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How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces?

by

Leandro Candido and Elói Medina Galego (São Paulo)

Abstract. For a locally compact Hausdorff spaceK and a Banach space X we denote
by C0(K,X) the space of X-valued continuous functions on K which vanish at infinity,
provided with the supremum norm. Let n be a positive integer, Γ an infinite set with the
discrete topology, and X a Banach space having non-trivial cotype. We first prove that if
the nth derived set of K is not empty, then the Banach–Mazur distance between C0(Γ,X)
and C0(K,X) is greater than or equal to 2n + 1. We also show that the Banach–Mazur
distance between C0(N, X) and C([1, ωnk], X) is exactly 2n+ 1, for any positive integers
n and k. These results extend and provide a vector-valued version of some 1970 Cambern
theorems, concerning the cases where n = 1 and X is the scalar field.

1. Introduction. We follow the standard notation and terminology for
topological spaces and Banach space theory that can be found in [11] and
[14] respectively. When K is a compact Hausdorff space, the space C0(K,X)
will be denoted by C(K,X). If X is the scalar field, these spaces will also
be denoted by C0(K) and C(K) respectively. As usual, when K is the set N
of natural numbers with the discrete topology or its Aleksandrov one-point
compactification γN, we denote C0(N) by c0 and C(γN) by c. If there is
an isomorphism T from the Banach space X onto the Banach space Y we
will write X ∼ Y . Moreover, the Banach–Mazur distance d(X,Y ) between
X and Y is defined by inf{‖T‖ ‖T−1‖} where the infimum is taken over all
isomorphisms T from X onto Y .

In this paper we are mainly interested in the Banach–Mazur distance
between C0(Γ,X) spaces, where Γ are sets with the discrete topology, and
C0(K,X) spaces. The origin of our research goes back to Banach. In 1932,
he stated that d(c0, c) ≤ 4 [1, p. 181]. To prove this, he used the following
isomorphism Tλ from c onto c0:

(1.1) Tλ(a1, a2, a3, . . .) = (λa, a1 − a, a2 − a, . . .),
where λ = 1 and (an)n∈N converges to a. A better estimate for this distance
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can be obtained from (1.1) by taking λ = 2. Namely, d(c0, c) ≤ 3. Finally,
in 1970 Cambern [4] (see also [6] and [12]) calculated the exact value of this
distance:

(1.2) d(c0, c) = 3.

Moreover, by the classical Mazurkiewicz and Sierpiński Theorem [15] (see
also [18, Theorem 8.6.10, p. 155]) and the Bessaga and Pełczyński Theorem
[3, Theorem 1] we deduce that if c0 is isomorphic to a C(K) space, then K
is homeomorphic to an interval of ordinals [1, ωnk] endowed with the order
topology for some positive integers n and k, where ω denotes the first infinite
ordinal. Thus, to determine the Banach–Mazur distance between c0 and each
of the C(K) spaces, we are led to the following natural question:

Problem 1.1. What are the values of d(c0, C([1, ωnk]) for 1 ≤ n, k < ω?

The purpose of the present paper is twofold: firstly, to provide a vector-
valued extension of (1.2); secondly, to solve Problem 1.1 completely. To state
our main results we recall that the derived set of a topological space K is
the set K(1) of all accumulation points of K. If 1 ≤ n < ω, we define
the consecutive derived sets by induction: K(n+1) = (K(n))(1), and K(ω) =⋂

1≤n<ωK
(n). Moreover, a Banach space X has non-trivial cotype [8] if it has

cotype q for some 2 ≤ q < ∞. Recall that a Banach space X 6= {0} is said
to have cotype 2 ≤ q < ∞ if there is a constant κ > 0 such that no matter
how we select finitely many vectors v1, . . . , vn from X,( n∑

i=1

‖vi‖q
)1/q

≤ κ
( 1�

0

∥∥∥ n∑
i=1

ri(t)vi

∥∥∥2 dt)1/2,
where ri : [0, 1]→ R denote the Rademacher functions, defined by setting

ri(t) = sign(sin 2iπt).

We first prove the following lower bounds for the Banach–Mazur distances
between certain C0(K,X) spaces. This is a generalization of the main result
of [4], which concerned the case where n = 1 and X is the scalar field.

Theorem 1.2. Let 1 ≤ n < ω, Γ an infinite set with the discrete topol-
ogy, K a locally compact Hausdorff space and X a Banach space having
non-trivial cotype. Then

C0(Γ,X) ∼ C0(K,X) and K(n) 6= ∅ ⇒ d(C0(Γ,X), C0(K,X)) ≥ 2n+ 1.

To obtain some upper bounds for the distances mentioned in Problem
1.1 we prove:

Theorem 1.3. Let 1 ≤ n, k < ω and X a Banach space. Then

d(C0(N, X), C([1, ωnk], X)) ≤ 2n+ 1.
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As an immediate consequence of Theorems 1.2 and 1.3 we get the follow-
ing generalization of (1.2) which at the same time solves Problem 1.1.

Corollary 1.4. Let 1 ≤ n, k < ω and let X be a Banach space having
non-trivial cotype. Then

d(C0(N, X), C([1, ωnk], X)) = 2n+ 1.

We do not know whether the statement of Corollary 1.4 remains true
without the hypothesis that X has non-trivial cotype. We also notice that
Theorem 1.2 can be applied to obtain some generalizations of classical results
on C0(Γ ) spaces. For instance, it is well known that if a C(K) space is
isomorphic to some C0(Γ ) space, where Γ is an infinite set with the discrete
topology, then K(ω) = ∅ (see [2], [3] and [16]). As a consequence of Theorem
1.2 we give a simple proof of the following extension of this result.

Corollary 1.5. Let Γ be an infinite set with the discrete topology, K
a locally compact Hausdorff space and X a Banach space having non-trivial
cotype. Then

C0(K,X) ∼ C0(Γ,X) ⇒ K(ω) = ∅.
Proof. Let T be an isomorphism from C0(K,X) onto C0(Γ,X). Take

1 ≤ n < ω such that ‖T‖ ‖T−1‖ < 2n+1. Then by Theorem 1.2, K(n) = ∅.
Finally, the classical Milyutin Theorem [17, Theorem 21.5.10] shows that

we cannot remove the non-trivial cotype hypothesis in Corollary 1.5. Indeed,
C0(N, C([0, 1])) ∼ C([0, 1]) ∼ C([0, 1], C[0, 1]),

nevertheless, [0, 1](ω) = [0, 1].

2. Preliminary results. In this section, we shall prove two propositions
which play a central role in the proof of Theorem 1.2. We denote by SX the
unit sphere of a Banach space X. For a subset J of a topological space K
we denote by J̊ the set of interior points of J . Recall that an isomorphism
T of C0(K,X) into C0(Γ,X) is said to be norm-increasing if ‖f‖ ≤ ‖T (f)‖
for every f ∈ C0(K,X).

Proposition 2.1. Let K be a locally compact Hausdorff space such that
K(n) 6= ∅ for some 1 ≤ n < ω, Γ be an infinite set with the discrete topology
and X a Banach space having non-trivial cotype. Fix e ∈ SX and 0 < ε < 1.
If T is a norm-increasing isomorphism from C0(K,X) into C0(Γ,X) then
there are points x1, . . . , xn ∈ K, compact subsets J1, . . . , Jn of K and func-
tions h1, . . . , hn in C0(K) satisfying:

(a) xi ∈ J̊i ∩K(n−i+1) for 1 ≤ i ≤ n.
(b) Ji ⊂ J̊i−1 for 1 < i ≤ n.
(c) 0 ≤ hi ≤ 1, hi(x) = 1 if x ∈ Ji for 1 ≤ i ≤ n, and hi(x) = 0 if

x /∈ J̊i−1 for 1 < i ≤ n.
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(d) The sets Gi = {y ∈ Γ : ‖T (e ·hi)(y)‖ ≥ ε}, 1 ≤ i ≤ n, are non-empty
and mutually disjoint.

Proof. We proceed by finite induction. Let x1 ∈ K(n) and let J1 be a
compact neighborhood of x1. By the Urysohn Lemma [11, Theorem 1.5.11,
p. 41], we can find h1 ∈ C0(K) with 0 ≤ h1 ≤ 1 and h1(x) = 1 if x ∈ J1.
Moreover, since 0 < ε < 1 and T is norm-increasing, the set G1 = {y ∈ Γ :
‖T (e · h1)(y)‖ ≥ ε} is non-empty.

Given 1 ≤ r < n, suppose by induction that we have obtained points
x1, . . . , xr, compact sets J1, . . . , Jr, and functions h1, . . . , hr in C0(K) satis-
fying (a)–(d).

Since K is a locally compact Hausdorff space, it is possible to find points
a1, a2, . . . in (J̊r \ {xr}) ∩ K(n−r) and mutually disjoint compact subsets
L1, L2, . . . satisfying

ai ∈ L̊i ⊂ Li ⊂ J̊r for every 1 ≤ i < ω.

The Urysohn Lemma gives functions f1, f2, . . . ∈ C0(K) such that, for every
1 ≤ i < ω, 0 ≤ fi ≤ 1, fi(x) = 1 if x ∈ Li and fi(x) = 0 if x /∈ J̊r, and
moreover fi · fj = 0 if i 6= j.

Let G = G1 ∪ · · · ∪Gr. We claim that there exists 1 ≤ m < ω such that

(2.1) {y ∈ Γ : ‖T (e · fm)(y)‖ ≥ ε} ∩G = ∅.

Indeed, otherwise, assuming G = {y1, . . . , ys} and denoting

Λi = {j ∈ [1, ω[ : ‖T (e · fj)(yi)‖ ≥ ε}

for each 1 ≤ i ≤ s, we would obtain

[1, ω[⊆ Λ1 ∪ · · · ∪ Λs,

and we infer that Λl must be infinite for some 1 ≤ l ≤ s. Let l1, l2, . . . be
distinct integers in Λl.

Since X has cotype q for some 2 ≤ q < ∞, there is a constant Q > 0
such that no matter how we select finitely many vectors v1, . . . , vp ∈ X, if
0 < η ≤ ‖vi‖ for each 1 ≤ i ≤ p, there are scalars ri = ±1 such that

(2.2)
∥∥∥ p∑
i=1

rivi

∥∥∥ ≥ ηQ q
√
p.

Pick 1 ≤ m < ω satisfying εQ q
√
m > ‖T‖. Then according to (2.2) there

exist scalars ri = ±1 for 1 ≤ i ≤ m such that∥∥∥ m∑
i=1

riT (e · fli)(yl)
∥∥∥ ≥ εQ q

√
m > ‖T‖.

Since fli · flj = 0 if i 6= j, the function A =
∑m

i=1 ri(e · fli) ∈ C0(K,X) is
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such that ‖A‖ ≤ 1. However,

‖T‖ ≥ ‖T (A)‖ ≥
∥∥∥T( m∑

i=1

ri(e · fli)
)

(yl)
∥∥∥ > ‖T‖,

a contradiction which establishes our claim.
Now take 1 ≤ m < ω satisfying (2.1) and set Jr+1 = Lm, hr+1 = fm and

Gr+1 = {y ∈ Γ : ‖T (e · fm)(y)‖ ≥ ε}. It is easy to check that conditions
(a)–(d) hold for r + 1, so we are done.

To state the next proposition, we need to recall some notation and a
classical representation theorem for the dual of C0(K,X) spaces. For an
X-valued measure µ, |µ| denotes the variation of µ, and rcabv(K,X) is the
Banach space of all regular, countably additive, Borel, bounded variation
measures, endowed with the variation norm. Throughout we will use the
Singer Representation Theorem: there exists an isometric isomorphism be-
tween C0(K,X)∗ and rcabv(K,X∗) such that a linear functional ϕ and the
corresponding measure µ are related by

〈ϕ, f〉 =
�
f dµ, f ∈ C0(K,X),

where the integral is the immediate integral of Dinculeanu [9, p. 11]. When
K is a compact Hausdorff space, this characterization can be found in [13].
The locally compact case can be derived from the compact one as explained
in [5, p. 2].

The next proposition can be established by an argument similar to that
used in the proof of [7, Lemma 2.1(a)]. For completeness, we give the whole
argument.

Proposition 2.2. Let X be a Banach space having non-trivial cotype, K
a locally compact Hausdorff space, Γ an infinite set with the discrete topology
and T an isomorphism of C0(K,X) into C0(Γ,X). Then for every y ∈ Γ
and every η > 0 the set

{x ∈ K : |T ∗(ϕ · δy)|({x}) > η for some ϕ ∈ SX∗}
is finite, where δy stands for the unit point mass at y.

Proof. Assume that, on the contrary, for some η > 0 the set
{x ∈ K : ‖T ∗(ϕ · δy)({x})‖ > η for some ϕ ∈ SX∗}

is infinite. Suppose thatX has cotype q for some 2 ≤ q <∞, and letQ > 0 be
as in the proof of Proposition 2.1. Pick 1 ≤ n < ω satisfying ηQ q

√
n > 2‖T‖.

Fix also distinct points x1, . . . , xn ∈ K and ϕ1, . . . , ϕn ∈ SX∗ such that
‖T ∗(ϕi · δy)({xi})‖ > η, 1 ≤ i ≤ n.

Thus, there are v1, . . . , vn in SX such that
(2.3) 〈T ∗(ϕiδy)({xi}), vi〉 > η, 1 ≤ i ≤ n.
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Since T ∗(ϕi · δy) is regular for each 1 ≤ i ≤ n, we can take mutually disjoint
open neighborhoods U1, . . . , Un of x1, . . . , xn, respectively, satisfying

|T ∗(ϕi · δy)|(Ui \ {xi}) ≤ η/2.
By the Urysohn Lemma, we can find hi ∈ C0(K) with 0 ≤ hi ≤ 1, hi(xi) = 1
and hi(x) = 0 if x ∈ K \ Ui. Define fi ∈ C0(K,X) by fi = vi · hi. By (2.3)
we have

‖(Tfi)(y)‖ ≥ |〈ϕi, (Tfi)(y)〉| =
∣∣∣ � fi dT ∗(ϕi · δy)∣∣∣

≥ |〈T ∗(ϕi · δy)({xi}), vi〉|

−
∣∣∣ � fi dT ∗(ϕi · δy)− 〈T ∗(ϕi · δy)({xi}), vi〉∣∣∣

> η − |T ∗(ϕi · δy)|(Ui \ {xi}) ≥ η/2.
According to (2.2) there are scalars ri = ±1 such that

(2.4)
∥∥∥ n∑
i=1

ri(Tfi)(y)
∥∥∥ ≥ ηQ q

√
n/2.

On the other hand, since Ui∩Uj = ∅ if i 6= j and ‖fi‖ ≤ 1 for each 1 ≤ i ≤ n,
we have ∥∥∥ n∑

i=1

rifi

∥∥∥ ≤ 1.

Therefore, by (2.4) and the choice of η we conclude

‖T‖ ≥
∥∥∥T( n∑

i=1

rifi

)∥∥∥ ≥ ∥∥∥T( n∑
i=1

rifi

)
(y)
∥∥∥ > ‖T‖,

which is the required contradiction.

Another basic ingredient in the proof of our main result is a Radon–
Nikodým type vector measure theorem (see [10, Theorem 5, p. 269]).

Theorem 2.3. Let X be a Banach space, K a locally compact Hausdorff
space and µ ∈ rcabv(K,X∗). Then there exists a function γ : K → X∗ such
that:

(a) ‖γ(x)‖ = 1 for every x ∈ K.
(b) The map x 7→ 〈γ(x), f(x)〉 is measurable and�

f dµ =
�
〈γ(x), f(x)〉 d|µ|(x)

for every f ∈ C0(K,X).

3. Lower bounds on Banach–Mazur distances between C0(K,X)
spaces. The aim of this section is to prove our main result, Theorem 1.2.

We will argue by contradiction in four steps.
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Step 1. Assuming the existence of an isomorphism T of C0(K,X) onto
C0(Γ,X) such that ‖T‖ ‖T−1‖ < 2n+ 1 we construct some special functions
α and β in C0(Γ ).

Without loss of generality we may assume that T is norm-increasing and
‖T−1‖ = 1, for otherwise we simply replace T by ‖T−1‖T .

Pick 0 < ε < 1 and η > 0 such that

‖T‖ < (2n+ 1)
1− ε
1 + ε

, η < min

{
ε,

(2n+ 1)(1− ε)− ‖T‖
2

}
.

Fix e ∈ SX . SinceK(n) 6= ∅ there are points x1, . . . , xn ∈ K, compact subsets
J1, . . . , Jn ⊂ K, functions h1, . . . , hn ∈ C0(K), and subsets G1, . . . , Gn ⊂ Γ
satisfying the statements of Proposition 2.1. Define, for each 1 ≤ i ≤ n,

fi = e · hi ∈ C0(K,X), gi = χGi
· Tfi,

where χGi
is the characteristic function of Gi. Denote by G the finite set⋃n

i=1Gi. According to Proposition 2.2 the set

H =
⋃
y∈G
{x ∈ K : |T ∗(ϕ · δy)|({x}) > η for some ϕ ∈ SX∗}

is finite. Pick z ∈ J̊n \H and e∗ ∈ SX∗ such that 〈e∗, e〉 = 1, and define the
vector measure

µ = (T−1)∗(e∗ · δz).
By Theorem 2.3 there exists a function γ : Γ → X∗ satisfying the statements
of that theorem.

Since ‖γ(y)‖ = 1 for every y ∈ Γ , we have |T ∗(γ(y) · δy)|({z}) < η for
each y ∈ G. Then, by regularity, we can find an open neighborhood U ⊂ Jn
of z such that

|T ∗(γ(y) · δy)|(U) < η for every y ∈ G.

By the Urysohn Lemma, we can find hn+1 ∈ C0(K) such that 0 ≤ hn+1

≤ 1, hn+1(z) = 1 and hn+1(x) = 0 if x /∈ U . Set fn+1 = e · hn+1 and define
α, β ∈ C0(Γ ) by setting, for every y ∈ Γ ,

α(y) = 〈γ(y), T fn+1(y)〉,

β(y) =
〈
γ(y), g1(y) + 2

n∑
i=2

gi(y) + 2Tfn+1(y)
〉
.

Step 2. We prove that ‖β‖ = max{2‖α‖, |β(y)| : y ∈ G}.
In order to establish this, notice that for every y ∈ G,

|α(y)| = |〈γ(y), Tfn+1(y)〉| =
∣∣∣ �Tfn+1 dγ(y) · δy

∣∣∣(3.1)

=
∣∣∣ � fn+1 dT

∗(γ(y) · δy)
∣∣∣ ≤ |T ∗(γ(y) · δy)|(U) < η < 1.
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On the other hand, take y0 ∈ Γ such that ‖α‖ = |α(y0)|. Since γ satisfies
item (b) of Theorem 2.3 and |µ|(Γ ) = ‖(T−1)∗(e∗ · δz)‖ ≤ 1, we have

(3.2) |α(y0)| = |〈γ(y0), Tfn+1(y0)〉| ≥
∣∣∣ �〈γ(y), Tfn+1(y)〉d|µ|(y)

∣∣∣
=
∣∣∣ �Tfn+1 dµ

∣∣∣ =
∣∣∣ �Tfn+1 d(T−1)∗(e∗ · δz)

∣∣∣ =
∣∣∣ � fn+1 d(e∗ · δz)

∣∣∣
= |〈e∗, fn+1(z)〉| = 〈e∗, e〉 = 1.

Hence y0 ∈ Γ \G. Moreover, since β(y) = 2α(y) for y ∈ Γ \G, we are done.
Step 3. We show that ‖β‖ ≥ (2n+ 1)− (2n− 1)ε.
Fix y0 such that ‖β‖ = |β(y0)|. Once more, since γ satisfies item (b) of

Theorem 2.3 and |µ|(Γ ) = ‖(T−1)∗(e∗ · δz)‖ ≤ 1, we can write

|β(y0)| =
∣∣∣〈γ(y0), g1(y0) + 2

n∑
i=2

gi(y0) + 2Tfn+1(y0)
〉∣∣∣

≥
∣∣∣ �〈γ(y), g1(y) + 2

n∑
i=2

gi(y) + 2Tfn+1(y)
〉
d|µ|(y)

∣∣∣
=
∣∣∣ �(g1 + 2

n∑
i=2

gi + 2Tfn+1

)
d(T−1)∗(e∗ · δz)

∣∣∣
=
∣∣∣〈e∗, T−1g1(z) + 2

n∑
i=2

T−1gi(z) + 2fn+1(z)
〉∣∣∣

≥
∣∣∣〈e∗, f1(z) + 2

n+1∑
i=2

fi(z)
〉∣∣∣− |〈e∗, f1(z)− T−1g1(z)〉|

− 2
n∑
i=2

|〈e∗, fi(z)− T−1gi(z)〉|.

Since T is norm-increasing, for every x ∈ K and 1 ≤ i ≤ n we have
|〈e∗, fi(x)− T−1gi(x)〉| ≤ ‖fi − T−1gi‖ ≤ ‖Tfi − gi‖

= ‖(1− χGi
) · Tfi‖ ≤ ε.

Furthermore, by the definition of fi,
〈e∗, fi(z)〉 = 〈e∗, e〉 = 1

for each 1 ≤ i ≤ n+ 1. Therefore, we conclude that
‖β‖ ≥ (2n+ 1)− (2n− 1)ε.

Step 4. As ‖β‖ ≥ (2n + 1) − (2n − 1)ε, according to Step 2 there are
two possibilities:

(i) 2‖α‖ ≥ (2n+ 1)− (2n− 1)ε,
(ii) |β(y)| ≥ (2n+ 1)− (2n− 1)ε for some y ∈ G.
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We will show that both lead to a contradiction.
Suppose first that (i) holds. Set A = T−1g1 − 2fn+1. Since 0 ≤ hn+1 ≤

h1 ≤ 1, for every x ∈ K we have

‖T−1(g1)(x)− 2fn+1(x)‖ ≤ ‖f1(x)− 2fn+1(x)‖+ ‖T−1g1(x)− f1(x)‖
≤ |h1(x)− 2hn+1(x)|+ ε ≤ 1 + ε.

So ‖A‖ ≤ 1 + ε.
Recalling (3.1) and (3.2), we can fix y0 ∈ Γ \G such that ‖α‖ = |α(y0)|.

It follows that

|〈γ(y0), T (A)(y0)〉| = 2|〈γ(y0), Tfn+1(y0)〉| = 2|α(y0)|
≥ (2n+ 1)− (2n− 1)ε > (2n+ 1)(1− ε).

Consequently,

‖T‖ ≥
∥∥∥∥T( 1

1 + ε
A

)∥∥∥∥ > (2n+ 1)
1− ε
1 + ε

,

a contradiction to the choice of ε.
Next, assume that (ii) holds. We distinguish two cases.

Case 1: ‖β‖ = |β(y0)| for some y0 ∈ G1. In this case, since G1, . . . , Gn
are mutually disjoint we have

|β(y0)| = |〈γ(y0), g1(y0) + 2Tfn+1(y0)〉| ≥ (2n+ 1)− (2n− 1)ε.

Recalling (3.1), by the choice of η we deduce

|〈γ(y0), g1(y0)〉| ≥ (2n+ 1)− (2n− 1)ε− 2|〈γ(y0), T fn+1(y0)〉|
> (2n+ 1)− (2n− 1)ε− 2η > ‖T‖.

Therefore,

‖T‖ ≥ ‖Tf1‖ ≥ |〈γ(y0), T f1(y0)〉| = |〈γ(y0), g1(y0)〉| > ‖T‖,
which is a contradiction.

Case 2: ‖β‖ = |β(y0)| for some y0 ∈ Gi, i > 1. Once again, since
G1, . . . , Gn are mutually disjoint we have

|β(y0)| = |〈γ(y0), 2gi(y0) + 2Tfn+1(y0)〉| ≥ (2n+ 1)− (2n− 1)ε.

Recalling that η < ε, we infer

2|〈γ(y0), gi(y0)〉| ≥ (2n+ 1)− (2n− 1)ε− 2|〈γ(y0), T fn+1(y0)〉|
> (2n+ 1)(1− ε).

Next, set Bi = T−1g1− 2fi. Since 0 ≤ hi ≤ h1 ≤ 1, for every x ∈ K we have

‖T−1(g1)(x)− 2fi(x)‖ ≤ ‖f1(x)− 2fi(x)‖+ ‖T−1g1(x)− f1(x)‖
≤ |h1(x)− 2hi(x)|+ ε ≤ 1 + ε.
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It follows that ‖Bi‖ ≤ 1 + ε. Moreover

|〈γ(y0), T (Bi)(y0)〉| = 2|〈γ(y0), T fi(y0)〉|
= 2|〈γ(y0), gi(y0)〉| > (2n+ 1)(1− ε).

Thus,

‖T‖ ≥
∥∥∥∥T( 1

1 + ε
Bi

)∥∥∥∥ > (2n+ 1)
1− ε
1 + ε

,

which contradicts the choice of ε.

4. Upper bounds for d(C0(N, X), C([1, ωnk], X)). In this section we
show how to generalize the formula (1.1) of the introduction to obtain
an upper bound for the Banach–Mazur distance between C0(N, X) and
C([1, ωnk], X), 1 ≤ k, n < ω, for arbitrary Banach spaces X. We start by
proving the following crucial lemma.

Lemma 4.1. Let 1 ≤ n < ω and X be a Banach space. For every f ∈
C([1, ωn], X), define a sequence (aξ)1≤ξ≤ωn by

aωn = 2f(ωn), aωn−1i = f(ωn−1i)− f(ωn) for 1 ≤ i < ω,

and if n > 1,

aξ = f(ωn−1i1 + · · ·+ ωn−jij)− f(ωn−1i1 + · · ·+ ωn−(j−1)(ij−1 + 1))

whenever ξ = ωn−1i1 + · · · + ωn−jij with 1 < j ≤ n, 0 ≤ ip < ω for
1 ≤ p ≤ j − 1 and 1 ≤ ij < ω. Then for every ε > 0 there are only a finite
number of ordinals 1 ≤ ξ ≤ ωn such that ‖aξ‖ ≥ ε.

Proof. First of all, each ordinal 1 ≤ ξ < ωn has a unique representation
(the Cantor normal form [18, p. 153])

ξ = ωn−1i1 + · · ·+ ωn−jij

where 1 ≤ j ≤ n, 0 ≤ ip < ω for 1 ≤ p ≤ j − 1 and 1 ≤ ij < ω. Hence, for
every f ∈ C([1, ωn], X) the sequence (aξ)1≤ξ≤ωn is well defined.

We will argue by finite induction on n. Of course, the conclusion is true for
n = 1. Next, assume that it is true for n−1 with n ≥ 2. Fix f ∈ C([1, ωn], X)
and consider the sequence (aξ)1≤ξ≤ωn defined as in the statement.

Pick ε > 0. By the continuity of f there is 1 < m < ω such that for every
ξ ∈ ]ωn−1m,ωn], we have

‖f(ξ)− f(ωn)‖ < ε/2.

Therefore for every ξ = ωn−1i1 + · · · + ωn−jij with 1 < j ≤ n, 0 ≤ ip < ω
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for 1 ≤ p ≤ j − 1 and 1 ≤ ij < ω such that ξ ∈ ]ωn−1m,ωn[ we deduce

‖aξ‖ = ‖f(ωn−1i1 + · · ·+ ωn−jij)− f(ωn−1i1 + · · ·+ ωn−(j−1)(ij−1 + 1))‖
≤ ‖f(ξ)− f(ωn)‖+ ‖f(ωn−1i1 + · · ·+ ωn−(j−1)(ij−1 + 1))− f(ωn)‖
< ε.

On the other hand, for every 1 ≤ r ≤ m, consider gr ∈ C([1, ωn−1], X) given
by gr(ξ) = f(ωn−1(r − 1) + ξ). Moreover, for every 1 ≤ r ≤ m, define a
sequence (arξ)1≤ξ≤ωn−1 as follows:

arωn−1 = 2gr(ω
n−1), arωn−2i = gr(ω

n−2i)− gr(ωn−1) for 1 ≤ i < ω,

and if n > 2,

arξ = gr(ω
n−2i1 + · · ·+ ω(n−1)−jij)− gr(ωn−2i1 + · · ·+ ωn−j(ij−1 + 1))

whenever ξ = ωn−2i1 + · · ·+ ω(n−1)−jij with 1 < j ≤ n− 1, 0 ≤ ip < ω for
1 ≤ p ≤ j − 1 and 1 ≤ ij < ω. By the induction hypothesis, there are only
a finite number of ordinals 1 ≤ ξ ≤ ωn−1 such that ‖arξ‖ ≥ ε for 1 ≤ r ≤ m.
Since

arξ = aωn−1(r−1)+ξ

for every 1 ≤ ξ < ωn−1 and 1 ≤ r ≤ m, we conclude that there are only a
finite number of ordinals ωn−1(r − 1) + 1 ≤ ξ ≤ ωn−1r such that ‖aξ‖ ≥ ε.
Since [1, ωn] is the union of [1, ωn−1], . . . , [ωn−1(m−1), ωn−1m], [ωn−1m,ωn],
we are done.

Proof of Theorem 1.3. Observe that C([1, ωnk], X) is isometrically iso-
morphic to the direct sum of k copies of C([1, ωn], X), and C0(N, X) is
isometrically isomorphic to the direct sum of k copies of itself. So, it suffices
to prove that

(4.1) d(C0(N, X), C([1, ωn], X)) ≤ 2n+ 1.

Denote by Γωn the interval of ordinals [1, ωn] endowed with the discrete
topology. We can replace C0(N, X) in (4.1) by C0(Γωn , X), because they are
isometrically isomorphic.

For every f ∈ C([1, ωn], X) define a map T (f) : Γωn → X by

T (f)(ξ) = aξ for every 1 ≤ ξ ≤ ωn,

where (aξ)1≤ξ≤ωn is defined in Lemma 4.1. It follows directly from Lemma
4.1 that T (f) ∈ C0(Γωn , X) for every f ∈ C([1, ωn], X). Moreover, it is
easy to check that T : C([1, ωn], X)→ C0(Γωn , X) is a linear operator with
‖T‖ ≤ 2.

Conversely, for every sequence g = (aξ)1≤ξ≤ωn ∈ C0(Γωn , X) define a
map S(g) : [1, ωn]→ X by setting
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S(g)(ωn) =
1

2
aωn , S(g)(ωn−1i) = aωn−1i +

1

2
aωn for 1 ≤ i < ω,

and for every ξ = ωn−1i1 + · · · + ωn−jij with 1 ≤ j ≤ n, 0 ≤ ip < ω for
1 ≤ p ≤ j − 1 and 1 ≤ ij < ω,

S(g)(ξ) = aωn−1i1+···+ωn−jij + aωn−1i1+···+ωn−(j−1)(ij−1+1)

+ · · ·+ aωn−1i1+ωn−2(i2+1) + aωn−1(i1+1) +
1

2
aωn .

We will prove that S(g) is a continuous function for every g ∈ C0(Γωn , X).
To do this, fix g = (aξ)1≤ξ≤ωn ∈ C0(Γωn , X). Given ξ0 ∈ [1, ωn](1) pick ε > 0
and let Λε be the finite set of all ordinals 1 ≤ ξ ≤ ωn such that ‖aξ‖ ≥ ε/n.
We distinguish two cases.

Case 1: ξ0 = ωn. Since Λε is finite, there is 1 ≤ m < ω such that

]ωn−1m,ωn[ ∩ Λε = ∅.

It follows from the definition of S(g) that if ξ ∈ ]ωn−1m,ωn[, then

‖S(g)(ξ)− S(g)(ξ0)‖ ≤ ‖aξ1‖+ · · ·+ ‖aξs‖

for some 1 ≤ s ≤ n and ξ = ξ1 < · · · < ξs < ξ0. Hence

‖S(g)(ξ)− S(g)(ξ0)‖ < ε.

Case 2: ξ0 = ωn−1i1 + · · · + ωn−jij with 1 ≤ j < n, 0 ≤ ip < ω for
1 ≤ p ≤ j − 1 and 1 ≤ ij < ω. There is 1 ≤ m < ω such that

]ωn−1i1 + · · ·+ ωn−j(ij − 1) + ωn−(j+1)m, ξ0[ ∩ Λε = ∅.

Once more, from the definition of S(g), if ξ ∈ ]ωn−1i1 + · · ·+ωn−j(ij − 1) +
ωn−(j+1)m, ξ0[, then

‖S(g)(ξ)− S(g)(ξ0)‖ ≤ ‖aξ1‖+ · · ·+ ‖aξs‖

for some 1 ≤ s ≤ n− j and ξ = ξ1 < · · · < ξs < ξ0. Consequently,

‖S(g)(ξ)− S(g)(ξ0)‖ < ε.

Therefore, S(g) is continuous at ξ0.
Moreover, it is easy to check that S : C0(Γωn , X) → C([1, ωn], X) is a

linear operator with

‖S‖ ≤ 2n+ 1

2
,

and the compositions S ◦T and T ◦S are, respectively, the identity operators
in C([1, ωn], X) and C0(Γωn , X). This completes the proof of the theorem.

Acknowledgements. The first author was supported by CNPq, process
number 142423/2011-4.



C0(Γ,X) with Γ discrete and C0(K,X) spaces 163

References

[1] S. Banach, Théorie des opérations linéaires, Monografie Mat. 1, Warszawa, 1932.
[2] J. W. Baker, Dispersed images of topological spaces and uncomplemented subspaces

of C(X), Proc. Amer. Math. Soc. 41 (1973), 309–314.
[3] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19

(1960), 53–61.
[4] M. Cambern, Isomorphisms of C0(Y ) with Y discrete, Math. Ann. 188 (1970), 23–

25.
[5] M. Cambern, Isomorphisms of spaces of continuous vector-valued functions, Illinois

J. Math. 20 (1976), 1–11.
[6] M. Cambern, On mappings of sequence spaces, Studia Math. 30 (1968), 73–77.
[7] L. Candido and E. M. Galego, A weak vector-valued Banach–Stone theorem, Proc.

Amer. Math. Soc., to appear.
[8] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge

Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
[9] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces,

Wiley–Interscience, 2000.
[10] N. Dinculeanu, Vector Measures, Pergamon Press, Berlin, 1967.
[11] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin,

1989.
[12] Y. Gordon, On the distance coefficient between isomorphic function spaces, Israel J.

Math. 8 (1970), 391–396.
[13] W. Hensgen, A simple proof of Singer’s representation theorem, Proc. Amer. Math.

Soc. 124 (1996), 3211–3212.
[14] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach

spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland,
Amsterdam, 2001, 1–84.

[15] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénom-
brables, Fund. Math. 1 (1920), 17–27.

[16] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math.
18 (1959), 211–222.

[17] H. P. Rosenthal, The Banach space C(K), in: Handbook of the Geometry of Banach
Spaces, Vol. 2, North-Holland, Amsterdam, 2001, 1547–1602.

[18] Z. Semadeni, Banach Spaces of Continuous Functions Vol. I, Monografie Mat. 55,
PWN–Polish Sci. Publ., Warszawa, 1971.

Leandro Candido, Elói Medina Galego
Department of Mathematics
IME, University of São Paulo
Rua do Matão 1010, São Paulo, Brazil
E-mail: lc@ime.usp.br

eloi@ime.usp.br

Received 12 March 2012;
in revised form 28 June 2012

http://dx.doi.org/10.1007/BF01435411
http://dx.doi.org/10.1007/BF02798685
http://dx.doi.org/10.1090/S0002-9939-96-03493-4



	Introduction
	Preliminary results
	Lower bounds on Banach–Mazur distances between C0(K, X) spaces
	Upper bounds for d(C0(N,X),C([1,nk],X))

