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On the Hausdorff dimension of a family of self-similar sets
with complicated overlaps

by

Balazs Barany (Budapest)

Abstract. We investigate the properties of the Hausdorff dimension of the attractor
of the iterated function system (IFS) {yz, Az, Az 4+ 1}. Since two maps have the same fixed
point, there are very complicated overlaps, and it is not possible to directly apply known
techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue
almost all parameters (v, A),y < A. This result only holds for almost all parameters: we
find a dense set of parameters (v, \) for which the Hausdorff dimension of the attractor
is strictly smaller.

1. Introduction and statements of results. Our paper is motivated
by a question of Pablo Shmerkin at the conference in Greifswald in 2008.
The question was the following:

QUESTION. What is the Hausdorff dimension of the attractor generated
by the IFS {}z, fz,ta + 2}7

Let us denote the Hausdorff dimension of a compact subset A of R by
dimy A. For the definition and basic properties of Hausdorff dimension we
refer the reader to [1] or [2]. Let us recall here the definition of the attractor.

Let {fo,..., fn} be a family of continuous self-maps on the real line. We
will in addition assume that each f; is a contraction, that is, | f;(x) — fi(y)| <
rilz — y| for all x,y and some 0 < r; < 1. Then there exists a unique,
nonempty compact subset A of R which satisfies

A= fe(4).
k=0

We call it the attractor of the iterated function system (IFS) { fo(x), f1(z),...

oo ()}
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Let us suppose that the functions of the IFS are similarities of the form
{fi(x) = Nz + d;}]", where 0 < |\;] < 1 for every i € {0,...,n}. We say
that the attractor or the IFS itself is self-similar. It is well known that if
a self-similar IFS satisfies the so-called open set condition (OSC), i.e. there
exists an open set U such that for every 4,5 € {0,...,n}, fi(U) C U and
[i(U)N f;(U) =0 if i # j, then the Hausdorff dimension of the attractor is
the unique solution s of

(1) S =1
=0

(see for example [4]). Even if the OSC does not hold, the solution of (1.1)
is called the similarity dimension of the IFS. The similarity dimension is al-
ways an upper bound for the Hausdorff dimension of the attractor (see [1]).
In the case when the IFS has overlapping structure, i.e. the open set condi-
tion does not hold, the Hausdorfl dimension of the attractor A of the IFS
{fi(z) = Nz + di}i, is

(1.2) dimg A = min{1,s} for a.e. d € R"!,

where s is the unique solution of (1.1) (see [11] and [3]).

In this article, we consider the IFS {yz, Az, Az + 1}, where we assume
that 0 < 7 < A < 1. Let us denote the attractor of this IFS by A7*. The
problem of calculating its Hausdorff dimension is far from being simple.

A special property of our class of IFS is that the first two maps have a
common fixed point. This implies that they commute, so we observe an im-
mense (increasing exponentially under iteration) amount of exact and partial
overlaps in our system. Needless to say, the OSC does not hold.

Iterated function systems that do not satisfy OSC were first studied in [9],
where the transversality condition method was first introduced. See |7], [§]
for the most general treatment of this approach. Since that time, several
other methods have been proposed: weak separation condition, finite type
condition and others (see, for example, [5], [6] and [14]). However, neither of
those is going to work for overlaps as severe as our system has.

For this reason, we are forced to modify the transversality method, ap-
plying it only to some subsystems of the IFS (details will be presented in
the following sections). The main result of this paper is as follows:

THEOREM 1.1. Let A7 be the attractor of the IFS {yx, Az, x +1}.
Then for Lebesgue almost every 0 < v < A < 1/2,

(1.3) dimg A7 = min{1, 57},
where s7 is the unique solution of

(1.4) 2N 445 =A%y =1,
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Moreover, L(AY) > 0 for Lebesgue almost every (v, \) such that s7* > 1.
More precisely, the above statements are true for every fixred 0 < A < 1/2
and Lebesgue almost every 0 < v < .

Note that the assumption A < 1/2 is not really restrictive: the attractor
of our system contains the attractor of its subsystem { Az, \x + 1}, which for
A > 1/2 is an interval and, in particular, it has dimension 1.

The equality (13) only holds for almost all parameters. And indeed, we
can exhibit a family of parameter values for which it does not hold.

PROPOSITION 1.2. Let q and p be integers and q > p, (q,p) = 1. Let
ANOP be the attractor of {\/Px, Az, \x + 1}. Then

(1.5) dimp AM? < min{1, s},
where s;, . is the unique solution of
p—1
2\ + Z Ak/p)s — 1
k=1

Note that this family of exceptional parameter values is dense in {(7, A) :
2\ + v < 1,7 < A}, where the statement of Proposition 1.2 excludes the
possibility that the equality of Theorem 1.1 holds. This implies that the
function (v, A) + dimyg A”* cannot be continuous.

2. Transversality methods. First let us introduce the transversality
condition for self-similar IF'S with one parameter. The definition corresponds
to the definition in [12], [13], which was introduced for general IFS.

Let U be an open, bounded interval of R and X a finite set of symbols.
Let ¥ = {¢!(z) = )\i(t)x—i—di(t)}iez, where \;,d; € C1(U) and 0 < a <
A\i(t) < B < 1forevery i € X and t € U and for some «, 3 € (0,1). Let A’
be the attractor of ¥; and m; be the natural projection from the symbolic
space XN to Af. More precisely, let i = (igiy...) € XN and

It is well known that the limit exists and is independent of the base point 0.

Moreover, m; is a surjective function from XN onto Af. Denote by o the
left-shift operator on XN. More precisely, let o : (igiy...) — (iydz...). It is

easy to see that
mi(i) = ¥, (me(ord))-

DEFINITION 2.1. We say that W, satisfies the transversality condition on
an open, bounded interval U C R if there exists a constant C' > 0 such that
for every i,j € XN with ig # jo,

LAt eU:|m(i)—m(j)| <r}) <Cr forevery r >0,
where L is the Lebesgue measure on the real line.
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This definition is equivalent to the ones given in e.g. [12], [13]. Now let us
recall the theorem of K. Simon, B. Solomyak and M. Urbanski [12, Theorem
3.1] in the self-similar case with one parameter.

THEOREM 2.2 (Simon, Solomyak, Urbanski). Suppose that ¥, satisfies
the transversality condition on an open, bounded interval U. Then

(1) dimg A* = min{s(t), 1} for Lebesgue a.e. t € U,

(2) L(AY) > 0 for Lebesque a.e. t € U such that s(t) > 1,

where s(t) is the similarity dimension of ;. More precisely, s(t) satisfies the

equation
> x)® =1,
i€ex
To prove transversality we can use the following lemma which follows
from [12, Lemma 7.3|.

LEMMA 2.3. Let U C R be an open, bounded interval and fi;(t) = m(i)—
7:(§). If for every i,j € XN with ig # jo and for every ty € U,

dfy
o (to)

then there is transversality on any open interval V whose closure is contained
m U.

(2.2) figlto) =0 =

> 0,

3. Proofs. Let us fix a A € (0,1/2). Without loss of generality we can
assume that v = ¢, where 0 < ¢ < 1. Let ¢§(z) = cAz, ¥{(z) = Az and
5(x) = Az + 1. We note that f,1$ do not depend on c. Let us define
r = UpZ, X" and for every n > 1 let o = ¢f owpf o---o9f where
We note that ¥¢ = {¢§, ¥, ¢S} does not satisfy the transversality condi-
tion, since for every i,j € {0,1}" and 0 < ¢ < 1 we have m.(i) — 7(j) = 0. In
order to prove Theorem 1.1, we are going to introduce well-chosen systems
¢ which do satisfy transversality. Moreover, we are going to show that the
attractor of WY is contained in, and has dimension arbitrarily close to, the
attractor A°M* of the IFS ¥¢, so that we are able to deduce information on
the dimension of A** by studying these subsystems with transversality.
First of all, we have to consider some properties of the natural projection.
Let i € £ and denote by i(n) the first n elements of i, and by f,i(n) the
number of 4’s in i(n). Similarly, let #;i(n,l) be the number of i’s between
the nth and Ith elements of i. We note that i(0) is the empty word and
#,1(—1,1) := t;i(!). Then

(3.1) me(i) =Y 6, o iRINE,
k=0



Self-similar sets with overlaps 53

where §; = 1 if ¢ = 2, else §; = 0. We will write this natural projection in
another form.

Let ai2 be the number of 2’s in i, more precisely, let ai2 = limy,— 00 o i(n)
if i is an infinite length word, and ab = f#5i([i|) if i is finite. If i is infinite
then ozi2 can be infinity. We will write n; for the place of the ith 2 in i (here
i can be finite or infinite) for every 1 <[ < oziQ. We define né) := —1, and if
ol is finite, then let n;iﬂ := |i]. We note that if i does not contain any 2’s
then m.(i) = 0. ’

Observe that with this notation, 7. can be written as

: o
) = Y coiebxt,
k=1
where an empty sum is defined to be 0.
If o £ 0, then let P, = {fiyi(n}) : 1 > 1}, else let P; = ). Moreover, let
(32)  mp=sup{j:foilng) =k}, i =inf{j:dyi(nj) =k}

for £ € P;. We note that P; can be finite or infinite, and if it is finite then
Miyax p, Can be infinity. Therefore

mi '
(3.3) me(i) = Y Fdi(2), where dj(A) =) A"
kep l=ri

We call nini the degree and niri the lower degree of d}f(/\), denoted by deg

k k
and lowerdeg respectively.

LEMMA 3.1. For every i € XN and X € (0,1/2) we have

(1) lowerdegdi (\) > k for every k € P;,

(2) degdi(N\) +1—k+1<lowerdegdi(\) for every k,l € P, k <1,

(3) AR (X) > di(N) for every k,l € P, k <.

Proof. Since #,i(k) < k, (1) is obvious.

Let k,l € P; with k < . Since deg di (\) = njﬂi and lowerdeg d}(\) = nii,

. . k l
between the n;ni th and n;ith elements of i there have to be [ — k zeros.
k l

Therefore

This completes the proof of (2). The property (3) is an easy consequence of
(2) by using the fact that A < 1/2. =

Now we are going to define the families ¥ of iterated function systems
for which transversality holds. First of all, we define sets X; of finite length
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words by induction. Let X = {1,2} and for every n > 1 let

(3.4) Sopn=|J {oipu (| {121}

i€eXy,i0#l ieX,
For example Xy = {1,2}?U{02} and X3 = {1,2}* U {102, 202,021,022, 002}
etc. Obviously, Y, C X" for every n > 1.

LEMMA 3.2. For everyn > 1 and every i,j € Xy, ¢t = j if and only if
i J

(3.5) 2 i J i J g S |

VO<I<a;=a3 n;=n; and fyi(n, ”Z+1) = ﬁog(ni,niﬂ).

Proof. The implication (i = j) = (3.5) is obvious for every n > 1. We
prove the other direction by induction.

For n = 1, (3.5) = (i = j) is trivial. Suppose that X, satisfies the
statement and let i,j € X,,1 be such that i,; satisfy (3.5). Then either
i =2 and j = 2§, or i = 07 or 1i’ and j = 05" or 1§/, where 7/, j' € X,,. In
the first case we have i = j by the induction assumption. B

In the second case we will show that i = 07’ if and only if j = 05'. Let us
suppose that i = 0. Then ) )

. . i J
foJ(n1) = foi(ny) = ny = ny.
In the middle equality we have used (3.4). Therefore j = 0j". The reverse
direction is similar. By using the induction assumption we have i = j. =

LEMMA 3.3. For every arbitrarily smalle > 0 and everyn > 2 the system
Uy = {Yf}iex, satisfies the transversality condition for c € (g,1 — ¢).

Proof. We note that A € (0,1/2) is fixed. Let € > 0 be arbitrarily small
but fixed. We are going to prove transversality of ¥ by using Lemma 2.3.
More precisely, we are going to show that (2.2) holds on U = (¢/2,1).

Suppose that ¢ € (/2,1). Let 1,j € XN be such that i = (igiyis. .. ),
j= (jojije-..) and ig # jo. We can define the natural projection of ¥y, =
{¢§}ies, as in (2.1). Denote it by 7.

Assume that 7?20(?) = 7?30(3) fora co € (¢/2,1). Let i =1, j = j as
clements of XN, Then 72(i) = me(i) and 72(j) = m(j).

If min P, = min P} the numbers of zeros before the nith element of i
and before the njlth element of j are the same. If n! > nJl then some simple
algebra, using A < 1/2, shows that 7, (i) < 7, (j), which is a contradiction.
Likewise, we cannot have n} < njl, so necessarily ni = nJl

However, if ni = n§, then
Teo (1) — ey (3) = PN (g (0™17FH) — 70 (071HL)),

where o is the left-shift operator on ZN = {0, 1, 2}V,
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Since we have supposed that iq # jo € 2y, by Lemma 3.2 and ¢ > /2 we
can assume without loss of generality that min P > min P;. Let [; = min P;.
Then

fiale) = 72(G) — 72 () = me(j) — me(d)

:cljdgj(AH DOV APy

keP\{;;} kep;
I okl i ( k—t; Be(A)
=dd N1+ D dJ -> e )
ke P\ {1} keP; & ()

Define

&\ bty G
pa@=1+ 3, dJ()\ -2 & ()

keP\{i;} ) en,

Note that since ¢ > £/2 > 0 one has f;j;(co) = 0 if and only if gj;(co) = 0.
On the other hand, it is easy to see that if gj;(co) = 0, then

df_] i N dgj,i .
dc( )—O@W(Co)—o

Therefore it is enough to prove

i

e =0 => gjyi(c) > 0.

%1 (cp) = 0 for some ¢ € (¢/2,1). Then

dg;
OZCO g‘]’ (Co)

dc
g (N i d
Zco< S (ke T f( )—Z(k—zj)c’g 4 ldJ{e(A)>
keP\{l;} dlj()‘) kEP; dlj()\)
J i
keP (s} d?.(A) ke, dy (A)
J\u § i i
R R xr LIt I
P Ay "od "d oy
keP\{l;} l keP\{};} i kePp, 7
By using (3) of Lemma 3.1 we have
(A

0s Y Gop-nd e Y

ke PN} Y IR SR A OV R vy S A O
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We can give an upper bound for the first term:

00 2
>oo(k—1- Dep Bk < D (k= 1)efAF = ()" g
(1 —coA)?
keP\{l;} k=1

In the last inequality we have used that A < 1/2. Therefore 0 < g;i(co) by
the definition of gj;(c).

Using Lemma 2.3 for U = (¢/2,1) we conclude that ¥ satisfies transver-
salityon V =(g,1—¢). m

AN
Let us denote the attractor of ¥ = {f}ics, by A% "

PROPOSITION 3.4. For every 0 < A < 1/2 and Lebesgue almost every
0<c<1,
lim dimgyg ACE)‘;\ = dimpyg AM.

n—oo
Proof. First we note that by Lemma 3.3 and Theorem 2.2, for every
€>0,n >1 and almost every € < ¢ < 1 — ¢ we have

(3.6) dimp Ag‘;)‘ = min{1, s&*

n

where st’)‘ is the unique solution of
D (i =1,
1€,

Since for every ¢ > 0 the dimension formula (3.6) holds for a.e. c€ (¢,1—¢), it
holds for a.e. ¢ € (0,1). We note that s$t is a bounded, increasing sequence,
therefore it is convergent. Let sz’ ) be its limit.

The lower bound is trivial since Ag‘f‘ C A for every n. Therefore
min{s; ,, 1} < dimg AN

for every 0 < A < 1/2 and Lebesgue almost every 0 < ¢ < 1.
Now we prove the upper bound. It is easy to see that the convex hull of
AN s the interval [0,1/(1 — \)]. By using the fact

Y o Yi(w) = i o Yg(x)
and 0 < ¢ < 1 we see that for every ¢ € 1™ there exists j € X, such that

o) =)

We indicate how to find such a j € X,,. The positions of the 2’s in j
are the same as in i. Before the first appearance of 2 and between any two
consecutive appearances of 2, we keep the same number of 0’s as in ¢, but
change the order so that all 1’s come before all 0’s. After the last occurrence
of a 2 (or everywhere if there are no 2’s in i), we replace all 0’s by 1’s.
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For each n € N, we consider the covering of the attractor A“** given
by {§([0,1/(1 = A)])}iex,, and note that the diameters of the sets in the
cover are at most A". Therefore by using the definition of Hausdorff measure

(see [1]) we have
foiyn\ S
s cAA < c
i < Y (T20)
lezn
where H3(A) = inf{>, |Us|* : A C U, Us, |Us| < 0}. Let € > 0 be arbitrarily
small. Then

* ﬁ();)\n SZ,A+£ 1 SZ,)\+5
S, aTeE A C ne

A (A7) < g N :
A ( )< < 1—)\> - <1—>\)

1€y

which tends to 0 as n — oo. Therefore by the definition of Hausdorff dimen-
sion (see [1])
dimpg AN < s}, +¢

where € > 0 is arbitrary. Thus the proposition is proved. =
Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let Y, be the following set of symbols:

—1
- PN
(3.7) 5, =1{1,2,02,002,...,0...02}.
Let A‘g\’A be the attractor of {¢j}, 5 . Notice that every i € X, can be

n k3

decomposed as a juxtaposition i = jj ... jg, where each j; is in Y. Therefore

for every 0 < A < 1/2 and Lebesgue almost every 0 < ¢ < 1, ACE)‘TZA - ACE:\”\,

n

and hence by Proposition 3.4,
dimg A = lim dimg A5 < lim dimy 42,
n—00 n n— 00 n
The lower bound is trivial, therefore
(3.8) dimpg A = lim dimy A2,
n—o0 Xn
We use the fact that for every n > 2, {wf}ie 5 satisfies the transversality
condition on (g,1 —¢) for all € > 0; as the proof of this claim is very similar
to the proof of Lemma 3.3, we omit it. By Theorem 2.2 and by similar
arguments to those at the beginning of the proof of Proposition 3.4, for
every n > 1 and almost every 0 < ¢ < 1 we have

: AN . ~c,\
dimgy Ain = min{1, s

where 55" is the unique solution of
n—1

2)\8 + Z(Ck)\k—‘rl)s - 1.
k=1
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It is easy to see by (3.8) that s = lim,, .« 557 is the unique solution of

o0
(3.9) 20° + ) (FAF)T =1,

k=1
We note that the function fi(s) = 2A% + A%y*/(1 — ~%) is strictly increasing
for every v, A€ (0, 1), and moreover lims_,o+ f1(s) = oo and lim,_.~ f1(s) =0.
Therefore the equation (3.9) has a unique solution s, which also satisfies

(3.10) 2N+ (eN)® — (eX?)® =

By similar arguments one can prove that (3.10) has a unique solution as well,
which is the first statement of Theorem 1.1.
Now we prove the measure claim of Theorem 1.1. If sc’\)‘ > 1, then

E{;;’)‘ > 1 for large enough n, so that, by transversality, A~ has positive

Lebesgue measure for almost every c. Since Ag‘)‘ Ac’\>‘, this completes

n

the proof of Theorem 1.1. m
Finally, we prove Proposition 1.2.

Proof of Proposition 1.2. Let q,p be integers such that (¢,p) = 1 and
q > p and let Yo(x) = APz, oy (x) = Az, o(x) = Az + 1. It is easy to see

that B B
Yor () = vio(@), Y0 (x) =11 ().

P q

Therefore for any i € ZN = {0,1,2} we can choose j € S’EI (where ZNJP is
defined as in (3.7)) such that

m(i) = 7(j)-
Indeed, whenever there are at least p consecutive zeros in i, we can replace
each block of p consecutive zeros by a block of ¢ consecutive ones, and then
rearrange the zeros and ones between two consecutive twos, by moving the
ones to the front. Therefore

dimpy AN = dimy A/\~,q,p
P

where A AP i the attractor of the IFS {ti};c5 - Since the Hausdorff di-

mension of a self-similar set is always at most the minimum of the similarity
dimension (see (1.1)) and the dimension of the ambient space, we have

: Ag;p ; A
dimyg AEP < min{1,sy,}

A

2p 18 the unique solution of

where s

p—1
2N\ + Z A\(@k/p+1)s 1,
k=1
which was to be proved. =
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