How far is $C_{0}(\Gamma, X)$ with Γ discrete from $C_{0}(K, X)$ spaces?

by

Leandro Candido and Elói Medina Galego (São Paulo)

Abstract

For a locally compact Hausdorff space K and a Banach space X we denote by $C_{0}(K, X)$ the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Γ an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between $C_{0}(\Gamma, X)$ and $C_{0}(K, X)$ is greater than or equal to $2 n+1$. We also show that the Banach-Mazur distance between $C_{0}(\mathbb{N}, X)$ and $C\left(\left[1, \omega^{n} k\right], X\right)$ is exactly $2 n+1$, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where $n=1$ and X is the scalar field.

1. Introduction. We follow the standard notation and terminology for topological spaces and Banach space theory that can be found in [11] and [14] respectively. When K is a compact Hausdorff space, the space $C_{0}(K, X)$ will be denoted by $C(K, X)$. If X is the scalar field, these spaces will also be denoted by $C_{0}(K)$ and $C(K)$ respectively. As usual, when K is the set \mathbb{N} of natural numbers with the discrete topology or its Aleksandrov one-point compactification $\gamma \mathbb{N}$, we denote $C_{0}(\mathbb{N})$ by c_{0} and $C(\gamma \mathbb{N})$ by c. If there is an isomorphism T from the Banach space X onto the Banach space Y we will write $X \sim Y$. Moreover, the Banach-Mazur distance $d(X, Y)$ between X and Y is defined by $\inf \left\{\|T\|\left\|T^{-1}\right\|\right\}$ where the infimum is taken over all isomorphisms T from X onto Y.

In this paper we are mainly interested in the Banach-Mazur distance between $C_{0}(\Gamma, X)$ spaces, where Γ are sets with the discrete topology, and $C_{0}(K, X)$ spaces. The origin of our research goes back to Banach. In 1932, he stated that $d\left(c_{0}, c\right) \leq 4$ [1, p. 181]. To prove this, he used the following isomorphism T_{λ} from c onto c_{0} :

$$
\begin{equation*}
T_{\lambda}\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(\lambda a, a_{1}-a, a_{2}-a, \ldots\right) \tag{1.1}
\end{equation*}
$$

where $\lambda=1$ and $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to a. A better estimate for this distance

[^0]can be obtained from (1.1) by taking $\lambda=2$. Namely, $d\left(c_{0}, c\right) \leq 3$. Finally, in 1970 Cambern [4] (see also [6] and [12]) calculated the exact value of this distance:
\[

$$
\begin{equation*}
d\left(c_{0}, c\right)=3 \tag{1.2}
\end{equation*}
$$

\]

Moreover, by the classical Mazurkiewicz and Sierpiński Theorem [15] (see also [18, Theorem 8.6.10, p. 155]) and the Bessaga and Pełczyński Theorem [3, Theorem 1] we deduce that if c_{0} is isomorphic to a $C(K)$ space, then K is homeomorphic to an interval of ordinals $\left[1, \omega^{n} k\right]$ endowed with the order topology for some positive integers n and k, where ω denotes the first infinite ordinal. Thus, to determine the Banach-Mazur distance between c_{0} and each of the $C(K)$ spaces, we are led to the following natural question:

Problem 1.1. What are the values of $d\left(c_{0}, C\left(\left[1, \omega^{n} k\right]\right)\right.$ for $1 \leq n, k<\omega$?
The purpose of the present paper is twofold: firstly, to provide a vectorvalued extension of 1.2 ; secondly, to solve Problem 1.1 completely. To state our main results we recall that the derived set of a topological space K is the set $K^{(1)}$ of all accumulation points of K. If $1 \leq n<\omega$, we define the consecutive derived sets by induction: $K^{(n+1)}=\left(K^{(n)}\right)^{(1)}$, and $K^{(\omega)}=$ $\bigcap_{1 \leq n<\omega} K^{(n)}$. Moreover, a Banach space X has non-trivial cotype [8] if it has cotype q for some $2 \leq q<\infty$. Recall that a Banach space $X \neq\{0\}$ is said to have cotype $2 \leq q<\infty$ if there is a constant $\kappa>0$ such that no matter how we select finitely many vectors v_{1}, \ldots, v_{n} from X,

$$
\left(\sum_{i=1}^{n}\left\|v_{i}\right\|^{q}\right)^{1 / q} \leq \kappa\left(\int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) v_{i}\right\|^{2} d t\right)^{1 / 2}
$$

where $r_{i}:[0,1] \rightarrow \mathbb{R}$ denote the Rademacher functions, defined by setting

$$
r_{i}(t)=\operatorname{sign}\left(\sin 2^{i} \pi t\right)
$$

We first prove the following lower bounds for the Banach-Mazur distances between certain $C_{0}(K, X)$ spaces. This is a generalization of the main result of [4], which concerned the case where $n=1$ and X is the scalar field.

Theorem 1.2. Let $1 \leq n<\omega, \Gamma$ an infinite set with the discrete topology, K a locally compact Hausdorff space and X a Banach space having non-trivial cotype. Then

$$
C_{0}(\Gamma, X) \sim C_{0}(K, X) \text { and } K^{(n)} \neq \emptyset \Rightarrow d\left(C_{0}(\Gamma, X), C_{0}(K, X)\right) \geq 2 n+1
$$

To obtain some upper bounds for the distances mentioned in Problem 1.1 we prove:

Theorem 1.3. Let $1 \leq n, k<\omega$ and X a Banach space. Then

$$
d\left(C_{0}(\mathbb{N}, X), C\left(\left[1, \omega^{n} k\right], X\right)\right) \leq 2 n+1
$$

As an immediate consequence of Theorems 1.2 and 1.3 we get the following generalization of 1.2 which at the same time solves Problem 1.1.

Corollary 1.4. Let $1 \leq n, k<\omega$ and let X be a Banach space having non-trivial cotype. Then

$$
d\left(C_{0}(\mathbb{N}, X), C\left(\left[1, \omega^{n} k\right], X\right)\right)=2 n+1
$$

We do not know whether the statement of Corollary 1.4 remains true without the hypothesis that X has non-trivial cotype. We also notice that Theorem 1.2 can be applied to obtain some generalizations of classical results on $C_{0}(\Gamma)$ spaces. For instance, it is well known that if a $C(K)$ space is isomorphic to some $C_{0}(\Gamma)$ space, where Γ is an infinite set with the discrete topology, then $K^{(\omega)}=\emptyset$ (see [2], [3] and [16]). As a consequence of Theorem 1.2 we give a simple proof of the following extension of this result.

Corollary 1.5. Let Γ be an infinite set with the discrete topology, K a locally compact Hausdorff space and X a Banach space having non-trivial cotype. Then

$$
C_{0}(K, X) \sim C_{0}(\Gamma, X) \Rightarrow K^{(\omega)}=\emptyset
$$

Proof. Let T be an isomorphism from $C_{0}(K, X)$ onto $C_{0}(\Gamma, X)$. Take $1 \leq n<\omega$ such that $\|T\|\left\|T^{-1}\right\|<2 n+1$. Then by Theorem $1.2, K^{(n)}=\emptyset$.

Finally, the classical Milyutin Theorem [17, Theorem 21.5.10] shows that we cannot remove the non-trivial cotype hypothesis in Corollary 1.5. Indeed,

$$
C_{0}(\mathbb{N}, C([0,1])) \sim C([0,1]) \sim C([0,1], C[0,1])
$$

nevertheless, $[0,1]^{(\omega)}=[0,1]$.
2. Preliminary results. In this section, we shall prove two propositions which play a central role in the proof of Theorem 1.2. We denote by S_{X} the unit sphere of a Banach space X. For a subset J of a topological space K we denote by \grave{J} the set of interior points of J. Recall that an isomorphism T of $C_{0}(K, X)$ into $C_{0}(\Gamma, X)$ is said to be norm-increasing if $\|f\| \leq\|T(f)\|$ for every $f \in C_{0}(K, X)$.

Proposition 2.1. Let K be a locally compact Hausdorff space such that $K^{(n)} \neq \emptyset$ for some $1 \leq n<\omega, \Gamma$ be an infinite set with the discrete topology and X a Banach space having non-trivial cotype. Fix $e \in S_{X}$ and $0<\epsilon<1$. If T is a norm-increasing isomorphism from $C_{0}(K, X)$ into $C_{0}(\Gamma, X)$ then there are points $x_{1}, \ldots, x_{n} \in K$, compact subsets J_{1}, \ldots, J_{n} of K and functions h_{1}, \ldots, h_{n} in $C_{0}(K)$ satisfying:
(a) $x_{i} \in \stackrel{\circ}{J}_{\substack{\circ}} K^{(n-i+1)}$ for $1 \leq i \leq n$.
(b) $J_{i} \subset \grave{J}_{i-1}$ for $1<i \leq n$.
(c) $0 \leq h_{i} \leq 1, h_{i}(x)=1$ if $x \in J_{i}$ for $1 \leq i \leq n$, and $h_{i}(x)=0$ if $x \notin \stackrel{\circ}{J}_{i-1}$ for $1<i \leq n$.
(d) The sets $G_{i}=\left\{y \in \Gamma:\left\|T\left(e \cdot h_{i}\right)(y)\right\| \geq \epsilon\right\}, 1 \leq i \leq n$, are non-empty and mutually disjoint.

Proof. We proceed by finite induction. Let $x_{1} \in K^{(n)}$ and let J_{1} be a compact neighborhood of x_{1}. By the Urysohn Lemma [11, Theorem 1.5.11, p. 41], we can find $h_{1} \in C_{0}(K)$ with $0 \leq h_{1} \leq 1$ and $h_{1}(x)=1$ if $x \in J_{1}$. Moreover, since $0<\epsilon<1$ and T is norm-increasing, the set $G_{1}=\{y \in \Gamma$: $\left.\left\|T\left(e \cdot h_{1}\right)(y)\right\| \geq \epsilon\right\}$ is non-empty.

Given $1 \leq r<n$, suppose by induction that we have obtained points x_{1}, \ldots, x_{r}, compact sets J_{1}, \ldots, J_{r}, and functions h_{1}, \ldots, h_{r} in $C_{0}(K)$ satisfying (a)-(d).

Since K is a locally compact Hausdorff space, it is possible to find points a_{1}, a_{2}, \ldots in $\left(\stackrel{\circ}{J}_{r} \backslash\left\{x_{r}\right\}\right) \cap K^{(n-r)}$ and mutually disjoint compact subsets L_{1}, L_{2}, \ldots satisfying

$$
a_{i} \in \stackrel{\circ}{L}_{i} \subset L_{i} \subset \stackrel{\circ}{J}_{r} \quad \text { for every } 1 \leq i<\omega
$$

The Urysohn Lemma gives functions $f_{1}, f_{2}, \ldots \in C_{0}(K)$ such that, for every $1 \leq i<\omega, 0 \leq f_{i} \leq 1, f_{i}(x)=1$ if $x \in L_{i}$ and $f_{i}(x)=0$ if $x \notin \stackrel{\circ}{J}_{r}$, and moreover $f_{i} \cdot f_{j}=0$ if $i \neq j$.

Let $G=G_{1} \cup \cdots \cup G_{r}$. We claim that there exists $1 \leq m<\omega$ such that

$$
\begin{equation*}
\left\{y \in \Gamma:\left\|T\left(e \cdot f_{m}\right)(y)\right\| \geq \epsilon\right\} \cap G=\emptyset \tag{2.1}
\end{equation*}
$$

Indeed, otherwise, assuming $G=\left\{y_{1}, \ldots, y_{s}\right\}$ and denoting

$$
\Lambda_{i}=\left\{j \in \left[1, \omega\left[:\left\|T\left(e \cdot f_{j}\right)\left(y_{i}\right)\right\| \geq \epsilon\right\}\right.\right.
$$

for each $1 \leq i \leq s$, we would obtain

$$
\left[1, \omega\left[\subseteq \Lambda_{1} \cup \cdots \cup \Lambda_{s}\right.\right.
$$

and we infer that Λ_{l} must be infinite for some $1 \leq l \leq s$. Let l_{1}, l_{2}, \ldots be distinct integers in Λ_{l}.

Since X has cotype q for some $2 \leq q<\infty$, there is a constant $Q>0$ such that no matter how we select finitely many vectors $v_{1}, \ldots, v_{p} \in X$, if $0<\eta \leq\left\|v_{i}\right\|$ for each $1 \leq i \leq p$, there are scalars $r_{i}= \pm 1$ such that

$$
\begin{equation*}
\left\|\sum_{i=1}^{p} r_{i} v_{i}\right\| \geq \eta Q \sqrt[q]{p} \tag{2.2}
\end{equation*}
$$

Pick $1 \leq m<\omega$ satisfying $\epsilon Q \sqrt[q]{m}>\|T\|$. Then according to 2.2 there exist scalars $r_{i}= \pm 1$ for $1 \leq i \leq m$ such that

$$
\left\|\sum_{i=1}^{m} r_{i} T\left(e \cdot f_{l_{i}}\right)\left(y_{l}\right)\right\| \geq \epsilon Q \sqrt[q]{m}>\|T\|
$$

Since $f_{l_{i}} \cdot f_{l_{j}}=0$ if $i \neq j$, the function $A=\sum_{i=1}^{m} r_{i}\left(e \cdot f_{l_{i}}\right) \in C_{0}(K, X)$ is
such that $\|A\| \leq 1$. However,

$$
\|T\| \geq\|T(A)\| \geq\left\|T\left(\sum_{i=1}^{m} r_{i}\left(e \cdot f_{l_{i}}\right)\right)\left(y_{l}\right)\right\|>\|T\|
$$

a contradiction which establishes our claim.
Now take $1 \leq m<\omega$ satisfying (2.1) and set $J_{r+1}=L_{m}, h_{r+1}=f_{m}$ and $G_{r+1}=\left\{y \in \Gamma:\left\|T\left(e \cdot f_{m}\right)(y)\right\| \geq \epsilon\right\}$. It is easy to check that conditions (a)-(d) hold for $r+1$, so we are done.

To state the next proposition, we need to recall some notation and a classical representation theorem for the dual of $C_{0}(K, X)$ spaces. For an X-valued measure $\mu,|\mu|$ denotes the variation of μ, and $\operatorname{rcabv}(K, X)$ is the Banach space of all regular, countably additive, Borel, bounded variation measures, endowed with the variation norm. Throughout we will use the Singer Representation Theorem: there exists an isometric isomorphism between $C_{0}(K, X)^{*}$ and $\operatorname{rcabv}\left(K, X^{*}\right)$ such that a linear functional φ and the corresponding measure μ are related by

$$
\langle\varphi, f\rangle=\int f d \mu, \quad f \in C_{0}(K, X)
$$

where the integral is the immediate integral of Dinculeanu [9, p. 11]. When K is a compact Hausdorff space, this characterization can be found in [13]. The locally compact case can be derived from the compact one as explained in [5, p. 2].

The next proposition can be established by an argument similar to that used in the proof of [7, Lemma 2.1(a)]. For completeness, we give the whole argument.

Proposition 2.2. Let X be a Banach space having non-trivial cotype, K a locally compact Hausdorff space, Γ an infinite set with the discrete topology and T an isomorphism of $C_{0}(K, X)$ into $C_{0}(\Gamma, X)$. Then for every $y \in \Gamma$ and every $\eta>0$ the set

$$
\left\{x \in K:\left|T^{*}\left(\varphi \cdot \delta_{y}\right)\right|(\{x\})>\eta \text { for some } \varphi \in S_{X^{*}}\right\}
$$

is finite, where δ_{y} stands for the unit point mass at y.
Proof. Assume that, on the contrary, for some $\eta>0$ the set

$$
\left\{x \in K:\left\|T^{*}\left(\varphi \cdot \delta_{y}\right)(\{x\})\right\|>\eta \text { for some } \varphi \in S_{X^{*}}\right\}
$$

is infinite. Suppose that X has cotype q for some $2 \leq q<\infty$, and let $Q>0$ be as in the proof of Proposition 2.1. Pick $1 \leq n<\omega$ satisfying $\eta Q \sqrt[q]{n}>2\|T\|$. Fix also distinct points $x_{1}, \ldots, x_{n} \in K$ and $\varphi_{1}, \ldots, \varphi_{n} \in S_{X^{*}}$ such that

$$
\left\|T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)\left(\left\{x_{i}\right\}\right)\right\|>\eta, \quad 1 \leq i \leq n
$$

Thus, there are v_{1}, \ldots, v_{n} in S_{X} such that

$$
\begin{equation*}
\left\langle T^{*}\left(\varphi_{i} \delta_{y}\right)\left(\left\{x_{i}\right\}\right), v_{i}\right\rangle>\eta, \quad 1 \leq i \leq n \tag{2.3}
\end{equation*}
$$

Since $T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)$ is regular for each $1 \leq i \leq n$, we can take mutually disjoint open neighborhoods U_{1}, \ldots, U_{n} of x_{1}, \ldots, x_{n}, respectively, satisfying

$$
\left|T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)\right|\left(U_{i} \backslash\left\{x_{i}\right\}\right) \leq \eta / 2 .
$$

By the Urysohn Lemma, we can find $h_{i} \in C_{0}(K)$ with $0 \leq h_{i} \leq 1, h_{i}\left(x_{i}\right)=1$ and $h_{i}(x)=0$ if $x \in K \backslash U_{i}$. Define $f_{i} \in C_{0}(K, X)$ by $f_{i}=v_{i} \cdot h_{i}$. By (2.3) we have

$$
\begin{aligned}
\left\|\left(T f_{i}\right)(y)\right\| \geq & \left|\left\langle\varphi_{i},\left(T f_{i}\right)(y)\right\rangle\right|=\left|\int f_{i} d T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)\right| \\
\geq & \left|\left\langle T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)\left(\left\{x_{i}\right\}\right), v_{i}\right\rangle\right| \\
& -\left|\int f_{i} d T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)-\left\langle T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)\left(\left\{x_{i}\right\}\right), v_{i}\right\rangle\right| \\
> & \eta-\left|T^{*}\left(\varphi_{i} \cdot \delta_{y}\right)\right|\left(U_{i} \backslash\left\{x_{i}\right\}\right) \geq \eta / 2 .
\end{aligned}
$$

According to (2.2) there are scalars $r_{i}= \pm 1$ such that

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} r_{i}\left(T f_{i}\right)(y)\right\| \geq \eta Q \sqrt[q]{n} / 2 \tag{2.4}
\end{equation*}
$$

On the other hand, since $U_{i} \cap U_{j}=\emptyset$ if $i \neq j$ and $\left\|f_{i}\right\| \leq 1$ for each $1 \leq i \leq n$, we have

$$
\left\|\sum_{i=1}^{n} r_{i} f_{i}\right\| \leq 1 .
$$

Therefore, by (2.4) and the choice of η we conclude

$$
\|T\| \geq\left\|T\left(\sum_{i=1}^{n} r_{i} f_{i}\right)\right\| \geq\left\|T\left(\sum_{i=1}^{n} r_{i} f_{i}\right)(y)\right\|>\|T\|
$$

which is the required contradiction.
Another basic ingredient in the proof of our main result is a RadonNikodým type vector measure theorem (see [10, Theorem 5, p. 269]).

Theorem 2.3. Let X be a Banach space, K a locally compact Hausdorff space and $\mu \in \operatorname{rcabv}\left(K, X^{*}\right)$. Then there exists a function $\gamma: K \rightarrow X^{*}$ such that:
(a) $\|\gamma(x)\|=1$ for every $x \in K$.
(b) The map $x \mapsto\langle\gamma(x), f(x)\rangle$ is measurable and

$$
\int f d \mu=\int\langle\gamma(x), f(x)\rangle d|\mu|(x)
$$

for every $f \in C_{0}(K, X)$.
3. Lower bounds on Banach-Mazur distances between $C_{0}(K, X)$ spaces. The aim of this section is to prove our main result, Theorem 1.2.

We will argue by contradiction in four steps.

Step 1. Assuming the existence of an isomorphism T of $C_{0}(K, X)$ onto $C_{0}(\Gamma, X)$ such that $\|T\|\left\|T^{-1}\right\|<2 n+1$ we construct some special functions α and β in $C_{0}(\Gamma)$.

Without loss of generality we may assume that T is norm-increasing and $\left\|T^{-1}\right\|=1$, for otherwise we simply replace T by $\left\|T^{-1}\right\| T$.

Pick $0<\epsilon<1$ and $\eta>0$ such that

$$
\|T\|<(2 n+1) \frac{1-\epsilon}{1+\epsilon}, \quad \eta<\min \left\{\epsilon, \frac{(2 n+1)(1-\epsilon)-\|T\|}{2}\right\} .
$$

Fix $e \in S_{X}$. Since $K^{(n)} \neq \emptyset$ there are points $x_{1}, \ldots, x_{n} \in K$, compact subsets $J_{1}, \ldots, J_{n} \subset K$, functions $h_{1}, \ldots, h_{n} \in C_{0}(K)$, and subsets $G_{1}, \ldots, G_{n} \subset \Gamma$ satisfying the statements of Proposition 2.1. Define, for each $1 \leq i \leq n$,

$$
f_{i}=e \cdot h_{i} \in C_{0}(K, X), \quad g_{i}=\chi_{G_{i}} \cdot T f_{i},
$$

where $\chi_{G_{i}}$ is the characteristic function of G_{i}. Denote by G the finite set $\bigcup_{i=1}^{n} G_{i}$. According to Proposition 2.2 the set

$$
H=\bigcup_{y \in G}\left\{x \in K:\left|T^{*}\left(\varphi \cdot \delta_{y}\right)\right|(\{x\})>\eta \text { for some } \varphi \in S_{X^{*}}\right\}
$$

is finite. Pick $z \in \stackrel{\circ}{J}_{n} \backslash H$ and $e^{*} \in S_{X^{*}}$ such that $\left\langle e^{*}, e\right\rangle=1$, and define the vector measure

$$
\mu=\left(T^{-1}\right)^{*}\left(e^{*} \cdot \delta_{z}\right) .
$$

By Theorem 2.3 there exists a function $\gamma: \Gamma \rightarrow X^{*}$ satisfying the statements of that theorem.

Since $\|\gamma(y)\|=1$ for every $y \in \Gamma$, we have $\left|T^{*}\left(\gamma(y) \cdot \delta_{y}\right)\right|(\{z\})<\eta$ for each $y \in G$. Then, by regularity, we can find an open neighborhood $U \subset J_{n}$ of z such that

$$
\left|T^{*}\left(\gamma(y) \cdot \delta_{y}\right)\right|(U)<\eta \quad \text { for every } y \in G .
$$

By the Urysohn Lemma, we can find $h_{n+1} \in C_{0}(K)$ such that $0 \leq h_{n+1}$ $\leq 1, h_{n+1}(z)=1$ and $h_{n+1}(x)=0$ if $x \notin U$. Set $f_{n+1}=e \cdot h_{n+1}$ and define $\alpha, \beta \in C_{0}(\Gamma)$ by setting, for every $y \in \Gamma$,

$$
\begin{aligned}
& \alpha(y)=\left\langle\gamma(y), T f_{n+1}(y)\right\rangle, \\
& \beta(y)=\left\langle\gamma(y), g_{1}(y)+2 \sum_{i=2}^{n} g_{i}(y)+2 T f_{n+1}(y)\right\rangle .
\end{aligned}
$$

Step 2. We prove that $\|\beta\|=\max \{2\|\alpha\|,|\beta(y)|: y \in G\}$.
In order to establish this, notice that for every $y \in G$,

$$
\begin{align*}
|\alpha(y)| & =\left|\left\langle\gamma(y), T f_{n+1}(y)\right\rangle\right|=\left|\int T f_{n+1} d \gamma(y) \cdot \delta_{y}\right| \tag{3.1}\\
& =\left|\int f_{n+1} d T^{*}\left(\gamma(y) \cdot \delta_{y}\right)\right| \leq\left|T^{*}\left(\gamma(y) \cdot \delta_{y}\right)\right|(U)<\eta<1 .
\end{align*}
$$

On the other hand, take $y_{0} \in \Gamma$ such that $\|\alpha\|=\left|\alpha\left(y_{0}\right)\right|$. Since γ satisfies item (b) of Theorem 2.3 and $|\mu|(\Gamma)=\left\|\left(T^{-1}\right)^{*}\left(e^{*} \cdot \delta_{z}\right)\right\| \leq 1$, we have

$$
\begin{align*}
& \left|\alpha\left(y_{0}\right)\right|=\left|\left\langle\gamma\left(y_{0}\right), T f_{n+1}\left(y_{0}\right)\right\rangle\right| \geq\left|\int\left\langle\gamma(y), T f_{n+1}(y)\right\rangle d\right| \mu|(y)| \tag{3.2}\\
& \quad=\left|\int T f_{n+1} d \mu\right|=\left|\int T f_{n+1} d\left(T^{-1}\right)^{*}\left(e^{*} \cdot \delta_{z}\right)\right|=\left|\int f_{n+1} d\left(e^{*} \cdot \delta_{z}\right)\right| \\
& \quad=\left|\left\langle e^{*}, f_{n+1}(z)\right\rangle\right|=\left\langle e^{*}, e\right\rangle=1 .
\end{align*}
$$

Hence $y_{0} \in \Gamma \backslash G$. Moreover, since $\beta(y)=2 \alpha(y)$ for $y \in \Gamma \backslash G$, we are done.
Step 3. We show that $\|\beta\| \geq(2 n+1)-(2 n-1) \epsilon$.
Fix y_{0} such that $\|\beta\|=\left|\beta\left(y_{0}\right)\right|$. Once more, since γ satisfies item (b) of Theorem 2.3 and $|\mu|(\Gamma)=\left\|\left(T^{-1}\right)^{*}\left(e^{*} \cdot \delta_{z}\right)\right\| \leq 1$, we can write

$$
\begin{aligned}
\left|\beta\left(y_{0}\right)\right|= & \left|\left\langle\gamma\left(y_{0}\right), g_{1}\left(y_{0}\right)+2 \sum_{i=2}^{n} g_{i}\left(y_{0}\right)+2 T f_{n+1}\left(y_{0}\right)\right\rangle\right| \\
\geq & \left|\int\left\langle\gamma(y), g_{1}(y)+2 \sum_{i=2}^{n} g_{i}(y)+2 T f_{n+1}(y)\right\rangle d\right| \mu|(y)| \\
= & \left|\int\left(g_{1}+2 \sum_{i=2}^{n} g_{i}+2 T f_{n+1}\right) d\left(T^{-1}\right)^{*}\left(e^{*} \cdot \delta_{z}\right)\right| \\
= & \left|\left\langle e^{*}, T^{-1} g_{1}(z)+2 \sum_{i=2}^{n} T^{-1} g_{i}(z)+2 f_{n+1}(z)\right\rangle\right| \\
\geq & \left|\left\langle e^{*}, f_{1}(z)+2 \sum_{i=2}^{n+1} f_{i}(z)\right\rangle\right|-\left|\left\langle e^{*}, f_{1}(z)-T^{-1} g_{1}(z)\right\rangle\right| \\
& -2 \sum_{i=2}^{n}\left|\left\langle e^{*}, f_{i}(z)-T^{-1} g_{i}(z)\right\rangle\right| .
\end{aligned}
$$

Since T is norm-increasing, for every $x \in K$ and $1 \leq i \leq n$ we have

$$
\begin{aligned}
\left|\left\langle e^{*}, f_{i}(x)-T^{-1} g_{i}(x)\right\rangle\right| & \leq\left\|f_{i}-T^{-1} g_{i}\right\| \leq\left\|T f_{i}-g_{i}\right\| \\
& =\left\|\left(1-\chi_{G_{i}}\right) \cdot T f_{i}\right\| \leq \epsilon .
\end{aligned}
$$

Furthermore, by the definition of f_{i},

$$
\left\langle e^{*}, f_{i}(z)\right\rangle=\left\langle e^{*}, e\right\rangle=1
$$

for each $1 \leq i \leq n+1$. Therefore, we conclude that

$$
\|\beta\| \geq(2 n+1)-(2 n-1) \epsilon
$$

Step 4. As $\|\beta\| \geq(2 n+1)-(2 n-1) \epsilon$, according to Step 2 there are two possibilities:
(i) $2\|\alpha\| \geq(2 n+1)-(2 n-1) \epsilon$,
(ii) $|\beta(y)| \geq(2 n+1)-(2 n-1) \epsilon$ for some $y \in G$.

We will show that both lead to a contradiction.
Suppose first that (i) holds. Set $A=T^{-1} g_{1}-2 f_{n+1}$. Since $0 \leq h_{n+1} \leq$ $h_{1} \leq 1$, for every $x \in K$ we have

$$
\begin{aligned}
\left\|T^{-1}\left(g_{1}\right)(x)-2 f_{n+1}(x)\right\| & \leq\left\|f_{1}(x)-2 f_{n+1}(x)\right\|+\left\|T^{-1} g_{1}(x)-f_{1}(x)\right\| \\
& \leq\left|h_{1}(x)-2 h_{n+1}(x)\right|+\epsilon \leq 1+\epsilon
\end{aligned}
$$

So $\|A\| \leq 1+\epsilon$.
Recalling (3.1) and (3.2), we can fix $y_{0} \in \Gamma \backslash G$ such that $\|\alpha\|=\left|\alpha\left(y_{0}\right)\right|$. It follows that

$$
\begin{aligned}
\left|\left\langle\gamma\left(y_{0}\right), T(A)\left(y_{0}\right)\right\rangle\right| & =2\left|\left\langle\gamma\left(y_{0}\right), T f_{n+1}\left(y_{0}\right)\right\rangle\right|=2\left|\alpha\left(y_{0}\right)\right| \\
& \geq(2 n+1)-(2 n-1) \epsilon>(2 n+1)(1-\epsilon)
\end{aligned}
$$

Consequently,

$$
\|T\| \geq\left\|T\left(\frac{1}{1+\epsilon} A\right)\right\|>(2 n+1) \frac{1-\epsilon}{1+\epsilon}
$$

a contradiction to the choice of ϵ.
Next, assume that (ii) holds. We distinguish two cases.
CASE 1: $\|\beta\|=\left|\beta\left(y_{0}\right)\right|$ for some $y_{0} \in G_{1}$. In this case, since G_{1}, \ldots, G_{n} are mutually disjoint we have

$$
\left|\beta\left(y_{0}\right)\right|=\left|\left\langle\gamma\left(y_{0}\right), g_{1}\left(y_{0}\right)+2 T f_{n+1}\left(y_{0}\right)\right\rangle\right| \geq(2 n+1)-(2 n-1) \epsilon .
$$

Recalling (3.1), by the choice of η we deduce

$$
\begin{aligned}
\left|\left\langle\gamma\left(y_{0}\right), g_{1}\left(y_{0}\right)\right\rangle\right| & \geq(2 n+1)-(2 n-1) \epsilon-2\left|\left\langle\gamma\left(y_{0}\right), T f_{n+1}\left(y_{0}\right)\right\rangle\right| \\
& >(2 n+1)-(2 n-1) \epsilon-2 \eta>\|T\|
\end{aligned}
$$

Therefore,

$$
\|T\| \geq\left\|T f_{1}\right\| \geq\left|\left\langle\gamma\left(y_{0}\right), T f_{1}\left(y_{0}\right)\right\rangle\right|=\left|\left\langle\gamma\left(y_{0}\right), g_{1}\left(y_{0}\right)\right\rangle\right|>\|T\|,
$$

which is a contradiction.
CASE 2: $\|\beta\|=\left|\beta\left(y_{0}\right)\right|$ for some $y_{0} \in G_{i}, i>1$. Once again, since G_{1}, \ldots, G_{n} are mutually disjoint we have

$$
\left|\beta\left(y_{0}\right)\right|=\left|\left\langle\gamma\left(y_{0}\right), 2 g_{i}\left(y_{0}\right)+2 T f_{n+1}\left(y_{0}\right)\right\rangle\right| \geq(2 n+1)-(2 n-1) \epsilon
$$

Recalling that $\eta<\epsilon$, we infer

$$
\begin{aligned}
2\left|\left\langle\gamma\left(y_{0}\right), g_{i}\left(y_{0}\right)\right\rangle\right| & \geq(2 n+1)-(2 n-1) \epsilon-2\left|\left\langle\gamma\left(y_{0}\right), T f_{n+1}\left(y_{0}\right)\right\rangle\right| \\
& >(2 n+1)(1-\epsilon) .
\end{aligned}
$$

Next, set $B_{i}=T^{-1} g_{1}-2 f_{i}$. Since $0 \leq h_{i} \leq h_{1} \leq 1$, for every $x \in K$ we have

$$
\begin{aligned}
\left\|T^{-1}\left(g_{1}\right)(x)-2 f_{i}(x)\right\| & \leq\left\|f_{1}(x)-2 f_{i}(x)\right\|+\left\|T^{-1} g_{1}(x)-f_{1}(x)\right\| \\
& \leq\left|h_{1}(x)-2 h_{i}(x)\right|+\epsilon \leq 1+\epsilon
\end{aligned}
$$

It follows that $\left\|B_{i}\right\| \leq 1+\epsilon$. Moreover

$$
\begin{aligned}
\left|\left\langle\gamma\left(y_{0}\right), T\left(B_{i}\right)\left(y_{0}\right)\right\rangle\right| & =2\left|\left\langle\gamma\left(y_{0}\right), T f_{i}\left(y_{0}\right)\right\rangle\right| \\
& =2\left|\left\langle\gamma\left(y_{0}\right), g_{i}\left(y_{0}\right)\right\rangle\right|>(2 n+1)(1-\epsilon)
\end{aligned}
$$

Thus,

$$
\|T\| \geq\left\|T\left(\frac{1}{1+\epsilon} B_{i}\right)\right\|>(2 n+1) \frac{1-\epsilon}{1+\epsilon}
$$

which contradicts the choice of ϵ.
4. Upper bounds for $d\left(C_{0}(\mathbb{N}, X), C\left(\left[1, \omega^{n} k\right], X\right)\right)$. In this section we show how to generalize the formula (1.1) of the introduction to obtain an upper bound for the Banach-Mazur distance between $C_{0}(\mathbb{N}, X)$ and $C\left(\left[1, \omega^{n} k\right], X\right), 1 \leq k, n<\omega$, for arbitrary Banach spaces X. We start by proving the following crucial lemma.

Lemma 4.1. Let $1 \leq n<\omega$ and X be a Banach space. For every $f \in$ $C\left(\left[1, \omega^{n}\right], X\right)$, define a sequence $\left(a_{\xi}\right)_{1 \leq \xi \leq \omega^{n}}$ by

$$
a_{\omega^{n}}=2 f\left(\omega^{n}\right), \quad a_{\omega^{n-1} i}=f\left(\omega^{n-1} i\right)-f\left(\omega^{n}\right) \quad \text { for } 1 \leq i<\omega
$$

and if $n>1$,

$$
a_{\xi}=f\left(\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}\right)-f\left(\omega^{n-1} i_{1}+\cdots+\omega^{n-(j-1)}\left(i_{j-1}+1\right)\right)
$$

whenever $\xi=\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}$ with $1<j \leq n, 0 \leq i_{p}<\omega$ for $1 \leq p \leq j-1$ and $1 \leq i_{j}<\omega$. Then for every $\epsilon>0$ there are only a finite number of ordinals $1 \leq \xi \leq \omega^{n}$ such that $\left\|a_{\xi}\right\| \geq \epsilon$.

Proof. First of all, each ordinal $1 \leq \xi<\omega^{n}$ has a unique representation (the Cantor normal form [18, p. 153])

$$
\xi=\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}
$$

where $1 \leq j \leq n, 0 \leq i_{p}<\omega$ for $1 \leq p \leq j-1$ and $1 \leq i_{j}<\omega$. Hence, for every $f \in C\left(\left[1, \omega^{n}\right], X\right)$ the sequence $\left(a_{\xi}\right)_{1 \leq \xi \leq \omega^{n}}$ is well defined.

We will argue by finite induction on n. Of course, the conclusion is true for $n=1$. Next, assume that it is true for $n-1$ with $n \geq 2$. Fix $f \in C\left(\left[1, \omega^{n}\right], X\right)$ and consider the sequence $\left(a_{\xi}\right)_{1 \leq \xi \leq \omega^{n}}$ defined as in the statement.

Pick $\epsilon>0$. By the continuity of f there is $1<m<\omega$ such that for every $\left.\xi \in] \omega^{n-1} m, \omega^{n}\right]$, we have

$$
\left\|f(\xi)-f\left(\omega^{n}\right)\right\|<\epsilon / 2
$$

Therefore for every $\xi=\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}$ with $1<j \leq n, 0 \leq i_{p}<\omega$
for $1 \leq p \leq j-1$ and $1 \leq i_{j}<\omega$ such that $\left.\xi \in\right] \omega^{n-1} m, \omega^{n}$ [we deduce

$$
\begin{aligned}
\left\|a_{\xi}\right\| & =\left\|f\left(\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}\right)-f\left(\omega^{n-1} i_{1}+\cdots+\omega^{n-(j-1)}\left(i_{j-1}+1\right)\right)\right\| \\
& \leq\left\|f(\xi)-f\left(\omega^{n}\right)\right\|+\left\|f\left(\omega^{n-1} i_{1}+\cdots+\omega^{n-(j-1)}\left(i_{j-1}+1\right)\right)-f\left(\omega^{n}\right)\right\| \\
& <\epsilon .
\end{aligned}
$$

On the other hand, for every $1 \leq r \leq m$, consider $g_{r} \in C\left(\left[1, \omega^{n-1}\right], X\right)$ given by $g_{r}(\xi)=f\left(\omega^{n-1}(r-1)+\xi\right)$. Moreover, for every $1 \leq r \leq m$, define a sequence $\left(a_{\xi}^{r}\right)_{1 \leq \xi \leq \omega^{n-1}}$ as follows:

$$
a_{\omega^{n-1}}^{r}=2 g_{r}\left(\omega^{n-1}\right), \quad a_{\omega^{n-2} i}^{r}=g_{r}\left(\omega^{n-2} i\right)-g_{r}\left(\omega^{n-1}\right) \quad \text { for } 1 \leq i<\omega
$$

and if $n>2$,

$$
a_{\xi}^{r}=g_{r}\left(\omega^{n-2} i_{1}+\cdots+\omega^{(n-1)-j} i_{j}\right)-g_{r}\left(\omega^{n-2} i_{1}+\cdots+\omega^{n-j}\left(i_{j-1}+1\right)\right)
$$

whenever $\xi=\omega^{n-2} i_{1}+\cdots+\omega^{(n-1)-j} i_{j}$ with $1<j \leq n-1,0 \leq i_{p}<\omega$ for $1 \leq p \leq j-1$ and $1 \leq i_{j}<\omega$. By the induction hypothesis, there are only a finite number of ordinals $1 \leq \xi \leq \omega^{n-1}$ such that $\left\|a_{\xi}^{r}\right\| \geq \epsilon$ for $1 \leq r \leq m$. Since

$$
a_{\xi}^{r}=a_{\omega^{n-1}(r-1)+\xi}
$$

for every $1 \leq \xi<\omega^{n-1}$ and $1 \leq r \leq m$, we conclude that there are only a finite number of ordinals $\omega^{n-1}(r-1)+1 \leq \xi \leq \omega^{n-1} r$ such that $\left\|a_{\xi}\right\| \geq \epsilon$. Since $\left[1, \omega^{n}\right]$ is the union of $\left[1, \omega^{n-1}\right], \ldots,\left[\omega^{n-1}(m-1), \omega^{n-1} m\right],\left[\omega^{n-1} m, \omega^{n}\right]$, we are done.

Proof of Theorem 1.3. Observe that $C\left(\left[1, \omega^{n} k\right], X\right)$ is isometrically isomorphic to the direct sum of k copies of $C\left(\left[1, \omega^{n}\right], X\right)$, and $C_{0}(\mathbb{N}, X)$ is isometrically isomorphic to the direct sum of k copies of itself. So, it suffices to prove that

$$
\begin{equation*}
d\left(C_{0}(\mathbb{N}, X), C\left(\left[1, \omega^{n}\right], X\right)\right) \leq 2 n+1 \tag{4.1}
\end{equation*}
$$

Denote by $\Gamma_{\omega^{n}}$ the interval of ordinals $\left[1, \omega^{n}\right]$ endowed with the discrete topology. We can replace $C_{0}(\mathbb{N}, X)$ in (4.1) by $C_{0}\left(\Gamma_{\omega^{n}}, X\right)$, because they are isometrically isomorphic.

For every $f \in C\left(\left[1, \omega^{n}\right], X\right)$ define a map $T(f): \Gamma_{\omega^{n}} \rightarrow X$ by

$$
T(f)(\xi)=a_{\xi} \quad \text { for every } 1 \leq \xi \leq \omega^{n}
$$

where $\left(a_{\xi}\right)_{1 \leq \xi \leq \omega^{n}}$ is defined in Lemma 4.1. It follows directly from Lemma 4.1 that $T(f) \in C_{0}\left(\Gamma_{\omega^{n}}, X\right)$ for every $f \in C\left(\left[1, \omega^{n}\right], X\right)$. Moreover, it is easy to check that $T: C\left(\left[1, \omega^{n}\right], X\right) \rightarrow C_{0}\left(\Gamma_{\omega^{n}}, X\right)$ is a linear operator with $\|T\| \leq 2$.

Conversely, for every sequence $g=\left(a_{\xi}\right)_{1 \leq \xi \leq \omega^{n}} \in C_{0}\left(\Gamma_{\omega^{n}}, X\right)$ define a $\operatorname{map} S(g):\left[1, \omega^{n}\right] \rightarrow X$ by setting

$$
S(g)\left(\omega^{n}\right)=\frac{1}{2} a_{\omega^{n}}, \quad S(g)\left(\omega^{n-1} i\right)=a_{\omega^{n-1} i}+\frac{1}{2} a_{\omega^{n}} \quad \text { for } 1 \leq i<\omega
$$

and for every $\xi=\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}$ with $1 \leq j \leq n, 0 \leq i_{p}<\omega$ for $1 \leq p \leq j-1$ and $1 \leq i_{j}<\omega$,

$$
\begin{aligned}
S(g)(\xi)= & a_{\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}}+a_{\omega^{n-1} i_{1}+\cdots+\omega^{n-(j-1)}\left(i_{j-1}+1\right)} \\
& +\cdots+a_{\omega^{n-1} i_{1}+\omega^{n-2}\left(i_{2}+1\right)}+a_{\omega^{n-1}\left(i_{1}+1\right)}+\frac{1}{2} a_{\omega^{n}}
\end{aligned}
$$

We will prove that $S(g)$ is a continuous function for every $g \in C_{0}\left(\Gamma_{\omega^{n}}, X\right)$. To do this, fix $g=\left(a_{\xi}\right)_{1 \leq \xi \leq \omega^{n}} \in C_{0}\left(\Gamma_{\omega^{n}}, X\right)$. Given $\xi_{0} \in\left[1, \omega^{n}\right]^{(1)}$ pick $\epsilon>0$ and let Λ_{ϵ} be the finite set of all ordinals $1 \leq \xi \leq \omega^{n}$ such that $\left\|a_{\xi}\right\| \geq \epsilon / n$. We distinguish two cases.

CASE 1: $\xi_{0}=\omega^{n}$. Since Λ_{ϵ} is finite, there is $1 \leq m<\omega$ such that

$$
] \omega^{n-1} m, \omega^{n}\left[\cap \Lambda_{\epsilon}=\emptyset\right.
$$

It follows from the definition of $S(g)$ that if $\xi \in] \omega^{n-1} m, \omega^{n}[$, then

$$
\left\|S(g)(\xi)-S(g)\left(\xi_{0}\right)\right\| \leq\left\|a_{\xi_{1}}\right\|+\cdots+\left\|a_{\xi_{s}}\right\|
$$

for some $1 \leq s \leq n$ and $\xi=\xi_{1}<\cdots<\xi_{s}<\xi_{0}$. Hence

$$
\left\|S(g)(\xi)-S(g)\left(\xi_{0}\right)\right\|<\epsilon
$$

CASE 2: $\xi_{0}=\omega^{n-1} i_{1}+\cdots+\omega^{n-j} i_{j}$ with $1 \leq j<n, 0 \leq i_{p}<\omega$ for $1 \leq p \leq j-1$ and $1 \leq i_{j}<\omega$. There is $1 \leq m<\omega$ such that

$$
] \omega^{n-1} i_{1}+\cdots+\omega^{n-j}\left(i_{j}-1\right)+\omega^{n-(j+1)} m, \xi_{0}\left[\cap \Lambda_{\epsilon}=\emptyset\right.
$$

Once more, from the definition of $S(g)$, if $\xi \in] \omega^{n-1} i_{1}+\cdots+\omega^{n-j}\left(i_{j}-1\right)+$ $\omega^{n-(j+1)} m, \xi_{0}[$, then

$$
\left\|S(g)(\xi)-S(g)\left(\xi_{0}\right)\right\| \leq\left\|a_{\xi_{1}}\right\|+\cdots+\left\|a_{\xi_{s}}\right\|
$$

for some $1 \leq s \leq n-j$ and $\xi=\xi_{1}<\cdots<\xi_{s}<\xi_{0}$. Consequently,

$$
\left\|S(g)(\xi)-S(g)\left(\xi_{0}\right)\right\|<\epsilon
$$

Therefore, $S(g)$ is continuous at ξ_{0}.
Moreover, it is easy to check that $S: C_{0}\left(\Gamma_{\omega^{n}}, X\right) \rightarrow C\left(\left[1, \omega^{n}\right], X\right)$ is a linear operator with

$$
\|S\| \leq \frac{2 n+1}{2}
$$

and the compositions $S \circ T$ and $T \circ S$ are, respectively, the identity operators in $C\left(\left[1, \omega^{n}\right], X\right)$ and $C_{0}\left(\Gamma_{\omega^{n}}, X\right)$. This completes the proof of the theorem.

Acknowledgements. The first author was supported by CNPq, process number 142423/2011-4.

References

[1] S. Banach, Théorie des opérations linéaires, Monografie Mat. 1, Warszawa, 1932.
[2] J. W. Baker, Dispersed images of topological spaces and uncomplemented subspaces of $C(X)$, Proc. Amer. Math. Soc. 41 (1973), 309-314.
[3] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-61.
[4] M. Cambern, Isomorphisms of $C_{0}(Y)$ with Y discrete, Math. Ann. 188 (1970), 2325.
[5] M. Cambern, Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math. 20 (1976), 1-11.
[6] M. Cambern, On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.
[7] L. Candido and E. M. Galego, A weak vector-valued Banach-Stone theorem, Proc. Amer. Math. Soc., to appear.
[8] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
[9] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Wiley-Interscience, 2000.
[10] N. Dinculeanu, Vector Measures, Pergamon Press, Berlin, 1967.
[11] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
[12] Y. Gordon, On the distance coefficient between isomorphic function spaces, Israel J. Math. 8 (1970), 391-396.
[13] W. Hensgen, A simple proof of Singer's representation theorem, Proc. Amer. Math. Soc. 124 (1996), 3211-3212.
[14] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, 1-84.
[15] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.
[16] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math. 18 (1959), 211-222.
[17] H. P. Rosenthal, The Banach space $C(K)$, in: Handbook of the Geometry of Banach Spaces, Vol. 2, North-Holland, Amsterdam, 2001, 1547-1602.
[18] Z. Semadeni, Banach Spaces of Continuous Functions Vol. I, Monografie Mat. 55, PWN-Polish Sci. Publ., Warszawa, 1971.

Leandro Candido, Elói Medina Galego
Department of Mathematics
IME, University of São Paulo
Rua do Matão 1010, São Paulo, Brazil
E-mail: lc@ime.usp.br eloi@ime.usp.br

[^0]: 2010 Mathematics Subject Classification: Primary 46B03, 46E40; Secondary 46E27, 46B25. Key words and phrases: Banach-Mazur distance, $C_{0}(\Gamma, X)$ spaces.

