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Identifying points of a pseudo-Anosov homeomorphism

by

Gavin Band (Coventry and Warszawa)

Abstract. We investigate the question, due to S. Smale, of whether a hyperbolic
automorphism T of the n-dimensional torus can have a compact invariant subset homeo-
morphic to a compact manifold of positive dimension, other than a finite union of subtori.
In the simplest case such a manifold would be a closed surface. A result of Fathi says that
T can sometimes have an invariant subset which is a finite-to-one image of a closed surface
under a continuous map which is locally injective except possibly at a finite number of
points, these being the singularities of the invariant foliations of a suitable pseudo-Anosov
homeomorphism. For a class of pseudo-Anosov homeomorphisms whose invariant folia-
tions are of a particularly simple type, we show that this map is never locally injective
at the singularities. The proof involves finding pairs of points having lifts in the universal
abelian cover whose orbits are similar, and in fact we find whole pairs of horseshoes worth
of such points.

1. Introduction. One of the basic questions one can ask about a dy-
namical system is: what are its invariant subsets? In [Hir70] this question
was asked of hyperbolic dynamical systems, and in particular of the hyper-
bolic toral automorphisms. Several people worked in this area, but one of
the questions that still remains is

Question 1.1. Can a hyperbolic toral automorphism have a compact in-
variant topological submanifold of positive dimension, different from a finite
union of subtori?

The simplest such submanifolds would be closed orientable surfaces of
genus g > 1. Let us say straightaway that any such surface would have
to be embedded in a rather complicated way: like most invariant subsets
of Anosov diffeomorphisms, it could not contain a nontrivial Lipschitz arc
[Man78].

A good way to begin studying Question 1.1 was provided in [Fat88].
Suppose f is a pseudo-Anosov homeomorphism of the closed orientable sur-
face M = Mg of genus g > 1 whose stable and unstable foliations are
orientable. Raising f to some power if necessary we may assume that f
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preserves the orientations of its invariant foliations. In this situation, the
expansion factor λ > 1 of f and its inverse λ−1 are each known to appear as
simple eigenvalues of the map f∗ induced by f in first homology. They are,
in particular, algebraic integers, and there are two distinct possibilities: ei-
ther λ and λ−1 are conjugate over Q, or not. In the first case we let P be the
minimum polynomial of λ (over Z), which is also the minimum polynomial
of λ−1; in the second, we let P be the product of the minimum polynomial
of λ and that of λ−1. In either case P is a factor of the characteristic poly-
nomial χ(f∗) of f∗ having both λ and λ−1 as roots, and whose degree n
satisfies 2 ≤ n ≤ 2g.

Suppose that P has no roots of modulus 1. Fathi applied a theorem of
J. Franks ([Fra70]) to show that there exists a nontrivial continuous map ϕ :
M → Tn which makes the diagram

M
f //

ϕ

��

M

ϕ

��
Tn T // Tn

commute. Here T is a hyperbolic automorphism of Tn whose characteristic
polynomial is P , and ϕ is surjective on first homology groups. We ask

Question 1.2. Is ϕ injective?

If ϕ is injective, then it is a homeomorphism, and imϕ is a compact
invariant subset for T answering Question 1.1 affirmatively. However, to the
best of our knowledge no examples are known for which ϕ is injective.

In [Fat88] it is proved that ϕ is locally injective away from the sin-
gularities of the invariant foliations of the pseudo-Anosov map f (and is
consequently finite-to-one). The purpose of this paper is to show that ϕ
need not be locally injective at the singularities of the foliations.

Results. The paper is structured as follows. In Section 2 we define an
equivalence relation ∼ between points of M and show that equivalent points
must be identified by Fathi’s map ϕ. By an f -horseshoe we will mean a map
ε : Σ →M satisfying εσ = fε, where σ is the left-shift map of the two-sided
shift space Σ = {0, 1}Z. In Section 3 we associate f -horseshoes to certain
rectangles in M , the horseshoes fitting into the rectangles in a nice way.
By comparing paths which are the diagonals of such rectangles, we show
how pairs of f -horseshoes can arise, which are equivalent in the sense that
corresponding points of their images are equivalent. Then in Section 4 we
identify a class C of pseudo-Anosov maps whose invariant foliations are of
a particularly simple type, having in particular only one singularity, and
exploit the special geometric features of maps in this class to prove the
following theorem.
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Fig. 1.1. The behaviour of ϕ for f ∈ C

Theorem 1.3. Let f ∈ C. For every stable prong s1 of the singularity p
there is a stable prong s2 6= s1 of p and f -horseshoes ε1 and ε2 corresponding
to rectangles Λ1, Λ2 ⊂M such that

(1) either the bottom edge or the top edge of Λi is a subinterval of si
having p as one endpoint , for i = 1, 2;

(2) for all z ∈ Σ we have ε1(z) ∼ ε2(z) but ε1(z) 6= ε2(z), except that if z
is one of the two fixed points of σ then ε1(z) = ε2(z) = p.

In particular Fathi’s map ϕ (if it exists for f) is not locally injective at p.
The behaviour produced by Theorem 1.3 is illustrated in Figure 1.1.

This figure depicts the image under ϕ of the three outwardly-oriented stable
prongs of the singularity p, corresponding to a certain pseudo-Anosov map f
of M2 which is described in more detail in [Ban03]. The relevant torus has
dimension 4 and the two dimensions depicted are those of the stable manifold
of the fixed point ϕ(p) (which is the leftmost point in the figure).

Acknowledgements. I would like to express my thanks to my PhD
supervisor Anthony Manning, who suggested Question 1.2 to me and taught
me how to study it. I would also like to thank Feliks Przytycki, Godofredo
Iommi and the referee for their many helpful comments.

2. Equivalent points and identifications. We work with a pseudo-
Anosov map f of the smooth closed orientable surface M = Mg of genus
g ≥ 1. Thus f preserves a transverse pair (Fu,F s) of singular measured fo-
liations, expanding uniformly along Fu by a factor of λ > 1 and contracting
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uniformly along F s by a factor of λ−1. We denote the finite set of singulari-
ties of these foliations by Z. We will assume throughout that Fu and F s are
orientable. Since Fathi’s map ϕ (if it exists) is not changed by raising f to
some power, we may also assume without loss of generality that f preserves
the orientation of its invariant foliations, and also when necessary that f
has a fixed point (to be used as a base point).

Rather than working directly with transverse measures we will work with
“transverse” smooth real 1-forms ωs and ωu, each vanishing on Z. These are
defined by the requirement that for any smooth path α in M , the integrals

〈ωs, α〉 =
�

α

ωs and 〈ωu, α〉 =
�

α

ωu

are the measures of α, measured, respectively, transverse to F s and to Fu;
the sign of these integrals reflects the orientation of α relative to that of F s

and Fu. For vectors v and w in the tangent space to M at a point x, the
expression (v, w) = ωu(v)ωu(w)+ωs(v)ωs(w) defines a “singular” Riemann-
ian metric on M which makes M \Z a flat Riemannian manifold, and which
induces a metric d on the whole of M .

We denote by M̃0 the universal abelian cover of M , this being the cov-
ering space of M with group of deck transformations

π1(M)/[π1(M), π1(M)] ∼= H1(M ;Z).

The Riemannian metric on M lifts to one on M̃0, and we denote again by d
the corresponding metric.

The following definition is analogous to that of global shadowing (at-
tributed in [Han85] to A. Katok), which, however, works in the universal

covering space rather than in M̃0.

Definition 2.1. For x, y ∈ M , we write x ∼ y (for the homeomor-

phism f) if x and y have lifts x̃ and ỹ in M̃0 such that d(f̃kx̃, f̃kỹ), k ∈ Z,
is bounded.

Here f̃ denotes a lift of f to M̃0; since any two lifts differ by an isometry

covering the identity, the above definition is independent of the choice of f̃ .
The usefulness of the definition for our purposes comes from the following

lemma. We suppose ourselves in the situation of the introduction, so we have
a hyperbolic automorphism T of Tn and a map ϕ : M → Tn with ϕf = Tϕ.

Lemma 2.2. If x ∼ y then ϕ(x) = ϕ(y).

Proof. Choose lifts x̃ and ỹ of x and y in M̃0 such that d(f̃kx̃, f̃kỹ) is
bounded, by D > 0, say. Since the fundamental group of Tn is abelian, ϕ

lifts to a map ϕ̃ : M̃0 → Rn of covering spaces. Choose the lift T̃ of T to Rn
for which ϕ̃f̃ = T̃ ϕ̃. If p̃ is the lift to M̃0 of our chosen base point which is

fixed by f̃ , then T̃ is the lift of T which fixes ϕ̃p̃.
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Since ϕ is uniformly continuous, so is ϕ̃. Choose a small ε > 0 and

choose δ > 0 such that any δ-ball in M̃0 is mapped by ϕ̃ into an ε-ball in
Rn. There is an integer K > 0 such that for each k > 0 we may choose

K points p0 = f̃kx̃, p1, . . . , pK = f̃kỹ such that d(pi, pi+1) < δ for each
0 ≤ i < K. Indeed any K > D/δ will do. These points may be chosen, for

example, to lie in some path α from f̃kx̃ to f̃kỹ of length at most D.
Then in Rn we have

‖T̃ kϕ̃(x̃)− T̃ kϕ̃(ỹ)‖ = ‖ϕ̃(f̃kx̃)− ϕ̃(f̃kỹ)‖ < εK

for all k ∈ Z. Since T̃ is a hyperbolic linear map of Rn this is impossible
unless ϕ̃(x̃) = ϕ̃(ỹ) and hence ϕ(x) = ϕ(y) as required.

3. Equivalent horseshoes. Recall that by an f -horseshoe we mean a
map ε : Σ →M which satisfies εσ = fε, where σ is the left-shift map of Σ =
{0, 1}Z. In this section we will see how, in principle, pairs of f -horseshoes
can be found, corresponding image points of which are equivalent in the
sense of the previous section. The basic idea is to find pairs of rectangles of
a certain kind in M , which are similar from the point of view of homology.

A rectangle Λ is a closed subset of M whose interior is diffeomorphic
to some rectangle (0, w) × (0, h) in the x-y plane, by a diffeomorphism ψ
which satisfies ψ∗dx = ωu and ψ∗dy = ωs. The numbers w and h are the
width and height of Λ. A rectangle can contain no point of Z in its interior,
since ωs and ωu vanish on Z. A rectangle Λ has a (closed) top edge T (Λ), a
bottom edge B(Λ), and left and right edges L(Λ) and R(Λ), defined in the
obvious way. Similarly we will frequently refer to the bottom-left point, the
top-right point, etc., of Λ.

Call a rectangle Λ horseshoe-like if either its bottom-left and top-right
points, or its top-left and bottom-right points, are fixed points, and more-
over f(T (Λ)) ⊂ T (Λ) and f(B(Λ)) ⊂ B(Λ). Any rectangle which has peri-
odic points at opposite corners is horseshoe-like for some power of f . To a
horseshoe-like rectangle Λ we can associate an f -horseshoe whose image is
a Cantor set of points inside Λ, as follows. Let p0 and p1 be the fixed points
lying at the corners of Λ. Denote by Λ0 and Λ1 the connected components
of f−1Λ∩Λ containing p0 and p1 respectively. These are each subrectangles
of Λ of height λ−1 · height(Λ) and the same width as Λ. Then f sends them
to their images, also subrectangles of Λ, by an affine map; and as for Smale’s
horseshoe it follows that the intersection

⋂

k∈Z
f−k(Λ0 ∪ Λ1)

is a Cantor set whose points are uniquely coded by their itineraries (except
that if p0 = p1, then this point has two codes). For any z = (. . . z−1z0z1 . . . )
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∈ Σ we define ε(z) to be the unique point of this intersection which satis-
fies fkε(z) ∈ Λzk for all k ∈ Z; then ε is an f -horseshoe which we will call
the f -horseshoe associated to Λ.

The diagonals of a rectangle are the straight-line paths between opposite
corners. For a horseshoe-like rectangle Λ we will say “the diagonal of Λ” to
mean the diagonal of Λ between the two fixed points. We have

Lemma 3.1. Suppose Λ1 and Λ2 are two rectangles in M , horseshoe-like
for some power f t of f , with corners at the same two fixed points p0, p1

of f t. Suppose the diagonals γ1 and γ2 of Λ1 and Λ2 satisfy [γ1] = [γ2] in the
relative homology group H1(M, {p0, p1};Z). If ε1 and ε2 are the associated
f t-horseshoes, then ε1(z) ∼ ε2(z) (for f) for every z ∈ Σ.

Proof. Fix z ∈ Σ and choose a lift f̃ of f to M̃0. To fix ideas, we work
in the case where Λ1 and Λ2 have fixed points at their bottom-left and
top-right corners. Thus p0 is the bottom-left point of Λi for i = 1, 2, and p1

the top-right point. Choose a lift p̃0 of p0 in M̃0, and for i = 1, 2 let qi be
the corresponding lift of εi(z); this means that qi lies in the lift of Λi whose
bottom-left point is p̃0. We claim that for all m ∈ Z, the lifts of Λ1 and Λ2

containing f̃ tmq1 and f̃ tmq2 respectively have the same bottom-left point,
some lift p̃0(m) of p0. Since [γ1] = [γ2] this is the same thing as claiming
that they have the same top-right point, some lift p̃1(m) of p1. Of course
for m = 0 the claim is true with p̃0(0) = p̃0.

To prove the claim, suppose it is satisfied for some k ≥ 0, and for i =

1, 2 let Λ̃i be the relevant lift of Λi. It has bottom-left point p̃0(k) and

top-right point p̃1(k), independent of i. If zk = 0 then f̃ tkqi lies in the

subrectangle Λ̃0
i of Λ̃i obtained by lifting Λ0

i . Since f t sends Λ0
i to its image,

also a subrectangle of Λi, by an affine map fixing p0, it follows that f̃ t(k+1)qi
lies in the lift of Λi whose bottom-left point is p̃0(k+1) := f̃ t(p̃0(k)). On the

other hand if zk = 1 then f̃ tkqi lies in the subrectangle Λ̃1
i of Λ̃i obtained

by lifting Λ1
i . Arguing as above we find that f̃ t(k+1)qi lies in the lift of Λi

whose top-right point is p̃1(k + 1) := f̃ tp̃1(k). In either case we have shown
that the claim holds for m = k + 1. A similar argument works for f−t (for
which Λ1 and Λ2 are still horseshoe-like), so the claim holds for all m ∈ Z
by induction.

In particular we have

d(f̃ tmq1, f̃
tmq2) ≤ d(f̃ tmq1, p̃0(m)) + d(p̃0(m), f̃ tmq2)

≤ diam(Λ1) + diam(Λ2)

for all m ∈ Z; i.e. ε1(z) ∼ ε2(z) for f t. Since f̃ expands distances by a factor
of at most λ, it immediately follows that we have ε1(z) ∼ ε2(z) for f , as
required.
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4. Finding equivalent horseshoes. In this section we will identify a
class C of pseudo-Anosov maps for which the pairs of equivalent horseshoes
described in the previous section actually occur, proving Theorem 1.3 of the
introduction. The class consists of all those pseudo-Anosovs whose invariant
foliations have a particularly simple type, and the proof involves exploiting
concrete geometrical features of these foliations.

To express the “type” of the foliations, we will consider combinatorial
properties of the interval exchange map induced by the unstable foliation on
a segment of a stable leaf. We begin by recalling some material from [Rau79]
and [Vee82].

4.1. Admissible segments and partitions. As above we work with a
pseudo-Anosov map f of the surface M whose invariant foliations are ori-
entable. Let s be an initial segment of an outwardly-oriented stable prong
of some singularity p. That is, s is a subset of a stable prong of p homeo-
morphic to the closed unit interval, whose left-hand endpoint is p. We say s
is admissible if the other endpoint x of s lies in an unstable prong of a
singularity p′ such that the (closed) segment u(x) of this prong joining x
to p′ does not intersect the interior of s. We regard u(x) as an oriented line
segment and say it is positively or negatively oriented according to whether
it agrees or disagrees with the orientation of Fu.

It is well known that the first return map F of the unstable foliation to
any such segment s is an interval exchange map. A discontinuity d of F is
a point of intersection of the interior of s with an inwardly-oriented prong
of a singularity q such that the open segment of this prong from d to q
does not intersect the interior of s. Our assumption that s is admissible is
a nondegeneracy assumption: it means that x lies in an unstable prong in
such a way that it does not give rise to an “extra” discontinuity of F .

Let us write p = d0, d1, . . . , dk = x for the discontinuities of F taken
together with the endpoints of s, written in the order they occur in s. For
each 1 ≤ i ≤ k the open subinterval (di−1, di) of s is maximal with respect to
the following property: we may homotope (di−1, di) by a nontrivial holonomy
along Fu, in the direction given by orientation of Fu, until we obtain a new
subinterval of s. This is of course the subinterval F (di−1, di). The closure
of the region swept out by this holonomy is a rectangle which we denote
by Pi. These rectangles have pairwise disjoint interiors, and because the
unstable foliation of a pseudo-Anosov map is uniquely ergodic (see [MR879],
[Vee82]), they cover M . Our choice of the di’s ensures that the left edge of
each Pi contains a singularity, and the right edge of each Pi either contains
a singularity or the point x (or both).

We write Ps = {Pi | 1 ≤ i ≤ k}, and call Ps the partition of M associated
to s.
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4.2. Combinatorics of Ps. To describe the class C we need a method
of recording how the rectangles in the partition Ps are “stuck together”
along s. We do this by defining a permutation πs of {1, . . . , k} as follows. The
subinterval F (di, di+1) of s is the interior of the top edge of the rectangle Pi,
and these subintervals are pairwise disjoint and lie in some order in s. For 1 ≤
i ≤ k we define πs(i) = j if F (di, di+1) is the jth such interval in this
ordering.

From the permutation πs one can calculate directly the number and
orders of singularities of the stable and unstable foliations, and hence the
genus g of M . Intuitively, this calculation can be performed by “walking”
once around each singularity, recording the rectangles one crosses in doing
so. This gives one a collection of cycles of indices of rectangles, one for each
singularity, the length of a cycle reflecting the order of the corresponding
singularity. See [Vee82] for details.

In fact πs encodes information about Fu and F s which is more subtle
than the number and orders of singularities. Namely, it encodes in which
connected component, in the moduli space of flat singular Riemannian met-
rics on Mg having the given number and orders of singularities, the metric
defined by F s and Fu lies. Although we will not need this theory, which is
developed in [Vee90] and [KZ03], we will refer to it briefly to help us indicate
what the class C, defined below, comprises.

4.3. The class C. For any k ≥ 2 we denote by Ck the collection of all those
pseudo-Anosov maps which have an admissible segment s whose associated
permutation πs is the permutation πk given by

(4.1) πk(i) = k + 1− i.
We define C to be the union of Ck over all even k ≥ 4. That C is nonempty
follows from the techniques of [Vee82]; in fact, each Ck contains infinitely
many distinct pseudo-Anosovs (up to taking powers). The reason we consider
only even k is that, for odd k > 4, the invariant foliations of any f ∈ Ck have
two singularities, whereas for even k they have exactly one; this property
will be important below. Indeed in the latter case the single singularity has
order k− 1 (so it has 2k− 2 stable prongs and 2k− 2 unstable prongs) and
so f is a homeomorphism of the surface Mk/2 of genus k/2.

Homeomorphisms in C have special geometric features which we will now
exploit to prove Theorem 1.3. However, not every pseudo-Anosov homeomor-
phism whose invariant foliations are orientable and have only one singularity
lies in C: see Remark 4.4 below.

4.4. The geometry of Ps. We shall henceforth assume that f ∈ Ck for
some even k ≥ 4. Let s, Ps and πs = πk be as above. We now describe the
geometry of the partition Ps in this special case in more detail. One such
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Fig. 4.1. A partition for a pseudo-Anosov map in the class C6

partition is depicted in Figure 4.1 in the case k = 6. The diagram is drawn
in the universal cover of the surface M , and two lifts of each rectangle Pi
are depicted; to form M , one must identify them, preserving horizontal and
(almost) vertical lines. Here the segment u(x) coming from the admissibility
of s is negatively oriented. Our aim in this section is to show that Ps has,
in general, the features seen in Figure 4.1.

Denote by p the singularity of the stable and unstable foliations. By
definition, for each 0 ≤ i ≤ k there is a (closed) segment ui of an unstable
prong connecting di to p (for i = 0 it is just the one-point set {p}). Indeed,
for 0 ≤ i < k this segment is contained in the left edge L(Pi+1) of Pi+1,
whereas uk = u(x). For 1 ≤ i ≤ k we denote by u′i the segment of L(Pi)
from p to the top-left point of Pi; it is the closure of L(Pi) \ui−1. We define
also u′0 = −uk, that is, uk taken with the opposite orientation.

The assumption πs = πk implies that the ui’s and the u′i’s are rather
symmetrically arranged in M . To express this, let us define hi = 〈ωs, ui〉
and h′i = 〈ωs, u′i〉. The following inequalities now follow from the above
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definitions and because we have πs(1) = k and πs(k) = 1:

0 < hi ≤ height(Pi+1), 0 < h′i ≤ height(Pi) for 1 ≤ i < k,(4.2)

h0 = 0, h′k = 0,(4.3)

−height(P1) < hk < height(Pk), h′0 = −hk.(4.4)

Some similar formulae (with different notation) can be found on p. 206 of
[Vee82]. We have the following lemma.

Lemma 4.1. For all 0 ≤ i < j ≤ k we have

(4.5) hj − hi = h′j − h′i.
Moreover , for 1 ≤ i < k we have hi > hk and h′i > −hk = h′0.

Proof. Note that ui−1 ∪ u′i = L(Pi) for all 1 ≤ i ≤ k, and thus hi−1 =
height(Pi) − h′i. On the other hand, for all 1 < i ≤ k we have πs(i − 1) =
πs(i)+1, meaning that the top-right point of Pi is the top-left point of Pi−1.
If i < k, or if i = k and u(x) is positively oriented, then R(Pi) contains p,
and it follows that R(Pi) = ui ∪ u′i−1. Hence hi = height(Pi)− h′i−1 in this
case. In fact, this formula also holds for the case i = k and u(x) negatively
oriented because, in this case, u′k−1 is the union of u(x) = uk and R(Pk).
The formula also holds for i = 1 because of our choice that u′0 = −uk.

Now let 0 ≤ i < j ≤ k. We have

hj − hi =

j∑

r=i+1

(hr − hr−1)

=

j∑

r=i+1

[(height(Pr)− h′r−1)− (height(Pr)− h′r)]

=

j∑

r=i+1

(h′r − h′r−1) = h′j − h′i.

The other inequalities follow by applying this together with (4.2) and (4.3)
above.

From the last two inequalities in the lemma we get the following. If u(x)
is negatively oriented, so hk < 0, there is a rectangle Q in M of height −hk
whose top edge is s, whose bottom-right point is p, and whose right edge
lies inside R(P1). If instead hk > 0, there is a rectangle Q in M of height hk
whose bottom edge is s, whose top-right point is p, and whose right edge
lies inside R(Pk). We will use this rectangle Q below.

4.5. Paths for rectangles. For 1 < i < k let us define ei to be the loop
at p which is a straight-line path traversing Pi once from its left edge to its
right edge. This makes sense because p lies in both the left and the right edge
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of Pi. If i = 1 or i = k we instead define ei to be the path composition α·u(x),
where α denotes the diagonal of Pi from p to x. Thus ei is again a loop at p,
and Lemma 4.1 implies that we may homotope ei fixing endpoints, until it
is a straight-line path in Pi ∪ Q. These paths are depicted by dashed lines
in Figure 4.1.

Definition 4.2. A diagonal pair is a pair (i, j), 1 ≤ i < j ≤ k, with the
property that for all i ≤ r < j we have hr > max(hi−1, hj).

We are now ready to prove the following theorem, from which Theorem
1.3 of the introduction follows directly, by applying Lemma 3.1.

Theorem 4.3. (a) If (i, j) is a diagonal pair other than (1, k), then
there are distinct rectangles Λ1 and Λ2 in M , horseshoe-like for some power
f t of f , whose diagonals γ1 and γ2 satisfy

(4.6) [γ1] = [γ2] =

j∑

r=i

[er]

in H1(M, {p};Z). If ε1 and ε2 are the corresponding f t-horseshoes, then for
all z ∈ Σ we have ε1(z) 6= ε2(z), except that if z is one of the two fixed
points of the shift map then ε1(z) = ε2(z) = p.

(b) There are exactly k − 2 diagonal pairs other than (1, k). Moreover
each i with 1 < i < k, and at least one of 1 or k, occurs in some such pair.

Proof. (a) Let (i, j) be a diagonal pair, 1 ≤ i < j ≤ k, and suppose
first of all that j 6= k. We denote by Λ1 the rectangle of height |hj − hi−1|
and width

∑j
r=i width(Pr), defined as follows: we require L(Λ1) ⊂ L(Pi)

and R(Λ1) ⊂ R(Pj), and the bottom-left or top-left point of Λ1 is p de-
pending on whether hj > hi−1 or hj < hi−1. Because (i, j) is diagonal,

this rectangle is well defined, and it can be written as the union
⋃j
r=iQr,

where Qr is a subrectangle of Pr whose left edge lies in ur−1 (except possibly
for r = i) and whose right edge lies in ur (except possibly for r = j).

We denote by Λ2 the rectangle of the same width and height as Λ1

which has L(Λ2) ⊂ L(Pj) and R(Λ2) ⊂ R(Pi), and whose bottom-left
or top-left point is p depending on whether h′j > h′i−1 or h′j < h′i−1.

Again Λ2 is well defined, because since (i, j) is diagonal and by Lemma
4.1, we have h′r > max(h′i−1, h

′
j) for all i ≤ r < j. In fact Λ2 can be written

as the union
⋃j
r=iQ

′
r, where Q′r is a subrectangle of Pr whose left edge lies

in u′r (except possibly for r = j), and whose right edge lies in u′r−1 (except
possibly for r = i).

If j = k and hk < 0 then Λ2 is defined as above, but Λ1 no longer fits
in the same way into the rectangles Pr. However, since by Lemma 4.1 we
have hk < hr for all 1 ≤ r < k, it follows that Λ1 can again be constructed
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as a union
⋃j
r=iQr, where Qr is a subrectangle not of Pr, but of Pr ∪ Q.

A similar argument when hk > 0 is used to construct Λ2.
If γ1 and γ2 are the diagonals of Λ1 and Λ2, we have [γ1] = [γ2] =∑j
r=i [ei] in H1(M, {p};Z) by construction. Indeed, the homotopy class of γ1

is that of the path composition eiei+1 . . . ej and the homotopy class of γ2

is that of the path composition ejej−1 . . . ei (where we make some choice
of bracketing in these compositions to make them well defined). Moreover
unless (i, j) = (1, k), Λ1 and Λ2 are distinct because their left edges lie in
different prongs of the singularity p, as do their right edges (note however
that Λ1 ∩ Λ2 \ {p} may be nonempty).

The rectangles Λ1 and Λ2 are horseshoe-like for any power f t of f which
fixes all stable prongs, and have the same width and height. Since such an f t

expands unstable leaves and contracts stable leaves everywhere by the same
factor λt, it follows that (with the notation of Section 3) the actions of f t

on Λ0
1 ∪ Λ1

1 and on Λ0
2 ∪ Λ1

2 are conjugate by the isometry Φ : Λ1 → Λ2

which preserves the stable and unstable foliations and their orientations. In
particular ε2(z) = Φε1(z) for all z ∈ Σ. Since Φ sends stable (resp. unstable)
leaves to stable (resp. unstable) leaves isometrically, it is determined by its
value at any point of Λ1 other than the singularity p. In particular if Φ
fixes any point of Λ1 other than p, it must fix every point of Λ1, which is
impossible since Λ1 and Λ2 have distinct left edges. This finishes the proof
of (a).

(b) Now we will count the number of diagonal pairs. For 1 ≤ i ≤ j ≤ k,
denote by S(i, j) the set of diagonal pairs (i′, j′) satisfying i ≤ i′ < j′ ≤ j.
We will prove that if (i, j) is diagonal then #S(i, j) = j − i. The proof
is by induction on j − i. Assume that the formula holds for all diagonal
pairs (a, b) with b − a < j − i (it certainly holds when b − a = 1). Pick
the i ≤ i′ < j which makes hi′ as small as possible (there is only one such i′

because the stable foliation has no closed leaves or saddle connections).
Then the pairs (i, i′) and (i′ + 1, j) are each diagonal, with the obvious
exceptions when i′ = i and when i′ + 1 = j, and the diagonality of (i, j)
ensures that S(i, j) = S(i, i′)∪S(i′+ 1, j)∪{(i, j)}. Applying our induction
hypothesis we get #S(i, j) = i′ − i+ j − (i′ + 1) + 1 = j − i, as required. In
particular #S(1, k) = k − 1.

For any 1 ≤ i ≤ k, one checks that i is the first element of some diagonal
pair if and only if hi−1 < hi, and that i is the second element of some
diagonal pair if and only if hi−1 > hi. We cannot have hi−1 = hi; thus
every i occurs in some diagonal pair. If (1, k) is the only pair containing 1
then we must have h2 > h1, so (2, k) is a diagonal pair containing k. This
completes the proof.
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Remark 4.4. An obvious question is whether there are pseudo-Anosovs
whose invariant foliations are orientable and have exactly one singularity,
but which do not lie in the class C. The answer turns out to be “no” on M2,
but “yes” on surfaces of higher genus. To construct such pseudo-Anosovs,
one applies the construction of Section 8 of [Vee82] starting with a permu-
tation π which does not lie in the so-called “extended Rauzy class” of πk,
but which corresponds as above (Section 4.2) to foliations on Mg with one
singularity. The existence of such permutations follows from the classifica-
tion, in [KZ03], of connected components of strata of the moduli space of
flat singular Riemannian metrics on Mg. One such permutation is

θk =

(
1 2 3 . . . k − 3 k − 2 k − 1 k

k k − 3 k − 4 . . . 2 k − 1 k − 2 1

)

for k = 2g and g > 2.
For g = 2, on the other hand, no such permutations exist (since there

are only 4! = 24 permutations of {1, 2, 3, 4} this can easily be verified di-
rectly). Consequently, the construction of [Vee82] and the theorem on p. 327
of [Rau79], which describes the structure of the Rauzy class of πk, together
imply that any pseudo-Anosov homeomorphism of M2 whose invariant foli-
ations have only one singularity, must lie in C.
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and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New
York, 1970, 126–135.

[KZ03] M. Kontsevich and A. Zorich, Connected components of the moduli spaces of
Abelian differentials with prescribed singularities, Invent. Math. 153 (2003),
631–678.
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