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Universal measure zero, large Hausdorff dimension,
and nearly Lipschitz maps

by

Ondřej Zindulka (Praha)

Abstract. We prove that each analytic set in Rn contains a universally null set of
the same Hausdorff dimension and that each metric space contains a universally null set
of Hausdorff dimension no less than the topological dimension of the space. Similar results
also hold for universally meager sets.

An essential part of the construction involves an analysis of Lipschitz-like mappings
of separable metric spaces onto Cantor cubes and self-similar sets.

1. Introduction. A separable metric space X is universally null (or has
universal measure zero) if µ(X) = 0 for each finite Borel measure µ onX that
is diffused (i.e. vanishes on singletons). This is obviously equivalent to each
Borel diffused measure µ on X being degenerate, in that for each Borel set
B ⊆ X one has either µ(B) = 0 or µ(B) =∞. In particular, on a universally
null space the s-dimensional Hausdorff measure is degenerate for all s > 0.

Can such a set have positive Hausdorff or even topological dimension?
Fremlin [8, 439G] has an example of a subset E of the plane whose 1-dimen-
sional Hausdorff measure is infinite and degenerate on E. In [29] it is proved
that universally null sets with positive topological dimension exist if, and
only if, there is a universally null set E ⊆ R with the cardinality of the
continuum, and that there are universally null sets of arbitrary Hausdorff
dimension.

The goal of the present paper is to get better results in this direction,
namely, to prove that some metric spaces, including all analytic sets in
Euclidean spaces, contain a universally null subset with the same Hausdorff
dimension.

We outline the basic ideas of our construction. Let 2ω be the usual Can-
tor space and provide it with the usual least difference metric given by
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d(x, y) = 2−n, where n is the first integer for which x(n) 6= y(n). It is
well-known that the standard product probability measure on 2ω is the one-
dimensional Hausdorff measure and thus the Hausdorff dimension of 2ω is 1.
By a famous result of Edward Grzegorek [11] there are two sets A,B ⊆ 2ω

that have the same cardinality but are of different sizes from the measure-
theoretic viewpoint: A has positive (outer) measure and B is universally null.
A diagonal set D ⊆ A×B ⊆ 2ω×2ω (i.e. a set D ⊆ A×B with both projec-
tions one-to-one and onto) has positive one-dimensional Hausdorff measure,
for the projection of D onto A is Lipschitz. It is also universally null: the
projection onto B is one-to-one, and a continuous one-to-one preimage of a
universally null set is universally null.

But how to get such a set in 2ω? Can one copy this diagonal set into
2ω in such a way that the Hausdorff dimension of the copy is still large?
Yes indeed, there is a homeomorphism of 2ω onto 2ω × 2ω that is not quite
Lipschitz, yet “Lipschitz enough” to give the preimage of the diagonal set
D Hausdorff dimension 1. The preimage of D is universally null, because
D is. So 2ω contains a universally null set of full Hausdorff dimension. This
method works for a class of generalized Cantor sets.

To get a universally null set of full Hausdorff dimension in R one can just
approximate R from within by sufficiently thick Cantor sets. And it turns out
that this approximation can be achieved in a wide class of metric spaces that
are, in a sense, linearly ordered (so-called monotone spaces, cf. Section 4),
and include e.g. all analytic subsets of R and all analytic ultrametric spaces.

Employing classical projection and intersection theorems one can ex-
tend the construction to Euclidean spaces. And using [29, Lemma 5.1] on
topological dimension and Lipschitz maps yields, in any metric space X,
a universally null set of Hausdorff dimension no less than the topological
dimension of X.

The method can be applied in a more abstract setting (Section 5), yield-
ing similar results for universally meager sets (Section 7) and some other
classes of small sets (Section 8).

In this paper Cantor and self-similar sets, monotone spaces, and the ways
Lipschitz and Lipschitz-like maps act between them (Sections 3 and 4) re-
ceive more attention than is strictly necessary for our purposes. It is because
these notions seem to be interesting in their own right.

2. Preliminaries. In this section we recall Hausdorff measures and
dimensions and their basic properties and introduce the notion of nearly
Lipschitz map.

The set of all natural numbers including zero is denoted ω. The cardinal-
ity of the continuum is denoted c. The cardinality of a set A is denoted |A|.
The power set of A is denoted P(A).
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Metric spaces. Most metric spaces under consideration are separable.
Recall that a metric space is perfect if it has no isolated points, Polish if
it is separable and completely metrizable, and analytic if it is a continuous
image of a Polish space.

In order to avoid unnecessary technicalities, all metric spaces are as-
sumed to be bounded. This is no constraint, since any metric d can be
redefined to be bounded e.g. by d1 = min(d, 1), which leaves close distances
unaffected.

Within a context of a metric space we use some self-explanatory notation.
In particular, diamE denotes the diameter of a set E, and dist(A,B) =
inf{d(x, y) : x ∈ A, y ∈ B}.

Hausdorff measure. Recall that given s ≥ 0, the s-dimensional Haus-
dorff measure Hs on a metric space X is defined thus: For each δ > 0 and
E ⊆ X set

(1) Hsδ(E) = inf
∑
n

(diamEn)s,

where the infimum is taken over all finite or countable covers {En} of E by
sets of diameter at most δ, and put

Hs(E) = sup
δ>0
Hsδ(E).

The basic properties of Hs are well-known. It is an outer measure and its
restriction to Borel sets is a Gδ-regular Borel measure in X. General refer-
ences: [6, 15, 22]. We shall need the following theorem of Howroyd [12] that
generalizes earlier results of Besicovitch [2] and Davies [3]. We shall call it
the Davies Theorem.

Theorem 2.1 (Davies Theorem). Let X be an analytic metric space
and s > 0. If Hs(X) > 0, then there is a compact set K ⊆ X such that
0 < Hs(K) <∞.

We shall also need the famous Frostman Lemma:

Theorem 2.2 (Frostman Lemma [15, 8.19]). Let X be an analytic metric
space and s > 0. If Hs(X) > 0, then there is a nontrivial finite Borel measure
µ ≤ Hs on X such that µB(x, r) ≤ rs for each x ∈ X, r > 0.

Hausdorff dimension. The Hausdorff dimension of E is denoted and
defined by

dimHE = sup{s : Hs(E) > 0}.
Hausdorff dimension is an intrinsic value. It is monotone, and countably
stable in the sense that dimH

⋃
nEn = supn dimHEn for any countable fam-

ily {En} of sets. Hausdorff measures and dimensions of a metric space and
its Lipschitz image are related as follows:
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Lemma 2.3 ([6, Lemma 6.1]). If f : X → Y is Lipschitz and Hs(fX)
> 0, then Hs(X) > 0, for each s > 0. In particular, dimHX ≥ dimH f(X).

Upper Hausdorff dimension. We shall also consider the following
variation of Hausdorff dimension. For a separable metric space E let E∗

denote its completion and define the upper Hausdorff dimension of E by

dimHE = inf{dimHK : E ⊆ K ⊆ E∗, K is σ-compact}.

Hence dimH is an intrinsic value. It is easy to see that for E a subset of
a complete metric space X one may alternatively define

dimHE = inf{dimHK : E ⊆ K ⊆ X, K is σ-compact},

which shows that dimH is countably stable. See [30] for more on upper
Hausdorff dimension including an equivalent definition based on Hausdorff-
like measures.

Obviously dimH ≥ dimH and if E is σ-compact, then dimHE = dimHE.
On the other hand, there is a dense Gδ-set E ⊆ R such that dimHE = 0,
and any such set has dimHE = 1 by Lemma 2.4 below. This shows that
dimHE = dimHE may easily fail. Note also that dimH is estimated from
above by, but is in general not equal to, the lower packing dimension, and
a fortiori by packing dimension. These facts can be deduced from [7, (3.20)].

The following simple lemma links upper Hausdorff dimension to category.

Lemma 2.4. Let X be a separable metric space such that dimH U ≥ s
for each nonempty open set U . If E ⊆ X is nonmeager, then dimHE ≥ s.

Proof. Notice that if K is compact and dimHK < s, then K is nowhere
dense: otherwise it would contain a nonempty open set U and thus by as-
sumption dimHK ≥ dimH U ≥ s.

If dimHE < s, then there is a countable cover {Kn} of E by compact sets
such that dimHKn < s for each n. By the above, the sets Kn are nowhere
dense, whence E is meager.

Nearly Lipschitz mappings. We shall make use of the following nat-
ural weakening of the notion of Lipschitz mapping.

Definition 2.5. A mapping f : (X, d) → (Y, ρ) between metric spaces
is termed nearly Lipschitz if for any ε > 0 there is δ > 0 such that

(2) ρ(f(x), f(y)) ≤ d(x, y)1−ε whenever d(x, y) < δ.

Equivalently, f is nearly Lipschitz if there is a function F : [0,∞)→ [0,∞)
such that

ρ(f(x), f(y)) ≤ F (d(x, y)), x, y ∈ X,

satisfying lim infr→0 logF (r)/log r ≥ 1.
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If f is β-Hölder for each β < 1, then, given ε > 0, there is a constant
M such that ρ(f(x), f(y)) ≤ Md(x, y)1−ε/2 for all x, y ∈ X. If δ > 0 is
small enough that M ≤ δ−ε/2, then (2) holds. On the other hand, if Y is
bounded and (2) holds with ε = 1 − β, then f is clearly β-Hölder with
M = δ−β diamY . In summary, if Y is bounded, then f is nearly Lipschitz
if and only if it is β-Hölder for each β < 1.

Every Lipschitz mapping is obviously nearly Lipschitz, but not vice versa.
The growth condition for a nearly Lipschitz mapping is nevertheless good
enough to control both Hausdorff dimensions the same way as Lipschitz
mappings:

Lemma 2.6. If f : X→Y is nearly Lipschitz, then dimHX ≥ dimH f(X)
and dimHX ≥ dimH f(X).

We shall use this easy lemma on several occasions. The first estimate
follows easily e.g. from [22, Theorem 29], the second is similar.

3. Cantor cubes and self-similar sets. In order to get results about
small sets of large Hausdorff dimension we need to investigate certain prop-
erties of self-similar sets. We also introduce a class of metric spaces, Cantor
cubes, that is on one hand simple enough and on the other hand profoundly
related to self-similar sets.

Given a set I, denote by Iω the set of all I-ary sequences and by I<ω =⋃
n∈ω I

n the set of all finite I-ary sequences. Notice that for p, q ∈ I<ω,
p ⊆ q means that q is an extension of p. If p ∈ I ∪ I<ω and q ∈ I ∪ I<ω ∪ Iω,
the symbol paq denotes the usual concatenation. If f 6= g are in Iω, the
symbol f ∧ g denotes the maximal common initial segment of f and g, and
n(f, g) = |f ∧ g| the length of f ∧ g. In more detail,

n(f, g) = min{n ∈ ω : f(n) 6= g(n)}, f ∧ g = f�n(f, g) = g�n(f, g).

(f�n is the restriction = truncation of f .)

Cantor cubes. Fix k = {0, 1, . . . , k − 1} ∈ ω. Consider the cube kω.

Let r = 〈r0, r1, . . . , rk−1〉 ∈ (0, 1)k. For each p ∈ k<ω put

(3) χr(p) =
∏
i<|p|

rp(i).

The following formula defines a metric on kω

ρr(f, g) =

{
χr(f ∧ g) if f 6= g,

0 if f = g,

that gives kω the standard product topology. The resulting metric space
(kω, ρr) is denoted by C(r). We often drop the subscript writing ρ and χ
for ρr and χr.



100 O. Zindulka

It is easy to show (and follows at once from the theory of self-similar
sets, see below) that the Hausdorff dimension of C(r) is the solution s of
Moran’s equation

(4)
∑
i<k

rsi = 1

and that Hs(C(r)) = 1.

Definition 3.1. A metric space C is called a Cantor cube if there is
k ∈ ω and r ∈ (0, 1)k such that C = C(r).

Note that each Cantor cube is homeomorphic to 2ω ([14, Theorem 7.4]).
The best known examples of Cantor cubes are C(1/3, 1/3), which is bi-
Lipschitz equivalent to the Cantor ternary set via the standard mapping
x 7→ 2

3

∑
n∈ω 3−nx(n), and C(1/2, 1/2). The latter has Hausdorff dimension

one and its one-dimensional Hausdorff measure coincides on Borel sets with
the standard product (Haar) measure.

Self-similar sets. Cantor cubes are particular instances of self-similar
sets. We recall basic notions, referring to [25] for more details. Let (X, d)
be a complete metric space. A mapping F : X → X is called a similarity if
there is a constant r > 0 such that d(Fx, Fy) = r · d(x, y) for all x, y ∈ X.
The constant r is called the similarity ratio of F .

Let F = 〈F0, F1, . . . , Fk−1〉 be a finite sequence of similarities whose
respective similarity ratios r = 〈r0, r1, . . . , rk−1〉 are strictly less than 1. Such
a sequence is termed an Iterated Similarity System (ISS). The ISS F induces
a set mapping (the so-called Hutchinson operator) S(A) =

⋃
F∈F F (A). It

is well-known that there is a unique nonempty compact set K such that
S(K) = K. This set is called the attractor of F . Attractors of ISS’s are
often termed self-similar sets. The ISS F and its attractor K are said to
satisfy

• SSP (Strong Separation Property) if FiK ∩FjK=∅ whenever i<j<k,
• SOSC (Strong Open Set Condition) if there is a nonempty open set
U ⊆ X that meets K and is such that S(U) ⊆ U and FiU ∩ FjU = ∅
whenever i < j < k.

SSP is rather restrictive. Obviously SSP implies SOSC, but not vice versa.
Nevertheless, Proposition 3.4 below says that, in a sense, SOSC sets can be
approximated from within by SSP sets. Recall that dropping “that meets K”
from the definition of SOSC one gets the famous Open Set Condition that
is known to be, in Euclidean spaces, equivalent to SOSC (Schief [24]).

For each p ∈ k<ω set Fp = Fp(0) ◦ Fp(1) ◦ · · · ◦ Fp(|p|−1), Kp = Fp(K).
Note that diamKp = χ(p) diamK, where χ(p) is defined by (3). If C(r) is
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a Cantor cube, then the ISS given by Fi(f) = iaf turns C(r) into a SSP
self-similar set.

Lemma 3.2. Every self-similar set is a Lipschitz image of the Cantor
cube C(r), where r is the vector of similarity ratios of the underlying ISS.

Proof. If p ⊆ q ∈ k<ω, then Kp ⊇ Kq. Hence for each f ∈ kω there is
a unique xf ∈

⋂
n∈ωKf�n; and each x ∈ K equals to some xf . Hence the

mapping defined by φ(f) = xf maps C(r) onto K. It is Lipschitz, because

d(xf , xg) ≤ diamKf∧g = χr(f ∧ g) diamK = ρr(f, g) diamK.

Lemma 3.3. Every self-similar set satisfying SSP is bi-Lipschitz equiv-
alent to the Cantor cube C(r), where r is the vector of similarity ratios of
the underlying ISS.

Proof. IfK satisfies SSP, then dist(Kpai,Kpaj)=χr(p) dist(Fi(K), Fj(K))
for any p ∈ k<ω and i, j < k. Hence there is a constant c such that
cχr(p) ≤ dist(Kpai,Kpaj) for any p ∈ k<ω and i < j < k. We use this
fact to prove that the Lipschitz mapping φ : C(r) → K constructed in the
above proof is bi-Lipschitz. Let f, g ∈ C(r) be distinct and p = f ∧ g. There
are distinct i, j < k such that pai ⊆ f and paj ⊆ g. Therefore xf ∈ Kpai and
xg ∈ Kpaj and

d(xf , xg) ≥ dist(Kpai,Kpaj) ≥ cχr(p) = cρr(f, g),

as required.

The solution s of Moran’s equation (4) is called the similarity dimension
of K and denoted dimSK. Hausdorff and similarity dimensions are related
as follows:

• HdimSK(K) <∞, in particular dimHK ≤ dimSK (cf. Lemma 3.2).
• If K satisfies SOSC, then dimHK = dimSK ([25, Theorem 2.6]).
• If K satisfies SSP, then 0 < HdimSK(K) <∞ (cf. Lemma 3.3).

Proposition 3.4. Let K be a self-similar set satisfying SOSC. For each
ε > 0 there is a SSP self-similar set C ⊆ K such that dimHC > dimHK−ε.

Proof. Though not explicitly stated, the required set C is actually con-
structed in the proof of [25, Theorem 2.6].

Mapping a Cantor cube onto its square. The following proposition
is one of the core tools for our investigation of small sets.

Proposition 3.5. For each Cantor cube C there are continuous map-
pings π1, π2 : C→ C such that

(i) π1 is nearly Lipschitz,
(ii) h : f 7→ (π1(f), π2(f)) is a homeomorphism of C and C× C.
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Proof. Let A ⊆ ω be an infinite set with density 0, i.e.

lim
n→∞

|A ∩ n|
n

= 0.

Let φ : ω → ω \ A and ψ : ω → A be the unique increasing bijections
enumerating ω \A and A. Consider the mappings

π1 : C→ C, π1(f) = f ◦ φ,
π2 : C→ C, π2(f) = f ◦ ψ.

and define

h(f) = (π1(f), π2(f)) = (f ◦ φ, f ◦ ψ), f ∈ C.

Both π1 and π2 are obviously continuous, and thus so is h.

If f 6= g, then there is n ∈ ω such that f(n) 6= g(n). If n /∈ A, then
n = φ(i) for some i ∈ ω and thus π1(f)(i) = f(n) 6= g(n) = π1(g)(n),
whence π1(f) 6= π1(g). If n ∈ A, then π2(f) 6= π2(g) by the same argument.
In either case, h(f) 6= h(g). Thus h is one-to-one.

For any (f, g) ∈ C× C the function

n 7→
{
f ◦ φ−1(n), n ∈ ω \A,

g ◦ ψ−1(n), n ∈ A,
is mapped by h on (f, g). Thus h is also onto. Hence h is a homeomorphism.

It remains to prove that π1 is nearly Lipschitz. To that end we have to
show that given any ε > 0 there is δ > 0 such that

(5) ρ(f ◦ φ, g ◦ φ) ≤ ρ(f, g)1−ε whenever ρ(f, g) < δ.

Let r ∈ (0, 1)k be such that C = C(r). Denote rmax = maxi<k ri and
rmin = mini<k ri. Choose

• η <∞ such that rηmax < rmin,
• N ∈ ω such that η|A ∩ n|/n < ε for all n ≥ N ,
• δ < rNmin.

Let f, g ∈ kω be such that ρ(f, g) < δ. Put p = f ∧ g and n = n(f, g) = |p|.
If φ(i) < n, then obviously f(φ(i)) = g(φ(i)). Therefore

(6) ρ(f ◦ φ, g ◦ φ) ≤
∏

i<n,i/∈A

rp(i) ≤
∏
i<n rp(i)∏

i<n,i∈A rp(i)
≤ χ(p)

r
|A∩n|
min

≤ χ(p)

r
η|A∩n|
max

.

Since rnmin 6 ρ(f, g) < δ < rNmin, we have n > N . Since χ(p) 6 rnmax,

rη|A∩n|max > χ(p)η|A∩n|/n > χ(p)ε

by the choice of N . Therefore (6) yields (5) and π1 is nearly Lipschitz.
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4. Monotone spaces and Cantor cubes. In this section we show
that a substantial portion of an analytic metric space satisfying a certain
linearity property can be mapped onto any Cantor cube of the same Haus-
dorff dimension by a nearly Lipschitz map. The property is tailored to fit
the proof and is general enough to cover two important classes of spaces:
subsets of the line and ultrametric spaces.

Monotone spaces. The following is taken from [21]. Linear orders are
considered. We adhere to the usual interval notation (←, a] = {x ∈ X :
x ≤ a}, (a, b) = {x ∈ X : a < x < b} and likewise [a,→), [a, b] etc.

Definition 4.1 ([21]). A metric space (X, d) is called 1-monotone if
there is a linear order < on X such that d(x, y) ≤ d(x, z) for all x < y < z
in X.

More generally, (X, d) is called monotone if there is a linear order < on
X and a constant c such that d(x, y) ≤ c d(x, z) for all x < y < z in X.

X is termed σ-monotone if it is a countable union of monotone subsets.

Proposition 4.2 ([21]).

(i) A metric space is monotone if and only if it is bi-Lipschitz equiva-
lent to a 1-monotone space.

(ii) A subspace of a monotone metric space is monotone.
(iii) If X is σ-monotone, then it is a countable union of closed monotone

subspaces.

Recall that a metric space (X, d) is termed ultrametric if the triangle
inequality reads

d(x, z) ≤ max(d(x, y), d(y, z)).

Cantor cubes are obviously ultrametric spaces.

Proposition 4.3 ([21]). Each ultrametric space is monotone. In partic-
ular, each Cantor cube and each self-similar set satisfying SSP is monotone.

Corollary 4.4. If X is a SOSC self-similar set and 0 ≤ s < dimHX,
then there is a closed monotone set E ⊆ X such that dimHE = s.

Proof. By Theorem 3.4 there is a SSP set C ⊆ X such that dimHC > s.
The Davies Theorem yields a compact set E ⊆ C such that dimHE = s. By
Lemma 3.3 and the above proposition, E is the required set.

Monotone spaces vs. Cantor cubes. We now show that an analytic
σ-monotone space contains a nearly Lipschitz preimage of a Cantor cube.

Theorem 4.5. Let X be an analytic σ-monotone metric space and s > 0
such that Hs(X) > 0. If C is a Cantor cube with dimHC ≤ s, then there
is a compact set C ⊆ X such that Hs(C) > 0 and a nearly Lipschitz onto
mapping φ : C → C.
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Proof. Proposition 4.2 ensures thatX may be assumed to be 1-monotone.
Observe that if E ⊆ X is compact, then maxE and minE exist and belong
to E. Indeed, the set

⋂
x∈E E ∩ [x,→), being an intersection of a directed

family of compact sets, is nonempty. Its (unique) element is the maximum
of E; and likewise for the minimum.

We may, and will, assume that s = dimHC.
According to the Davies Theorem we may also assume thatX is compact.

In particular, there are a, b ∈ X such that X = [a, b].
Frostman’s Lemma yields a nontrivial finite Borel measure µ ≤ Hs on

X such that

(7) µB(x, r) ≤ rs for each x ∈ X and r > 0.

We show that µ is Darboux in the following sense: For each E ⊆ X compact,

(8) if 0 ≤ t ≤ µ(E), then µ([a, x] ∩ E) = t for some x ∈ X.

Notice that 1-monotonicity of X ensures that [x, y] ⊆ B(x, d(x, y)). There-
fore the mapping g(x) = µ([a, x] ∩ E) is continuous:

g(y)− g(x) ≤ µ[x, y] ≤ µB(x, d(x, y)) ≤ d(x, y)s.

It follows that the sets

X0 = {x ∈ X : µ([a, x] ∩ E) ≤ t}, X1 = {x ∈ X : µ([a, x] ∩ E) ≥ t}
are closed and hence compact. Let x0 = maxX0, x1 = minX1. If x1 ≤ x0,
then t ≤ g(x1) ≤ g(x0) ≤ t and we can set x = x1. If x1 > x0, then the
interval (x0, x1) is empty and subadditivity of µ yields g(x1) ≤ g(x0) +
µ(x0, x1] = g(x0) ≤ t ≤ g(x1) and we can set x = x1, too. (8) is proved.

Let r = 〈r0, r1, . . . , rk−1〉 ∈ (0, 1)k be the parameters of the Cantor cube
C = C(r). Set rmax = maxi<k ri and rmin = mini<k ri. Since rsmax < 1, there
is a sequence γn ↘ 0 of positive numbers such that

∑∞
n=1(r

s
max)nγn < µ(X).

Put

β = µ(X)−
∞∑
n=1

(rsmax)nγn ,

so that β > 0. (By choosing {γn} appropriately, we can make β as close to
µ(X) as we wish.)

For each p ∈ k<ω put
εp = χ(p)1+γ|p| .

For each p ∈ k<ω, we construct inductively a compact set Ep ⊂ X as follows.
Put E∅ = X. Now suppose Ep has been constructed. Recalling Moran’s
equation (4) and using (8), choose

a ≤ tpa0 < tpa1 < · · · < tpak ≤ b ∈ X
so that

µ(Ep ∩ [tpai, tpa(i+1)]) = rsi µEp for i < k
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and define for i < k,

Epai = {x ∈ Ep ∩ [tpai, tpa(i+1)] : d(x, tpa(i+1)) ≥ εpai}.
Note that

(9) Epai ⊇ Ep ∩ [tpai, tpa(i+1)] \B(tpa(i+1), εpai)

and therefore (7) yields

(10) µ(Epai) ≥ rsiµEp − εspai = rsiµEp − χ(pai)
s(1+γ|pai|).

We prove by induction that

(11) µ(X)χ(p)s ≥ µ(Ep) ≥ χ(p)s
(
µ(X)−

|p|∑
n=1

(rsmax)nγn
)

for all p ∈ k<ω. The left inequality is obvious. We prove the right one. For
p = ∅ it is trivial. Assume that it holds for p and let i < k. Put m = |p|.
By (10),

µEpai ≥ rsiµEp − χ(pai)
s(1+γ|pai|)

≥ rsi
(
χ(p)sµX − χ(p)s

m∑
n=1

(rsmax)nγn
)
− χ(pai)sχ(pai)sγm+1

≥ χ(pai)sµX − χ(pai)s
( m∑
n=1

(rsmax)nγn + r(m+1)sγm+1
max

)
= χ(pai)s

(
µX −

m+1∑
n=1

(rsmax)nγn
)
.

The induction step is complete and (11) follows. The definition of β thus
gives

(12) µ(X)χ(p)s ≥ µ(Ep) ≥ βχ(p)s

for all p ∈ k<ω. Thus µEp > 0, and in particular Ep 6= ∅. All Ep are obviously
compact and Ep ⊆ Eq whenever p extends q. Hence the set

Cf =
⋂
n∈ω

Ef�n

is nonempty for each f ∈ kω. Put

C =
⋃
f∈kω

Cf =
⋂
n∈ω

⋃
p∈kn

Ep.

We estimate µ(C). Moran’s equation for C gives
∑

p∈kn χ(p)s = 1 for each
n ∈ ω. Hence (12) yields

µ(C) = lim
n→∞

∑
p∈kn

µ(Ep) ≥ lim
n→∞

β
∑
p∈kn

χ(p)s ≥ β > 0

and Hs(C) > 0 follows, since µ ≤ Hs.
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Define φ : C → kω by φ(x) = f iff x ∈ Cf . It is obviously surjective.
Provide kω with the corresponding metric ρ = ρr. It remains to show that
φ : C → (kω, ρ) is nearly Lipschitz. Let ε > 0 be given. Since γn ↘ 0, there
is n ∈ ω such that 1− ε < 1/(1 + γn). Put δ = min|p|<n εp.

Assume that x < y in C are such that d(x, y) < δ. If φ(x) = φ(y), there
is nothing to prove. Otherwise there are p ∈ k<ω and i < j < k such that
x ∈ Epai and y ∈ Epaj . Here the assumption that X is 1-monotone comes
into play again: Since i < j, we have x < tpa(i+1) ≤ y and d(x, tpa(i+1)) ≥ εpai.
Therefore d(x, y) ≥ εpai and thus δ > εpai. The definition of δ hence yields

|pai| ≥ n. Therefore

(13) d(x, y) ≥ εpai ≥ χ(pai)1+γn ≥ χ(p)1+γnr1+γnmin .

Since ρ(φx, φy) = χ(p), this inequality gives

ρ(φx, φy) = χ(p) ≤ 1

rmin
d(x, y)1/(1+γn) ≤ 1

rmin
d(x, y)1−ε,

which is enough.

Lemma 3.2 yields the following corollary.

Corollary 4.6. Let X be an analytic σ-monotone metric space and K
a self-similar set. If HdimSK(X) > 0, then there is a compact set C ⊆ X
such that HdimSK(C) > 0 and a nearly Lipschitz onto mapping φ : C → K.

Replacing Hs(X) > 0 with dimHC < dimHX yields a stronger conclu-
sion:

Theorem 4.7. Let X be an analytic σ-monotone metric space and C a
Cantor cube. If dimHC < dimHX, then there is a compact set C ⊆ X and
a Lipschitz onto mapping φ : C → C.

Proof. We briefly show how to modify the above proof. Let C = C(r)
and let dimHC = u < s < dimHX. Mutatis mutandis we may assume that
X = [a, b] is compact and Hs(X) > 0. Let µ be the measure satisfying
(7) and (8). Put R = rs−umax. Then R < 1 and therefore the series

∑
Rn is

convergent. Thus we can choose η > 0 so that ηs
∑∞

n=1R
n < µX.

This time put εp = ηχ(p) and construct Ep’s so that (10) reads (note
that Moran’s equation is now

∑
rui = 1)

µ(Epai) ≥ rui µEp − ηsχ(pai)s.

The replacement for the estimate (11) now reads

µ(Ep) ≥ χ(p)u
(
µ(X)− ηs

|p|∑
n=1

Rn
)

and the replacement for (13) is

d(x, y) ≥ ηχ(pai) ≥ ηrminχ(p) = ηrminρ(φ(x), φ(y)),

which shows that φ is Lipschitz.
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Corollary 4.8. Let K1, K2 be self-similar sets. Let K1 satisfy SOSC.
If dimSK2 < dimSK1, then there is a compact set C ⊆ K1 and a Lipschitz
onto mapping φ : C → K2.

Proof. SinceK1 satisfies SOSC, dimSK1 = dimHK1 and by Corollary 4.4
there is a closed monotone subset X ⊆ K1 such that dimHX > dimSK2.
Apply Lemma 3.2 and the above theorem.

5. Small sets with large dimension. Our goal is to get small sets of
large Hausdorff dimension. Examples of classes of small sets are e.g. sets of
universal measure zero, Q-sets or universally meager sets (cf. Section 8), to
name but a few. In this and the next section we deal with a notion of small
set in a rather general setting:

Suppose S is some class of separable metric spaces. Elements of S are
thought of as “small sets”. We will consider the following closure properties
of S.

• S is backwards closed. That means that S is closed under one-to-one
continuous preimages, i.e. if f : X → Y is one-to-one continuous and
Y ∈ S, then X ∈ S. Note that if S is backwards closed, then it is
closed under homeomorphisms and embeddings.
• S is strongly backwards closed. That means that S is closed under S-to-

one continuous preimages, i.e. if f : X → Y is continuous, f−1(y) ∈ S
for all y ∈ Y and Y ∈ S, then X ∈ S.
• S is σ-additive, i.e. if X is a union of countably many elements of S,

then X ∈ S.

Cardinal invariants. The following are some of the most common ide-
als in topology, set theory and measure theory.

• Let µ denote the standard product measure on 2ω, and N the σ-ideal
of µ-negligible subsets of 2ω.

• M is the σ-ideal of meager subsets of 2ω.
• E is the σ-ideal generated by µ-negligible closed subsets of 2ω.

For any ideal J denote nonJ = min{|A| : A /∈ J }.
It is well-known that either of the three relations of nonN and nonM is

consistent with ZFC. It is obvious that non E ≤ min(nonN , nonM). It is also
known that both non E=min(nonN , nonM) and non E<min(nonN , nonM)
are consistent (see [1]).

The N part of the following fact is well-known and follows at once from
the Isomorphism Theorem for Measures ([14, (17.41)]).

Lemma 5.1. Let ν be a nontrivial finite diffused Borel measure on 2ω,
and N(ν), E(ν), respectively, the σ-ideals generated by ν-negligible sets and
ν-negligible closed sets. Then nonN (ν) = nonN and non E(ν) = non E.
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Proof. We outline the proof of the E part. Assume without loss of gen-
erality that ν is a diffused probability Borel measure on a compact set
S ⊆ [0, 1] that is strictly positive (i.e. ν(U) > 0 for each nonempty set U
open in S). For x ∈ S set g(x) = ν([0, x]). The mapping g : S → [0, 1] is ob-
viously continuous and onto. Denoting by λ the Lebesgue measure on [0, 1],
it is also obvious that the equivalence E ∈ E(ν) ⇔ g(E) ∈ E(λ) holds for
any set E ⊆ S. Since g is two-to-one, this is enough for non E(ν) = non E(λ).
In particular, non E = non E(λ), and non E(ν) = non E follows.

Small sets in σ-monotone spaces. The goal of this subsection is to
show that if S is backwards closed, then the existence of a set in S with
large cardinality implies that many sets in S have large Hausdorff or upper
Hausdorff dimension.

In what follows, we often employ cardinal hypotheses on S: Given a
cardinal κ (in most cases κ = nonN or κ = non E), define

κ ≺ S := there is S ∈ S such that |S| = κ.

Note that if S is backwards closed and κ ≺ S, then the witnessing space
can be actually assumed to be a subset of 2ω, for any separable metric space
embeds into [0, 1]ω and the latter is a continuous image of 2ω.

We first prove the result for Cantor cubes.

Lemma 5.2 (Cantor Cube Lemma). Let S be backwards closed and C a
Cantor cube.

(i) If nonN ≺ S, then C contains a set E ∈ S such that dimHE =
dimHC.

(ii) If non E ≺ S, then C contains a set E ∈ S such that dimHE =
dimHC.

Proof. We prove only (i), since (ii) is proved in the same manner. Let
s = dimHC. Recall that Hs(C) = 1, so that Hs is a finite Borel measure
on C. Hence Lemma 5.1 yields a set A ⊆ C such that Hs(A) > 0 and
|A| = nonN . Since S is backwards closed and C is homeomorphic to 2ω,
there is B ∈ P(C) ∩S such that |B| = nonN . Enumerate the two sets A =
{aα : α < nonN}, B = {bα : α < nonN}. Consider the diagonal set D =
{(aα, bα) : α < nonN} and the mappings π1, π2 and h of Proposition 3.5.
For each α < nonN set eα = h−1(aα, bα) and put

E = {eα : α < nonN} = h−1(D).

Obviously π1(eα) = aα and π2(eα) = bα. Therefore π1 takes E onto A and
π2 takes E onto B. The mapping π2 is one-to-one on E and B ∈ S. Hence
E ∈ S as well. On the other hand, since π1 is nearly Lipschitz, Lemma 2.6
ensures that dimHE ≥ dimH π1E = dimHA = s = dimHC, as required.
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The main theorem of this section follows from the Cantor Cube Lemma
and Theorem 4.5 by use of the following easy lemma.

Lemma 5.3 (Preimage Lemma). Let S be backwards closed. Let X,Y be
metric spaces, φ : X → Y a nearly Lipschitz mapping onto Y , and D ∈ S a
subset of Y . There is a subset E ∈ S of X such that dimHE ≥ dimHD and
dimHE ≥ dimHD.

Proof. For each y ∈ D, pick ỹ ∈ φ−1(y) and set E = {ỹ : y ∈ D}. Then
φ : E → D is one-to-one, onto and nearly Lipschitz. Hence E ∈ S and the
remainder of the lemma follows directly from Lemma 2.6.

Theorem 5.4. Let S be backwards closed. Let X be an analytic σ-mono-
tone space, and s > 0 such that Hs(X) > 0.

(i) If nonN ≺ S, then X contains a set E ∈ S such that dimHE = s.
(ii) If non E ≺ S, then X contains a set E ∈ S such that dimHE = s.

Proof. We prove only (i), since (ii) is proved in the same manner. By
Theorem 4.5 there is a compact set C ⊆ X and a nearly Lipschitz map
φ : C → C onto any Cantor cube for which dimHC = s. By the Cantor
Cube Lemma there is a set D ∈ P(C)∩S such that dimHD = s. Finally, by
the Preimage Lemma there is a set E ∈ P(X) ∩S such that dimHD = s.

Corollary 5.5. Let S be backwards closed and σ-additive. Let X be an
analytic σ-monotone space.

(i) If nonN ≺ S, then X contains a set E ∈ S such that dimHE =
dimHX.

(ii) If non E ≺ S, then X contains a set E ∈ S such that dimHE =
dimHX.

Proof. Choose a sequence sn↗dimHX. Using Theorem 5.4 for each n,
we can find En ∈ P(X) ∩ S for which dimHEn ≥ sn (dimHEn ≥ sn, re-
spectively). Now let E =

⋃
nEn and appeal to σ-additivity of S to conclude

E ∈ S.

Varying the closure and cardinal hypotheses yields a number of corollar-
ies. Here is a sample one that follows from Proposition 4.3 and Corollary 4.4.

Corollary 5.6. Let S be backwards closed and σ-additive and suppose
nonN ≺ S. Then:

(i) Each analytic ultrametric space X contains a set E ∈ S for which
dimHE = dimHX.

(ii) If X is a SOSC self-similar set and 0 ≤ s ≤ dimHX, then X con-
tains a set E ∈ S for which dimHE = s.
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Small sets in Euclidean spaces. The preceding results certainly ap-
ply to analytic subsets of the line. To extend them to higher dimensions, we
use classical projection and intersection theorems. Let n ∈ ω and let V be a
linear subspace of Rn. Denote the orthogonal complement of V by V ⊥ and
the orthogonal projection onto V by projV . If x ∈ Rn, then V + x denotes
the shift of V by x, i.e. the unique affine copy of V parallel to V passing
through x.

Let m ∈ ω, m < n. The symbol G(n,m) denotes the Grassmann man-
ifold, which is the space of all m-dimensional linear subspaces of Rn. The
Grassmann measure is the unique uniform Borel probability measure on
G(n,m) and is denoted by γn,m. We refer to [15] for further details.

Lemma 5.7. Let X ⊆ Rn be compact and m < s ≤ n. If 0 < Hs(X)
<∞, then the set

XV = {x ∈ V : dimHX ∩ (V ⊥ + x) = s−m}

is Borel and for γn,m-almost all V ∈ G(n,m), Hm(XV ) > 0.

Proof. This is [15, Theorem 10.10], except for “XV is Borel”. But that
follows at once from [16, Theorem 6.1].

Lemma 5.8 ([15, Corollary 9.4]). Let X ⊆ Rn be Borel. If dimHX ≤ m,
then dimH projV (X) = dimHX for γn,m-almost all V ∈ G(n,m).

Lemma 5.9 ([7, Corollary 7.12]). Let E ⊆ Rn be arbitrary, V ∈ G(n,m)
and D ⊆ projV E. Then

dimHE ≥ dimHD + inf
x∈D

dimHE ∩ (V ⊥ + x).

We also need the upper Hausdorff dimension counterpart of this lemma.

Lemma 5.10. Let E ⊆ Rn be arbitrary, V ∈ G(n,m) and D ⊆ projV E.
Then

dimHE ≥ dimHD + inf
x∈D

dimHE ∩ (V ⊥ + x).

Proof. For x ∈ V and any set A ⊆ Rn write Ax = A ∩ (V ⊥ + x). Let
c < infx∈D dimHE

x and d < dimHD. It is enough to show that dimHE ≥
c + d, so, aiming for a contradiction, assume the contrary. Then there is a
countable family of compact sets {Kn} such that E ⊆

⋃
nKn and

(14) dimHKn < c+ d, n ∈ ω.

Fix x ∈ D. Since Ex ⊆
⋃
nK

x
n, there is n such that dimHK

x
n > c, which in

turn yields δ > 0 such that Hcδ(Kx
n) ≥ 1 (cf. (1)). Therefore

D =
⋃

n∈ω, δ>0

{x ∈ D : Hcδ(Kx
n) ≥ 1}.
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In particular there are n and δ > 0 such that

(15) dimH{x ∈ D : Hcδ(Kx
n) ≥ 1} > d.

The initial part of the proof of [16, Theorem 6.1] shows that the mapping
x 7→ Hcδ(Kx

n) is upper semicontinuous on V . Therefore

(16) C = {x ∈ V : Hcδ(Kx
n) ≥ 1}

is closed. It is also bounded, for Kn is compact. Hence C is a compact set.
Therefore (15) yields dimHC > d, and (16) yields dimHK

x
n ≥ c for all x ∈ C.

Finally, apply Lemma 5.9 to get dimHKn ≥ c+ d, which contradicts (14).

Theorem 5.11. Let S be strongly backwards closed and σ-additive. Let
X ⊆ Rn be analytic.

(i) If nonN ≺ S, then X contains a set E ∈ S such that dimHE =
dimHX.

(ii) If non E ≺ S, then X contains a set E ∈ S such that dimHE =
dimHX.

Proof. (i) Let n ∈ ω. For n = 1 the assertion follows at once from
Corollary 5.5. We proceed by induction. Assume that n > 1 and that the
assertion holds for n−1. Let X ⊆ Rn be an analytic set and let s = dimHX.

If s ≤ n− 1, then there is, by Lemma 5.8, a hyperplane V ∈ G(n, n− 1)
such that dimH projV X = s. The induction hypothesis yields a set A ⊆
projV X, A ∈ S, such that dimHA = s. Since projV is Lipschitz, the Preim-
age Lemma yields a set E ∈ P(X) ∩ S such that dimHE = s.

Now suppose s > n − 1. Since S is σ-additive, we may assume that
Hs(X) > 0. Passing to the subset whose existence is guaranteed by the
Davies Theorem, we may assume that X is compact and 0 < Hs(X) < ∞.
From Lemma 5.7 (with m = 1), there is a line L ∈ G(n, 1) such that the set

XL = {x ∈ L : dimHX ∩ (L⊥ + x) = s− 1}
is Borel and satisfies H1(XL) > 0. Now apply the induction hypothesis to
obtain, firstly, a set D ⊆ XL, D ∈ S with dimHD = 1 and, secondly, for
each x ∈ D, a set Ex ⊆ X ∩ (L⊥ + x) with Ex ∈ S and dimHEx = s − 1.
Put

E =
⋃
x∈D

Ex

so that the sections of E perpendicular to V are precisely the Ex’s and
thus have Hausdorff dimensions s − 1. By Lemma 5.9, the set E satisfies
dimHE ≥ (s − 1) + dimHD = s. Consider the restriction π = projL�E of
the projection. It is Lipschitz and takes E onto a set D ∈ S. Moreover
π−1(x) = Ex ∈ S for all x ∈ D. Consequently, E ∈ S, for S is strongly
backwards closed. The induction step is complete, and so is the proof of (i).
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(ii) is proved exactly the same way, except that Lemma 5.9 has to be
replaced by Lemma 5.10.

I do not know if “strongly backwards closed” can be relaxed to “back-
wards closed” in the preceding theorem.

6. General metric spaces. The methods used to get a small subset
of large Hausdorff dimension apply only to special classes of metric spaces.
In particular we do not know the answer to the following question:

Question 6.1. Let S be backwards closed and σ-additive and nonN
≺ S. Given a compact metric space X, is there a set E ⊆ X with E ∈ S
and dimHE = dimHX?

Note that by the Davies Theorem, relaxing “compact” to “analytic” does
not affect the answer. Proposition 8.2 below shows that separability of X
alone is not enough for an affirmative answer.

Our next goal is to establish a weaker conclusion that applies to any
metric space: There is a small set of Hausdorff dimension no less than the
topological dimension of the space. The topological dimension we consider is
covering dimension and we denote it by dimX. Recall that if X is a metric
space, then dimX equals the large inductive dimension of X (the Katětov–
Morita Theorem) and if, in addition, X is separable, then dimX equals the
small inductive dimension of X (see [5] or [4]). We shall need the following
theorem from [29] and a refinement of the Cantor Cube Lemma 5.2.

Theorem 6.2 ([29, Lemma 5.1]). Let X be a metric space. If dimX ≥
n ∈ ω, then there is a countable family {fi : i ∈ ω} of Lipschitz mappings
fi : X → [0, 1]n such that

⋃
i∈ω fi(X) = [0, 1]n.

Lemma 6.3. Let S be backwards closed and C a Cantor cube. If nonN
≺ S, then C contains a set E ∈ S such that for any countable cover
{Ln : n ∈ ω} of C there is n such that dimH(E ∩ Ln) = dimHC. A similar
statement holds for non E and dimH.

Proof. We use the notation of the proof of the Cantor Cube Lemma. For
each n put An = {aα : (aα, bα) ∈ h(Ln)}. Since {Ln} covers C, the family
{An} covers A. Since Hs(A) > 0, there is n for which Hs(An) > 0 and
a fortiori dimHAn = s. If aα ∈ An, then (aα, bα) ∈ h(Ln)∩D. Consequently,
eα = h−1(aα, bα) ∈ h−1(h(Ln) ∩ D) = Ln ∩ E and thus π1(eα) = aα. This
proves that An ⊆ π1(Ln ∩ E). Now apply Lemma 2.6 to get dimH(Ln ∩ E)
= s.

Theorem 6.4. Let S be backwards closed and X a metric space.

(i) If nonN ≺ S, then X contains a set E ∈ S such that dimHE ≥
dimX.
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(ii) If non E ≺ S, then X contains a set E ∈ S such that dimHE ≥
dimX.

Proof. Let dimX ≥ n ∈ ω. By Theorem 4.5, there is a compact set
C ⊆ [0, 1] and a nearly Lipschitz onto mapping φ : C → C(1/2, 1/2). Pro-
vide the cartesian powers Cn and (C(1/2, 1/2))n with the maximum met-
rics. The mapping φn : Cn → (C(1/2, 1/2))n defined by φn(f1, . . . , fn) =
(φ(f1), . . . , φ(fn)) is thus nearly Lipschitz and onto. The maximum and Eu-
clidean metric on Cn are clearly bi-Lipschitz equivalent and (C(1/2, 1/2))n

is easily seen to be isometric to C(1/2, . . . , 1/2︸ ︷︷ ︸
2n times

). Thus, in summary, there is

a compact set K ⊆ [0, 1]n, a Cantor cube C with dimHC = n and a nearly
Lipschitz onto mapping ψ : K → C.

Now consider the family {fi : i ∈ ω} of Lipschitz mappings given by
Theorem 6.2 and the corresponding cover {ψ(fi(X) ∩ K) : i ∈ ω} of C.
Then Lemma 6.3 yields an i ∈ ω such that ψ(fi(X) ∩ K) contains a set
A ∈ S for which dimHA = n. Notice that ψ ◦ fi is nearly Lipschitz and
apply the Preimage Lemma.

For completeness we recall [29, Theorem 3.6], which in our notation
reads:

Theorem 6.5. Let S be backwards closed, σ-additive and suppose that
c ≺ S. Then each separable metric space X contains a set E ∈ S such that
dimE ≥ dimX − 1.

7. Universally null and universally meager sets. We now localize
the results of the previous sections to two important classes of small sets
that satisfy the hypotheses of the preceding theorems: universally null and
universally meager sets.

Universally null sets. Recall that a metric space X is universally null
(UN) if each finite diffused Borel measure µ on X is trivial, i.e. µ(X) = 0. If
E ⊆ X is a subspace of X, then E is UN iff it is µ-negligible for each finite
Borel diffused measure on X. This property is obviously countably additive.

Universally meager sets. Piotr Zakrzewski [26, 28] defines a set E in
a metric space to be universally meager (UM) if, for every perfect Polish
space Z, a subset Y ⊆ Z and a Borel one-to-one mapping f : Y → E, Y
is meager in Z. This is a strengthening of the classical notion of a perfectly
meager set, which is a set each of whose perfect subsets is meager in itself. In
his papers, Zakrzewski gathers evidence that the notion of UM is a category
counterpart of UN. As to the relation of UN and UM, it is not provable
within ZFC that either of the two classes is included in the other, but to
date there is no ZFC proof that the two classes differ.
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The following lemma claims that the classes UN, UM and UN ∩ UM
satisfy the closure hypotheses of all of the above theorems on small sets.
Most of it is obvious or easy to prove. The only nontrivial part—strong
backwards closedness of UM—follows at once from [28, Lemma 2.1].

Lemma 7.1. The classes UN and UM are σ-additive and strongly back-
wards closed.

A deep result of Edward Grzegorek ensures that the three classes satisfy
also the cardinal hypotheses. As for UM, Grzegorek proves it for absolutely
first category sets in place of UM, but Zakrzewski shows in [26, Theorem
2.1] that the two classes are equal.

Lemma 7.2 ([11]). nonN ≺ UN and nonM≺ UM.

The following folklore lemma follows at once from the Isomorphism The-
orem for Measures ([14, (17.41)]) and the definitions.

Lemma 7.3. Let E ⊆ 2ω. If |E| < nonN , then E is UN. If |E| < nonM,
then E is UM.

Corollary 7.4. min(nonN , nonM) ≺ UN ∩UM.

Proof. Suppose first that nonM < nonN . By Lemma 7.2 there is A ⊆ 2ω

UM such that |A| = nonM < nonN . By Lemma 7.3, A is UN. The same
argument works if nonM > nonN .

Now suppose that nonM = nonN . Take a UN set A = {aα : α <
nonN} ⊆ 2ω and a UM set B = {bα : α < nonN} ⊆ 2ω and con-
sider the diagonal set D = {(aα, bα) : α < nonN} ⊆ 2ω × 2ω. Obviously
|D| = nonN = nonM. Both projections (aα, bα) 7→ aα, (aα, bα) 7→ bα are
obviously continuous and one-to-one. The former takes D to a UN set and
the latter takes D to a UM set. Hence D is, by Lemma 7.1, UN ∩UM.

The following three theorems are now, in view of the above lemmas,
trivial consequences of Theorems 5.4, 5.11 and 6.4.

Theorem 7.5. Each analytic σ-monotone space X contains

• a UN set E ⊆ X such that dimHE = dimHX,
• a UN ∩UM set E ⊆ X such that dimHE = dimHX.

Theorem 7.6. Each analytic set X ⊆ Rn contains

• a UN set E ⊆ X such that dimHE = dimHX,
• a UN ∩UM set E ⊆ X such that dimHE = dimHX.

Theorem 7.7. Each metric space X contains

• a UN set E ⊆ X such that dimHE ≥ dimX,
• a UN ∩UM set E ⊆ X such that dimHE ≥ dimX.
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Notice that in general there is no hope that E can have positive (dimX)-
dimensional Hausdorff measure. For instance, if E ⊆ Rn, then Hn(E) is
σ-finite, so if Hn(E) > 0, then the restriction of Hn to E is a measure
witnessing that E is not UN.

8. Remarks. In this section we discuss various consequences of Martin’s
axiom and other extra set-theoretic assumptions. The reader is supposed to
be familiar with basic set theory.

Improving dimHE ≥ dimHX for UM. The existence of UN and UM
sets of large dimension stems from Grzegorek’s theorems that yield, in ZFC,
a set of large cardinality (nonN or nonM) in 2ω that is topologically small
(UN or UM). With some extra assumptions about the two cardinals one
can get more, for instance, nonN ≤ nonM (implied by Martin’s axiom or
by nonN = ℵ1) enables us to strengthen all of the inequalities dimHE ≥
dimHX of the previous section to dimHE = dimHX:

Proposition 8.1. Assume nonN ≤ nonM.

(i) Each analytic σ-monotone space X contains a UN∩UM set E such
that dimHE = dimHX.

(ii) Each analytic set X ⊆ Rn contains a UN ∩ UM set E such that
dimHE = dimHX.

(iii) Each metric space X contains a UN∩UM set E such that dimHE ≥
dimX.

Sets with no UN or UM subsets of positive dimension. It would
be nice to have an example of a set with positive Hausdorff dimension such
that all its UN subsets have Hausdorff dimension zero; and likewise for upper
Hausdorff dimension and UM. Under Martin’s axiom such examples are easy
to construct.

Proposition 8.2. Assume Martin’s axiom. Let X be an analytic metric
space.

(i) There is a set S ⊆ X such that dimH S = dimHX, but dimHE = 0
for each UN set E ⊆ S.

(ii) There is a set L ⊆ X such that dimH L = dimHX, but dimHE = 0
for each UM set E ⊆ L.

Proof. (i) Mutatis mutandis we may assume that X is compact and
0 < Hs(X) < ∞, where s = dimHX, so that Hs is a nontrivial finite
diffused Borel measure on X.

It is well-known that Martin’s axiom yields a c-Sierpiński set, a set S ⊆ X
such that |S| = c and if E ⊆ S and Hs(E) = 0, then |E| < c. In particular
Hs(S) > 0 and thus dimH S = s. On the other hand, if E ⊆ S is UN, then
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Hs(E) = 0 and thus |E| < c. As proved in [10, Lemma 1.1], under Martin’s
axiom, |E| < c implies that E is a γ-set; and by [30, Proposition 7.7], if E
is a γ-set, then dimHE = 0.

(ii) It is enough to find, for each s < dimHX, a set L ⊆ X such that
dimH L ≥ s and dimHE = 0 for each UM set E ⊆ L. Put G =

⋃
{U ⊆

X : U open, dimH U ≤ s}. Then dimHG ≤ s and thus each open nonempty
subset U of X \G satisfies dimH U ≥ s.

Martin’s axiom yields a c-Luzin set, a set L ⊆ X \ G such that |L| = c
and if E ⊆ L is meager, then |E| < c. In particular L is not meager and
consequently, by Lemma 2.4, dimH L ≥ s. If E ⊆ L is UM, then it is meager
and thus |E| < c, whence dimHE = 0 by [10] and [30] again.

Other small sets. With extra set-theoretic assumptions one can make
some other small sets have positive (upper) Hausdorff dimension. We con-
sider the following classes of separable metric spaces:

• X is universally small if there are no nontrivial Borel-based ccc σ-ide-
als on X.
• X is a λ-set if every countable subset of X is Gδ.
• X ⊆ Y is a λ′-set in Y if X ∪ D is a λ-set for each countable set
D ⊆ Y .
• X is a σ-set if each Fσ-set in X is Gδ in X.
• X is a Q-set if each subset of X is Gδ in X.

The figure shows various inclusions. See [18, 19] for general reference and [27]
for universally small sets.

UN ⇐= universally small =⇒ UM

⇑ ⇑

Q-set =⇒ σ-set =⇒ λ-set

⇑

λ′-set

All of these classes except σ-sets are backwards closed ([18]). All of them
may consistently have large Hausdorff dimension.

Proposition 8.3. It is relatively consistent with ZFC that each metric
space X contains a set E with dimHE ≥ dimX and E is simultaneously Q,
λ′ and universally small.

Proof. Judah and Shelah [13] have a model of “ZFC + there exists
an uncountable Q-set + there exists a subset of reals of cardinality ℵ1

which is not Lebesgue measurable”. In other words, denoting by Q the
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class of Q-sets, nonN = ℵ1 ≺ Q in the model. Let Q be an uncount-
able Q-set. Let S be an uncountable universally small set (there is one,
see [27]). Let L be an uncountable λ′-set (there is one, see [18]). All of the
three sets may be assumed to be of cardinality ℵ1. Let S be the class of
sets that are simultaneously Q, λ′ and universally small. Construct a di-
agonal set E ⊆ Q × S × L. Since all of the three classes are backwards
closed, so is S and E ∈ S. Hence E witnesses nonN ≺ S. Now apply
Theorem 6.4.

There are numerous variations. For instance: Since there is an uncount-
able universally small λ′-set ([23, 27]), if nonN = ℵ1, then for each analytic
space there is a universally small λ′-set E ⊆ X such that dimHE = dimHX;
since there is a λ-set of cardinality b ([23]), if nonN ≤ b, then there is, for
each n, a λ-set E ⊆ Rn such that dimHE = n. There are also counterparts
for dimH and non E .

Most of the classes under consideration may also consistently have Haus-
dorff dimension zero:

Proposition 8.4. Each of the following is relatively consistent with
ZFC:

(i) dimHX = 0 for each σ-set,
(ii) dimHX = 0 for each λ′-set X ⊆ R,

(iii) dimHX = 0 for each λ-set.

Proof. Since σ-sets are consistently countable ([17, Theorem 22]), (i) is
obvious.

(ii) By [20, Theorem 1.1], it is consistent that every λ′-set is a γ-set and
in [30, Proposition 7.7] it is proved that dimHX = 0 for every γ-set X.

(iii) By [19, Theorem 22], if ω2 Cohen reals are added to a model of CH,
then each λ-set in the extension is of cardinality ℵ1 or less. Also covM =
ℵ2 = c in the model. In particular, |X| < covM for each λ-set. But if X is
a separable metric space and |X| < covM, then Hs(X) = 0 for each s > 0
(see e.g. [9, 534B(c)]), and therefore dimHX = 0.

Proposition 8.5. There is a λ-set X such that dimHX =∞.

Proof. Provide the set of irrationals ωω with the (variation of) the least
difference metric ρ(f, g) = 2−n(f,g) (cf. the first paragraph of Section 3). Let
X ⊆ ωω be an unbounded set of cardinality b. Rothberger [23] (or see [19,
Theorem 21]) shows that X is a λ-set. If dimHX <∞, then it is contained
in a σ-compact set. But that is not possible, since X is unbounded.

Acknowledgements. This project was supported by Department of
Education of the Czech Republic, research project BA MSM 210000010.



118 O. Zindulka

References
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