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Stable cohomotopy groups of compact spaces
by

Stawomir Nowak (Warszawa)

Abstract. We show that one can reduce the study of global (in particular cohomo-
logical) properties of a compact Hausdorff space X to the study of its stable cohomotopy
groups ¥ (X).

Any cohomology functor on the homotopy category of compact spaces factorizes via
the stable shape category ShStab. This is the main reason why the language and technique
of stable shape theory can be used to describe and analyze the global structure of compact
spaces.

For a given Hausdorff compact space X, there exists a metric compact space with the
same stable shape iff the stable cohomotopy groups of X are countable. If 75 (X) = 0
for almost all n > 0 and the integral cohomology groups of X are countable (respectively
finitely generated) for all n, then the k-fold suspension of X has the same stable shape as a
finite-dimensional compact metric space (respectively a finite CW complex) for sufficiently
large k.

There is a duality between compact Hausdorff spaces and CW spectra under which
stable cohomotopy groups of X correspond to homotopy groups of the CW spectrum W x
assigned to X and the class of all X with €*(X) = max{k : 7%(X) # 0} < oo corresponds
to the class of spectra bounded below.

The notion of the cohomological dimension $-dim X with respect to a generalized
cohomology theory §) is studied. In particular we show that w-dim X > $)-dim X for every
$ and w-dim X = oo if w-dim X > dimy X, where 7 is the stable cohomotopy theory and
dimy X is the integral cohomological dimension. The following question remains open:
does w-dim X coincide with dim X?

Consider a reduced generalized cohomology theory $* = {h"} defined on
the homotopy category HCW of finite pointed CW complexes. It consists of
a family of contravariant functors h™ : HCWy — AB together with a family
of natural equivalences €” : h"*1 — h" . S, where AB denotes the category
of Abelian groups and S the reduced suspension functor ([Sw, p. 124]).

The Cech cohomology groups h™(X) of a compact Hausdorff space X are
equal to the direct limit of the system {h"(|N(«)|)}, where « varies over the
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finite open coverings of X. The generalized Cech cohomology groups com-
mute with limits of compact spaces (the continuity property). Cohomology
functors are particularly suited for applications in which compact spaces are
mapped into locally nice spaces such as CW complexes and ANR’s.

Suppose that the reduced cohomology theory $* = {h"} is associated
with a CW spectrum E = {E,} and X is a compact Hausdorff space. The
nth cohomology group h™(X) of X is isomorphic to the direct limit of the
sequence {[X, E,] — [S(X), Eny1] — [S%(X), Eny2] — ...}. In particular
the stable cohomotopy groups 77 (X) of X are isomorphic to the direct limit
lim{[S*(X), 54}

Shape theory (respectively stable shape theory) is a modification of ho-
motopy theory (respectively stable homotopy theory), specially designed
for the study of spaces with complicated local properties. The stable shape
category ShStab is a proper framework for studying properties of Cech co-
homology functors and relationships between them. It is convenient because
each stable shape morphism induces a homomorphism of cohomotopy groups
and the morphism induced by a homotopy class depends only on the stable
shape morphism which is induced by this class.

In the late eighties it was realized that the Cech S-category, introduced
thirty years before (and nine years before the advent of shape theory) by
E. Lima (see [L, p. 112]), was indeed the stable shape category. The paper
[L] contains results important for shape theory in general. One of them cor-
responds to the Whitehead theorem in homotopy theory and states that the
stable shape morphism between compact metric spaces is an isomorphism
of the stable shape category if and only if it induces isomorphisms of all
stable cohomotopy groups. This implies that if the stable shape morphism
induces isomorphisms of stable cohomotopy groups, then it must induce
isomorphisms of cohomology groups for any generalized cohomology theory.

For classical shape theory there are results analogous to the Whitehead
Theorem for the homotopy category of CW complexes. Roughly speaking, a
shape morphism is an isomorphism if and only if it induces isomorphisms of
homotopy progroups (see [Ma-Se, p. 143]). In contrast to the classical case,
we must assume that the spaces are finite-dimensional in a certain sense.
T. Miyata and J. Segal have shown (see [Mi-Sei]) that under reasonable
assumptions the same theorem holds for the generalized stable shape cate-
gory whose objects are spaces and spectra (this category contains the stable
shape category as a subcategory [Mi-Se;]). Instead of homotopy progroups
they consider stable homotopy progroups. In this case a variant of finite-
dimensionality is also essential (see [Mi-Se;, Example 6.3, p. 163]).

The Lima Theorem covers the case of infinite-dimensional compacta.
It generalizes the Co-Whitehead Theorem in stable homotopy theory ([F,
p. 136]) and is a suitable version of the Whitehead Theorem for stable shape.
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The present paper contains a generalization of the Lima Theorem to the
case of all compact Hausdorff spaces (see also Remark 8). Additionally we
find conditions which guarantee that the stable cohomotopy groups can be
replaced by the cohomology groups with integer coefficients (see Example 1).

Suppose that $* = {h"} is a reduced generalized cohomology theory and
X # () is a compact Hausdorff space. The global generalized cohomological
dimension of X with respect to $ is —oo if h™(X) = 0 for every m, and
otherwise it is max{n : h"(X) # 0}. In particular, if X has trivial stable
shape (i.e. ShStab(X) = ShStab({point})), then the global dimension of X
with respect to $ is —oo.

The global generalized cohomological dimension of X with respect to the
stable cohomotopy theory is denoted by €*(X). Observe that €%(S%) = 0
and €%(X) is either nonnegative (possibly co) or —oo.

THEOREM A (cf. Theorem 3.2.2 and Corollary 7.2.5). Let X and Y be
compact Hausdorff spaces. A morphism £ € ShStab(X,Y') is an isomorphism
iff it induces isomorphisms of stable cohomotopy groups in dimensions > 0.
If €5(X),¢%(Y) < oo, then £ induces isomorphisms of all stable cohomotopy
groups if and only if it induces isomorphisms of all Cech cohomology groups
with integer coefficients.

As an application we find that the inclusion i : A — X of a closed subset
A of a compact Hausdorff space X is a stable shape equivalence if and only
if X/A has trivial stable shape.

In ShStab it is often useful and important to be able to replace a compact
Hausdorff space by a simpler one (metrizable, finite-dimensional, a finite CW
complex).

THEOREM B (cf. Theorems 7.1.1,2.3.4,7.2.1 and Corollaries 7.2.3, 7.2.4).
Let X be a compact Hausdorff space. Then:

(1) X has the stable shape of a compactum (i.e. compact metric space)
if and only if the stable cohomotopy groups of X are countable.

(2) If €3(X) < o0, then €°(X) = max{n : H"(X;Z) # 0}.

(3) If €(X) < oo, then the stable cohomotopy groups are countable
(respectively finitely generated) if and only if the integral cohomology groups
are countable (respectively finitely generated).

(4) If €5(X) < o0, then the integral cohomology groups of X are finitely
generated if and only if there exists a finite CW complex P with the same
stable shape as the k-fold suspension of X for some k > 0.

(5) If max{0,€°(X)} = N < oo and the integral cohomology groups of
X are countable then there exists a compact metric space Y with the same
stable shape as the (N + 2)-fold suspension of X such that dimY < 2N + 2.
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There is a curious duality between the class of all compact spaces and
CW spectra. The class of all spaces satisfying €%(X) < oo corresponds to
the class of spectra that are bounded below.

The main purpose of [L] was to generalize the Spanier—Whitehead Dual-
ity to the case of compact subsets of S™. E. Lima proved that the complement
S™\ X is a dual object of X and that the group [S™\ Y, S™ \ X], of weak
homotopy classes is isomorphic to ShStab(X,Y’). The papers [Ba;], [Bas],
[D-P], [H-N], [H] contain generalizations or strengthenings of Lima’s result,
but their authors focus attention on the case of finite-dimensional spaces.

The existence of an embedding of the stable shape category ShStab into
the weak homotopy category of spectra was shown by J. Segal and T. Miy-
ata in [Mi-Seg]. The method of proof suggests (compare [Sw, p. 165 and
Remark 2 on p. 331]) that they use a different notion of weak homotopy
classes between CW spectra than defined here (see also Remark 4).

In 1999 T. Miyata [Mi] obtained an extension of the Spanier—Whitehead
Duality to the generalized stable shape category (see Remark 7) and proved
that for every compactum X there exists a dual object, a CW spectrum.
In general, the papers [Mi], [Mi-Se;] and [Mi-Ses] contain results which are
similar or parallel to those presented here (see Remarks 4 and 7).

In 1998, during the Dubrovnik Conference on Geometric Topology,
the author presented another construction of the dual CW spectrum for
a metrizable compact space. The next theorem generalizes that result.

THEOREM C (cf. Theorems 6.1.1, 6.4.1, Corollaries 6.1.3 and 7.1.3). Let
X andY be compact Hausdorff spaces and let Wx and Wy be CW substitutes
of the function spectra (respectively) F(X) and F(Y'). Then:

(i) There exists an isomorphism D?\;’;wy) = D : ShStab(X,Y) —
(Wy,Wx) of the Abelian group ShStab(X,Y’) onto the group (Wy,Wx) of
all natural transformations from the associated cohomology theory $v, to
Hwy - Both cohomology theories are defined on the homotopy category HCW ¢
of finite CW complezes.

(i) If Wy is countable or €*(X),€*(Y') < oo, then (Wy,Wx) is canon-
ically isomorphic to the group Wy, Wx|y of weak homotopy classes.

(iii) AP (X) = W% (Y), where Hw, = {h{}} and Hv, = {h'%}.

(iv) If Y is a metrizable space, then hg(X NY) = hiny, (X), where
{he} and {hiny, } denote the cohomology theories associated with E and
EAWy.

(v) If Y is a movable metrizable space, then (Wy,Wx) is isomorphic
to the group Wy, Wx| of homotopy classes.

(vi) X has the stable shape of a compactum if and only if Wx is iso-
morphic to a countable spectrum.
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(vil) Wx is isomorphic to a finite CW spectrum iff there exist k > 0 and
a finite CW complex P such that S¥(X) has the same stable shape as P.

(vili) Wx s isomorphic to a countable CW spectrum bounded below if
and only if there exist k > 0 and a compactum Y such that S¥(X) has the
same stable shape as'Y .

The Lima Theorem for stable shape corresponds to the Whitehead The-
orem for category of spectra under the isomorphism D. In light of this fact
it also becomes clear why the finite-dimensionality conditions must be ful-
filled in the main results of [Mi-Se;]. In [Li] it is proved that there exists a
nontrivial CW spectrum with all stable cohomotopy groups vanishing. The
existence of such a spectrum corresponds to the existence of the Adams—
Kahn compactum (see [K], [Ma-Se, p. 153] and [Mi-Sey, p. 163]) with trivial
(stable) homotopy progroups and nontrivial stable cohomotopy groups.

With all these facts in mind we are naturally facing the problem of find-
ing a characterization of CW spectra which are isomorphic to the images
of the compact spaces under the isomorphism D. It is easy to characterize
countable CW spectra having this property in geometric terms (cf. Propo-
sitions 5.3.1 and 5.3.2). We also prove (cf. Theorem 5.4.1) that if W is a
countable CW spectrum bounded below with no cells in dimensions > 0,
then there are m and a finite-dimensional compactum X such that S™(W)
is a CW substitute for F(X).

Here is an example of application of the above theorems. If X and Y are
continua with €*(X), €*(Y’) < oo and with one nontrivial reduced cohomol-
ogy group in dimension n, then ShStab(X) = ShStab(Y) iff H"(X;Z) =
H™"(Y;Z).

T. Miyata and J. Segal [Mi-Se;] have introduced the notion of the stable
shape dimension sdspec(X) of a compactum X. We study the relationships
between sdspec(X) and €%(X).

Let $ = {h"} be a reduced generalized cohomology theory. Replacing the
ordinary cohomology by $ in the definition of the cohomological dimension,
we get the notion of the generalized cohomological dimension of X with
respect to §) (denoted by $-dim X). In other words the property of having
H-dim X < n is obtained as a localization of the property of having the
global cohomological dimension with respect to $ less than or equal to n. It
is reasonable to assume that h"(X) = 0 for sufficiently large n if dim X <
oo or (at least) that the global cohomological dimension d$) = max{n :
h"(S%) # 0} of the O-sphere S is finite. If § does not satisfy this condition
then $)-dimI = oo, where I denotes the closed interval [0, 1]. Since we may
reindex $) by adding —d$) to all indices it suffices to consider cohomology
theories with d$H) = 0. In this case $-dimo = n for every n-dimensional
closed simplex o.
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It is natural to ask whether there is a cohomology theory $ with d$H = 0
such that $-dim X = oo if dim X = oo. We prove that if X is a compactum
and there exists $ such that $-dim X = oo then the generalized cohomo-
logical dimension of X with respect to stable cohomotopy is also infinite,
w-dim X = oo.

1. PRELIMINARIES

1.1. Prerequisites. We shall assume that the reader is familiar with
the classical shape theory (see [Bol, [Ma-Se]) for compact Hausdorff spaces,
and with basic elements of stable homotopy theory ([A;], [Ma] and [Sw]).

We recall that “compactum” means a compact metric space.

1.2. Spectra. All spaces considered are pointed. If (X, xz() is a space
then S(X) = X x [-1,1]/X x {1} U{zo} x [-1,1] U X x {1} denotes the
reduced suspension of X. For (z,t) € X x [—1,1] we use x At to denote
the corresponding point of S(X) under the quotient map. If (z,¢) does not
belong to X x {—1} U {zp} x [-1,1] U X x {1}, then we shall also use the
notation (x,t) =z At.

The (n+ 1)-sphere is the reduced suspension S(S™) of the n-sphere, and
the O-sphere consists of two points: —1 and 1 (the first is the base point
of S°). It is convenient to regard S™ as the equator of S"!. The base points
of S™ and S"*! are the same. We shall also identify S(X) with the smash
product X A ST

The set {X,Y} of stable homotopy classes from X to Y is the direct
limit of the sequence {[X,Y] — [S(X),S(Y)] — [S?(X),S%(Y)] — ...}.
The element represented by a map f : S¥(X) — S¥(Y) is denoted by {f}.
The set {X,Y} is equipped with the structure of an Abelian group. In
particular the group 75 (X) = {S™, X} is called the n-dimensional stable
homotopy group of X. Similarly the group n2(X) = {X,S"} is called the
n-dimensional stable cohomotopy group of X.

A spectrum E is a sequence of spaces F,, and maps &, : S(E,) — E,41.

If F = {F,,d,} is a spectrum such that E, D F, and e,(z) = d,(x) for
x € F,and k=1,2,..., then we say that F is a subspectrum of E.

We say [ is a CW spectrum if E, are CW complexes and each ¢, is a
cellular inclusion. A subspectrum F C E consists of subcomplexes F,, C E,
such that S(F,) C Fp41.

Let C}, be the set of cells in F,, other than the base point. Elements of the

X L. Suspension Suspension Suspension
direct limit of the sequence {... Ch Cpy1 —— ...}

are stable cells (or cells). Each cell in E,, is a member of exactly one cell of E.
If the stable cell o is represented by a cell o of E,,, then dimeo = dimo —n.
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A CW spectrum E is called finite (respectively countable) if it has only
finitely (countably) many cells.

A subspectrum F C E is called cofinal if F and E have the same sets of
stable cells, i.e. for any cell e of E,, there is m such that S™(e) is a cell of
Fm+n.

Let E = {E,} be a CW spectrum indexed by n € Z. The spectrum
E' = {E/} with

El =

n

E, forn >0,
{point} for n <0,

is cofinal in E. For this reason it does not really make any difference whether
we consider spectra indexed by n € Z or by n € {0,1,2,...}. Describing a
new CW spectrum [E it suffices to define its terms E,, for n > 0 and to set
E,, = {point} for n < 0.

By S = {S™} we denote the CW spectrum consisting of all spheres.

1.3. Morphisms of spectra and weak homotopy classes. A func-
tion f from a CW spectrum E to a spectrum F is a sequence of maps
fn : By — F, such that the following diagram is strictly commutative for

each n:

S(En) E—n> n+1

lfn«l»l
on

S(Fn) — L'n+41

A map from E to [F is the equivalence class of functions defined on cofinal
subspectra of E with values in F. A morphism from E to F is the homotopy
class of a map.

In the classical case ([L], cf. [N]) one can also introduce the notion of
weakly homotopic maps. Maps a,3 : E — F are weakly homotopic if for
every finite spectrum Eg and every map v : Eg — E the compositions oy
and 37 are homotopic as maps of spectra. The homotopy class (respectively
weak homotopy class) of a is denoted by [a] (respectively [a],).

By [E, F] (respectively [E, F],) we denote the set of morphisms from E
to | (respectively weak homotopy classes of maps from E to F). The sets
[E,F] and [E, F],, are Abelian groups.

For every spectrum E we can define its suspension S(E) = {F,}, where
F,, = E, ;1. This operation has an inverse S~! defined by S™}(E) = {G,}
and G,, = E,_1. This allows us to define S™ for every integer n.

We define a spectrum F to be a suspension spectrum if €, is a weak ho-
motopy equivalence for sufficiently large n. For every space X we denote by
Sus(X) its suspension spectrum (i.e. the spectrum with the j-fold suspension
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of X as the jth term). If X and Y are finite CW complexes then
{X,Y} 2 [Sus(X),Sus(Y)] = [Sus(X), Sus(Y)].

Let SCW and SCW; be the categories of all CW spectra and of all finite
CW spectra.

PROPOSITION 1.3.1. Let {E,}5°; and {F,,}°°; be filtrations of CW spec-
tra E and b such that E,, and [, are finite spectra for every n. Then:

(a) There is an exact sequence
0 — lim' [S(E,), F] — [E, F] — lim[E,, F] — 0.

(b) an[E,, F] & [E, Flu = lim lim{E,,, T,

Proof. Part (a) is proved in [Sw, p. 173].

If E is a suspension CW spectrum with compact terms, then the set of
all morphisms from E to any CW spectrum F can be identified (see [Sw,
p. 146]) with the direct limit of the direct sequence {... — [E,, F,| —
[Ent1, Fni1] — [Ent2, Fnye] — ...} This implies (b). m

1.4. Categories of inverse and direct systems. Stable shape. If
C is a category, then by Pro-C we denote the category of inverse systems
in C. For abbreviation we write {X,,pZ} or {X,} instead of {X,,pl, X} €
Ob Pro-C. The set of morphisms from X = {X,} to Y = {X;} is defined by

Pro-C(X,Y) = limlim C(X,, V7).

Every compact Hausdorff space X is the limit of an inverse system X =
{Xs,pl} of compact polyhedra with PL bonding maps ([Ma-Se, p. 61]). If
X is a compactum then we may assume that X = {X,,,p"*!} is an inverse
sequence such that dim X > dim X,.

The system X is mapped into an inverse system X = {Xo, [PI]} €
Ob Pro-HCW} by the homotopy functor, where HCW; denotes the homo-
topy category of finite CW complexes. This system is an ezpansion of X (or
is associated with X'). The functor Sus assigns to every X € ObPro-HCWy
the system Sus(X) = {Sus(X,), Sus([p}])} € ObPro-SCWy-.

Exactly as in the ordinary shape theory (see [Ma-Se, p. 25]) one can
define the stable shape category ShStab. The only difference is that we use
Sus(X) instead of X € Ob Pro-HCW} associated with X . Roughly speaking,
if X and Y are objects of Pro-HCW} associated respectively with compact
Hausdorff spaces X and Y then the morphisms of the stable shape category
ShStab from X to Y are represented by the elements of the Abelian group

Pro-SCW¢(Sus(X), Sus(Y))
= lim lim SCWy(Sus(X, ), Sus(Y7)) = ShStab(X,Y).
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We write ShStab(X) = ShStab(Y) if X and Y are isomorphic objects in
ShStab.

PROPOSITION 1.4.1. If Sh(S*(X)) = Sh(S¥(Y)) for a nonnegative inte-
ger k, then ShStab(X) = ShStab(Y').

The description of Pro-C may be dualized (see [E-H, p. 8]) to yield a
category Inj-C of direct systems over C. Morphisms of Inj-C are defined by
the formula

IHJ'C(X’ Y) = &%lhTH}C(XUa Y,U«)a
where X = {X,} and Y = {Y},} (in this case we use the same convention
as previously, i.e. {X,,pZ, X} € ObInj-C will be denoted also by {X,,pZ}
or {X,}).

Consider a reduced generalized cohomology theory $* = {h"} defined
on the category SCW; ([Sw, p. 124]). Together with $* we shall also use
the corresponding reduced generalized homology theory $, = {h,}.

If X = {%,,a}} € ObPro-SCW;¢ and A = {A,,f]} € ObInj-SCW; we
set

h'(X) = Em{h"(X;), " (0g)},  hn(A) = lim{hn(As), ha(f7)}.

In particular if we consider the cohomology and homology theories as-
sociated with the sphere spectrum S, then we get the stable cohomotopy
groups 7" (X) of the inverse system X € ObPro-SCW; and the stable ho-
motopy groups 7s(,A) of A € ObInj-SCW;.

In analogy with the classical case every morphism o € Pro-SCW;(X,Y)
(respectively every f € Inj-SCWy(.A, B) induces a well-defined homomor-
phism A" () : h"(Y) — h™(X) (or hy(f) : hn(A) — h,(A)). Moreover, the
nth generalized cohomology group h™(X) is a contravariant functor from
Pro-SCW¢ to AB, and the nth homology group h,(A) is a covariant func-
tor from Inj-SCW; to AB.

For every CW spectrum E we denote by $f the cohomology theory associ-
ated with E and defined on SCW;. The group of all natural transformations
from $Hf to Hf is denoted by (E, F).

Let F be a CW spectrum and F = {F,i;} € ObInj-SCW; be a direct
system consisting of all finite CW subspectra [, of [ (ordered by inclusion)
and let a € Inj-SCWy(E, F). For every G € ObInj-SCW¢ the morphism o
induces a homomorphism o : [G,S"(E)] = ht(G) — hF(G) = [G,S™(F)].
It is clear that o, commutes with the suspension isomorphism, i.e. the
collection {a }nez is a natural transformation from $f to Hf (see [Sw,
pp. 115 and 166]).

On the other hand, if {a }nez @ HF — HF is a natural transformation,
then for every finite CW subspectrum E, of E the transformation o assigns
to E, a homomorphism ag, : hY(E,) = [E,, E] — [E,, F] = hY(E,).
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Let fr, = ag, (i) : E, — F, where i denotes the inclusion of E, into E.
The family {fg } represents an element of Inj-SCW¢(E, F), where E, runs
through all finite subspectra of E. This allows us to identify (E,F) with
Inj-SCW;(E,F). Denote by () the element of (E,F) represented by
a € [E, Fly.

ProproSITION 1.4.2. LetF be a CW spectrum and consider a system E =
{Es,a, X} € ObInj-SCWy. Then Inj-SCW;({Es, af, X'}, F) can be iden-
tified with the inverse limit of the system {[E,,F], (al)«, X'}, where the func-
tion (o )y : [Xr,F] = [Ko, F] is induced by aZ.

Proof. We know ([Sw, p. 146]) that if o is fixed then [E,, F]=1lim{[E,, F,]},
where F = {[F i/} € ObInj-SCW; is the direct system consisting of all
finite CW subspectra [, of . m

PrROPOSITION 1.4.3. Let E and F be CW spectra. Then:

(a) [E,F] = [E,F], = (E,F) if E is a finite spectrum.

(b) (E,F) = lim[Eq, F], where Eq runs through all finite subspectra of E.
(c¢) (E,F) = [E,F]y if E is a countable CW spectrum.

(d) (E,F) = [E,F]y of E and F are bounded below.

Proof. Part (b) is a special case of the previous proposition, (c) is a
simple consequence of the Homotopy Extension Theorem ([Sw, p. 139]);
and (d) is a consequence of Theorem (9.30) of [Sw|. m

2. COMPRESSIBILITY OF MAPS AND SHAPE DIMENSIONS

2.1. Compressibility of maps. E. Spanier and J. H. C. Whitehead
([S-W2, p. 92] or [S-W3, p. 359]) studied the problem of compressing f :
(X,A) — (Y,B) into Y’ D B by a homotopy ¢ : (X xI,AxI) — (Y, B) and
described obstructions to compressing f into Y *~DUB if f(X) c Y™ UB.

Let us mention the following elementary consequence of their methods
(see for instance Theorem (2.1) of [S-W3)).

LEMMA 2.1.1. Let f : (X, A) — (Y,B) be a map of pairs of finite CW
complezes such that dm X < n+r—1 and Y = YD U B is r-connected,
where 2 < r <n—1. If 7"(f) : #™(Y,B) — 7"(X, A) is a null homomor-
phism, then there exists g : (X, A) — (Y, B) such that f is homotopic to g
rel A and g(X) c YD U B.

LEMMA 2.1.2. Let f; : (S50(P), S50/(Qy)) — (S5)(P-1), S0 (Qi-1)),
where (i) is a natural number and (P;, Q;) is a pair of connected finite CW
complezxes for i =0,1,...,n. Suppose also that:

(a) P = QZ(»T) fori=20,1,..., n.

7

(b) dim Py < n+r.
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(e) T H{fi})  me T TN (Piea / Qi) — mTTTTN(P/Qi) s a nll
homomorphism fori=1,...,n.

Then for every m > max(dim Py, ...,dim P,,&(1),...,&(n)) there exists
a map g : (8™(Fn),8™(Qn)) — (8™ (F),8™(Qo)) such that g(S™(Py))
C S™(Qo) and g is homotopic to the composition hy ...h,, where h; =
Sn=E@)(f,) fori=1,...,n.

Proof. The Suspension Theorem (see [S2, p. 458]) and the Excision The-
orem for cohomotopy (see [Hu, p. 207]) give

w (ST (Py), S™(Q)) = T (S™ (Pr) /8™ (Q)) = mo(Pr/ Q)
forl=r+1,...,n+r.

We give S™ a CW structure with a single 0-cell and a single m-cell.

Since Pér) = Qér) we infer that 8" (Py)(m+7) = (Py A S™)(m+7)= PD(T) AS™
_ Qér) A S™ — (QO A Sm)(m—i—r) _ Sm(QO)(m—i-r)

Let Y1 = S™(P) and B = S™(Qp), and let Y3 be the union of the
(n+7r+m+1— k)-skeleton of Y1 and B for k =1,...,n + 1. We infer by
(a) that Y41 = B.

Let ji : (Ygy1, B) — (Y, B) be the inclusion for k =1,...,n.

Let go = id : (Y1,B) — (Y1, B). Applying Lemma 2.1.1 for (Y,B) =
(Y1, B), f = goh1 we get a map g; : (S™(P1),S"™(Q1)) — (Y2, B) such that
j1g1 is homotopic to gohi rel S™(Q1).

Assume that for £ > i > 0 we have a map g; : (S™(F;),S™(Q;)) —
(Yi4+1, B) such that

(1) gihiv1 =~ Jiy19iv11el 8" (Qip1) fori=1,... k—1.

Applying Lemma 2.1.1 for (Y, B) = (Yi+1, B), f = grhi+1 we obtain a map
9i+1: (S™(P1),8™(Q1)) — (Y42, B) such that (1) is satisfied for 0 < i < k.
This yields the following diagram:

(Y1, B) <= (8™(P1), S™(Q1)) <2 - - < (S™(P,), S™(Qu))

- .

(Y1, B) ~—2—— (¥3,B) <2 ... <2 (Y41, B) = (B, B)

It is clear that g = j1js2 ... jngn satisfies the required conditions. m

2.2. Shape dimensions of compact spaces. As in the classical shape
theory (see [Ma-Se, pp. 106 and pp. 130]) one can introduce the notion
of the nth stable homotopy pro-group Pro-m3(X) of a compact Hausdorff
space X, defined to be the pro-group Pro-n} (X) = {n}(X,), 75 (p7)}, where
X = {X,,pl} is an inverse system of finite CW complexes such that X
is homeomorphic to the inverse limit of X. More precisely, Pro-73(X) is



110 S. Nowak

actually a class of naturally isomorphic pro-groups (see [Ma-Se, p. 121]) and
for simplicity we identify Pro-73(X) with Pro-m (X).

The stable connectivity of X is defined as €4(X) = min{n : Pro-m}(X)
# 0} — 1. It is an invariant of stable shape. We know that €5(A) = €4(A)
= 00, where A denotes the Adams—Kahn continuum (see [Ag], [K] and
[Ma-Se, p. 153]). We also have €%(X) = —o0, €(X) = oo for every X
with trivial stable shape.

The notion of the stable shape dimension was introduced by T. Miyata
and J. Segal in [Mi-Se; ] (see [Mi-Seq, p. 159]). Suppose that X = {X,,pl, X'}
is an inverse system in the homotopy category of finite CW complexes asso-
ciated with a compact Hausdorff space X and k,n € Z, where k < n. The
stable shape dimension, sdgspec(X), satisfies k < sdgpec(X) < n if for every
o € X there exist 7 > o, m and maps g : S"(X;) — P, h: P — S"(X,)
such that the homotopy class of hg equals S™(pZ), where P is a CW com-
plex with dim P < n+m and with no cells of dimension < k 4+ m except for
a single O-cell .

THEOREM 2.2.1. Let X be a compact Hausdorff space with €*(X) < co.
If €4(X) > €5(X), then ShStab(X) = ShStab({point}). If ShStab(X) #
ShStab({point}), then r < sdgpec(X) < €(X) for every r < €4(X). If
k < sdspec(X) < n, then 7*(X) =0 for every m > n.

Proof. Suppose that {X,,pZ, X'} is an inverse system in the homotopy
category of finite CW complexes associated with X. For a given index o
we can find ¢’ > ¢ such that pg/ induces a trivial homomorphism of stable
homotopy groups in dimensions < r (compare [Ma-Se, p. 137, Lemma 2]).

We first assume that dim X,» > €5(X).

Since the stable cohomotopy groups of finite CW complexes are finitely
generated we infer that there exists a finite sequence of indices ¢/ = 79 <

7 < ... <7 =7 such that prtt induces a trivial homomorphism of stable
cohomotopy groups i (Xy,) — w4 '(X,,,) for every i = 0,...,l = j —

¢*(X) — 1, where j = dim X, > €*(X). By Lemma 2.1.2 there exist m
and g : S™(X;) — @ such that the homotopy class of ig is equal to p],
where @ is the (m+€*(X))-skeleton of S™(X,/) and i denotes the inclusion
QcCS™ (XU/).

Since Sm(pg/) induces a trivial homomorphism of homotopy groups in
dimensions < m+r (for sufficiently large m), we can extend i : Q — S™(X )
over the union of @ and the cone over the (m + r)-skeleton of ). This CW
complex has the same homotopy type as P = P/ plmtr),

If dim X, < €*(X) the proof is similar, but simpler. Indeed in this case
the space P = S™(X,/)/(S™(X,/))™*7) satisfies the requirements of the
definition of sdgpec(X).

In both cases if r > €*(X), then P is contractible.
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Hence r < sdspec(X) < €°(X) when ShStab(X) # ShStab({point}), and
ShStab(X) = ShStab({point}) when €4(X) > €*(X).

The third assertion is a consequence of the fact that 77 (X) is the direct
limit of {77(Xy)}. m

2.3. Compacta X with ¢€°(X) < oo

LEMMA 2.3.1. Let X be a compactum with €5(X) < oo and set N =
max{C€*(X),0}. Then there exists a compactum Y such that dimY <2N + 2
and ShStab(Y') = ShStab(SN+2(X)).

Proof. We may assume that X is homeomorphic to the inverse limit of
a sequence X = {Xp, pg“} of finite CW complexes such that ﬂ?(pi“) :

7w (Xg) — 7 (Xky1) is a null homomorphism for n > N.

Let Py = S%(Xyi), Qi = S*(X,1) and fir1 = S2(pp 17 (P Qi) —
(Pi—1,Qi—1) for i = 0,...,1 — k. The exactness of the sequence ... —
ﬂg_l(Qi) — 7d(P;/Q;) — wd(P;) — ... implies that 7{(f;) : 7d(P;/Q;) —
7d(Piy1/Qi+1) is a null homomorphism for ¢ > N + 2. This means that
P;,Q; and f; satisfy the conditions (a)—(c) of Lemma 2.1.2. Hence for every

k there exists
(2) g:8™(X) — 8™(x\™) such that jrg ~ S™(ph),

where ji : Sm(XlgN)) — S™(X}) is the inclusion, m = dim X; + 2 and
l =max{k+ 1,k + N — dim Xy }.
Using (2) and replacing X by a suitable subsequence we can require that

for every k there exists a cellular map g : S™(Xky1) — Sm(XIEN)) such

that gl,:'H = JkgE = Sm(piﬂ), where m = dim X1 + 2.

By the Freudenthal Suspension Theorem there exists q,ff“ :SNVH2(X ,E,JR)

— SN+2(X£N)) such that q],:‘H ~ Sm_N_Q(g]’:+1|X(N)), Let YV, =
k+1
SNJFQ(XIEN)) and Y = lim{Yy, gy
We denote respectively by gl,z'H : Sus(Xg+1) —  Sus(Xg),

qIZH o Sus(Xgr1) — Sus(Xg), jr Sus(XIE_N)) —  Sus(Xj) and
gr : Sus(Xgi1) — Sus(X,EN)) the morphisms of spectra represented by the
maps gllz—&-l L S™(Xpi1) — S™(X), q/l:-I—l : SN—&-Q(XIS;:\_]%) R SN+2(X-IgN))7
je s S™MXIN) = 8™ (X)) and g 0 S™(Xpp1) — S™(XY). We have

(3) g =ikgr i =gkiksr for every k.

It is evident that Sus(X) = {Sus(Xg), Sus(p],zﬂ)} and {Sus(Xk),gZH}
are isomorphic objects of Pro-SCWj.

By (3) we see that 7 = {jx} : {Sus(X,gN)),q’,zH} — {Sus(X;g),gZJrl
is an isomorphism in the category Pro-SCW; with inverse v = {g}
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{Sus(Xy), gi '} — {Sus(X]gN)),ql,zH}. Hence SV*2(X) = {SV*2(Sus(Xy)),

SV*2(gf 1)} and {Sus(Yp), Sus(qf ™)} = {SVF2(Sus(X[")), SN (g )
are isomorphic and S™V*2(X) has the same stable shape as Y. u

LEMMA 2.3.2. Let X be a shape r-connected continuum with €4(X) >
2r > 2. Then X 1is shape 2r-connected.

Proof. We may assume that X is homeomorphic to the inverse limit of
a sequence {Xk,pZH} such that Xj is an r-connected CW complex and
wf(pi“) 0 ) (Xky1) — 7(Xg) is a null homomorphism for every k and

| < 2r. This means that
Tem(PET) T (Xgeg1) = [, 8™ (Xpeq1)] — [T, 8™(Xy)]
= 7Tl+m(Xk)

is a null homomorphism for sufficiently large m and [ < 2r. The Freudenthal
Suspension Theorem implies that [S!T™ S™(X})] = [S!, X}] for every k. =

LEMMA 2.3.3. Let X be a shape r-connected continuum with dim X =
m < 2r, where 1 < r < m. Then there exists a continuum Y such that
S2r=m(Y) is shape equivalent to X and dimY < 2m — 2r.

Proof. We may assume that X is homeomorphic to the inverse limit of
a sequence { X, p',i“}, where each X} is an r-connected CW complex with
dim X, < m. It is known (see for example [Sg, p. 461, Exercise D1]) that
for every r-connected CW complex @) with dim @) < 2r there exists a CW
complex P such that S(P) is homotopy equivalent to Q.

The above fact and the Freudenthal Suspension Theorem imply that for
every k there exist a CW complex Y and a map q,ﬁ“ : Yi+1 — Y such that
the diagram .

Py,
Xkt1 X

l SQrfm( k+1) i

q
S2r7m(Yk+1) k SQrfm(Yk)

commutes up to homotopy. The vertical arrows are homotopy equivalences.
We can assume (see [W, Proposition 4.1, p. 68]) that dim Yy < 2m — 2r for
every k. The inverse limit Y of the sequence {Y%, q,’jﬂ} satisfies the required
conditions. m

THEOREM 2.3.4. Let X be a compactum satisfying ShStab(X) #
ShStab({point}), €5(X) = N < oo and €4(X) = r. Then there ezists a
shape (N — r)-connected continuum Y satisfying the following conditions:

(1) ShStab(S™ (X)) = ShStab(S™2(Y)), where m; = max{0, N — 2r}
and mg = —min{0, N — 2r}.

(2) dimY < 2(N —r).
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Proof. By Lemma 2.3.1 there is X’ such that dim X’ = 2N + 2 =
@*(X’) and ShStab(X’) = ShStab(S™¥*2(X)). We see at once that €,(X’) =
N +7r+2 and €(X’) — €4(X’) = N —r. By Lemma 2.3.2 we conclude
that Z = SVN*"*2(X’) is a shape 2(N + 7 + 2)-connected continuum with
dimZ = €¢%(Z) = 3N + r + 4. By Lemma 2.3.3 there is Y such that
SN+3r+4(Y) and Z have the same shape and dimY = €5(Y) = 2(N —r).
We have ShStab(S?V*7+4(X)) = ShStab(SN*3*+4(Y)). Finally, Proposi-
tion 1.4.1 implies that Y satisfies the required conditions. m

COROLLARY 2.3.5. Let X be a compactum with €5(X) < r. Then the
group {X, P} of all stable homotopy classes is trivial for every r-connected
CW complex P.

3. THE WHITEHEAD THEOREMS

3.1. Formal duality between Pro-SCW; and Inj-SCW}. For each
E € ObSCWy there is a finite spectrum D(E) (the Spanier-Whitehead
dual of E) and for every pair of E,F € ObSCWj there is an isomorphism
Dgr = D : [EF] — [D(F),D(E)] (see [Ay, p. 190], [Ma, p. 19] or [Sw,
p. 321]). This defines a unique, up to natural equivalences, contravariant
functor D : SCWj; — SCW;. The following conditions are satisfied:

(1) D? is naturally equivalent to the identity functor I.

(2) D(S(E)) = S~} (D(E)).

(3) There is a natural isomorphism [E A F,G] = [E,D(F) A GJ.

(4) For every generalized homology theory $), there exists a natural
isomorphism between hy(E) and h=*(D(E)).

REMARK 1. It is also possible to describe the Spanier—Whitehead dual in
a very concrete fashion for the case when E = Sus(X') and X is a polyhedron.

It is known that it is possible to embed the space X in the (n+1)-sphere
for sufficiently large n. Suppose that X; C X, are subpolyhedra of S"*!
and a subpolyhedron Y; c S7t! \ X; of 5™l is a deformation retract of
Sntl \ X; such that Yo C Y7 for i = 1,2. We may also assume that X;
is a deformation retract of S"*!1\'Y; for i = 1,2 (possible for larger n).
Then (up to natural equivalences of functors) D(Sus(X;)) = S™"(Sus(Y3)),
D(Sus(Y;)) = S™"(Sus(X;)), D(i) = j and D(j) =i for ¢ = 1,2, where i and
j denote respectively the morphisms of spectra induced by the inclusions
1: X1 — Xgoand j:Yy — Y.

This formula can be generalized to the case when X; are finite CW
complexes.

DEFINITION 1. For every X = {%,,a},X} € ObPro-SCWy (respec-
tively for every A = {A,,f7,T} € ObInj-SCWy) the object D{(X) =
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{D(%X,),D(a}),X} € Oblnj-SCW; (respectively Da(A) = {D(A,),
D(f]),T} € ObPro-SCWy is called the Spanier—Whitehead dual for X (re-
spectively for A).
We also have duality isomorphisms
D : Pro-SCW¢(X,Y) — Inj-SCW¢(D(Y), D(X)),
D, : Inj-SCW¢(A, B) — Pro-SCW;(D(B),D(A))
induced by D.
Next, this also yields contravariant functors Dy : Pro-SCW — Inj-SCWy
and Dy : Inj-SCWy — Pro-SCW;y.
THEOREM 3.1.1. The compositions D2D1 : Pro-SCW; — Pro-SCWy

and D1Dg3 : Inj-SCW; — Inj-SCW; are naturally equivalent to the identity
functors.

3.2. The Whitehead theorems for Pro-SCWW; and stable shape

THEOREM 3.2.1. A morphism f € Pro-SCW(X,Y) is an isomorphism
iff it induces isomorphisms of all stable cohomotopy groups.

Proof. We may assume that X = {%X,,a, X} and Y = {Y,, 37, X} are
inverse systems indexed over the same cofinite directed set X, f = {f,} is a
level morphism and X, and Y, are finite suspension spectra ([Ma-Se, p. 12]).
Then for every o € X' there exist n(o) € X' and finite polyhedra X, and Y,
such that the nth terms of X, and Y, are S*~"(?)(X,) and 8"~"?)(Y,) for
sufficiently large n.

Therefore without loss of generality we may assume that the following
conditions are satisfied:

(1) n(o) <n(r)ifo < 7.

(2) The bonding morphisms of X and Y are induced by maps p] :
Sm7)(X,) — 89 (X,) and ¢f : S M (Y;) — 8™ ™MO)(Y,) for suf-
ficiently large m.

(3) The morphism f, is induced by a map f, : X, — Y.

Let M, D X,UY, be the reduced mapping cylinder of f,. We know that
the pointed pair (S(M, ), S(X,)) has the same homotopy type as (M’ S(X,)),
where M’ denotes the reduced mapping cylinder of S(f,) (see [S-Wa, p. 67]).

For every 7 > o and sufficiently large m we can find a map f; :
Smn( (M) — S™(?)(M,) such that f7 restricted to S™ (" (X,)
(or S™~™7)(Y})) equals p? (respectively ¢7). Denote by L(c) the long exact
sequence

L w8 (X)) T (ST (M)
T (ST (M, /X)) 5 bSO (X))

corresponding to the index o € Y.
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If 7 > o then we have a natural morphism from L(o) to L(7) induced
by the bonding morphisms and fg The image of e, belonging to one of the
components of L(o) is denoted by e-.

We prove that for every k and every e, € 75(S™™%)(M,/X,)) there
exists 7 > o such that e, = 0.

If jo(e,) € wH(S™ ™M) (M,)) = nF(S™ ) (Y,)) represents the trivial
element of 7¥(Y) then we can find 7 > o such that e, € 7%(S™(") (M, /X))
is contained in the image of 75~1(S™~"™")(X,)) under 6, (i.e. e, = d,(€,)).
By the exactness of L(7) (take greater 7 if necessary) and the fact that
=)« 7 YY) — 7 1(X) is an isomorphism, the element e, must
represent the trivial element of 7¥(Y) and we may assume that e, = 0.

On the other hand, if j,(e,) does not represent the trivial element of
7%(Y), then we can find 79 > o such that i,j,(e;) # 0 for every 7 > 9,
which contradicts the exactness of L(7).

We may assume that S™ ™) (M,) and 8" ™) (X,) have the same 7-
skeleton, where 7 = m—n(c)—2. Let dim S™~™?)(M,,) = n. Since the stable
cohomotopy groups of 8”~"™%) (M, /X,) are finitely generated we can find
a finite sequence o = 09 < 01 < ... < 0p_r+1 = 7 such that the map f?ff“
induces a trivial homomorphism of stable cohomotopy groups in dimension
n—ifori=0,....,n—r.

Lemma 2.1.2 implies that there exists a map

g: (8" (M), 8" (X5)) — (8™ (M), 8™ (X))

such that g is homotopic to fg and g(S™ ™7 (M,)) ¢ 8™ ™M)(X,). It is
known ([Mo, Theorem (1.1)] or [Dy, p. 7, Theorem 2.3]) that this means
that f is an isomorphism in Pro-SCW;. =

REMARK 2. If X = {Sus(X,)} and Y = {Sus(Y,)}, then the morphism
f is an isomorphism iff it induces isomorphisms of stable cohomotopy groups
in dimensions > 0. In the notation of the proof of Theorem 3.2.1 this means
that n(o) = n(7) = 0. Lemma 2.1.2 allows us to prove a stronger version of
the theorem in this case.

REMARK 3. The proof of Theorem 3.2.1 is a modification of the classical
Whitehead Theorem for the prohomotopy category (see [Dy] and [Ma-Se]).

THEOREM 3.2.2. Let X and Y be compact Hausdorff spaces. A mor-
phism £ € ShStab(X,Y") is an isomorphism iff it induces isomorphisms of
stable cohomotopy groups in dimensions > 0.

Proof. This is a consequence of Theorem 3.2.1 (see also Remark 2). m
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3.3. The Whitehead Theorem for Inj-SCWjy

THEOREM 3.3.1. A morphism f € Inj-SCW;(A, B) is an isomorphism
iff it induces isomorphisms of all stable homotopy groups.

Proof. The morphism f is an isomorphism iff Dy(f) : D2(B) — D2(A)
is an isomorphism. The assertion is now a consequence of Theorem 3.2.1. =

REMARK 4. In [Mi] T. Miyata defined the generalized coshape category
coShgpec, whose objects are CW spectra and spaces. If E and F are CW
spectra, then coShgpec(E,F) = (E,F) = Inj-SCW¢(E,F), where E = {E,},
F = {F;} € ObInj-SCW; are direct systems consisting of all finite CW
subspectra E, of E and (respectively) [, of F (ordered by inclusion). Miyata
stated the Whitehead Theorem for coShgpec. In particular he claimed that
¢ € coShgpec(E, F) was an isomorphism of the category coShgpec iff it induced
isomorphisms of integral homology groups, but this statement is false.

More precisely, it is true that ¢ € coShgpec(E,F) is an isomorphism
when ¢ induces isomorphisms of homotopy groups, but in order to conclude
that ¢ € coShgpec(E,F) is an isomorphism from the fact that it induces
isomorphisms of homology groups we must assume that E and F are bounded
below (see Example 1).

3.4. The stable shape of the quotient space

THEOREM 3.4.1. Let (X, A) be a pair of compact Hausdorff spaces. The
inclusion of A into X is a stable shape equivalence if and only if X/A has
trivial stable shape.

Proof. By Theorem 3.2.2 the inclusion of A into X is a stable shape
equivalence if and only if it induces isomorphisms of all stable cohomotopy
groups. In the same manner we deduce that X/A has trivial stable shape iff
7 (X/A) = 0 for every n.

Consider the long exact sequence

= HX) = 7 HA) = (X /A) = (X)) — a(A) — ...

The groups 7 (X /A) are trivial for every n if and only if the inclusion A C X
induces isomorphisms from 77(X) to 77 (A) for every n. =

4. FUNCTION SPECTRA

4.1. CW substitutes for spectra

DEFINITION 2. Let E be a CW spectrum and F be a spectrum. A pair
(E, @), where o : Eg — F is a function defined on a cofinal subspectrum Eq
of I, is called a CW substitute for | if a is a weak homotopy equivalence.
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When no confusion can arise we ignore the second element of the pair (E, o)
and we say that E is a CW substitute for [.

This notion is adapted from [K-K-S]. In [K-K-S] it is required that a is
defined on E (not on a cofinal subspectrum of E), but for our purposes this
small modification allows us to simplify notation.

We need the following proposition (Propositions 2.4 and 2.5 of [K-K-S]).

PRrROPOSITION 4.1.1. For every spectrum F there exists a CW substitute
of F. Ifa: W — E and B:V — F are CW substitutes for spectra & and [,
then for every function v : E — F there is a unique morphism [y'] : W — V
such that [v] o [a] = [B] o [¥'].

REMARK 5. Let the pair (W1,a) be a CW substitute for E and 3 :
W2 — Wj be a function between CW spectra. The pair (Wo, a3) is a CW
substitute for | if 3 represents an isomorphism in the category of spectra.
More precisely ([Sw, p. 137]), there are cofinal subspectra W) C W; and
W, C Wy such that B(W,) C W/, the function « is defined on W} and the
composition a|w/1 B |W/2 is a weak homotopy equivalence.

4.2. Function spectra

DEFINITION 3. For every compact Hausdorff space X we will consider
the function spectrum F(X) = (Fy, \n), where F,, = Map(X,S™) and the
maps A, : SMap(X, S") — Map(X,S"*!) are defined by \,(f At)(z) =
flx) At

Assume that f : X — Y is a map. Then for every n = 1,2,... we have
the map f, = Map(f) : Map(Y,S™) — Map(X,S™) induced by f. The
sequence F(f) = {fn}: F(Y) — F(X) is a function between spectra.

If (Wx,ax) and (Wy, ay) are CW substitutes for (respectively) F(X)
and F(Y), then by Proposition 4.1.1 there is a unique morphism of spectra
f = (F(f),ax,ay) such that the diagram

comimutes.

ProproSITION 4.2.1. Let f: X — Y and g : Y — Z be maps, where
X, Y and Z are compact Hausdorff spaces. Then h = fg, where f =

(F(f), ax,ay), g = (F(9),ay,az) andh = (F(g9f), ax,az).

PROPOSITION 4.2.2. Let X be a compact Hausdorff space and (W, o) be
a CW substitute for F(X). For every finite CW spectrum E the function o
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induces an isomorphism
[E,W] — lim{... — [E,, Map(X, S™)] — [En41,Map(X,5"1)] — ...},
For every k there exists a canonical isomorphism m(W) — 77%(X).

Proof. The first part is obvious (Proposition 1.3.1). The second part is
a consequence of the first and elementary properties of spaces of maps from
X to spheres. Indeed, [S¥T!, W] =[S+ Map(X, S™)] = [SFT A X, S™] for
all k,l € Z and every n =10,1,2,... m

4.3. Complements in spheres and function spaces. Following
[K-K-S] for every proper closed subset X of the (n + 1)-dimensional sphere
we introduce a map from S"*!\ X to Map(X, S™) inducing isomorphisms of
homology groups in dimensions < 2(n — dim X). Recall that S° = {a,b} C
...C 8" St

If X > b is a subcompactum of S™ which misses ¢ and n + 1 > m,
then (ST \ X)A X C ST A SN\ D, = S22\ D,y q, where (a,b)
is the base point of S"*1 A $"*! and D,, 1 denotes the diagonal. The space
D, +1 is homeomorphic to Sntl and S22 \ D,,+1 contains a polyhedron T,
homeomorphic to S™ as a strong deformation retract. We may assume that
(Tn+1,Ty) is homeomorphic to (S™T1, S™).

Denote by o, : (S""1\ X) A X — S™ the composition of the inclusion
(S"H\ X)A X € S22\ D, 41 with the strong deformation retraction and
the canonical homeomorphism of T;, onto S™. Let

px o S\ X — Map(X, S™)
be the adjoint to g,. Then
(4) f XDY,a¢g X and b€ Y, then uX(2) = uY (2) for every z € Y.
The next proposition can be found in [K-K-S, p. 212].

PROPOSITION 4.3.1. The map p;x : S"T1\ X — Map(X,S") induces
an isomorphism (uX)s @ Hy(S"™'\ X) — Hy(Map(X,S™)) for ¢ <
2(n — dim X).

Let X be a compact subpolyhedron of S™*! with dim X < n — 1 and let
M be a regular neighborhood of X in S™*!. The interior V = Int M is an

open regular neighborhood of X and S"*!\ V is a compact subpolyhedron
of S"*1. Denote by

(5) piMA) L STV — Map(X, ™)
X
the composition $"t1\ V ¢ §71\ X £ Map(X, ™).

LEMMA 4.3.2. Let M and N be regular neighborhoods of a subpolyhedron
X of S" with dim X < n — 1 such that W = Int N ¢ N C V = Int M.
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Ifidf o SPPI\V — SMTIA\ W oand rf : Map(NV, S™) — Map(X, S™) are
(respectively) the inclusion and the restriction map, then:

(i) 7¥ and i} are homotopy equivalences.

(ii) The following diagram commutes:
(M,N)

gty y Map(N, S™)

Z%l iré\gV
(N,X)

N f—— Map(X, 5™)

iii) There is a map %M’M) : S\ V' — Map(M, S™), unique up to
I
M, (M,M) (M, X)

homotopy, such that < pn ~ i .

Proof. Tt is clear that S"*!\ X is a connected and simply connected
open subset of S"T!. The spaces W and V are also connected and simply
connected. From the Alexander Duality Theorem it follows that the inclusion
ZAN/[ induces isomorphisms of homology groups. The Whitehead Theorem
implies that it must be a homotopy equivalence.

The complements of regular neighborhoods of X are also simply con-
nected and connected. As previously (using the Alexander Duality and the
Whitehead Theorem) we find that the inclusions 41 : "1\ M — ST\ N,
ig : SPTHA\N — SPHL\ X 5y 0 SPFI\V — S\ N and jo : ST\ W —
S\ X are homotopy equivalences.

The restriction maps 7“% : Map(M, S™) — Map(N, S™), 7“% : Map(N, S™)
— Map(X, S™) and r : Map(M, S™) — Map(X, S") are also homotopy
equivalences (being induced by inclusions which are homotopy equivalences).

This means that (ii) is satisfied.

Let M%M’M) = jM%M’X), where j denotes the homotopy inverse of 7")]\(4 .
Since M%M’X) and j are homotopy equivalences, we infer that [M(lM’M) is

unique up to homotopy. =

REMARK 6. Let X be a proper subpolyhedron of S"t! and M} be a
regular neighborhood of X in S* for k > n + 1 such that My N S¥ = M*
for k > n + 1. Then the Spanier-Whitehead dual of the spectrum Sus(X)
is isomorphic to the spectrum W = {W}}, where W}, = S¥*1\ Int My, for

k> mn+1 (cf. Theorem 4.5 of [K-K-S]).

Moreover, the maps /L,E;MHI’X) 0 S\ Wi 1 — Map(X, S*) generate

a function p : D(X) = D(Sus(X)) — F(X). The pair (D(X),u) is a CW
substitute for F(X).

4.4. Substitutes of function spectra and limits. Let W be a CW
spectrum. By W € ObInj-SCW; we denote the direct system consisting of
all finite subspectra of W ordered by inclusion.
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Suppose that a compact Hausdorff space X is the inverse limit of a
system X = {X,,pZ, X} of finite CW complexes. We have observed (see
Remark 6) that for every o € X there exists a function p, : D(Sus(X,)) —
F(X,) which is a weak homotopy equivalence.

The canonical projections p, : X — X, and the bonding morphisms p], :
X, — X, induce functions p, : F(X,) — F(X) and p7 : F(X,) — F(X,).
It is clear that p,pl = ps-.

Let (Wx, ax) be a CW substitute for F(X) and let o, : D(Sus(X,)) —
Wx be the unique morphism of spectra such the diagram

D(Sus(X,)) —2 Wx
| Jfarx
F(Xo) = F(X)
commutes. We know that a, = a;a?, where af : D(Sus(X,)) —

D(Sus(X,)) is a morphism of spectra induced by p7 : X; — X,.

Notice (see Proposition 1.4.2) that Inj-SCW;({X%s,al, X}, W) can be
identified with the direct limit of the system {[X,, W], (a] ), X'}, where W
is a CW spectrum and the function (o), : [X;, W] — [X5, W] is induced
by al.

THEOREM 4.4.1. Suppose that a compact Hausdorff space X is the in-
verse limit of the inverse system X = {X5,pl, X} of finite CW complezes
and (Wx, ax) is a CW substitute for the function spectrum F(X). Then the
morphism a = {as} : {D(Sus(X,)),a, X} — Wx is an isomorphism in
the category Inj-SCWy.

Proof. We know that the function oy induces an isomorphism 0/72E

(W x) = lim{. .. = 7 (Map(X,8™)) = g 4 i1 (Map(X, 8™ 41)) — ..}

By Theorem 3.3.1 it suffices to prove that a induces an isomorphism of
homotopy groups, i.e. & induces a monomorphism and an epimorphism.

Let e € m,(Wx) and let a%(e) be represented by a homotopy class
[f] : Skm — Map(X,S™). Since [S¥*™ Map(X,S™)] is isomorphic to
lim{[S*, Map(X,, S™)] 2 lim[S* A X, 5™] & [S5+™ A X, S™], we infer that
[f] € [S¥™, Map(X, S™)] is represented by [f,] € [S¥*™, Map(X,, S™)] =
[SF+m A X, 8™] for sufficiently large o. Therefore a induces a monomor-
phism.

The homotopy class [f] € [S¥*™ Map(X, S™)] = [X, Map(S*+™, S™)]
represents a trivial element of 7jy,,(Map(X,S™)) if and only if [f,] :
[SF+m Map(X,, S™)] = [X,, Map(S*¥+™ S™)] represents a trivial element
of Tptrm(Map(X,,S™)) for sufficiently large o. This means that a induces
an epimorphism. =
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COROLLARY 4.4.2. Suppose that a compact Hausdorff space X is hom-
eomorphic to the inverse limit of a sequence X = {X,,pl, X} of finite
CW complexes and (Wx,ax) is a CW substitute for the function spectrum
F(X). Then {Sus(X,),Sus(p?), X'} and Do(W x) are isomorphic objects of
Pro-SCWy.

Proof. By Theorem 4.4.1 the direct systems {D(Sus(X,)),al, X} and
W x are isomorphic objects of Inj-SCW;. By the properties of Dy and Dy
the inverse systems {Sus(X,),Sus(p}), 2} and Da({D(Sus(X,)),al, X})
are isomorphic as objects of Pro-SCW}; and the direct systems D1D2(W x)
and W are isomorphic in Inj-SCW;. This means that DoDDo(Wx) =
Dy(W ) = {Sus(X,), Sus(p7), T}

4.5. Substitutes and suspensions

THEOREM 4.5.1. Let X be a compact Hausdorff space and (W, ) be a
CW substitute for F(X), where a = {a,}. Then (S™H(W), B) is a CW sub-
stitute for F(S(X)), where the function B : STH(W) — F(S(X)) is given
by B = Anan—1 and A\, : Map(X, S"1) — Map(S(X),S") is induced by
SUSPENSLON.

Proof. We may assume that X is the inverse limit of an inverse system
X ={X,,pl, X} of finite CW complexes. Then S(X) is the inverse limit of
the system S(X) = {S(X,),S(p7), X} and the assertion is a consequence of
Theorems 3.3.1 and 4.4.1. =

5. CLASSES OF SPECTRA WHICH ARE CW SUBSTITUTES OF
FUNCTION SPECTRA

5.1. Representing compacta as limits of inverse sequence of
polyhedra lying in spheres. In this section unless otherwise stated it is
understood that a proper submanifold M in S™ is a PL compact submanifold
(with boundary) and dim M = n.

If M C S™ misses the base point of S™ and [«, 5] C (—1,1), then the set
M x |, (3] consists of all points (z,t) € S"*! such that z € M and t € [a, 3].

DEFINITION 4. A sequence M = {(M,, X,),mn o2 is called a defining
sequence if the following conditions are satisfied for every n:

(a) X, is a subpolyhedron of S"*! with 3dim X,, < n and M,, a proper
submanifold in S™*2, missing the base point of S"*2.

(b) M, is a neighborhood of X,, U X,,;+1 in S"*2 the inclusion of X,
into M,, is a homotopy equivalence and r, : M,, — X,, is a deformation

retraction.
(c) M,, x [~1/2,1/2] is a neighborhood of M, in S"*!,
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The inverse sequence V(M) = {X,,,pl*!}, where p"*! is the compo-
sition of the inclusion of X, 41 into M, and r,, is said to be the inverse
sequence corresponding to M.

For every n there exists a cellular decomposition of the spectrum S such
that V,, = S (Sus(V;,)) is a CW subspectrum of S, where V,, is the
complement of the interior of M,_; in S"*!. The decomposition assigned
to n + 1 is a subdivision of the decomposition assigned to n.

Finally, the sequence A(M) = {V,} = U.2, V,, is a CW spectrum.

n=1
To shorten notation we shall write {(Mp,X,)} >, instead of
{(Mn, Xn),rn}5Zs

LEMMA 5.1.1. For every compact pair (X, A) there exist defining se-
quences M = {(My, Xy),rn o2y and N = {(Ny, Ay), P }o2 such that:

(1) X is homeomorphic to the limit of the inverse sequence V(M).
(2) A is homeomorphic to the limit of the inverse sequence V(N).
(3) Ny, is a subpolyhedron of M, and X, D A,.

(4) 7 2 Ny — Ay, is an extension of ry : My — X,

Proof. There exists an inverse sequence {(Y;,, By), ¢? "'} of pairs of poly-
hedra such that the bonding morphisms are PL maps, 3dimY,, < n and
(X, A) is homeomorphic to the inverse limit of {(Y,, By,),q""'}. Observe
that Y, is O-dimensional for n = 1,2,3. We may also assume that Y7 = Y5
is a one-point set.

We shall define M = {(M,, X,,), r,}°°; inductively. We shall also need
to define PL homeomorphisms h,, : Y,, — X,, such that

(6) hnqzﬂh;}rl(x) =ry(x) forevery x € Xp41.

These conditions are satisfied for n = 1,2 if X7 = X5 is a one-point set. The
sets M7 and Ms must be small contractible closed neighborhoods of X;. The
maps hi, he, r1 and ro are defined automatically and equal to the constant
maps.

Assume that M, _1, X, h,, and r,,_1 are constructed and satisfy (6) for
n < k. The mapping M cylinder of q,l:f“ is a polyhedron (see [Ma-Se, p. 295,
Theorem 6]) with 3dim M < k + 2. By the Unknotting Theorem (see [R,
p. 119]) there exists a PL embedding g : M — S**2 such that g(z) =
hi(x) for x € Yy € M. We may assume that g(M) is a subset of the
interior of My x [—1/2,1/2]. Indeed, a regular neighborhood N of g(M) is
a regular neighborhood of X. It follows that there exists a PL isotopy of
Sk+2 which does not move points of X, and transforms N into a subset of
Int(M x [-1/2,1/2)).

Hence we may find a regular neighborhood My, of g(M) such that M C
Int(Mk_l X [—1/2, 1/2]). Let Xg11 = g(Yk+1) and let hrqq @ Y1 — Xkt
be defined by hiy1(z) = g(x) for x € Y11 C M. Clearly, one can find
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a deformation retraction 7 : My — X} such that (6) is satisfied for n <
k+1. m

5.2. Substitutes of function spectra of compacta. Assume that
W, is a proper submanifold in S"*! such that S(W,,) C W, for every n.
Then W = {W,} is a CW spectrum. The cellular decomposition of W),
induces a cellular decomposition of S(W,,) C W,,;+1 and one can decompose
into cells the closure of W41 \ S(W,,) in such a way that eventually we get
a cellular decomposition of W11, compatible with the structure of S(W,,)
as a CW complex.

LEMMA 5.2.1. Let X,, be a subpolyhedron in S and let Wi, Vi, Mp—1
be proper submanifolds of S™T1 such that:

(1) S(Wy) C Vip1 € Wiy and the first inclusion is a homotopy equiv-
alence.

(2) M, C S""2\ V,,11 and the inclusion is a homotopy equivalence.

(3) The inclusions of X, C M, and X, C S\ W, are homotopy
equivalences.

(4) M, is a neighborhood of X, 11 U X, in S"F2.

Then D1(X) = W and Do(W) = X, where X = {Sus(X,),p?™!} €
Pro-SCWy. The morphism pit : Sus(X,11) — Sus(X,) is induced by
the composition of the inclusion X,4+1 C M, and the deformation retraction
r: M, — X,. The CW spectrum W, is defined by W, = S~1(Sus(W7)) U
S=2(Sus(W2)) U...US™(Sus(W,,)) and the morphism it*! : W, — W41
is induced by the inclusion S(W,) C Wyi1. The inclusions S(Wy,) C Vg1
mnduce an isomorphism of V. onto W.

Proof. Without loss of generality (see Remark 1) we may assume that
D(Sus(X,)) = Wy, D(Sus(X,41)) = Wpt1, D(Sus(M,,)) = S™™(Sus(W,,))
and the images under D of the morphisms induced by the inclusions
Sus(X,,) C Sus(M,,) and Sus(X,+1) C Sus(M,,) are equal to the morphisms
induced by the inclusions S™"(Sus(W,,)) C W,, and S™"(Sus(W,,)) C Wp41.
Hence D(p?*!) =i"*! and D1(X) 2 W. =

PROPOSITION 5.2.2. If M = {(M,, X,,)}22 is a defining sequence, then

S(A(M)) is a CW substitute for the spectrum F(X), where X is the inverse
limit of the sequence X = V(M).

Proof. This is a consequence of Theorems 4.4.1, 4.5.1 and Lemma 5.2.1. =

COROLLARY 5.2.3. For every compactum X there exists a countable CW
substitute Wx for F(X).

COROLLARY 5.2.4. Let W be a CW spectrum. If a compactum X is hom-

eomorphic to the limit of a sequence {Xk,p’,:H} of finite CW complexes and
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{D(Sus(X%)), D(Sus(pZH))} is isomorphic to W, then W is a CW substitute
for F(X).

Proof. By the previous lemma there exists a CW substitute Wx for
F(X). Corollary shows 4.4.2 that the direct sequences Wx and W are iso-
morphic objects of Inj-SCW-.

Since Wx is a countable spectrum we infer (see Proposition 1.4.3) that
any isomorphism from W x to W must be represented by a function of spectra

(defined on a cofinal subspectrum of Wx ). This map generates an isomor-
phism of SCW. =

5.3. Spectra which are CW substitutes for function spectra

PROPOSITION 5.3.1. Forn = 1,2,..., let W, be a proper submanifold
in St such that S(W,) C Wyy1. Then there exists a compactum X such
that W = {Wy,} is a CW substitute for F(X).

Proof. Let X1,..., X}, be polyhedra in S"*! and for each i = 1,...,k
let C; be a compact subset of St \ X;. There are polyhedra Y7i,...,Y;
such that C; C Y; € S"*1\ X; and Y; is a deformation retract of S"+1\ X;
and whenever X; C Y; then Y; C Y; (see [S-W1y, p. 58]). Using this fact we
can construct sequences X,, M, W, and V,, satisfying conditions (1)—(4)
of Lemma 5.2.1. =

PROPOSITION 5.3.2. Let W = {W,,} be a CW spectrum such that each
Wy, is a finite CW complex which can be embedded in S™. Then there exists
a shape 1-connected continuum X such that STH(W) is a CW substitute for
F(X).

Proof. The space S"*2\ W,, = O,, has the homotopy type of a finite
simply connected and connected CW complex X, (see [W, p. 67]). Let h,, :
O, — X, be a homotopy equivalence. The inclusion i : O,, — S"3\ S(W,,)
is a homotopy equivalence. Indeed, by the Alexander Duality Theorem it
induces isomorphisms of singular homology groups.

Let j : S"F3\ W,y — S8\ S(W,) denote the inclusion, let 7 :
SnH3\ S(W,,) — O, and 7o : X171 — S"3\ W, 1 be homotopy inverses
for (respectively) i and h,y1, and set pT! = h,rijre : Xpi1 — Xn.

It follows by the same method as in Proposition 5.3.1 that the inverse
limit X of the sequence {X,,,p"*!} satisfies the required conditions. m

5.4. Spectra bounded below with no cells in dimensions > 0

THEOREM 5.4.1. Suppose that W is a countable spectrum bounded below
with no cells in dimensions > 0 and 7;(W) = 0 for j < —m < 0. Then
there exists a finite-dimensional compactum X such that ST (W) is a
CW substitute for F(X).



Stable cohomotopy groups 125

Proof. There exists a filtration Y; C Yy C ... of W into finite subspec-
tra. Consider the inverse sequence X = {X,,, a?*1}, where o' : X1 =
D(Y,41) — D(Y,) = X, is the Spanier-Whitehead dual for the inclusion
of Y, into Y,41. It is clear (see Theorem 3.1.1) that 7/(X) = 0 for j > —m
and 7;(%X,,) = 0 for i <0.

We may assume that for every n there exist an index o(n) > m + 1,
a finite connected CW complex X,, and a map p"*! : X, 11 — sa(n) (Xn),
where a(n) = o(n+1)—o(n), such that the following conditions are satisfied:

ea(n+1)>o(n),
e ot is induced by prti,

o T TI(Y,) = m;(Xp) = 73(X,) =0 for j =0,1,...,0(n) — 1.

The vanishing of the stable cohomotopy groups of X for dimensions
> m implies that the proof can be reduced to the case when p"*!: X, 11 —
S%(")(X,,) induces a trivial homomorphism of stable cohomotopy groups in
dimensions > m+o(n+1). Indeed, the stable cohomotopy groups of a finite
CW complex are finitely generated and we can replace X by a suitable
subsequence.

It follows from Lemma 2.1.2 that for sufficiently large k there exist n’ > n
and a map ¢ : S¥(X,,) — SFto(")=o(n) (X, ) whose stable homotopy class is
the same as that of p” : X,, — S7")=2(")(X, ) and ¢(X,) is contained in
the (m + k 4 o(n') — o(n))-skeleton of SF+o()—e() (X ).

This means that choosing a suitable subsequence of X we may reduce the
proof to the case when p7+1(X,,) C S*™(V;,), where V, is the (m + o(n))-
skeleton of X,.

Let V. = {S7°™(Sus(V;,))} € ObPro-SCW;. We denote by gnt! :
Vi1 — S (V,,) the restriction of pi+! to Vj,. 1 and by i, : S™7(")(Sus(V4,))
— X, the morphism of spectra induced by the inclusion V,, C X,,. Theo-
rem 3.2.1 implies that i = {i, } € Pro-SCW}(V, X)) is an isomorphism.

Since V;, is a (o(n) — 1)-connected finite CW complex with dimension
< m+o(n) we infer that there exist a finite CW complex W,, and a homotopy
equivalence f, : S"(”)*mfl(Wn) — V,, such that dimW,, < 2m (see [Sa,
p. 461, Exercise D1]).

The Freudenthal Suspension Theorem implies that there exists a map
G+ s Wiy — Wi, such that [S707D)==1 (1] = [S9)(£,)] [+ g1,
where g,, denotes the homotopy inverse of f,, for every n (see the diagram).

an+1

go(n+1)—m-1 (Wn—i-l)
\Lsa(n-kl)—m—l(qg-fl)

Sa(nJrl)fmfl (Wn)

Vn+1

8 (fn)
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Let W = {S™"1(Sus(W,))} € ObPro-SCW; and let g = {g,} €
Pro-SCW¢(V, W) be a morphism, where g,, denotes the morphism of spec-
tra induced by g, : V;, — S7="=1(1},)). It follows from Theorem 3.2.1 that
g is an isomorphism. Hence ig : S—m~1(W) — X is also an isomorphism,
Dy (S™" (W) 2 Di(X) = W and D1(W)) = S~ (W).

By Theorem 4.4.1, we infer (Remark 5) that S(-"~D(W) is a CW

substitute for F(X), where X is the inverse limit of the inverse sequence
Wy, g1} m

COROLLARY 5.4.2. For every countable CW complex W with dim W <n
and —m > 2n + 2 there ezists a continuum X such that S™(Sus(W)) is a
CW substitute for F(X).

6. DUALITY

6.1. Main theorems

THEOREM 6.1.1. For every pair X, Y of compact Hausdorff spaces and
every pair (Wx, a), (Wy,B3) of CW substitutes for (respectively) F(X) and
F(Y) there exists an isomorphism ’Di\i«’;wy) =D : ShStab(X,Y) — (Wy,Wx)
such that:

(i) If (Vx,d) and (Vy,B3') are also CW substitutes for (respectively)
F(X) and F(Y) then the diagram

X,V
D(WX Wy ) (£)

WY — WX
<Ex)l l(éﬂ
Vy Vx

commutes for every stable shape morphism f € ShStab(X,Y), where £x :
Wx — Vx and & : Wy — Vy are canonical (unique) isomorphisms of
spectra.

(ii) D(gof) = D(f) o D(g), where £ € ShStab(X,Y'), g € ShStab(Y, Z).

(iii) D(iy) = (i) where iy € ShStab(X,X) and i;x denote respec-
tively the stable shape morphism induced by the identity map of X and the
morphism iy, : Wx — Wx induced by the identity of Wx.

(iv) hp(X) = A% (Y), where {hy} and {h%} denote (respectively) the
cohomology theories associated with Wy and Wx .

(v) If Y is a compactum, then hi (X NY') = higxy. (X), where {hg} and
{hEawy } denote the cohomology theories associated with E and E A Wy

X,V
D(V)@Vy)(f)

Proof. We have the duality isomorphism (see Definition 1) D;
Pro-SCW(X,Y) — Inj-SCW;(D1(Y),D1(X)) which is natural with re-
spect to morphisms of Pro-SCWy. There also exist (see Theorem 4.4.1)
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canonical isomorphisms xx : D1(X) — Wx and xy : D1(Y) — Wy. Let
Dy sy () = DE)XyDi(f)x" for every f € ShStab(X,Y).

Observe that h{:(X) = (hy)-n(Wx) = (hx)-n(Wy) = A% (Y) (see [Aq,
p. 198]).

It remains to prove (v) in the case when X is a finite CW complex
(see [Sw, pp. 255 and pp. 268]). We may also assume that Y is the inverse
limit of a sequence {Yk,q,’zﬂ} of finite CW complexes and that there ex-
ists a filtration Wi C Wy C ... of Wy such that W}, is a finite spectrum
and D(Sus(Yy)) = Wy, for every k. Then hg(X AY) = limhg (X A Yy) &
h_n}hg/\wk (X) = hE/\Wy(X)‘ .

REMARK 7. There are close connections and similarities between the
results of [Mi] and [Mi-Sez] and Theorem 6.1.1. Generally speaking, [Mi]
contains a version of the duality described in Theorem 6.1.1. It is mainly
restricted to metrizable compact spaces. Some facts there are almost the
same (for example the assertions (i) of Theorem 4.1 from [Mi| and (iv) of
Theorem 6.1.1), others are sharper and limited to narrower classes of objects.

In [Mi-Sep] the authors study the stable shape category of all compact
Hausdorff spaces and assign to such a space X a generalized homology the-
ory .. Next, using a representation theorem, they consider the CW spec-
trum FE representing .. In this way they construct a full embedding of
the category ShStab into the category of CW spectra with weak homotopy
classes as morphisms.

We believe that this construction gives the same result as described in
Theorem 6.1.1 when €°(X),&*(Y) < oo or when the stable cohomotopy
groups of Y are countable.

REMARK 8. In the light of Theorem 6.1.1, the Whitehead Theorem for
stable shape 3.2.2 corresponds to the assertion that a natural transformation
from a generalized cohomology theory $* = {h"} to a generalized cohomol-
ogy theory & = {k™"} is a natural equivalence iff it induces isomorphisms
from h™(S°) to k(S°) for every n.

Hence Theorem 3.2.2 can be obtained as a corollary of the above fact.
Notice also that the proof of Theorem 4.4.1 requires Theorem 3.3.1, which
is dual to Theorem 3.2.1.

COROLLARY 6.1.2. For every compact Hausdorff space X and every CW
substitute Wx for F(X) there exists an isomorphism Ay : 14(X) — m_q(Wx)
such that the diagram

wq(ff) m® win)
A, Ay
rg(Wy) — 0 (W)

commutes for every q.
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COROLLARY 6.1.3. If X,Y are compact Hausdorff space such that
C¥(X), €(Y) < 0o and Wx,Wy are CW substitutes for F(X),F(Y), then
the canonical homomorphism from the group Wy, Wxlw to (Wy,Wx) is an
isomorphism.

Proof. The spectra Wx and Wy are bounded below if and only if €%(X),
¢*(Y) < oo. By Proposition 1.4.3 we get Wy, Wx]w = (Wy,Wx). =

6.2. Compacta with ¢*(X) < co

THEOREM 6.2.1. Let X be a compactum. Then the following conditions
are equivalent:

(i) €5(X) < 0.
(ii) There exist a finite-dimensional CW complex Wx and | € Z such
that S'(Sus(Wx)) is a CW substitute for F(X).
(iii) There exist a CW complex Wx and | € Z such that S'(Sus(Wx)) is
a CW substitute for F(X).
(iv) There exist a CW spectrum Wx bounded below which is a CW sub-
stitute for F(X).

Proof. If max{n : n(X) # 0} = N < oo, then there exists a com-
pactum Y such that ShStab(Y) = ShStab(S¥+2(X)) and dimY < N + 2
(see Lemma 2.3.1). We may assume that ¥ C S8V, Let Wx = S8V \ Y.
Then the spectrum Wy = S™8N*1(Sus(Wy)) is a CW substitute for F(Y)
(see [K-K-S]). On the other hand, S>~%V(Wx) is a CW substitute for F(X).
Hence (i) implies (ii).

It is obvious that (ii) implies (iii) and (iii) implies (iv).

It is known that 77 (X) = 7_,(Wx). Therefore if Wx is bounded below,
then 74(X) = 0 for sufficiently large ¢. m

By C¥ we denote the class of all compacta X with ¢¥(X) < N € Z. By
the Menger—-Nobeling Theorem for every X € C™ there exists a stable shape
isomorphism &y : SV T2(X) — X, where X is a closed subset of S4V*? with
dim X < 2(N +2).

COROLLARY 6.2.2. Suppose that £x : SN12(X) — X and &y : SVT2(Y)
— Y are stable shape isomorphisms, where X,Y € CN and X,Y are closed
subsets of S*™Nt5. Then there exists an isomorphism

D), ) =D:ShStab(X,Y) — {S*V 2\ ¥, 545\ X},

such that the following conditions are satisfied:

(i) D(gof)=D(f)oD(g), where f € ShStab(X,Y) and ge ShStab(Y, Z).
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(ii) D(ix) = {i54N+5\)}}w, where ix € ShStab(X,X) and iS4N+5\)~( :
SAN+5 \ X — G4NH5 \ X denote respectively the stable shape morphism
induced by the identity map of X and the identity map of S*N*+5\ X.

6.3. Stable shape classification of continua with one nontrivial
reduced cohomology group

PROPOSITION 6.3.1. If X and Y are continua with €5(X),€*(Y) < oo
and HY(X;Z) = 0 = HY(Y;Z) for every 0 < q # n, then ShStab(X) =
ShStab(Y) if and only if H"(X;Z) = H"(Y;Z).

Proof. Clearly H"(X;Z) = H™(Y;Z) if ShStab(X) = ShStab(Y").

Conversely, suppose that H"(X;Z) = H"(Y;Z) = G. If ShStab(S¥(X))
= ShStab(S¥(X)) for some k, then ShStab(X) = ShStab(Y) (see Proposi-
tion 1.4.1). Hence we can reduce the proof to the case when dim X =n =
dimY (see Lemma 2.3.1). We embed X and Y into the sphere $2"+1 ¢ S™.
For sufficiently large m the complements S™ \ X and S™ \ Y are sim-
ply connected ANR’s with vanishing reduced homology groups in dimen-
sions # [ = m —n — 1. The Alexander Duality Theorem also implies that
Hy(S™\ X;Z) = Hi(S™\Y;Z).

We may replace (up to homotopy) X and Y by CW complexes P and @
with dim P,dim @ <!+ 1 ([W, p. 62]). There are CW complexes P and @
such that m(P) 2 G = 7(Q), m(P) = 0 = m(Q) for i # 1 and P+ = P,

~

Q(lil) = (). This shows that there is a cellular map f : P — () such that
mi(f) : mi(P) — m(Q) is an isomorphism for every i.

Setting g(x) = f(a:) for every x € P we define a map g : P — @ such
that m;(g) : m(P) — m(Q) is an isomorphism.

From the Hurewicz Theorem ([S2, p. 390]) we conclude that Hi(g) :
H(P;Z) — H;(Q;Z) is an isomorphism and finally that g is a homotopy
equivalence.

We now apply Corollary 6.2.2 to deduce that there is an f € ShStab(X,Y)

which is an isomorphism. =

6.4. Movable compacta. Suppose that a compactum Y is the inverse
limit of a sequence {Y;,,¢""'} , where Y,, is a polyhedron for every n. Fol-
lowing [Mi-Se;], we say that Y is stable movable if Y = {Sus(Y), Sus(q)? ™!}
is a movable object ([Ma-Se, p. 159]) of Pro-SCWj.

THEOREM 6.4.1. If Y is a stable movable compactum, then the canonical
projection of Wy, Wx]| onto [Wy,Wx|y is an isomorphism.

Proof. Let hgt(Y) denote the kth Steenrod homology group of Y (see
[K-K-S]) corresponding to the reduced generalized homology theory as-
sociated with the spectrum Wyx. It is known (see [K-K-S, p. 203]) that



130 S. Nowak

h3t(Y) = [Wy, Wx]. We also have (see [K-K-S]) the exact sequence

0 — lim'h$*(Yy,) — hg'(Y) — lim ho(Yn) — 0.
Proposition 1.3.1 implies that litho(Yn) = Wy, Wx]y. If Y is a stable
movable compactum, then lim 'h74(Y;,) is a trivial group (see [Ma-Se, p. 165

and pp. 173]). Hence the canonical projection from Wy, Wx] to [Wy, Wx]w
is an isomorphism. =

7. COMPACT SPACES HAVING METRIZABLE OR POLYHEDRAL
REPRESENTATIVES UP TO STABLE SHAPE

7.1. Compact spaces having countable CW substitutes for F(X)
THEOREM 7.1.1. The following conditions are equivalent:

(a) There exists a countable CW spectrum W which is a CW substitute
for F(X).
(b) There exists a compact metric space Y such that ShStab(X) =

ShStab(Y).
(¢) The stable cohomotopy groups of X are countable.

Proof. (a)=(b). We can assume that X is the inverse limit of a system
X ={X,,p?, X} of finite CW complexes. Let (W, ax) be a CW substitute
for F(X), where W is a countable spectrum and acx : W — F(X) is a function
of spectra. There exists a filtration Wi C Wo C ... of W such that W; is a
finite CW spectrum for i = 1,2, ...

Consider the inverse sequence Y = {Y,,,q""!}, where D(W;) = Y; and
the bonding morphisms are duals to the inclusions of W; into W;y1. The
sequence Y is isomorphic as an object of Pro-SCW; to the inverse system
X = {Sus(X,),p?, X'}, where pZ denotes the morphism of spectra induced
by p? (see Theorem 3.1.1).

Let f = (d),?H) : X — Y be an isomorphism and g=(08):Y— X
be an inverse for f, where ¢ : N — Y ¢ : X — N, fn : Kyny — Yp and
8 : Yy(s) — X, Using induction one can show that for every n € N there
exist morphisms f,, : X;(,,) = Yy(n) and gpn : Yy (n41) — Xo(n) such that

(7) &&:ﬁ$Q &&zﬁ%%
where o(n) < o(n+1) and a(n) < a(n + 1).

Let o(1) = ¢(1), f; = f1, a(1) = 1. Then there exists a(2) > (1) such
a(2) _ a(2) _ a(2)
that qa(l) = fkga(l)qw(a(l))- Let g1 = ga(l)qw(g(l))-

Suppose that f : Xyx) — Y,u) and gg @ Yopy1) — o) have been
constructed. Then there exist o(k + 1) € X and a(k 4+ 2) € N such that
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s o(k+1) o(k+1) i ~ a(k+2 _a(k+2)
gifa at+)P(a(k 1)) = Po(k) and fo(k11)8p(alk+1) Ay (a(k+1)) = Da(k+1)- Lot
fk+1 = f (k+1)p¢>2 (kJZI)) and gk+1 = gqﬁ(a(k-&—l))qw(( —(;211)) This means that
(7) is satisfied for every n (see the diagram).

o UL
e <— SuS(XU(k)) B — SuS(Xg(k_H)) -~ Sus( (k+2)) [P

f) f) f)
kl k;ﬁll m \L k+2

e Yo =y Yatery = Yoty <
a(k) Qa(k+1)

The inverse sequence X = {Sus(Xg(n)),pZEZ;rl)} is a subsystem of X

and 7™ (X) = 7™(Y) = 7™(X) for every m. Moreover, the restriction mor-
phism from X to X induces isomorphisms of stable cohomotopy groups in
all dimensions.

Theorem 3.2.1 implies that the restriction morphism is an isomorphism
and the inverse limit Y of the sequence X is a compactum with the same
stable shape as X.

(b)=(c). The stable cohomotopy groups are invariants of the stable
shape. It is also clear that the stable cohomotopy groups of a compactum
are countable.

(c)=(a). Suppose that the stable cohomotopy groups of X are countable
and the pair (E, k) is a CW substitute for F(X), where E = {E,,e,} is
an Qo-spectrum (see [Aj, p. 150] and Remark 5) and k = {k,}. Since
T (En) = mp_pn(E) for r = 1,2,... ([A1, p. 134]), we infer that there are
countable CW complexes F,, and homotopy equivalences f, : F, — E,
([L-W, p. 137, Theorem 6.1]).

Consider the map 6, = fgjlz—:nS(fn) : S(F,) — F,4+1, where f;_&l is
a homotopy inverse of f,4+1. Replacing E,, by the telescope W,, of the se-
quence of maps &,, S(0,-1), S?(6n_2),...,S" 1(d1) we get (see [Sw, p. 134,
Proposition 8.3]) a CW spectrum W = {W,} and homotopy equivalences

n : Wyn — F,,. The properties of the telescope construction guarantee that
W is countable. The diagram

S(Wy,) Wh+1
S('fnfngn)l \Lnn+1fn+lgn+l
S(Map<X7 Sn)) - Ma'p<X7 Sn+1)

commutes up to homotopy.

By [Sw, Lemma 10.4, p. 173]) there exists a function a = {a,} : W —
F(X) such that a,, >~ kp, frgn : W, — Map(X, S™). The pair (W, o) is a CW
substitute of F(X). m
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REMARK 9. T. Watanabe [Wa| characterized topological spaces X which
have the shape of compact metric spaces. The existence of a compactum Y
with the same shape as X is equivalent to countability of [X, P] for every
finite CW complex P. From this he deduced that X has the shape of a
compactum if and only if X is shape dominated by a compactum.

COROLLARY 7.1.2. A compact Hausdorff space X has the stable shape of

a compactum if and only if there exists a compactum 'Y such that ShStab(X)
< ShStab(Y).

Proof. If ShStab(X) < ShStab(Y), then 77(Y) r-dominates 77'(X) and
(see [Bo, p. 18]) the group n(X) is a direct summand of 77(Y"). Hence, if

72(Y) is countable, then 77'(X) is countable. m

COROLLARY 7.1.3. Let X,Y be compact Hausdorff spaces and Wx, Wy
be CW substitutes for F(X),F(Y'). If the stable cohomotopy groups of Y are
countable, then the canonical homomorphism from the group [Wy,Wxly to
(Wy,Wx) is an isomorphism.

Proof. This is a consequence of Theorem 7.1.1 and Proposition 1.4.3. u

7.2. Integral cohomology of X with ¢*(X) < oo. It is known
([Hu, Chapter X, p. 298]) that there exists a canonical homomorphism
h": 7(X) — H"(X;Z).

Let C be a collection of Abelian groups. C is called a class of Abelian
groups if it satisfies the following conditions:

(1) If the sequence 0 — G1 — G2 — G3 — 0 is exact, then Gy is in C if
and only if G; and G3 are in C.

(2) If G is in C, then H,(G;Z) is in C.

A homomorphism f : G — H is a C-isomorphism if Kerf and Coker f
are in C.

THEOREM 7.2.1. Suppose that X is a compact Hausdorff space with
¢¥(X) < 00. Then €*(X) = max{n : H"(X;Z) # 0} and for every class C
of Abelian groups the following two conditions are equivalent:

(i) The stable cohomotopy groups ©%(X) are in C for k > n.

(ii) The cohomology groups H*(X;7Z) are in C for k > n.

Furthermore, either implies that h" : n2(X) — H"(X;Z) is a C-isomor-
phism.

Proof. The dual W = D(X) of X with €¥(X) < oo is a spectrum
bounded below. For the class of spectra bounded below one can develop
Serre’s C-theory. In particular ([Ma, p. 91}), if W is bounded below and ei-

ther m,.(W) is in C for r < m or H,(W;Z) is in C for » < m then the Hurewicz
homomorphism h, : 7,.(W) — H,(W;Z) is a C-isomorphism for r < m.
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The Hurewicz homomorphism h, : 7.(W) — H,(W;Z) corresponds to
h™ :7;"(X) — H™"(X;Z) under the duality described in Theorem 6.1.1. m

s

ExAMPLE 1. Let us denote by X the Adams—Kahn continuum (see [Ag],
[K] and [Ma-Se, p. 153]). We know that €%(X) = €4(X) = oo and max{n :
H"(X;Z) # 0} = 0. If Wx is a CW substitute for the function spectrum
F(X), then the homology groups Hi(Wx) are the same as the homology of
the trivial spectrum (i.e. the suspension spectrum of the singleton). Hence
the constant map of Wx into the trivial spectrum induces isomorphisms of
homology groups. The spectrum Wx has 7 (Wx) # 0 for infinitely many
k € Z. It follows that the constant map does not induce isomorphisms of
homotopy groups. It is also clear that the stable cohomotopy groups of W x
are trivial (compare [Li]).

COROLLARY 7.2.2. Let X and Y be compacta such that €5(X),&*(Y)
< 0. Then €(X AY), €5 (X x Y) < cc.

COROLLARY 7.2.3. Let X be a compact Hausdorff space such that
¢%(X) < 00. Then the following conditions are equivalent:

(i) There exists a compact metric space Y such that ShStab(X) =
ShStab(Y).

(ii) H™(X;Z) are countable for every n.

Proof. See Exercise Al from Chapter X of [Hu]. =

COROLLARY 7.2.4. Let X be a compact Hausdorff space such that
¢*(X) < c0. Then the following conditions are equivalent:

(i) There ezists a finite CW complex P with the same stable shape as
S*(X), for some k > 0.

(ii) H™(X;Z) is finitely generated for every n.

COROLLARY 7.2.5. Let X and Y be compact Hausdorff spaces such that

¢5(X), % (X) < 0o. A stable shape morphism £ : X — Y is an isomorphism
iff H™(f) : H"(Y;Z) — H™(X;Z) is an isomorphism for every n.

8. APPLICATIONS, PROBLEMS AND FINAL REMARKS

8.1. Generalized cohomological dimension. Let $ = {h"} be a
generalized cohomology theory defined on the category HCW; and satis-
fying the condition

d$ = max{n : h"(S") # 0} = 0.
The notion of cohomological dimension with respect to a connected spec-

trum E was introduced in [D;] . We formulate the definition of generalized
dimension in terms of the cohomology theory $ (represented by E) instead
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of E. Roughly speaking the connectedness of E corresponds to the condition
d$ = 0.

Let n be a natural number. A compactum X has cohomological dimen-
sion at most n with respect to ) (9-dim X < n) if for every closed subset A of
X the inclusion i : A — X induces an epimorphism A" (i) : A"(X) — h™(A)
for every m > n. If it is not true that $H-dim X < n, then H-dim X > n. If
H-dim X > n for every n, then $H-dim X = oco.

A.N. Dranishnikov ([D1], [D2]) also studied the cohomotopical dimension
w-dim, i.e. the generalized cohomological dimension with respect to the sta-
ble cohomotopy theory. In particular he has proved that m=dim X = dim X
for every finite-dimensional X, and =dim X = oo if X is strongly infinite-
dimensional or X is a C-compactum. In [Ds] an example of a strongly
infinite-dimensional compactum Y with dimz Y = 3 is described.

The next theorem (see [D1, equivalence (3) and p. 250]) is analogous to
the classical fact of the cohomological dimension theory and can be obtained
in a similar way.

THEOREM 8.1.1. For every natural number n the following conditions
are equivalent:

(1) H-dim X <n.

(2) The inclusion i : A — X induces an epimorphism h™(i) : h"(X) —
h™(A) for every closed subset A of X.

(3) hTYH(X/A) = 0 for every closed subset A of X.

THEOREM 8.1.2. Let § be a generalized cohomology theory and X be a
compactum. Then:

(i) H-dim X < w-dim X.
(i) If dimz X < $H-dim X then m-dim X = oo.
(iii) If Y is a compactum and $H-dim(X x Y) = oo then m-dim X = oo
or m-dimY = oo.

Proof. We may assume that §) is represented by a CW spectrum kg =
{E,} such that E,, is n-connected for every n. Then (i) and (ii) are conse-
quences of Corollary 2.3.5 and Theorem 7.2.1, while (iii) is a consequence
of Corollary 7.2.2. u

8.2. Problems. Suppose that P and @ are connected and simply con-
nected CW complexes. A map f : P — @ is a homotopy equivalence iff it
induces isomorphisms of homology groups with integer coefficients. It fol-
lows easily that f is a homotopy equivalence iff it is a stable homotopy
equivalence.

Analogously if X and Y are shape 1-connected finite-dimensional con-
tinua then a shape morphism f : X — Y is a shape equivalence iff it induces
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isomorphisms of all Cech cohomology groups with coefficients in Z. The last
condition holds if and only if f is a stable shape equivalence.

PROBLEM 1. Let X and Y be shape 1-connected continua (or more gen-
erally Hausdorff continua). Is it true that a shape morphism f : X — Y is an
isomorphism when it induces isomorphisms of stable cohomotopy groups?

PROBLEM 2. Let X be a shape 1-connected continuum with all stable
cohomotopy groups vanishing. Is it true that X has trivial shape?

In [H) H. W. Henn considered (apart from the category ShStab) the
category StabSh with the same class of objects as ShStab and with the
morphisms defined by the formula

StabSh(X,Y)
= lim Sh(X,Y) — Sh(S(X),S(Y)) — Sh(S*(X),8*(Y)) — ...}.
There exists a homomorphism H : StabSh(X,Y) — ShStab(X,Y’) preserv-

ing the compositions of morphisms. Henn proved that H is an isomorphism
when the space X is finite-dimensional.

PROBLEM 3. Is H an isomorphism when €(X) < co?

PROBLEM 4. Let X and Y be shape 1-connected continua. Is it true that
f € Sh(X,Y) is an isomorphism iff H(f) is an isomorphism?

PROBLEM 5. Let X be a compact Hausdorff space with €%(X) < oo. Do
there exist a finite-dimensional compact space Y and an index [ such that
Y has the same stable shape as the [-fold suspension of X7

PROBLEM 6. Is it true that for every compact Hausdorff space X there
exist an integer N and a CW substitute Wx for F(X) with no cells in
dimensions > N?

PROBLEM 7. Let X be a compact Hausdorff with €°(X) < oo. Do there
exist a CW complex W and an index [ such that S!(Sus(WW)) is a CW
substitute for F(X)?

An affirmative answer to Problem 6 would imply an affirmative answer
to Problem 7.

PROBLEM 8. Let E be a CW spectrum with no cells of dimensions > 0.
Under what conditions does there exist a compact space X such that [ is a
CW substitute for F(X)? Is it true that such an X exists when E is bounded
below?

PROBLEM 9. Characterize compact Hausdorff spaces having the same
stable shape as a compact space with weight < m, where m > Ng is a
cardinal number. Is it true that X belongs to this class if and only if there
is a CW substitute W for F(X) having no more than m cells?
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PROBLEM 10. Isit true that 7—dimX = dim X for every compact metric
space X7
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