.3.4. Let X be a compactum satisfying ShStab(X) 6=
ShStab({point}), Cs(X) = N < ∞ and Cs(X) = r. Then there exists a
shape (N − r)-connected continuum Y satisfying the following conditions:

(1) ShStab(Sm1(X)) = ShStab(Sm2(Y )), where m1 = max{0, N − 2r}
and m2 = −min{0, N − 2r}.

(2) dimY ≤ 2(N − r).
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Proof. By Lemma 2.3.1 there is X ′ such that dimX ′ = 2N + 2 =
Cs(X ′) and ShStab(X ′) = ShStab(SN+2(X)). We see at once that Cs(X ′) =
N + r + 2 and Cs(X ′) − Cs(X ′) = N − r. By Lemma 2.3.2 we conclude
that Z = SN+r+2(X ′) is a shape 2(N + r + 2)-connected continuum with
dimZ = Cs(Z) = 3N + r + 4. By Lemma 2.3.3 there is Y such that
SN+3r+4(Y ) and Z have the same shape and dimY = Cs(Y ) = 2(N − r).
We have ShStab(S2N+r+4(X)) = ShStab(SN+3r+4(Y )). Finally, Proposi-
tion 1.4.1 implies that Y satisfies the required conditions.

Corollary 2.3.5. Let X be a compactum with Cs(X) < r. Then the
group {X,P} of all stable homotopy classes is trivial for every r-connected
CW complex P .

3. THE WHITEHEAD THEOREMS

3.1. Formal duality between Pro-SCWf and Inj-SCWf . For each
� ∈ ObSCWf there is a finite spectrum D(

�
) (the Spanier–Whitehead

dual of
�
) and for every pair of

�
, � ∈ ObSCWf there is an isomorphism

D(
�
,

�
) = D : [

�
, � ] → [D( � ),D(

�
)] (see [A1, p. 190], [Ma, p. 19] or [Sw,

p. 321]). This defines a unique, up to natural equivalences, contravariant
functor D : SCWf → SCWf . The following conditions are satisfied:

(1) D2 is naturally equivalent to the identity functor I.
(2) D(S(

�
)) = S−1(D(

�
)).

(3) There is a natural isomorphism [
� ∧ � ,G] ∼= [

�
,D( � ) ∧G].

(4) For every generalized homology theory H∗ there exists a natural
isomorphism between hk(

�
) and h−k(D(

�
)).

Remark 1. It is also possible to describe the Spanier–Whitehead dual in
a very concrete fashion for the case when

�
= Sus(X) and X is a polyhedron.

It is known that it is possible to embed the space X in the (n+1)-sphere
for sufficiently large n. Suppose that X1 ⊂ X2 are subpolyhedra of Sn+1

and a subpolyhedron Yi ⊂ Sn+1 \ Xi of Sn+1 is a deformation retract of
Sn+1 \ Xi such that Y2 ⊂ Y1 for i = 1, 2. We may also assume that Xi

is a deformation retract of Sn+1 \ Yi for i = 1, 2 (possible for larger n).
Then (up to natural equivalences of functors) D(Sus(Xi)) = S−n(Sus(Yi)),
D(Sus(Yi)) = S−n(Sus(Xi)), D(i) = j and D(j) = i for i = 1, 2, where i and
j denote respectively the morphisms of spectra induced by the inclusions
i : X1 → X2 and j : Y2 → Y1.

This formula can be generalized to the case when Xi are finite CW
complexes.

Definition 1. For every X = { � σ,α
τ
σ, Σ} ∈ Ob Pro-SCWf (respec-

tively for every A = {Aσ, f τσ , Υ} ∈ Ob Inj-SCWf ) the object D1(X) =
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{D( � σ),D(ατσ), Σ} ∈ Ob Inj-SCWf (respectively D2(A) = {D(Aσ),
D(f τσ ), Υ} ∈ Ob Pro-SCWf is called the Spanier–Whitehead dual for X (re-
spectively for A).

We also have duality isomorphisms
D1 : Pro-SCWf (X,Y)→ Inj-SCWf (D(Y),D(X)),

D2 : Inj-SCWf (A,B)→ Pro-SCWf (D(B),D(A))

induced by D.
Next, this also yields contravariant functors D1 : Pro-SCWf→ Inj-SCWf

and D2 : Inj-SCWf → Pro-SCWf .

Theorem 3.1.1. The compositions D2D1 : Pro-SCWf → Pro-SCWf

and D1D2 : Inj-SCWf → Inj-SCWf are naturally equivalent to the identity
functors.

3.2. The Whitehead theorems for Pro-SCWf and stable shape

Theorem 3.2.1. A morphism f ∈ Pro-SCWf (X,Y) is an isomorphism
iff it induces isomorphisms of all stable cohomotopy groups.

Proof. We may assume that X = { � σ,ατσ, Σ} and Y = {Yσ,βτσ, Σ} are
inverse systems indexed over the same cofinite directed set Σ, f = {fσ} is a
level morphism and � σ and Yσ are finite suspension spectra ([Ma-Se, p. 12]).
Then for every σ ∈ Σ there exist n(σ) ∈ Σ and finite polyhedra Xσ and Yσ
such that the nth terms of � σ and Yσ are Sn−n(σ)(Xσ) and Sn−n(σ)(Yσ) for
sufficiently large n.

Therefore without loss of generality we may assume that the following
conditions are satisfied:

(1) n(σ) ≤ n(τ) if σ ≤ τ .
(2) The bonding morphisms of X and Y are induced by maps pτσ :

Sm−n(τ)(Xτ ) → Sm−n(σ)(Xσ) and qτσ : Sm−n(τ)(Yτ ) → Sm−n(σ)(Yσ) for suf-
ficiently large m.

(3) The morphism fσ is induced by a map fσ : Xσ → Yσ.

Let Mσ ⊃ Xσ∪Yσ be the reduced mapping cylinder of fσ. We know that
the pointed pair (S(Mσ),S(Xσ)) has the same homotopy type as (M ′,S(Xσ)),
where M ′ denotes the reduced mapping cylinder of S(fσ) (see [S-W2, p. 67]).

For every τ > σ and sufficiently large m we can find a map f̂ τσ :
Sm−n(τ)(Mτ ) → Sm−n(σ)(Mσ) such that f̂ τσ restricted to Sm−n(τ)(Xτ )
(or Sm−n(τ)(Yτ )) equals pτσ (respectively qτσ). Denote by L(σ) the long exact
sequence

. . .← πks (Sm−n(σ)(Xσ)) iσ←−πks (Sm−n(σ)(Mσ))
jσ←−

πks (Sm−n(σ)(Mσ/Xσ)) δσ←−πk−1
s (Sm−n(σ)(Xσ))← . . .

corresponding to the index σ ∈ Σ.
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If τ > σ then we have a natural morphism from L(σ) to L(τ) induced
by the bonding morphisms and f̂ τσ . The image of eσ belonging to one of the
components of L(σ) is denoted by eτ .

We prove that for every k and every eσ ∈ πks (Sm−n(σ)(Mσ/Xσ)) there
exists τ > σ such that eτ = 0.

If jσ(eσ) ∈ πks (Sm−n(σ)(Mσ)) ∼= πks (Sm−n(σ)(Yσ)) represents the trivial
element of πks (Y) then we can find τ > σ such that eτ ∈πks (Sm−n(τ)(Mτ/Xτ ))
is contained in the image of πk−1

s (Sm−n(τ)(Xτ )) under δτ (i.e. eτ = δτ (e′τ )).
By the exactness of L(τ) (take greater τ if necessary) and the fact that
πk−1
s (f) : πk−1

s (Y) → πk−1
s (X) is an isomorphism, the element eτ must

represent the trivial element of πks (Y) and we may assume that eτ = 0.
On the other hand, if jσ(eσ) does not represent the trivial element of

πks (Y), then we can find τ0 > σ such that iτ jτ (eτ ) 6= 0 for every τ > τ0,
which contradicts the exactness of L(τ).

We may assume that Sm−n(σ)(Mσ) and Sm−n(σ)(Xσ) have the same r-
skeleton, where r = m−n(σ)−2. Let dim Sm−n(σ)(Mσ) = n. Since the stable
cohomotopy groups of Sm−n(σ)(Mσ/Xσ) are finitely generated we can find
a finite sequence σ = σ0 < σ1 < . . . < σn−r+1 = τ such that the map f̂

σi+1
σi

induces a trivial homomorphism of stable cohomotopy groups in dimension
n− i for i = 0, . . . , n− r.

Lemma 2.1.2 implies that there exists a map

g : (Sm−n(τ)(Mτ ),Sm−n(τ)(Xτ ))→ (Sm−n(σ)(Mσ),Sm−n(τ)(Xσ))

such that g is homotopic to f̂ τσ and g(Sm−n(τ)(Mτ )) ⊂ Sm−n(σ)(Xσ). It is
known ([Mo, Theorem (1.1)] or [Dy, p. 7, Theorem 2.3]) that this means
that f is an isomorphism in Pro-SCWf .

Remark 2. If X = {Sus(Xσ)} and Y = {Sus(Yσ)}, then the morphism
f is an isomorphism iff it induces isomorphisms of stable cohomotopy groups
in dimensions ≥ 0. In the notation of the proof of Theorem 3.2.1 this means
that n(σ) = n(τ) = 0. Lemma 2.1.2 allows us to prove a stronger version of
the theorem in this case.

Remark 3. The proof of Theorem 3.2.1 is a modification of the classical
Whitehead Theorem for the prohomotopy category (see [Dy] and [Ma-Se]).

Theorem 3.2.2. Let X and Y be compact Hausdorff spaces. A mor-
phism f ∈ ShStab(X,Y ) is an isomorphism iff it induces isomorphisms of
stable cohomotopy groups in dimensions ≥ 0.

Proof. This is a consequence of Theorem 3.2.1 (see also Remark 2).
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3.3. The Whitehead Theorem for Inj-SCWf

Theorem 3.3.1. A morphism f ∈ Inj-SCWf (A,B) is an isomorphism
iff it induces isomorphisms of all stable homotopy groups.

Proof. The morphism f is an isomorphism iff D2(f) : D2(B) → D2(A)
is an isomorphism. The assertion is now a consequence of Theorem 3.2.1.

Remark 4. In [Mi] T. Miyata defined the generalized coshape category
coShspec, whose objects are CW spectra and spaces. If

�
and � are CW

spectra, then coShspec(
�
, � ) = 〈 �

, � 〉 ∼= Inj-SCWf (E,F), where E = { �
σ},

F = { � τ} ∈ Ob Inj-SCWf are direct systems consisting of all finite CW
subspectra

�
σ of

�
and (respectively) � τ of � (ordered by inclusion). Miyata

stated the Whitehead Theorem for coShspec. In particular he claimed that
ϕ ∈ coShspec(

�
, � ) was an isomorphism of the category coShspec iff it induced

isomorphisms of integral homology groups, but this statement is false.
More precisely, it is true that ϕ ∈ coShspec(

�
, � ) is an isomorphism

when ϕ induces isomorphisms of homotopy groups, but in order to conclude
that ϕ ∈ coShspec(

�
, � ) is an isomorphism from the fact that it induces

isomorphisms of homology groups we must assume that
�

and � are bounded
below (see Example 1).

3.4. The stable shape of the quotient space

Theorem 3.4.1. Let (X,A) be a pair of compact Hausdorff spaces. The
inclusion of A into X is a stable shape equivalence if and only if X/A has
trivial stable shape.

Proof. By Theorem 3.2.2 the inclusion of A into X is a stable shape
equivalence if and only if it induces isomorphisms of all stable cohomotopy
groups. In the same manner we deduce that X/A has trivial stable shape iff
πns (X/A) = 0 for every n.

Consider the long exact sequence

. . .→ πn−1
s (X)→ πn−1

s (A)→ πns (X/A)→ πns (X)→ πns (A)→ . . .

The groups πns (X/A) are trivial for every n if and only if the inclusion A ⊂ X
induces isomorphisms from πns (X) to πns (A) for every n.

4. FUNCTION SPECTRA

4.1. CW substitutes for spectra

Definition 2. Let
�

be a CW spectrum and � be a spectrum. A pair
(

�
,α), where α :

�
0 → � is a function defined on a cofinal subspectrum

�
0

of
�
, is called a CW substitute for � if α is a weak homotopy equivalence.
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When no confusion can arise we ignore the second element of the pair (
�
,α)

and we say that
�

is a CW substitute for � .
This notion is adapted from [K-K-S]. In [K-K-S] it is required that α is

defined on
�

(not on a cofinal subspectrum of
�
), but for our purposes this

small modification allows us to simplify notation.
We need the following proposition (Propositions 2.4 and 2.5 of [K-K-S]).

Proposition 4.1.1. For every spectrum � there exists a CW substitute
of � . If α : � → �

and β : V→ � are CW substitutes for spectra
�

and � ,
then for every function γ :

� → � there is a unique morphism [γ ′] : � → V
such that [γ] ◦ [α] = [β] ◦ [γ ′].

Remark 5. Let the pair ( � 1,α) be a CW substitute for
�

and β :
� 2 → � 1 be a function between CW spectra. The pair ( � 2,αβ) is a CW
substitute for

�
if β represents an isomorphism in the category of spectra.

More precisely ([Sw, p. 137]), there are cofinal subspectra � ′1 ⊂ � 1 and
� ′2 ⊂ � 2 such that β( � ′2) ⊂ � ′1, the function α is defined on � ′1 and the
composition α| � ′1β| � ′2 is a weak homotopy equivalence.

4.2. Function spectra

Definition 3. For every compact Hausdorff space X we will consider
the function spectrum � (X) = (Fn, λn), where Fn = Map(X,Sn) and the
maps λn : S Map(X,Sn) → Map(X,Sn+1) are defined by λn(f ∧ t)(x) =
f(x) ∧ t.

Assume that f : X → Y is a map. Then for every n = 1, 2, . . . we have
the map fn = Map(f) : Map(Y, Sn) → Map(X,Sn) induced by f . The
sequence F(f) = {fn} : � (Y )→ � (X) is a function between spectra.

If ( � X ,αX) and ( � Y ,αY ) are CW substitutes for (respectively) � (X)
and � (Y ), then by Proposition 4.1.1 there is a unique morphism of spectra
f = (F(f),αX ,αY ) such that the diagram

� Y

[αY ]
��

f // � X

[αX ]
��

� (Y )
F(f) // � (X)

commutes.

Proposition 4.2.1. Let f : X → Y and g : Y → Z be maps, where
X, Y and Z are compact Hausdorff spaces. Then h = fg, where f =
(F(f),αX ,αY ), g = (F(g),αY ,αZ) and h = (F(gf),αX ,αZ).

Proposition 4.2.2. Let X be a compact Hausdorff space and ( � ,α) be
a CW substitute for � (X). For every finite CW spectrum

�
the function α
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induces an isomorphism

[
�
, � ]→ lim−→{. . .→ [En,Map(X,Sn)]→ [En+1,Map(X,Sn+1)]→ . . .}.

For every k there exists a canonical isomorphism πk( � )→ π−ks (X).

Proof. The first part is obvious (Proposition 1.3.1). The second part is
a consequence of the first and elementary properties of spaces of maps from
X to spheres. Indeed, [Sk+l,Wn] ∼= [Sk+l,Map(X,Sn)] ∼= [Sk+l ∧X,Sn] for
all k, l ∈ Z and every n = 0, 1, 2, . . .

4.3. Complements in spheres and function spaces. Following
[K-K-S] for every proper closed subset X of the (n+ 1)-dimensional sphere
we introduce a map from Sn+1 \X to Map(X,Sn) inducing isomorphisms of
homology groups in dimensions < 2(n− dimX). Recall that S0 = {a, b} ⊂
. . . ⊂ Sn ⊂ Sn+1.

If X 3 b is a subcompactum of Sm which misses a and n + 1 ≥ m,
then (Sn+1 \ X) ∧ X ⊂ Sn+1 ∧ Sn+1 \ Dn+1 ∼= S2n+2 \ Dn+1, where (a, b)
is the base point of Sn+1 ∧Sn+1 and Dn+1 denotes the diagonal. The space
Dn+1 is homeomorphic to Sn+1 and S2n+2 \Dn+1 contains a polyhedron Tn
homeomorphic to Sn as a strong deformation retract. We may assume that
(Tn+1, Tn) is homeomorphic to (Sn+1, Sn).

Denote by %n : (Sn+1 \X) ∧ X → Sn the composition of the inclusion
(Sn+1 \X)∧X ⊂ S2n+2 \Dn+1 with the strong deformation retraction and
the canonical homeomorphism of Tn onto Sn. Let

µXn : Sn+1 \X →Map(X,Sn)

be the adjoint to %n. Then

if X ⊃ Y, a 6∈ X and b ∈ Y, then µXn (z) = µYn (z) for every z ∈ Y.(4)

The next proposition can be found in [K-K-S, p. 212].

Proposition 4.3.1. The map µXn : Sn+1 \ X → Map(X,Sn) induces
an isomorphism (µXn )? : Hq(Sn+1 \ X) → Hq(Map(X,Sn)) for q <
2(n− dimX).

Let X be a compact subpolyhedron of Sn+1 with dimX < n− 1 and let
M be a regular neighborhood of X in Sn+1. The interior V = IntM is an
open regular neighborhood of X and Sn+1 \ V is a compact subpolyhedron
of Sn+1. Denote by

µ(M,X)
n : Sn+1 \ V →Map(X,Sn)(5)

the composition Sn+1 \ V ⊂ Sn+1 \X µXn−→Map(X,Sn).

Lemma 4.3.2. Let M and N be regular neighborhoods of a subpolyhedron
X of Sn+1 with dimX < n − 1 such that W = IntN ⊂ N ⊂ V = IntM .
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If iMN : Sn+1 \ V → Sn+1 \ W and rNX : Map(N,Sn) → Map(X,Sn) are
(respectively) the inclusion and the restriction map, then:

(i) rNX and iMN are homotopy equivalences.
(ii) The following diagram commutes:

Sn+1 \ V µ
(M,N)
n //

iMN ��

Map(N,Sn)

rNXV��
Sn+1 \W µ

(N,X)
n // Map(X,Sn)

(iii) There is a map µ
(M,M)
n : Sn+1 \ V → Map(M,Sn), unique up to

homotopy , such that rMX µ
(M,M)
n ' µ(M,X)

n .

Proof. It is clear that Sn+1 \ X is a connected and simply connected
open subset of Sn+1. The spaces W and V are also connected and simply
connected. From the Alexander Duality Theorem it follows that the inclusion
iMN induces isomorphisms of homology groups. The Whitehead Theorem
implies that it must be a homotopy equivalence.

The complements of regular neighborhoods of X are also simply con-
nected and connected. As previously (using the Alexander Duality and the
Whitehead Theorem) we find that the inclusions i1 : Sn+1 \M → Sn+1 \N ,
i2 : Sn+1 \N → Sn+1 \X, j1 : Sn+1 \ V → Sn+1 \N and j2 : Sn+1 \W →
Sn+1 \X are homotopy equivalences.

The restriction maps rMN : Map(M,Sn)→Map(N,Sn), rNX : Map(N,Sn)
→ Map(X,Sn) and rMX : Map(M,Sn) → Map(X,Sn) are also homotopy
equivalences (being induced by inclusions which are homotopy equivalences).

This means that (ii) is satisfied.
Let µ(M,M)

n = jµ
(M,X)
n , where j denotes the homotopy inverse of rMX .

Since µ
(M,X)
n and j are homotopy equivalences, we infer that µ

(M,M)
n is

unique up to homotopy.

Remark 6. Let X be a proper subpolyhedron of Sn+1 and Mk be a
regular neighborhood of X in Sk for k ≥ n+ 1 such that Mk+1 ∩ Sk = Mk

for k ≥ n + 1. Then the Spanier–Whitehead dual of the spectrum Sus(X)
is isomorphic to the spectrum � = {Wk}, where Wk = Sk+1 \ IntMk+1 for
k ≥ n+ 1 (cf. Theorem 4.5 of [K-K-S]).

Moreover, the maps µ(Mk+1,X)
k : Sk+1 \Wk+1 → Map(X,Sk) generate

a function µ : D(X) = D(Sus(X)) → � (X). The pair (D(X), µ) is a CW
substitute for � (X).

4.4. Substitutes of function spectra and limits. Let � be a CW
spectrum. By W ∈ Ob Inj-SCWf we denote the direct system consisting of
all finite subspectra of � ordered by inclusion.
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Suppose that a compact Hausdorff space X is the inverse limit of a
system X = {Xσ, p

σ
τ , Σ} of finite CW complexes. We have observed (see

Remark 6) that for every σ ∈ Σ there exists a function µσ : D(Sus(Xσ))→
F(Xσ) which is a weak homotopy equivalence.

The canonical projections pσ : X → Xσ and the bonding morphisms pτσ :
Xτ → Xσ induce functions pσ : F(Xσ) → � (X) and pτσ : F(Xσ) → F(Xτ ).
It is clear that pτpτσ = pσ.

Let ( � X ,αX) be a CW substitute for � (X) and let ασ : D(Sus(Xσ))→
� X be the unique morphism of spectra such the diagram

D(Sus(Xσ))
µσ //

[µσ ]
��

� X

[αX ]
��

F(Xσ)
pσ // � (X)

commutes. We know that ασ = ατα
σ
τ , where ατσ : D(Sus(Xσ)) →

D(Sus(Xτ )) is a morphism of spectra induced by pτσ : Xτ → Xσ.
Notice (see Proposition 1.4.2) that Inj-SCWf ({ � σ,ατσ, Σ},W) can be

identified with the direct limit of the system {[ � σ, � ], (ατσ)?, Σ}, where �
is a CW spectrum and the function (ατσ)? : [ � τ , � ] → [ � σ, � ] is induced
by ατσ.

Theorem 4.4.1. Suppose that a compact Hausdorff space X is the in-
verse limit of the inverse system X = {Xσ, p

τ
σ, Σ} of finite CW complexes

and ( � X ,αX) is a CW substitute for the function spectrum � (X). Then the
morphism α = {ασ} : {D(Sus(Xσ)),ατσ, Σ} → WX is an isomorphism in
the category Inj-SCWf .

Proof. We know that the function αX induces an isomorphism αk# :
πk(WX)→ lim−→{. . .→ πk+m(Map(X,Sm))→πk+m+1(Map(X,Sm+1))→ . . .}.

By Theorem 3.3.1 it suffices to prove that α induces an isomorphism of
homotopy groups, i.e. α induces a monomorphism and an epimorphism.

Let e ∈ πk(WX) and let αk#(e) be represented by a homotopy class
[f ] : Sk+m → Map(X,Sm). Since [Sk+m,Map(X,Sm)] is isomorphic to
lim−→{[S

k,Map(Xσ, S
m)] ∼= lim−→[Sk ∧Xσ, S

m] ∼= [Sk+m ∧X,Sm], we infer that
[f ] ∈ [Sk+m,Map(X,Sm)] is represented by [fσ] ∈ [Sk+m,Map(Xσ, S

m)] ∼=
[Sk+m ∧ Xσ, S

m] for sufficiently large σ. Therefore α induces a monomor-
phism.

The homotopy class [f ] ∈ [Sk+m,Map(X,Sm)] ∼= [X,Map(Sk+m, Sm)]
represents a trivial element of πk+m(Map(X,Sm)) if and only if [fσ] :
[Sk+m,Map(Xσ, S

m)] ∼= [Xσ,Map(Sk+m, Sm)] represents a trivial element
of πk+m(Map(Xσ, S

m)) for sufficiently large σ. This means that α induces
an epimorphism.
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Corollary 4.4.2. Suppose that a compact Hausdorff space X is hom-
eomorphic to the inverse limit of a sequence X = {Xσ, p

τ
σ, Σ} of finite

CW complexes and ( � X ,αX) is a CW substitute for the function spectrum
� (X). Then {Sus(Xσ),Sus(pτσ), Σ} and D2(WX) are isomorphic objects of
Pro-SCWf .

Proof. By Theorem 4.4.1 the direct systems {D(Sus(Xσ)),ατσ, Σ} and
WX are isomorphic objects of Inj-SCWf . By the properties of D1 and D2

the inverse systems {Sus(Xσ),Sus(pτσ), Σ} and D2({D(Sus(Xσ)),ατσ, Σ})
are isomorphic as objects of Pro-SCWf and the direct systems D1D2(WX)
and WX are isomorphic in Inj-SCWf . This means that D2D1D2(WX) ∼=
D2(WX) ∼= {Sus(Xσ),Sus(pτσ), Σ}.

4.5. Substitutes and suspensions

Theorem 4.5.1. Let X be a compact Hausdorff space and ( � ,α) be a
CW substitute for � (X), where α = {αn}. Then (S−1( � ),β) is a CW sub-
stitute for � (S(X)), where the function β : S−1( � ) → � (S(X)) is given
by βn = λnαn−1 and λn : Map(X,Sn−1) → Map(S(X), Sn) is induced by
suspension.

Proof. We may assume that X is the inverse limit of an inverse system
X = {Xσ, p

τ
σ, Σ} of finite CW complexes. Then S(X) is the inverse limit of

the system S(X) = {S(Xσ),S(pτσ), Σ} and the assertion is a consequence of
Theorems 3.3.1 and 4.4.1.

5. CLASSES OF SPECTRA WHICH ARE CW SUBSTITUTES OF
FUNCTION SPECTRA

5.1. Representing compacta as limits of inverse sequence of
polyhedra lying in spheres. In this section unless otherwise stated it is
understood that a proper submanifoldM in Sn is a PL compact submanifold
(with boundary) and dimM = n.

If M ⊂ Sn misses the base point of Sn and [α, β] ⊂ (−1, 1), then the set
M× [α, β] consists of all points (x, t) ∈ Sn+1 such that x ∈M and t ∈ [α, β].

Definition 4. A sequence M = {(Mn,Xn), rn}∞n=1 is called a defining
sequence if the following conditions are satisfied for every n:

(a) Xn is a subpolyhedron of Sn+1 with 3 dimXn < n and Mn a proper
submanifold in Sn+2, missing the base point of Sn+2.

(b) Mn is a neighborhood of Xn ∪ Xn+1 in Sn+2, the inclusion of Xn

into Mn is a homotopy equivalence and rn : Mn → Xn is a deformation
retraction.

(c) Mn × [−1/2, 1/2] is a neighborhood of Mn+1 in Sn+1.



122 S. Nowak

The inverse sequence ∇(M) = {Xn, p
n+1
n }, where pn+1

n is the compo-
sition of the inclusion of Xn+1 into Mn and rn, is said to be the inverse
sequence corresponding to M.

For every n there exists a cellular decomposition of the spectrum S such
that Vn = S−n−1(Sus(Vn)) is a CW subspectrum of S, where Vn is the
complement of the interior of Mn−1 in Sn+1. The decomposition assigned
to n+ 1 is a subdivision of the decomposition assigned to n.

Finally, the sequence 4(M) = {Vn} =
⋃∞
n=1Vn is a CW spectrum.

To shorten notation we shall write {(Mn,Xn)}∞n=1 instead of
{(Mn,Xn), rn}∞n=1.

Lemma 5.1.1. For every compact pair (X,A) there exist defining se-
quences M = {(Mn,Xn), rn}∞n=1 and N = {(Nn, An), r̂n}∞n=1 such that :

(1) X is homeomorphic to the limit of the inverse sequence ∇(M).
(2) A is homeomorphic to the limit of the inverse sequence ∇(N ).
(3) Nn is a subpolyhedron of Mn and Xn ⊃ An.
(4) r̂n : Nn → An is an extension of rn : Mn → Xn.

Proof. There exists an inverse sequence {(Yn, Bn), qn+1
n } of pairs of poly-

hedra such that the bonding morphisms are PL maps, 3 dimYn < n and
(X,A) is homeomorphic to the inverse limit of {(Yn, Bn), qn+1

n }. Observe
that Yn is 0-dimensional for n = 1, 2, 3. We may also assume that Y1 = Y2
is a one-point set.

We shall define M = {(Mn,Xn), rn}∞n=1 inductively. We shall also need
to define PL homeomorphisms hn : Yn → Xn such that

hnq
n+1
n h−1

n+1(x) = rn(x) for every x ∈ Xn+1.(6)

These conditions are satisfied for n = 1, 2 if X1 = X2 is a one-point set. The
sets M1 and M2 must be small contractible closed neighborhoods of X1. The
maps h1, h2, r1 and r2 are defined automatically and equal to the constant
maps.

Assume that Mn−1,Xn, hn and rn−1 are constructed and satisfy (6) for
n < k. The mapping M cylinder of qk+1

k is a polyhedron (see [Ma-Se, p. 295,
Theorem 6]) with 3 dimM < k + 2. By the Unknotting Theorem (see [R,
p. 119]) there exists a PL embedding g : M → Sk+2 such that g(x) =
hk(x) for x ∈ Yk ⊂ M . We may assume that g(M) is a subset of the
interior of Mk × [−1/2, 1/2]. Indeed, a regular neighborhood N of g(M) is
a regular neighborhood of Xk. It follows that there exists a PL isotopy of
Sk+2 which does not move points of Xk and transforms N into a subset of
Int(Mk × [−1/2, 1/2]).

Hence we may find a regular neighborhood Mk of g(M) such that Mk ⊂
Int(Mk−1 × [−1/2, 1/2]). Let Xk+1 = g(Yk+1) and let hk+1 : Yk+1 → Xk+1
be defined by hk+1(x) = g(x) for x ∈ Yk+1 ⊂ M. Clearly, one can find
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a deformation retraction rk : Mk → Xk such that (6) is satisfied for n <
k + 1.

5.2. Substitutes of function spectra of compacta. Assume that
Wn is a proper submanifold in Sn+1 such that S(Wn) ⊂ Wn+1 for every n.
Then � = {Wn} is a CW spectrum. The cellular decomposition of Wn

induces a cellular decomposition of S(Wn) ⊂Wn+1 and one can decompose
into cells the closure of Wn+1 \ S(Wn) in such a way that eventually we get
a cellular decomposition of Wn+1, compatible with the structure of S(Wn)
as a CW complex.

Lemma 5.2.1. Let Xn be a subpolyhedron in Sn+1 and let Wn, Vn,Mn−1
be proper submanifolds of Sn+1 such that :

(1) S(Wn) ⊂ Vn+1 ⊂ Wn+1 and the first inclusion is a homotopy equiv-
alence.

(2) Mn ⊂ Sn+2 \ Vn+1 and the inclusion is a homotopy equivalence.
(3) The inclusions of Xn ⊂ Mn and Xn ⊂ Sn+1 \ Wn are homotopy

equivalences.
(4) Mn is a neighborhood of Xn+1 ∪Xn in Sn+2.

Then D1(X) ∼= W and D2(W) ∼= X, where X = {Sus(Xn),pn+1
n } ∈

Pro-SCWf . The morphism pn+1
n : Sus(Xn+1) → Sus(Xn) is induced by

the composition of the inclusion Xn+1 ⊂Mn and the deformation retraction
r : Mn → Xn. The CW spectrum � n is defined by � n = S−1(Sus(W1)) ∪
S−2(Sus(W2)) ∪ . . . ∪ S−n(Sus(Wn)) and the morphism in+1

n : � n → � n+1

is induced by the inclusion S(Wn) ⊂ Wn+1. The inclusions S(Wn) ⊂ Vn+1
induce an isomorphism of V onto W.

Proof. Without loss of generality (see Remark 1) we may assume that
D(Sus(Xn)) = � n, D(Sus(Xn+1)) = � n+1, D(Sus(Mn)) = S−n(Sus(Wn))
and the images under D of the morphisms induced by the inclusions
Sus(Xn) ⊂ Sus(Mn) and Sus(Xn+1) ⊂ Sus(Mn) are equal to the morphisms
induced by the inclusions S−n(Sus(Wn)) ⊂ � n and S−n(Sus(Wn)) ⊂ � n+1.
Hence D(pn+1

n ) = in+1
n and D1(X) ∼= W.

Proposition 5.2.2. IfM = {(Mn,Xn)}∞n=1 is a defining sequence, then
S(4(M)) is a CW substitute for the spectrum � (X), where X is the inverse
limit of the sequence X = ∇(M).

Proof. This is a consequence of Theorems 4.4.1, 4.5.1 and Lemma 5.2.1.

Corollary 5.2.3. For every compactum X there exists a countable CW
substitute � X for � (X).

Corollary 5.2.4. Let � be a CW spectrum. If a compactum X is hom-
eomorphic to the limit of a sequence {Xk, p

k+1
k } of finite CW complexes and
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{D(Sus(Xk)),D(Sus(pk+1
k ))} is isomorphic to W, then � is a CW substitute

for � (X).

Proof. By the previous lemma there exists a CW substitute � X for
� (X). Corollary shows 4.4.2 that the direct sequences � X and � are iso-
morphic objects of Inj-SCWf .

Since � X is a countable spectrum we infer (see Proposition 1.4.3) that
any isomorphism from � X to � must be represented by a function of spectra
(defined on a cofinal subspectrum of � X). This map generates an isomor-
phism of SCW.

5.3. Spectra which are CW substitutes for function spectra

Proposition 5.3.1. For n = 1, 2, . . . , let Wn be a proper submanifold
in Sn+1 such that S(Wn) ⊂ Wn+1. Then there exists a compactum X such
that � = {Wn} is a CW substitute for � (X).

Proof. Let X1, . . . ,Xk be polyhedra in Sn+1 and for each i = 1, . . . , k
let Ci be a compact subset of Sn+1 \ Xi. There are polyhedra Y1, . . . , Yk
such that Ci ⊂ Yi ⊂ Sn+1 \Xi and Yi is a deformation retract of Sn+1 \Xi

and whenever Xi ⊂ Yj then Yj ⊂ Yi (see [S-W1, p. 58]). Using this fact we
can construct sequences Xn, Mn, Wn and Vn satisfying conditions (1)–(4)
of Lemma 5.2.1.

Proposition 5.3.2. Let � = {Wn} be a CW spectrum such that each
Wn is a finite CW complex which can be embedded in Sn. Then there exists
a shape 1-connected continuum X such that S−1( � ) is a CW substitute for

� (X).

Proof. The space Sn+2 \ Wn = On has the homotopy type of a finite
simply connected and connected CW complex Xn (see [W, p. 67]). Let hn :
On → Xn be a homotopy equivalence. The inclusion i : On → Sn+3 \S(Wn)
is a homotopy equivalence. Indeed, by the Alexander Duality Theorem it
induces isomorphisms of singular homology groups.

Let j : Sn+3 \ Wn+1 → Sn+3 \ S(Wn) denote the inclusion, let r1 :
Sn+3 \ S(Wn) → On and r2 : Xn+1 → Sn+3 \Wn+1 be homotopy inverses
for (respectively) i and hn+1, and set pn+1

n = hnr1jr2 : Xn+1 → Xn.
It follows by the same method as in Proposition 5.3.1 that the inverse

limit X of the sequence {Xn, p
n+1
n } satisfies the required conditions.

5.4. Spectra bounded below with no cells in dimensions > 0

Theorem 5.4.1. Suppose that � is a countable spectrum bounded below
with no cells in dimensions > 0 and πj( � ) = 0 for j < −m < 0. Then
there exists a finite-dimensional compactum X such that S−m−1( � ) is a
CW substitute for � (X).
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Proof. There exists a filtration Y1 ⊂ Y2 ⊂ . . . of � into finite subspec-
tra. Consider the inverse sequence X = { � n,α

n+1
n }, where αn+1

n : � n+1 =
D(Yn+1) → D(Yn) = � n is the Spanier–Whitehead dual for the inclusion
of Yn into Yn+1. It is clear (see Theorem 3.1.1) that πj(X) = 0 for j > −m
and πi( � n) = 0 for i ≤ 0.

We may assume that for every n there exist an index σ(n) > m + 1,
a finite connected CW complex Xn and a map p̂n+1

n : Xn+1 → Sa(n)(Xn),
where a(n) = σ(n+1)−σ(n), such that the following conditions are satisfied:

• σ(n+ 1) > σ(n),
• αn+1

n is induced by p̂n+1
n ,

• πσ(n)−j(Yn) = πj(Xn) = πsj (Xn) = 0 for j = 0, 1, . . . , σ(n)− 1.

The vanishing of the stable cohomotopy groups of X for dimensions
> m implies that the proof can be reduced to the case when p̂n+1

n : Xn+1 →
Sa(n)(Xn) induces a trivial homomorphism of stable cohomotopy groups in
dimensions > m+σ(n+1). Indeed, the stable cohomotopy groups of a finite
CW complex are finitely generated and we can replace X by a suitable
subsequence.

It follows from Lemma 2.1.2 that for sufficiently large k there exist n′ > n
and a map q : Sk(Xn′)→ Sk+σ(n′)−σ(n)(Xn) whose stable homotopy class is
the same as that of pn

′
n : Xn′ → Sσ(n′)−σ(n)(Xn) and q(Xn′) is contained in

the (m+ k + σ(n′)− σ(n))-skeleton of Sk+σ(n′)−σ(n)(Xn).
This means that choosing a suitable subsequence of X we may reduce the

proof to the case when p̂n+1
n (Xn) ⊂ Sa(n)(Vn), where Vn is the (m+ σ(n))-

skeleton of Xn.
Let V = {S−σ(n)(Sus(Vn))} ∈ Ob Pro-SCWf . We denote by q̂n+1

n :
Vn+1 → Sa(n)(Vn) the restriction of p̂n+1

n to Vn+1 and by in : S−σ(n)(Sus(Vn))
→ � n the morphism of spectra induced by the inclusion Vn ⊂ Xn. Theo-
rem 3.2.1 implies that i = {in} ∈ Pro-SCWf (V,X) is an isomorphism.

Since Vn is a (σ(n) − 1)-connected finite CW complex with dimension
< m+σ(n) we infer that there exist a finite CW complexWn and a homotopy
equivalence fn : Sσ(n)−m−1(Wn) → Vn such that dimWn ≤ 2m (see [S2,
p. 461, Exercise D1]).

The Freudenthal Suspension Theorem implies that there exists a map
qn+1
n : Wn+1 →Wn such that [Sσ(n+1)−m−1(qn+1

n )] = [Sa(n)(fn)][q̂n+1
n ][gn+1],

where gn denotes the homotopy inverse of fn for every n (see the diagram).

Vn+1

q̂n+1
n ��

Sσ(n+1)−m−1(Wn+1)
gn+1oo

Sσ(n+1)−m−1(qn+1
n )

��
Sa(n)(Vn)

Sa(n)(fn) // Sσ(n+1)−m−1(Wn)
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Let W = {S−m−1(Sus(Wn))} ∈ Ob Pro-SCWf and let g = {gn} ∈
Pro-SCWf (V,W) be a morphism, where gn denotes the morphism of spec-
tra induced by gn : Vn → Sσ(n)−m−1(Wn). It follows from Theorem 3.2.1 that
g is an isomorphism. Hence ig : S−m−1(W) → X is also an isomorphism,
D1(S−m−1(W)) ∼= D1(X) ∼= � and D1(W)) ∼= S−m−1( � ).

By Theorem 4.4.1, we infer (Remark 5) that S(−m−1)( � ) is a CW
substitute for � (X), where X is the inverse limit of the inverse sequence
{Wn, q

n+1
n }.

Corollary 5.4.2. For every countable CW complex W with dimW ≤ n
and −m > 2n + 2 there exists a continuum X such that Sm(Sus(W )) is a
CW substitute for � (X).

6. DUALITY

6.1. Main theorems

Theorem 6.1.1. For every pair X, Y of compact Hausdorff spaces and
every pair ( � X ,α), ( � Y ,β) of CW substitutes for (respectively) � (X) and

� (Y ) there exists an isomorphism DX,Y( � X , � Y ) =D : ShStab(X,Y )→〈 � Y , � X〉
such that :

(i) If (VX ,α′) and (VY ,β′) are also CW substitutes for (respectively)
� (X) and � (Y ) then the diagram

� Y

〈ξX〉
��

DX,Y( � X, � Y )(f)
// � X

〈ξY 〉
��

VY
DX,Y(VX,VY )(f)

// VX
commutes for every stable shape morphism f ∈ ShStab(X,Y ), where ξX :
� X → VX and ξY : � Y → VY are canonical (unique) isomorphisms of
spectra.

(ii) D(g◦ f) = D(f)◦D(g), where f ∈ ShStab(X,Y ), g ∈ ShStab(Y,Z).
(iii) D(iX) = 〈i � X 〉, where iX ∈ ShStab(X,X) and i � X denote respec-

tively the stable shape morphism induced by the identity map of X and the
morphism i � X : � X → � X induced by the identity of � X .

(iv) hnY (X) ∼= hnX(Y ), where {hnY } and {hnX} denote (respectively) the
cohomology theories associated with � Y and � X .

(v) If Y is a compactum, then hn� (X∧Y ) ∼= hn� ∧ � Y (X), where {hn� } and
{hn� ∧ � Y } denote the cohomology theories associated with

�
and

� ∧ � Y .

Proof. We have the duality isomorphism (see Definition 1) D1 :
Pro-SCWf (X,Y) → Inj-SCWf (D1(Y),D1(X)) which is natural with re-
spect to morphisms of Pro-SCWf . There also exist (see Theorem 4.4.1)
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canonical isomorphisms χX : D1(X) → WX and χY : D1(Y) → WY . Let
DX,Y( � X , � Y )(f) = D(f)χY D1(f)χ−1

X for every f ∈ ShStab(X,Y ).
Observe that hnY (X) ∼= (hY )−n( � X) ∼= (hX)−n( � Y ) ∼= hnX(Y ) (see [A1,

p. 198]).
It remains to prove (v) in the case when X is a finite CW complex

(see [Sw, pp. 255 and pp. 268]). We may also assume that Y is the inverse
limit of a sequence {Yk, qk+1

k } of finite CW complexes and that there ex-
ists a filtration � 1 ⊂ � 2 ⊂ . . . of � Y such that � k is a finite spectrum
and D(Sus(Yk)) = � k for every k. Then hn� (X ∧ Y ) ∼= lim−→hn� (X ∧ Yk) ∼=
lim−→hn� ∧ � k(X) ∼= hn� ∧ � Y (X).

Remark 7. There are close connections and similarities between the
results of [Mi] and [Mi-Se2] and Theorem 6.1.1. Generally speaking, [Mi]
contains a version of the duality described in Theorem 6.1.1. It is mainly
restricted to metrizable compact spaces. Some facts there are almost the
same (for example the assertions (i) of Theorem 4.1 from [Mi] and (iv) of
Theorem 6.1.1), others are sharper and limited to narrower classes of objects.

In [Mi-Se2] the authors study the stable shape category of all compact
Hausdorff spaces and assign to such a space X a generalized homology the-
ory H∗. Next, using a representation theorem, they consider the CW spec-
trum E representing H∗. In this way they construct a full embedding of
the category ShStab into the category of CW spectra with weak homotopy
classes as morphisms.

We believe that this construction gives the same result as described in
Theorem 6.1.1 when Cs(X),Cs(Y ) < ∞ or when the stable cohomotopy
groups of Y are countable.

Remark 8. In the light of Theorem 6.1.1, the Whitehead Theorem for
stable shape 3.2.2 corresponds to the assertion that a natural transformation
from a generalized cohomology theory H∗ = {hn} to a generalized cohomol-
ogy theory K∗ = {kn} is a natural equivalence iff it induces isomorphisms
from hn(S0) to kn(S0) for every n.

Hence Theorem 3.2.2 can be obtained as a corollary of the above fact.
Notice also that the proof of Theorem 4.4.1 requires Theorem 3.3.1, which
is dual to Theorem 3.2.1.

Corollary 6.1.2. For every compact Hausdorff space X and every CW
substitute � X for � (X) there exists an isomorphismAq : πq(X)→ π−q( � X)
such that the diagram

πq(Y )
Aq ��

πq(f) // πq(X)
Aq��

π−q( � Y )
π−qD(f) // π−q( � X)

commutes for every q.
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Corollary 6.1.3. If X,Y are compact Hausdorff space such that
Cs(X), Cs(Y ) < ∞ and � X , � Y are CW substitutes for � (X), � (Y ), then
the canonical homomorphism from the group [ � Y , � X ]w to 〈 � Y , � X〉 is an
isomorphism.

Proof. The spectra � X and � Y are bounded below if and only if Cs(X),
Cs(Y ) <∞. By Proposition 1.4.3 we get [ � Y , � X ]w ∼= 〈 � Y , � X〉.

6.2. Compacta with Cs(X) <∞
Theorem 6.2.1. Let X be a compactum. Then the following conditions

are equivalent :

(i) Cs(X) <∞.
(ii) There exist a finite-dimensional CW complex WX and l ∈ Z such

that Sl(Sus(WX)) is a CW substitute for � (X).
(iii) There exist a CW complex WX and l ∈ Z such that Sl(Sus(WX)) is

a CW substitute for � (X).
(iv) There exist a CW spectrum � X bounded below which is a CW sub-

stitute for � (X).

Proof. If max{n : πns (X) 6= 0} = N < ∞, then there exists a com-
pactum Y such that ShStab(Y ) = ShStab(SN+2(X)) and dimY ≤ N + 2
(see Lemma 2.3.1). We may assume that Y ⊂ S8N . Let WX = S8N \ Y .
Then the spectrum � X = S−8N+1(Sus(WX)) is a CW substitute for � (Y )
(see [K-K-S]). On the other hand, S3−6N( � X) is a CW substitute for � (X).
Hence (i) implies (ii).

It is obvious that (ii) implies (iii) and (iii) implies (iv).
It is known that πns (X) ∼= π−n( � X). Therefore if � X is bounded below,

then πqs(X) = 0 for sufficiently large q.

By CN we denote the class of all compacta X with Cs(X) ≤ N ∈ Z. By
the Menger–Nöbeling Theorem for every X ∈ CN there exists a stable shape
isomorphism ξX : SN+2(X)→ X̃, where X̃ is a closed subset of S4N+5 with
dim X̃ ≤ 2(N + 2).

Corollary 6.2.2. Suppose that ξX : SN+2(X)→ X̃ and ξY : SN+2(Y )
→ Ỹ are stable shape isomorphisms, where X,Y ∈ CN and X̃, Ỹ are closed
subsets of S4N+5. Then there exists an isomorphism

DX,Y(ξX ,ξY ) = D : ShStab(X,Y )→ {S4N+5 \ Ỹ , S4N+5 \ X̃}w
such that the following conditions are satisfied :

(i) D(g◦f)=D(f)◦D(g), where f ∈ShStab(X,Y ) and g∈ShStab(Y,Z).
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(ii) D(iX) = {iS4N+5\X̃}w, where iX ∈ ShStab(X,X) and iS4N+5\X̃ :

S4N+5 \ X̃ → S4N+5 \ X̃ denote respectively the stable shape morphism
induced by the identity map of X and the identity map of S4N+5 \ X̃.

6.3. Stable shape classification of continua with one nontrivial
reduced cohomology group

Proposition 6.3.1. If X and Y are continua with Cs(X),Cs(Y ) < ∞
and Hq(X;Z) = 0 = Hq(Y ;Z) for every 0 < q 6= n, then ShStab(X) =
ShStab(Y ) if and only if Hn(X;Z) ∼= Hn(Y ;Z).

Proof. Clearly Hn(X;Z) ∼= Hn(Y ;Z) if ShStab(X) = ShStab(Y ).
Conversely, suppose that Hn(X;Z) ∼= Hn(Y ;Z) ∼= G. If ShStab(Sk(X))

= ShStab(Sk(X)) for some k, then ShStab(X) = ShStab(Y ) (see Proposi-
tion 1.4.1). Hence we can reduce the proof to the case when dimX = n =
dimY (see Lemma 2.3.1). We embed X and Y into the sphere S2n+1 ⊂ Sm.
For sufficiently large m the complements Sm \ X and Sm \ Y are sim-
ply connected ANR’s with vanishing reduced homology groups in dimen-
sions 6= l = m − n − 1. The Alexander Duality Theorem also implies that
Hl(Sm \X;Z) ∼= Hl(Sm \ Y ;Z).

We may replace (up to homotopy) X and Y by CW complexes P and Q
with dimP,dimQ ≤ l + 1 ([W, p. 62]). There are CW complexes P̂ and Q̂

such that πl(P̂ ) ∼= G ∼= πl(Q̂), πi(P̂ ) = 0 = πi(Q̂) for i 6= l and P̂ (l+1) = P ,
Q̂(l+1) = Q. This shows that there is a cellular map f̂ : P̂ → Q̂ such that
πi(f̂) : πi(P̂ )→ πi(Q̂) is an isomorphism for every i.

Setting g(x) = f̂(x) for every x ∈ P we define a map g : P → Q such
that πl(g) : πl(P )→ πl(Q) is an isomorphism.

From the Hurewicz Theorem ([S2, p. 390]) we conclude that Hl(g) :
Hl(P ;Z) → Hl(Q;Z) is an isomorphism and finally that g is a homotopy
equivalence.

We now apply Corollary 6.2.2 to deduce that there is an f ∈ShStab(X,Y )
which is an isomorphism.

6.4. Movable compacta. Suppose that a compactum Y is the inverse
limit of a sequence {Yn, qn+1

n } , where Yn is a polyhedron for every n. Fol-
lowing [Mi-Se1], we say that Y is stable movable if Y = {Sus(Y ),Sus(q)n+1

n }
is a movable object ([Ma-Se, p. 159]) of Pro-SCWf .

Theorem 6.4.1. If Y is a stable movable compactum, then the canonical
projection of [ � Y , � X ] onto [ � Y , � X ]w is an isomorphism.

Proof. Let hSt
k (Y ) denote the kth Steenrod homology group of Y (see

[K-K-S]) corresponding to the reduced generalized homology theory as-
sociated with the spectrum � X . It is known (see [K-K-S, p. 203]) that
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hSt
0 (Y ) = [ � Y , � X ]. We also have (see [K-K-S]) the exact sequence

0→ lim 1hSt
1 (Yn)→ hSt

0 (Y )→ lim←−h0(Yn)→ 0.

Proposition 1.3.1 implies that lim←−h0(Yn) = [ � Y , � X ]w. If Y is a stable
movable compactum, then lim 1hSt

1 (Yn) is a trivial group (see [Ma-Se, p. 165
and pp. 173]). Hence the canonical projection from [ � Y , � X ] to [ � Y , � X ]w
is an isomorphism.

7. COMPACT SPACES HAVING METRIZABLE OR POLYHEDRAL
REPRESENTATIVES UP TO STABLE SHAPE

7.1. Compact spaces having countable CW substitutes for � (X)

Theorem 7.1.1. The following conditions are equivalent :

(a) There exists a countable CW spectrum � which is a CW substitute
for � (X).

(b) There exists a compact metric space Y such that ShStab(X) =
ShStab(Y ).

(c) The stable cohomotopy groups of X are countable.

Proof. (a)⇒(b). We can assume that X is the inverse limit of a system
X = {Xσ, p

σ
τ , Σ} of finite CW complexes. Let ( � ,αX) be a CW substitute

for � (X), where � is a countable spectrum and αX : � → � (X) is a function
of spectra. There exists a filtration � 1 ⊂ � 2 ⊂ . . . of � such that � i is a
finite CW spectrum for i = 1, 2, . . .

Consider the inverse sequence Y = {Yn,qn+1
n }, where D( � i) = Yi and

the bonding morphisms are duals to the inclusions of � i into � i+1. The
sequence Y is isomorphic as an object of Pro-SCWf to the inverse system
X̂ = {Sus(Xσ),pστ , Σ}, where pστ denotes the morphism of spectra induced
by pστ (see Theorem 3.1.1).

Let f̂ = (φ, f̂n) : X̂ → Y be an isomorphism and ĝ = (φ, ĝσ) : Y → X̂

be an inverse for f̂ , where φ : N → Σ, ψ : Σ → N, f̂n : � φ(n) → Yn and
ĝσ : Yψ(σ) → � σ. Using induction one can show that for every n ∈ N there
exist morphisms fn : � σ(n) → Ya(n) and gn : Ya(n+1) → � σ(n) such that

fngn = qa(n+1)
a(n) , gnfn = pσ(n+1)

σ(n) ,(7)

where σ(n) < σ(n+ 1) and a(n) < a(n+ 1).
Let σ(1) = φ(1), f1 = f̂1, a(1) = 1. Then there exists a(2) > ψ(1) such

that qa(2)
a(1) = fkgσ(1)q

a(2)
ψ(σ(1)). Let g1 = gσ(1)q

a(2)
ψ(σ(1)).

Suppose that fk : � σ(k) → Ya(k) and gk : Ya(k+1) → � σ(k) have been
constructed. Then there exist σ(k + 1) ∈ Σ and a(k + 2) ∈ N such that
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gk f̂a(k+1)p
σ(k+1)
φ(a(k+1)) = pσ(k+1)

σ(k) and f̂a(k+1)ĝφ(a(k+1))q
a(k+2)
ψ(a(k+1)) = qa(k+2)

a(k+1). Let

fk+1 = f̂a(k+1)p
σ(k+1)
φ(a(k+1)) and gk+1 = ĝφ(a(k+1))q

a(k+2)
ψ(a(k+1)). This means that

(7) is satisfied for every n (see the diagram).

. . . Sus(Xσ(k))oo

fk
��

Sus(Xσ(k+1))
pσ(k+1)
σ(k)oo

fk+1
��

Sus(Xσ(k+2))
pσ(k+2)
σ(k+1)oo

fk+2
��

. . .oo

. . . Ya(k)oo Ya(k+1)
qa(k+1)
a(k)

oo
gk

iiRRRRRRRRRRR
Ya(k+2)

qa(k+2)
a(k+1)

oo
gk+1

iiSSSSSSSSSSSS
. . .oo

The inverse sequence X̃ = {Sus(Xσ(n)),p
σ(n+1)
σ(n) } is a subsystem of X̂

and πms (X̃) ∼= πms (Y) ∼= πms (X̃) for every m. Moreover, the restriction mor-
phism from X̂ to X̃ induces isomorphisms of stable cohomotopy groups in
all dimensions.

Theorem 3.2.1 implies that the restriction morphism is an isomorphism
and the inverse limit Y of the sequence X̃ is a compactum with the same
stable shape as X.

(b)⇒(c). The stable cohomotopy groups are invariants of the stable
shape. It is also clear that the stable cohomotopy groups of a compactum
are countable.

(c)⇒(a). Suppose that the stable cohomotopy groups of X are countable
and the pair (

�
,κ) is a CW substitute for � (X), where

�
= {En, εn} is

an Ω0-spectrum (see [A1, p. 150] and Remark 5) and κ = {κn}. Since
πr(En) ∼= πr−n(

�
) for r = 1, 2, . . . ([A1, p. 134]), we infer that there are

countable CW complexes Fn and homotopy equivalences fn : Fn → En
([L-W, p. 137, Theorem 6.1]).

Consider the map δn = f−1
n+1εnS(fn) : S(Fn) → Fn+1, where f−1

n+1 is
a homotopy inverse of fn+1. Replacing En by the telescope Wn of the se-
quence of maps δn, S(δn−1), S2(δn−2), . . . ,Sn−1(δ1) we get (see [Sw, p. 134,
Proposition 8.3]) a CW spectrum � = {Wn} and homotopy equivalences
gn : Wn → Fn. The properties of the telescope construction guarantee that
� is countable. The diagram

S(Wn)

S(κnfngn)
��

// Wn+1

κn+1fn+1gn+1
��

S(Map(X,Sn)) // Map(X,Sn+1)

commutes up to homotopy.
By [Sw, Lemma 10.4, p. 173]) there exists a function α = {αn} : � →

� (X) such that αn ' κnfngn : Wn →Map(X,Sn). The pair ( � ,α) is a CW
substitute of � (X).
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Remark 9. T. Watanabe [Wa] characterized topological spacesX which
have the shape of compact metric spaces. The existence of a compactum Y
with the same shape as X is equivalent to countability of [X,P ] for every
finite CW complex P. From this he deduced that X has the shape of a
compactum if and only if X is shape dominated by a compactum.

Corollary 7.1.2. A compact Hausdorff space X has the stable shape of
a compactum if and only if there exists a compactum Y such that ShStab(X)
≤ ShStab(Y ).

Proof. If ShStab(X) ≤ ShStab(Y ), then πns (Y ) r-dominates πns (X) and
(see [Bo, p. 18]) the group πns (X) is a direct summand of πns (Y ). Hence, if
πns (Y ) is countable, then πns (X) is countable.

Corollary 7.1.3. Let X,Y be compact Hausdorff spaces and � X , � Y

be CW substitutes for � (X), � (Y ). If the stable cohomotopy groups of Y are
countable, then the canonical homomorphism from the group [WY , � X ]w to
〈WY , � X〉 is an isomorphism.

Proof. This is a consequence of Theorem 7.1.1 and Proposition 1.4.3.

7.2. Integral cohomology of X with Cs(X) < ∞. It is known
([Hu, Chapter X, p. 298]) that there exists a canonical homomorphism
hn : πns (X)→ Hn(X;Z).

Let C be a collection of Abelian groups. C is called a class of Abelian
groups if it satisfies the following conditions:

(1) If the sequence 0→ G1 → G2 → G3 → 0 is exact, then G2 is in C if
and only if G1 and G3 are in C.

(2) If G is in C, then Hr(G;Z) is in C.
A homomorphism f : G → H is a C-isomorphism if Kerf and Cokerf

are in C.
Theorem 7.2.1. Suppose that X is a compact Hausdorff space with

Cs(X) < ∞. Then Cs(X) = max{n : Hn(X;Z) 6= 0} and for every class C
of Abelian groups the following two conditions are equivalent :

(i) The stable cohomotopy groups πks (X) are in C for k > n.
(ii) The cohomology groups Hk(X;Z) are in C for k > n.

Furthermore, either implies that hn : πns (X)→ Hn(X;Z) is a C-isomor-
phism.

Proof. The dual � = D(X) of X with Cs(X) < ∞ is a spectrum
bounded below. For the class of spectra bounded below one can develop
Serre’s C-theory. In particular ([Ma, p. 91]), if � is bounded below and ei-
ther πr( � ) is in C for r < m or Hr( � ;Z) is in C for r < m then the Hurewicz
homomorphism hr : πr( � )→ Hr( � ;Z) is a C-isomorphism for r ≤ m.
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The Hurewicz homomorphism hr : πr( � ) → Hr( � ;Z) corresponds to
h−r : π−rs (X)→ H−r(X;Z) under the duality described in Theorem 6.1.1.

Example 1. Let us denote by X the Adams–Kahn continuum (see [A2],
[K] and [Ma-Se, p. 153]). We know that Cs(X) = Cs(X) = ∞ and max{n :
Hn(X;Z) 6= 0} = 0. If � X is a CW substitute for the function spectrum

� (X), then the homology groups Hk( � X) are the same as the homology of
the trivial spectrum (i.e. the suspension spectrum of the singleton). Hence
the constant map of � X into the trivial spectrum induces isomorphisms of
homology groups. The spectrum � X has πk( � X) 6= 0 for infinitely many
k ∈ Z. It follows that the constant map does not induce isomorphisms of
homotopy groups. It is also clear that the stable cohomotopy groups of � X

are trivial (compare [Li]).

Corollary 7.2.2. Let X and Y be compacta such that Cs(X),Cs(Y )
<∞. Then Cs(X ∧ Y ),Cs(X × Y ) <∞.

Corollary 7.2.3. Let X be a compact Hausdorff space such that
Cs(X) <∞. Then the following conditions are equivalent :

(i) There exists a compact metric space Y such that ShStab(X) =
ShStab(Y ).

(ii) Hn(X;Z) are countable for every n.

Proof. See Exercise A1 from Chapter X of [Hu].

Corollary 7.2.4. Let X be a compact Hausdorff space such that
Cs(X) <∞. Then the following conditions are equivalent :

(i) There exists a finite CW complex P with the same stable shape as
Sk(X), for some k ≥ 0.

(ii) Hn(X;Z) is finitely generated for every n.

Corollary 7.2.5. Let X and Y be compact Hausdorff spaces such that
Cs(X),Cs(X) <∞. A stable shape morphism f : X → Y is an isomorphism
iff Hn(f) : Hn(Y ;Z)→ Hn(X;Z) is an isomorphism for every n.

8. APPLICATIONS, PROBLEMS AND FINAL REMARKS

8.1. Generalized cohomological dimension. Let H = {hn} be a
generalized cohomology theory defined on the category HCWf and satis-
fying the condition

dH = max{n : hn(S0) 6= 0} = 0.

The notion of cohomological dimension with respect to a connected spec-
trum

�
was introduced in [D1] . We formulate the definition of generalized

dimension in terms of the cohomology theory H (represented by
�
) instead
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of
�
. Roughly speaking the connectedness of

�
corresponds to the condition

dH = 0.
Let n be a natural number. A compactum X has cohomological dimen-

sion at most n with respect to H (H-dimX ≤ n) if for every closed subsetA of
X the inclusion i : A→ X induces an epimorphism hm(i) : hm(X)→ hm(A)
for every m ≥ n. If it is not true that H-dimX ≤ n, then H-dimX > n. If
H-dimX > n for every n, then H-dimX =∞.

A. N. Dranishnikov ([D1], [D2]) also studied the cohomotopical dimension
π-dim, i.e. the generalized cohomological dimension with respect to the sta-
ble cohomotopy theory. In particular he has proved that π-dimX = dimX
for every finite-dimensional X, and π-dimX = ∞ if X is strongly infinite-
dimensional or X is a C-compactum. In [D2] an example of a strongly
infinite-dimensional compactum Y with dimZ Y = 3 is described.

The next theorem (see [D1, equivalence (3) and p. 250]) is analogous to
the classical fact of the cohomological dimension theory and can be obtained
in a similar way.

Theorem 8.1.1. For every natural number n the following conditions
are equivalent :

(1) H-dimX ≤ n.
(2) The inclusion i : A → X induces an epimorphism hn(i) : hn(X) →

hn(A) for every closed subset A of X.
(3) hn+1(X/A) = 0 for every closed subset A of X.

Theorem 8.1.2. Let H be a generalized cohomology theory and X be a
compactum. Then:

(i) H-dimX ≤ π-dimX.
(ii) If dimZX < H-dimX then π-dimX =∞.

(iii) If Y is a compactum and H-dim(X × Y ) = ∞ then π-dimX = ∞
or π-dimY =∞.

Proof. We may assume that H is represented by a CW spectrum
�

H =
{En} such that En is n-connected for every n. Then (i) and (ii) are conse-
quences of Corollary 2.3.5 and Theorem 7.2.1, while (iii) is a consequence
of Corollary 7.2.2.

8.2. Problems. Suppose that P and Q are connected and simply con-
nected CW complexes. A map f : P → Q is a homotopy equivalence iff it
induces isomorphisms of homology groups with integer coefficients. It fol-
lows easily that f is a homotopy equivalence iff it is a stable homotopy
equivalence.

Analogously if X and Y are shape 1-connected finite-dimensional con-
tinua then a shape morphism f : X → Y is a shape equivalence iff it induces
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isomorphisms of all Čech cohomology groups with coefficients in Z. The last
condition holds if and only if f is a stable shape equivalence.

Problem 1. Let X and Y be shape 1-connected continua (or more gen-
erally Hausdorff continua). Is it true that a shape morphism f : X → Y is an
isomorphism when it induces isomorphisms of stable cohomotopy groups?

Problem 2. Let X be a shape 1-connected continuum with all stable
cohomotopy groups vanishing. Is it true that X has trivial shape?

In [H] H. W. Henn considered (apart from the category ShStab) the
category StabSh with the same class of objects as ShStab and with the
morphisms defined by the formula

StabSh(X,Y )

= lim−→ Sh(X,Y )→ Sh(S(X),S(Y ))→ Sh(S2(X),S2(Y ))→ . . .}.
There exists a homomorphism H : StabSh(X,Y ) → ShStab(X,Y ) preserv-
ing the compositions of morphisms. Henn proved that H is an isomorphism
when the space X is finite-dimensional.

Problem 3. Is H an isomorphism when Cs(X) <∞?

Problem 4. Let X and Y be shape 1-connected continua. Is it true that
f ∈ Sh(X,Y ) is an isomorphism iff H(f) is an isomorphism?

Problem 5. Let X be a compact Hausdorff space with Cs(X) <∞. Do
there exist a finite-dimensional compact space Y and an index l such that
Y has the same stable shape as the l-fold suspension of X?

Problem 6. Is it true that for every compact Hausdorff space X there
exist an integer N and a CW substitute � X for � (X) with no cells in
dimensions > N?

Problem 7. Let X be a compact Hausdorff with Cs(X) <∞. Do there
exist a CW complex W and an index l such that Sl(Sus(W )) is a CW
substitute for � (X)?

An affirmative answer to Problem 6 would imply an affirmative answer
to Problem 7.

Problem 8. Let
�

be a CW spectrum with no cells of dimensions > 0.
Under what conditions does there exist a compact space X such that

�
is a

CW substitute for � (X)? Is it true that such an X exists when
�

is bounded
below?

Problem 9. Characterize compact Hausdorff spaces having the same
stable shape as a compact space with weight ≤ m, where m ≥ ℵ0 is a
cardinal number. Is it true that X belongs to this class if and only if there
is a CW substitute � for � (X) having no more than m cells?
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Problem 10. Is it true that π−dimX = dimX for every compact metric
space X?
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