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On the Hausdorff dimension of a family of self-similar sets
with complicated overlaps
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Balázs Bárány (Budapest)

Abstract. We investigate the properties of the Hausdorff dimension of the attractor
of the iterated function system (IFS) {γx, λx, λx+ 1}. Since two maps have the same fixed
point, there are very complicated overlaps, and it is not possible to directly apply known
techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue
almost all parameters (γ, λ), γ < λ. This result only holds for almost all parameters: we
find a dense set of parameters (γ, λ) for which the Hausdorff dimension of the attractor
is strictly smaller.

1. Introduction and statements of results. Our paper is motivated
by a question of Pablo Shmerkin at the conference in Greifswald in 2008.
The question was the following:

Question. What is the Hausdorff dimension of the attractor generated
by the IFS

{
1
4x,

1
3x,

1
3x+ 2

3

}
?

Let us denote the Hausdorff dimension of a compact subset Λ of R by
dimH Λ. For the definition and basic properties of Hausdorff dimension we
refer the reader to [1] or [2]. Let us recall here the definition of the attractor.

Let {f0, . . . , fn} be a family of continuous self-maps on the real line. We
will in addition assume that each fi is a contraction, that is, |fi(x)−fi(y)| ≤
ri|x − y| for all x, y and some 0 < ri < 1. Then there exists a unique,
nonempty compact subset Λ of R which satisfies

Λ =
n⋃
k=0

fk(Λ).

We call it the attractor of the iterated function system (IFS) {f0(x), f1(x), . . .
. . . , fn(x)}.
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Let us suppose that the functions of the IFS are similarities of the form
{fi(x) = λix + di}ni=0, where 0 < |λi| < 1 for every i ∈ {0, . . . , n}. We say
that the attractor or the IFS itself is self-similar. It is well known that if
a self-similar IFS satisfies the so-called open set condition (OSC), i.e. there
exists an open set U such that for every i, j ∈ {0, . . . , n}, fi(U) ⊂ U and
fi(U) ∩ fj(U) = ∅ if i 6= j, then the Hausdorff dimension of the attractor is
the unique solution s of

(1.1)
n∑
i=0

|λi|s = 1

(see for example [4]). Even if the OSC does not hold, the solution of (1.1)
is called the similarity dimension of the IFS. The similarity dimension is al-
ways an upper bound for the Hausdorff dimension of the attractor (see [1]).
In the case when the IFS has overlapping structure, i.e. the open set condi-
tion does not hold, the Hausdorff dimension of the attractor Λ of the IFS
{fi(x) = λix+ di}ni=0 is

(1.2) dimH Λ = min{1, s} for a.e. d ∈ Rn+1,

where s is the unique solution of (1.1) (see [11] and [3]).
In this article, we consider the IFS {γx, λx, λx+ 1}, where we assume

that 0 < γ < λ < 1. Let us denote the attractor of this IFS by Λγ,λ. The
problem of calculating its Hausdorff dimension is far from being simple.

A special property of our class of IFS is that the first two maps have a
common fixed point. This implies that they commute, so we observe an im-
mense (increasing exponentially under iteration) amount of exact and partial
overlaps in our system. Needless to say, the OSC does not hold.

Iterated function systems that do not satisfy OSC were first studied in [9],
where the transversality condition method was first introduced. See [7], [8]
for the most general treatment of this approach. Since that time, several
other methods have been proposed: weak separation condition, finite type
condition and others (see, for example, [5], [6] and [14]). However, neither of
those is going to work for overlaps as severe as our system has.

For this reason, we are forced to modify the transversality method, ap-
plying it only to some subsystems of the IFS (details will be presented in
the following sections). The main result of this paper is as follows:

Theorem 1.1. Let Λγ,λ be the attractor of the IFS {γx, λx, λx+ 1}.
Then for Lebesgue almost every 0 < γ < λ < 1/2,

(1.3) dimH Λ
γ,λ = min{1, sγ,λ},

where sγ,λ is the unique solution of

(1.4) 2λs + γs − λsγs = 1.
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Moreover , L(Λγ,λ) > 0 for Lebesgue almost every (γ, λ) such that sγ,λ > 1.
More precisely , the above statements are true for every fixed 0 < λ < 1/2
and Lebesgue almost every 0 < γ < λ.

Note that the assumption λ < 1/2 is not really restrictive: the attractor
of our system contains the attractor of its subsystem {λx, λx+1}, which for
λ ≥ 1/2 is an interval and, in particular, it has dimension 1.

The equality (13) only holds for almost all parameters. And indeed, we
can exhibit a family of parameter values for which it does not hold.

Proposition 1.2. Let q and p be integers and q > p, (q, p) = 1. Let
Λλ,q,p be the attractor of {λq/px, λx, λx+ 1}. Then
(1.5) dimH Λ

λ,q,p ≤ min{1, sλp,q},

where sλp,q is the unique solution of

2λs +
p−1∑
k=1

λ(qk/p+1)s = 1.

Note that this family of exceptional parameter values is dense in {(γ, λ) :
2λ + γ < 1, γ < λ}, where the statement of Proposition 1.2 excludes the
possibility that the equality of Theorem 1.1 holds. This implies that the
function (γ, λ) 7→ dimH Λ

γ,λ cannot be continuous.

2. Transversality methods. First let us introduce the transversality
condition for self-similar IFS with one parameter. The definition corresponds
to the definition in [12], [13], which was introduced for general IFS.

Let U be an open, bounded interval of R and Σ a finite set of symbols.
Let Ψt =

{
ψti(x) = λi(t)x+ di(t)

}
i∈Σ , where λi, di ∈ C

1(U) and 0 < α ≤
λi(t) ≤ β < 1 for every i ∈ Σ and t ∈ U and for some α, β ∈ (0, 1). Let Λt
be the attractor of Ψt and πt be the natural projection from the symbolic
space ΣN to Λt. More precisely, let i = (i0i1 . . . ) ∈ ΣN and
(2.1) πt(i) = lim

n→∞
ψti0 ◦ ψ

t
i1 ◦ · · · ◦ ψ

t
in(0).

It is well known that the limit exists and is independent of the base point 0.
Moreover, πt is a surjective function from ΣN onto Λt. Denote by σ the
left-shift operator on ΣN. More precisely, let σ : (i0i1 . . . ) 7→ (i1i2 . . . ). It is
easy to see that

πt(i) = ψti0(πt(σi)).

Definition 2.1. We say that Ψt satisfies the transversality condition on
an open, bounded interval U ⊂ R if there exists a constant C > 0 such that
for every i, j ∈ ΣN with i0 6= j0,

L({t ∈ U : |πt(i)− πt(j)| ≤ r}) ≤ Cr for every r > 0,
where L is the Lebesgue measure on the real line.
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This definition is equivalent to the ones given in e.g. [12], [13]. Now let us
recall the theorem of K. Simon, B. Solomyak and M. Urbański [12, Theorem
3.1] in the self-similar case with one parameter.

Theorem 2.2 (Simon, Solomyak, Urbański). Suppose that Ψt satisfies
the transversality condition on an open, bounded interval U . Then

(1) dimH Λ
t = min{s(t), 1} for Lebesgue a.e. t ∈ U ,

(2) L(Λt) > 0 for Lebesgue a.e. t ∈ U such that s(t) > 1,

where s(t) is the similarity dimension of Ψt. More precisely , s(t) satisfies the
equation ∑

i∈Σ
λi(t)s(t) = 1.

To prove transversality we can use the following lemma which follows
from [12, Lemma 7.3].

Lemma 2.3. Let U ⊂ R be an open, bounded interval and fi,j(t) = πt(i)−
πt(j). If for every i, j ∈ ΣN with i0 6= j0 and for every t0 ∈ U ,

(2.2) fi,j(t0) = 0 ⇒
∣∣∣∣dfi,jdt

(t0)
∣∣∣∣ > 0,

then there is transversality on any open interval V whose closure is contained
in U .

3. Proofs. Let us fix a λ ∈ (0, 1/2). Without loss of generality we can
assume that γ = cλ, where 0 < c < 1. Let ψc0(x) = cλx, ψc1(x) = λx and
ψc2(x) = λx + 1. We note that ψc1, ψc2 do not depend on c. Let us define
Σ∗ =

⋃∞
n=1Σ

n and for every n ≥ 1 let ψci = ψci0 ◦ ψ
c
i1
◦ · · · ◦ ψcin where

i ∈ Σn.
We note that Ψ c = {ψc0, ψc1, ψc2} does not satisfy the transversality condi-

tion, since for every i, j ∈ {0, 1}N and 0 < c < 1 we have πc(i)−πc(j) ≡ 0. In
order to prove Theorem 1.1, we are going to introduce well-chosen systems
Ψ cn which do satisfy transversality. Moreover, we are going to show that the
attractor of Ψ cn is contained in, and has dimension arbitrarily close to, the
attractor Λcλ,λ of the IFS Ψ c, so that we are able to deduce information on
the dimension of Λcλ,λ by studying these subsystems with transversality.

First of all, we have to consider some properties of the natural projection.
Let i ∈ ΣN and denote by i(n) the first n elements of i, and by ]i i(n) the
number of i’s in i(n). Similarly, let ]i i(n, l) be the number of i’s between
the nth and lth elements of i. We note that i(0) is the empty word and
]i i(−1, l) := ]i i(l). Then

(3.1) πc(i) =
∞∑
k=0

δikc
]0 i(k)λk,
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where δi = 1 if i = 2, else δi = 0. We will write this natural projection in
another form.

Let αi
2 be the number of 2’s in i, more precisely, let αi

2 = limn→∞ ]2 i(n)
if i is an infinite length word, and αi

2 = ]2 i(|i|) if i is finite. If i is infinite
then αi

2 can be infinity. We will write ni
l for the place of the lth 2 in i (here

i can be finite or infinite) for every 1 ≤ l ≤ αi
2. We define ni

0 := −1, and if
αi

2 is finite, then let ni
αi

2+1
:= |i|. We note that if i does not contain any 2’s

then πc(i) = 0.
Observe that with this notation, πc can be written as

πc(i) =
αi

2∑
k=1

c]0 i(ni
k)λn

i
k ,

where an empty sum is defined to be 0.
If αi

2 6= 0, then let Pi = {]0 i(ni
l) : l ≥ 1}, else let Pi = ∅. Moreover, let

(3.2) mi
k = sup{j : ]0 i(ni

j) = k}, rik = inf{j : ]0 i(ni
j) = k}

for k ∈ Pi. We note that Pi can be finite or infinite, and if it is finite then
mi

maxPi
can be infinity. Therefore

(3.3) πc(i) =
∑
k∈Pi

ckdik(λ), where dik(λ) =
mi
k∑

l=rik

λn
i
l .

We call ni
mi
k

the degree and ni
rik

the lower degree of dik(λ), denoted by deg
and lowerdeg respectively.

Lemma 3.1. For every i ∈ ΣN and λ ∈ (0, 1/2) we have

(1) lowerdeg dik(λ) ≥ k for every k ∈ Pi,
(2) deg dik(λ) + l − k + 1 ≤ lowerdeg dil(λ) for every k, l ∈ Pi, k < l,
(3) λl−kdik(λ) ≥ dil(λ) for every k, l ∈ Pi, k < l.

Proof. Since ]0 i(k) ≤ k, (1) is obvious.
Let k, l ∈ Pi with k < l. Since deg dik(λ) = ni

mi
k

and lowerdeg dil(λ) = ni
ril
,

between the ni
mi
k

th and ni
ril
th elements of i there have to be l − k zeros.

Therefore
l − k = ]0 i(ni

mi
k
, ni

ril
) ≤ ni

ril
− ni

mi
k
− 1.

This completes the proof of (2). The property (3) is an easy consequence of
(2) by using the fact that λ < 1/2.

Now we are going to define the families Ψ cn of iterated function systems
for which transversality holds. First of all, we define sets Σi of finite length
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words by induction. Let Σ1 = {1, 2} and for every n ≥ 1 let

(3.4) Σn+1 =
⋃

i∈Σn, i0 6=1

{0i} ∪
⋃

i∈Σn

{1i, 2i} .

For example Σ2 = {1, 2}2∪{02} and Σ3 = {1, 2}3∪{102, 202, 021, 022, 002}
etc. Obviously, Σn ⊂ Σn for every n ≥ 1.

Lemma 3.2. For every n ≥ 1 and every i, j ∈ Σn, i = j if and only if

α
i
2 = α

j

2,

∀0 ≤ l ≤ αi2 = α
j

2, n
i
l = n

j

l and ]0 i(n
i
l, n

i
l+1) = ]0 j(n

j

l , n
j

l+1).
(3.5)

Proof. The implication (i = j) ⇒ (3.5) is obvious for every n ≥ 1. We
prove the other direction by induction.

For n = 1, (3.5) ⇒ (i = j) is trivial. Suppose that Σn satisfies the
statement and let i, j ∈ Σn+1 be such that i, j satisfy (3.5). Then either
i = 2i′ and j = 2j′, or i = 0i′ or 1i′ and j = 0j′ or 1j′, where i′, j′ ∈ Σn. In
the first case we have i = j by the induction assumption.

In the second case we will show that i = 0i′ if and only if j = 0j′. Let us
suppose that i = 0i′. Then

]0 j(n
j

1) = ]0 i(n
i
1) = n

i
1 = n

j

1.

In the middle equality we have used (3.4). Therefore j = 0j′. The reverse
direction is similar. By using the induction assumption we have i = j.

Lemma 3.3. For every arbitrarily small ε > 0 and every n ≥ 2 the system
Ψ cn = {ψci }i∈Σn satisfies the transversality condition for c ∈ (ε, 1− ε).

Proof. We note that λ ∈ (0, 1/2) is fixed. Let ε > 0 be arbitrarily small
but fixed. We are going to prove transversality of Ψ cn by using Lemma 2.3.
More precisely, we are going to show that (2.2) holds on U = (ε/2, 1).

Suppose that c ∈ (ε/2, 1). Let ĩ, j̃ ∈ ΣN
n be such that ĩ = (i0i1i2 . . . ),

j̃ = (j0j1j2 . . . ) and i0 6= j0. We can define the natural projection of Ψ cn =
{ψci }i∈Σn as in (2.1). Denote it by π̃nc .

Assume that π̃nc0 (̃i) = π̃nc0 (̃j) for a c0 ∈ (ε/2, 1). Let i = ĩ, j = j̃ as
elements of ΣN. Then π̃nc (̃i) = πc(i) and π̃nc (̃j) = πc(j).

If minPi = minPj the numbers of zeros before the ni
1th element of i

and before the nj
1th element of j are the same. If ni

1 > nj
1 then some simple

algebra, using λ < 1/2, shows that πc0(i) < πc0(j), which is a contradiction.
Likewise, we cannot have ni

1 < nj
1, so necessarily ni

1 = nj
1.

However, if ni
1 = ns1, then

πc0(i)− πc0(j) = cminPiλn
i
1(πc0(σ

nj
1+1i)− πc0(σn

j
1+1j)),

where σ is the left-shift operator on ΣN = {0, 1, 2}N.
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Since we have supposed that i0 6= j0 ∈ Σn, by Lemma 3.2 and c > ε/2 we
can assume without loss of generality that minPi > minPj. Let lj = minPj.
Then

fj,i(c) = π̃nc (̃j)− π̃nc (̃i) = πc(j)− πc(i)

= cljdjlj(λ) +
∑

k∈Pj\{lj}
ckdjk(λ)−

∑
k∈Pi

ckdik(λ)

= cljdjlj(λ)
(

1 +
∑

k∈Pj\{lj}

ck−lj
djk(λ)

djlj(λ)
−
∑
k∈Pi

ck−lj
dik(λ)

djlj(λ)

)
.

Define

gj,i(c) = 1 +
∑

k∈Pj\{lj}

ck−lj
djk(λ)

djlj(λ)
−
∑
k∈Pi

ck−lj
dik(λ)

djlj(λ)
.

Note that since c > ε/2 > 0 one has fj,i(c0) = 0 if and only if gj,i(c0) = 0.
On the other hand, it is easy to see that if gj,i(c0) = 0, then

dfj,i
dc

(c0) = 0 ⇔
dgj,i
dc

(c0) = 0.

Therefore it is enough to prove

dgj,i
dc

(c) = 0 ⇒ gj,i(c) > 0.

So suppose that dgj,i
dc (c0) = 0 for some c0 ∈ (ε/2, 1). Then

0 = c0
dgj,i
dc

(c0)

= c0

( ∑
k∈Pj\{lj}

(k − lj)c
k−lj−1
0

djk(λ)

djlj(λ)
−
∑
k∈Pi

(k − lj)c
k−lj−1
0

dik(λ)

djlj(λ)

)

≤
∑

k∈Pj\{lj}

(k − lj)c
k−lj
0

djk(λ)

djlj(λ)
−
∑
k∈Pi

c
k−lj
0

dik(λ)

djlj(λ)

=
∑

k∈Pj\{lj}

(k − lj − 1)ck−lj0

djk(λ)

djlj(λ)
+

∑
k∈Pj\{lj}

c
k−lj
0

djk(λ)

djlj(λ)
−
∑
k∈Pi

c
k−lj
0

dik(λ)

djlj(λ)
.

By using (3) of Lemma 3.1 we have

0 ≤
∑

k∈Pj\{lj}

(k − lj − 1)ck−lj0 λk−lj +
∑

k∈Pj\{lj}

c
k−lj
0

djk(λ)

djlj(λ)
−
∑
k∈Pi

c
k−lj
0

dik(λ)

djlj(λ)
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We can give an upper bound for the first term:∑
k∈Pj\{lj}

(k − lj − 1)ck−lj0 λk−lj ≤
∞∑
k=1

(k − 1)ck0λ
k =

(c0λ)2

(1− c0λ)2
< 1.

In the last inequality we have used that λ < 1/2. Therefore 0 < gj,i(c0) by
the definition of gj,i(c).

Using Lemma 2.3 for U = (ε/2, 1) we conclude that Ψ cn satisfies transver-
sality on V = (ε, 1− ε).

Let us denote the attractor of Ψ cn = {ψci }i∈Σn by Λcλ,λΣn
.

Proposition 3.4. For every 0 < λ < 1/2 and Lebesgue almost every
0 < c < 1,

lim
n→∞

dimH Λ
cλ,λ
Σn

= dimH Λ
cλ,λ.

Proof. First we note that by Lemma 3.3 and Theorem 2.2, for every
ε > 0, n ≥ 1 and almost every ε < c < 1− ε we have

(3.6) dimH Λ
cλ,λ
Σn

= min{1, sc,λn }

where sc,λn is the unique solution of∑
i∈Σn

(c]0 iλn)s = 1.

Since for every ε> 0 the dimension formula (3.6) holds for a.e. c∈ (ε, 1−ε), it
holds for a.e. c ∈ (0, 1). We note that sc,λn is a bounded, increasing sequence,
therefore it is convergent. Let s∗c,λ be its limit.

The lower bound is trivial since Λcλ,λΣn
⊆ Λcλ,λ for every n. Therefore

min{s∗c,λ, 1} ≤ dimH Λ
cλ,λ

for every 0 < λ < 1/2 and Lebesgue almost every 0 < c < 1.
Now we prove the upper bound. It is easy to see that the convex hull of

Λcλ,λ is the interval [0, 1/(1− λ)]. By using the fact

ψc0 ◦ ψc1(x) ≡ ψc1 ◦ ψc0(x)
and 0 < c < 1 we see that for every i ∈ Σn there exists j ∈ Σn such that

ψci

([
0,

1
1− λ

])
⊆ ψc

j

([
0,

1
1− λ

])
.

We indicate how to find such a j ∈ Σn. The positions of the 2’s in j
are the same as in i. Before the first appearance of 2 and between any two
consecutive appearances of 2, we keep the same number of 0’s as in i, but
change the order so that all 1’s come before all 0’s. After the last occurrence
of a 2 (or everywhere if there are no 2’s in i), we replace all 0’s by 1’s.
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For each n ∈ N, we consider the covering of the attractor Λcλ,λ given
by {ψci ([0, 1/(1− λ)])}i∈Σn , and note that the diameters of the sets in the
cover are at most λn. Therefore by using the definition of Hausdorff measure
(see [1]) we have

Hsλn(Λcλ,λ) ≤
∑
i∈Σn

(
c]0 iλn

1− λ

)s
,

where Hsδ(Λ) = inf{
∑

i |Ui|s : Λ ⊂
⋃
i Ui, |Ui| < δ}. Let ε > 0 be arbitrarily

small. Then

H
s∗c,λ+ε

λn (Λcλ,λ) ≤
∑
i∈Σn

(
c]0 iλn

1− λ

)s∗c,λ+ε

≤ λnε
(

1
1− λ

)s∗c,λ+ε

,

which tends to 0 as n→∞. Therefore by the definition of Hausdorff dimen-
sion (see [1])

dimH Λ
cλ,λ ≤ s∗c,λ + ε

where ε > 0 is arbitrary. Thus the proposition is proved.

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let Σ̃n be the following set of symbols:

(3.7) Σ̃n = {1, 2, 02, 002, . . . ,
n−1︷ ︸︸ ︷

0 . . . 0 2}.

Let Λcλ,λeΣn be the attractor of {ψci }i∈ eΣn . Notice that every i ∈ Σn can be

decomposed as a juxtaposition i = j1 . . . jk, where each jr is in Σ̃n. Therefore
for every 0 < λ < 1/2 and Lebesgue almost every 0 < c < 1, Λcλ,λΣn

⊆ Λcλ,λeΣn ,
and hence by Proposition 3.4,

dimH Λ
cλ,λ = lim

n→∞
dimH Λ

cλ,λ
Σn
≤ lim

n→∞
dimH Λ

cλ,λeΣn .
The lower bound is trivial, therefore

(3.8) dimH Λ
cλ,λ = lim

n→∞
dimH Λ

cλ,λeΣn .
We use the fact that for every n ≥ 2, {ψci }i∈ eΣn satisfies the transversality
condition on (ε, 1− ε) for all ε > 0; as the proof of this claim is very similar
to the proof of Lemma 3.3, we omit it. By Theorem 2.2 and by similar
arguments to those at the beginning of the proof of Proposition 3.4, for
every n ≥ 1 and almost every 0 < c < 1 we have

dimH Λ
cλ,λeΣn = min{1, s̃c,λn }

where s̃c,λn is the unique solution of

2λs +
n−1∑
k=1

(ckλk+1)s = 1.
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It is easy to see by (3.8) that scλ,λ = limn→∞ s̃
c,λ
n is the unique solution of

(3.9) 2λs +
∞∑
k=1

(ckλk+1)s = 1.

We note that the function f1(s) = 2λs + λsγs/(1− γs) is strictly increasing
for every γ, λ∈(0, 1), and moreover lims→0+ f1(s) =∞ and lims→∞ f1(s) = 0.
Therefore the equation (3.9) has a unique solution s, which also satisfies

(3.10) 2λs + (cλ)s − (cλ2)s = 1.

By similar arguments one can prove that (3.10) has a unique solution as well,
which is the first statement of Theorem 1.1.

Now we prove the measure claim of Theorem 1.1. If scλ,λ > 1, then
s̃c,λn > 1 for large enough n, so that, by transversality, Λ̃cλ,λeΣn has positive

Lebesgue measure for almost every c. Since Λ̃cλ,λeΣn ⊂ Λcλ,λ, this completes
the proof of Theorem 1.1.

Finally, we prove Proposition 1.2.

Proof of Proposition 1.2. Let q, p be integers such that (q, p) = 1 and
q > p and let ψ0(x) = λq/px, ψ1(x) = λx, ψ2(x) = λx + 1. It is easy to see
that

ψ01(x) ≡ ψ10(x), ψ 0...0︸︷︷︸
p

(x) ≡ ψ 1...1︸︷︷︸
q

(x).

Therefore for any i ∈ ΣN = {0, 1, 2}N we can choose j ∈ Σ̃N
p (where Σ̃p is

defined as in (3.7)) such that
π(i) = π(j).

Indeed, whenever there are at least p consecutive zeros in i, we can replace
each block of p consecutive zeros by a block of q consecutive ones, and then
rearrange the zeros and ones between two consecutive twos, by moving the
ones to the front. Therefore

dimH Λ
λ,q,p = dimH Λ

λ,q,peΣp
where Λλ,q,peΣp is the attractor of the IFS {ψi}i∈ eΣp . Since the Hausdorff di-
mension of a self-similar set is always at most the minimum of the similarity
dimension (see (1.1)) and the dimension of the ambient space, we have

dimH Λ
λ,q,peΣp ≤ min{1, sλq,p}

where sλq,p is the unique solution of

2λs +
p−1∑
k=1

λ(qk/p+1)s = 1,

which was to be proved.
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