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Abstract. We review some aspects of recurrence in topological dynamics and focus
on two open problems. The first is an old one concerning the relation between Poincaré
and Birkhoff recurrence; the second, due to the first author, is about moving recurrence.
We provide a partial answer to a topological version of the moving recurrence problem.

Introduction. Poincaré’s recurrence theorem is the first and most ba-
sic theorem of ergodic theory. It asserts that given a measure preserving
(invertible) dynamical system (X,µ,X, T ) and A ∈ X with µ(A) > 0, the
set N(A,A) = {n ∈ Z : µ(TnA ∩ A) > 0} meets every set of the form
(L−L)\{0} = {n−m : n,m ∈ L, n 6= m} with infinite L ⊂ Z. The proof of
this surprising fact is straightforward: The sets TnA, n ∈ L, having the same
(positive) measure, cannot be all disjoint (mod µ). If µ(TnA ∩ TmA) > 0
then µ(Tn−mA ∩A) > 0, hence n−m ∈ N(A,A).

This basic measure-theoretic recurrence theorem has a topological coun-
terpart due to G. D. Birkhoff. If (X,T ) is a topological dynamical system
(X is a compact metric space and T : X → X is a homeomorphism of X onto
itself), then there is a recurrent point in X, i.e. there is a point x ∈ X such
that for every ε > 0 there is some n ≥ 1 with d(x, Tnx) < ε. A purely topo-
logical proof of this theorem (i.e. one which does not use the fact that such
a system always admits an invariant probability measure and then applies
Poincaré’s theorem) follows from the fact that minimal subsystems always
exist. One first applies Zorn’s lemma to show that every compact topolog-
ical system admits a minimal subset and then uses the characterization of
a point whose orbit closure is minimal as a uniformly recurrent point (see
Lemma 4.3 below).

Poincaré’s and Birkhoff’s recurrence theorems obtained more recently a
deep and far reaching generalization in the form of Furstenberg’s multiple
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recurrence theorem, from which Furstenberg was able to deduce the famous
theorem of Szemerédi: a subset A ⊂ N of positive upper Banach density
contains arbitrarily long arithmetical progressions (see Furstenberg [10]).

In the present work we review some aspects of recurrence in topological
dynamics as developed by Gottschalk and Hedlund [17], and Furstenberg
[10], including several “folklore” theorems, and then focus on two particu-
lar open problems. The first is an old one concerning the relation between
Poincaré and Birkhoff recurrence (see Problems (A), (A′) and (A′′), or 2.5,
4.9 and 4.11, respectively), and the second, due to the first author, is about
“moving recurrence” (see Section 6). While the original “moving recurrence”
problem remains open, we provide here a partial answer to a topological ver-
sion of the problem (Theorem 6.4). The paper also contains other new results
on topological recurrence. In particular, in Section 5 we introduce the notion
of r-Birkhoff sets (approximating that of Birkhoff sets) and present some
preliminary results concerning these sets. Finally, in Section 7 we show that
“absolute moving recurrence” is equivalent to uniform rigidity.

For related works see [10], [26], [2], [12], [28], [3], [19], [14] and [4]. A
comprehensive review by Frantzikinakis and McCutcheon on the subject of
recurrence in dynamics is forthcoming [9].

1. A reminder of some preliminary definitions and basic results.
In this work a dynamical system is a pair (X,T ), where X is a compact space
and T : X → X is a homeomorphism of X onto itself. For subsets A and B
of X, we let

N(A,B) = {n ∈ Z : TnA ∩B 6= ∅}.
When A = {x} is a singleton we write N(A,B) = N(x,B), thus

N(x,B) = {n ∈ Z : Tnx ∈ B}.
For a point x ∈ X we write OT (x) = {Tnx : n ∈ Z} for the orbit of
x and ŌT (x) for the closure of OT (x). We say that the system (X,T ) is
point transitive if there is a point x ∈ X with OT (x) dense. Such a point
is called transitive. We say that the system (X,T ) is topologically transitive
(or just transitive) if the set N(U, V ) is nonempty for every pair U and V
of nonempty open subsets of X. Clearly, point transitivity implies topo-
logical transitivity and using Baire’s category theorem one can show that,
conversely, in a topologically transitive metric system the set Xtr of points
whose orbit is dense forms a dense Gδ subset of X. A point x ∈ X is a
recurrent point if the set N(x, U) \ {0} is nonempty for every neighborhood
U of X. A dynamical system is called minimal if every point is transitive.

A dynamical system (X,T ) is equicontinuous if the collection of maps
{Tn : n ∈ Z} is equicontinuous. A minimal equicontinuous system is called
a Kronecker system. We have the following classical theorem:
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1.1. Theorem.

(1) A metrizable dynamical system (X,T ) is equicontinuous if and only
if there is a compatible metric on X with respect to which T is an
isometry.

(2) A dynamical system is Kronecker if and only if it is isomorphic to a
system of the form (G,Ra), where G is a compact monothetic topo-
logical group, a ∈ G is a topological generator (meaning that the
cyclic subgroup {an : n ∈ Z} is dense in G), and the transformation
Ra is defined by Rag = ga.

There exists a largest monothetic compact topological group bZ called
the Bohr compactification of the integers. If we let φ : Z → bZ be the
canonical map φ : Z → bZ, then a = φ(1) is a topological generator of
the group bZ and one can associate to bZ a dynamical system (bZ, Ra) as
above. This system is minimal and equicontinuous, but nonmetrizable. It
is the largest minimal equicontinuous system in the sense that every other
such system is a factor of (bZ, Ra).

For more information on these basic notions of topological dynamics refer
e.g. to Chapter 1 of [13]. In the rest of this work we will assume, unless we
explicitly say otherwise, that our dynamical systems are metrizable.

2. Some families of subsets of Z and a famous open problem.
In order to avoid some tedious repetitions we introduce the notation Z∗ =
Z \ {0}.

2.1. Definition. Let L ⊂ Z∗.
(1) L is a Poincaré set if whenever (X,X, µ, T ) is a probability preserving

system and A ⊂ X is a positive set (i.e. A ∈ X and µ(A) > 0), then
N(A,A) ∩ L 6= ∅. Let Po denote the collection of Poincaré subsets
of Z∗.

(2) It is a Birkhoff set (or a set of topological recurrence) if whenever
(X,T ) is a minimal dynamical system and U ⊂ X a nonempty open
set, then N(U,U)∩L 6= ∅. Let Bir denote the collection of Birkhoff
subsets of Z∗.

(3) It is a Bohr set if whenever (X,T ) is a Kronecker dynamical system
and V ⊂ X a nonempty open set, then N(V, V ) ∩ L 6= ∅. Let Bo
denote the collection of Bohr subsets of Z∗.

2.2. Definition.

(1) A subset F of the power set P of Z∗ is called a family when it is
upwards hereditary. That is, F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F.

(2) If E is any nonempty subset of P, we let F(E) be the smallest family
containing E.
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(3) If E is any nonempty subset of P we let its dual E∗ be defined by

E∗ = {F : F ∩ E 6= ∅ for all E ∈ E}.
It is easy to check that E∗ is a family and that F(E)∗ = E∗. Clearly,
F1 ⊂ F2 ⇒ F∗2 ⊂ F∗1 and finally for a family F = F∗∗.

2.3. Definition.

(1) Let EPo be the collection of all subsets of Z∗ of the form N(A,A),
whenever (X,µ, T ) is a probability preserving system and A ⊂ X is
a positive set (µ(A) > 0). We then have Po = F(EPo)∗ = E∗Po.

(2) Let EBir be the collection of all subsets of Z∗ of the form N(U,U),
whenever (X,T ) is a minimal system and U ⊂ X is a nonempty open
subset of X. We have Bir = F(EBir)∗ = E∗Bir.

(3) Let EBo be the collection of all subsets of Z∗ of the form N(V, V ),
whenever (X,T ) is a Kronecker system and V ⊂ X is a nonempty
open subset of X. We have Bo = F(EBo)∗ = E∗Bo.

2.4. Lemma.

EPo ⊃ EBir ⊃ EBo, whence Po ⊂ Bir ⊂ Bo.

Proof. If (X,T ) is a minimal system then the collection MT (X) of Borel
probability measures on X is never empty and if U ⊂ X is open and
nonempty, then µ(U) > 0 for every µ ∈ MT (X). This implies EPo ⊃ EBir.
The inclusion EBir ⊃ EBo follows trivially from the definitions. Finally, the
last two inclusions follow by duality.

A beautiful result of Kř́ıž [21] (see also [23]) shows that F(EPo) ) F(EBir).

2.5. Problem (A). Is it also true that F(EBir) ) F(EBo)?

2.6. Remark. Since Po = F(EPo)∗ and Bir = F(EBir)∗, Kř́ıž’ result is
the same as the statement Po ( Bir, and Problem (A) is equivalent to the
question whether Bir ( Bo.

Recall that a collection E of subsets of Z is divisible [11] (or has the
Ramsey property [10]) if whenever A is in E and A = C ∪D, then at least
one of the sets C and D is in E.

2.7. Proposition.

(1) The collection EBir forms a filter base; hence F(EBir) is a filter.
(2) The family Bir is divisible.

Proof. Let (X,T ) and (Y, T ) be minimal dynamical systems, and U ⊂ X,
V ⊂ Y nonempty open sets. Let M0 ⊂ X × Y be a minimal subset of the
product system (X×Y, T ×T ). Since clearly the Z2-action defined on X×Y
by the group {T i×T j : (i, j) ∈ Z2} is minimal, there is a pair (i, j) such that
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(T i × T j)M0 ∩ U × V 6= ∅. Set M = (T i × T j)M0 and W = (U × V ) ∩M .
Then the system (M,T × T ) is minimal, the set W is a nonempty open
subset of M , and clearly

N(U,U) ∩N(V, V ) ⊃ N(W,W ).

Thus EBir is indeed a filter base. It follows that F(EBir), which is defined
as the smallest family containing EBir, is a filter. We leave it as an exercise
to show that the dual family of a filter has the Ramsey property (and vice
versa). Therefore Bir = F(EBir)∗ has the Ramsey property.

The proof of the next statement is straightforward.

2.8. Proposition. The families Po and Bo are divisible.

3. Examples

3.1. Examples.

• For every infinite L ⊂ Z the difference set {n−m : m,n ∈ L, n > m}
is a Poincaré set. In fact, this statement is just Poincaré’s recurrence
theorem.
• Let p(t) be a polynomial with real coefficients taking integer values on

the integers and such that p(0) = 0. Then the sequence {p(n)}n≥1 is
Poincaré (see [10, Theorem 3.16]). In particular, the sequence {n2}n≥1

is Poincaré. It is easy to see that the sequence {n2 + 1}n≥1 is not
Poincaré. (Consider a cyclic permutation of three points and observe
that n2 + 1 is not divisible by 3.)
• Every thick set L ⊂ Z is Poincaré [10, p. 74] (see Definition 4.1.2

below). For the reader’s convenience let us reproduce one of the proofs
given in [10]. Let (X,X, µ, T ) be a measure preserving system and
A ∈ X with 0< µ(A). If A is not invariant (i.e. µ(TA4 A) > 0) then
there exists an N ≥ 1 such that µ(

⋃N
j=0 T

jA)>µ(
⋃∞
j=0 T

jA)− µ(A).
Then, for any M ≥ 1,

µ
(M+N⋃
j=M

T jA
)
> µ

( ∞⋃
j=0

T jA
)
− µ(A).

This implies that µ(
⋃M+N
j=M T jA ∩A) > 0, for otherwise

µ
( ∞⋃
j=0

T jA
)
≥ µ(A) + µ

(M+N⋃
j=M

T jA
)
> µ

( ∞⋃
j=0

T jA
)
.

Thus each sufficiently long interval of integers includes an n with
µ(TnA∩A) > 0, and this proves that a thick set is Poincaré. Another
way to see this is to show that every thick set contains an infinite
difference set as in the first example above.
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• Recall that a sequence of integers{nk}∞k=1 is lacunary if lim infk nk+1/nk
> 1. An elegant argument by Y. Katznelson (see [20] or [28, Theorem
5.3]) shows that a lacunary sequence is never Bohr. In fact, there is
a stronger result (answering a question of Erdős in [8]) according to
which for any lacunary sequence of integers {nk}∞k=1, there always ex-
ists an irrational α ∈ R such that infk ‖nkα‖ > 0 (see [25], [22]). (We
write ‖x‖ = mini∈Z |x − i| for the distance of a real number x from
the set of integers.)
• The results in the above example do not extend to slower growing

sequences (see [1], [5]). An increasing sequence of integers {nk}∞k=1
is called sublacunary if limk nk+1/nk = 1. There are various results
([1], [5], [6]) which indicate that for a “generic” sublacunary sequence
{nk}∞k=1 the limits limkN

−1
∑N

k=1 exp(2πi nkα) exist and vanish for
all real α /∈ Z. Such sequences are known to be Poincaré and, in par-
ticular, Bohr. (In the three papers quoted above the term “generic”
has various probabilistic meanings.)

4. A second formulation of the problem

4.1. Definition.

(1) A subset S ⊂ Z is called syndetic if there is a positive integer N
such that S + {0, 1, . . . , N} = Z.

(2) A subset R ⊂ Z is called thick (or replete) if for every positive integer
N there is an n ∈ Z such that {n, n+ 1, n+ 2, . . . , n+N} ⊂ R.

(3) A point x ∈ X, where (X,T ) is a dynamical system, is uniformly
recurrent if N(x, U) is syndetic for every neighborhood U of x. (In
[17] a uniformly recurrent point is called an almost periodic point.)

The following proposition is an easy exercise.

4.2. Proposition. Let S and T denote the families of syndetic and thick
sets respectively. Then S and T are dual families.

We have the following important lemma (see [17]).

4.3. Lemma. Let (X,T ) be a dynamical system and x0 ∈ X. Then
ŌT (x0) is a minimal subset of X if and only if x0 is uniformly recurrent.

Proof. Suppose first that x0 ∈ X has a minimal orbit closure Y =
ŌT (x0). Let U be a neighborhood of x0 in X. By minimality there is an
N ≥ 1 such that Y ⊂

⋃N
j=0 T

jU . Now given n ∈ Z there is some 0 ≤ j ≤ N
with Tnx0 ∈ T jU . Thus Tn−jx0 ∈ U , hence n − j ∈ N(x0, U), hence
n = m+ j for some m ∈ N(x0, U).

Conversely, suppose x0 is uniformly recurrent. Set Y = ŌT (x0) and let
M ⊂ Y be a minimal subset of Y . Suppose M 6= Y ; then x0 6∈ M . Let U
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and V be open subsets of X such that x0 ∈ U , V ⊃ M and U ∩ V = ∅.
Pick some y0 ∈ M . Then the whole orbit of y0 is contained in V and for
every N ≥ 1 we can find nN with TnNx0 sufficiently close to y0 to ensure
that TnNx0, T

nN+1x0, . . . , T
nN+Nx0 are all in V . This argument shows that

the set N(x0, U) is not syndetic, contradicting our assumption that x0 is
uniformly recurrent.

The next three lemmas are well known; see e.g. [12].

4.4. Lemma. Let (X,T ) be a dynamical system, U ⊂ X a nonempty
open subset and x ∈ X. Then N(U,U) ⊃ N(x, U) − N(x, U). If moreover
(X,T ) is minimal then N(U,U) = N(x, U)−N(x, U)

Proof. If Tmx ∈ U and Tnx ∈ U then Tn−mTmx ∈ U , so thatN(U,U) ⊃
N(x, U) − N(x, U). Conversely, if n ∈ N(U,U), there is some y ∈ U with
Tny ∈ U . By minimality there is some m ∈ Z such that Tmx is sufficiently
close to y to ensure that both Tmx ∈ U and TnTmx ∈ U . Then n =
(n+m)−m and both n+m and m are in N(x, U).

4.5. Lemma. If S ⊂ Z is syndetic then there is a minimal system (Y, T )
and an open nonempty U ⊂ Y such that S − S ⊃ N(U,U).

Proof. Let Ω = {0, 1}Z and σ : Ω → Ω be the shift transformation:
(σω)n = ωn+1. Set Y ′ = Ōσ(1S) and U ′ = {ω ∈ Ω : ω0 = 1}. It is not hard
to check that Y ′ contains a minimal subset Y ⊂ Y ′ such that U = Y ∩U ′ is
not empty. If n ∈ N(U,U) = {n : σnU ∩U 6= ∅} then there is a point y0 ∈ U
with σny0 ∈ U . There exists an m ∈ Z such that σm1S is sufficiently close
to y0 to ensure that both σm1S ∈ U ′ and σnσm1S ∈ U ′. Thus both m and
n+m are in S and n = n+m−m is in S − S.

The next lemma follows easily from the characterization of Kronecker
systems given in Theorem 1.1; we leave the details to the reader.

4.6. Lemma. Let (X,T ) be a Kronecker system and V ⊂ X a nonempty
open subset. Then for every point x0 ∈ V there exists an open neighborhood
x0 ∈ V0 ⊂ V such that

N(V, V ) ⊃ N(x0, V ) ⊃ N(V0, V0).

Thus, denoting by E′Bo the collection of subsets of the form N(x, V ), where
(X,T ) is Kronecker , x ∈ X and V is an open neighborhood of x, we have
F(EBo) = F(E′Bo), hence Bo = F(EBo)∗ = E∗Bo = E′∗Bo.

4.7. Definition. Let α = (α1, . . . , αk), a finite sequence of real num-
bers, and ε > 0 be given. Set

B(α1, . . . , αk; ε) = {n ∈ Z : ‖nα‖ < ε}.
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Here α is considered as an element of the k-torus, Tk = (R/Z)k, and for x ∈
Rk, ‖x‖ denotes the Euclidian distance of x from Zk. We say that a subset
B of Z is a Bohr neighborhood of zero if it contains some B(α1, . . . , αk; ε).

Since by Kronecker’s theorem the equicontinuous dynamical system
(Tk, T ), where Tx = x + α (mod 1) with {1, α1, . . . , αk} independent over
the rational numbers, is a minimal system, it follows that every Bohr neigh-
borhood of zero is in F(EBo). (Take V = Bε(0) ⊂ Tk, so that B(α1, . . . , αk; ε)
= N(0, V ).) Since for every Kronecker system, factors of the form (Tk, Rα)
and finite cyclic permutations separate points, this leads to the follow-
ing characterizations of Bohr neighborhoods of zero. (For more details see
e.g. [13].)

4.8. Proposition. The following conditions on a subset B ⊂ Z are
equivalent :

(1) B is a Bohr neighborhood of zero.
(2) B is in F(EBo); that is, B contains a subset of the form N(V, V )

where (X,T ) is a Kronecker system and V a nonempty open subset
of X.

(3) clsφ(B) is a neighborhood of the zero element in the compact mono-
thetic group bZ. Here bZ is the Bohr compactification of the integers
and φ : Z→ bZ is the natural embedding.

4.9. Problem (A′). Given a syndetic subset S ⊂ Z, is S − S a Bohr
neighborhood of zero? That is, is there a set B = B(α1, . . . , αk; ε) with
S − S ⊃ B?

The following assertion is well known but we provide a proof for com-
pleteness.

Claim. Problem (A′) is a reformulation of Problem (A).

Proof. To see this assume first that the answer to Problem (A′) is in the
affirmative. Let (X,T ) be a minimal system and U ⊂ X a nonempty open
subset. Then, by Lemma 4.4, N(U,U) = S − S, where S = N(x0, U) for
some (any) x0 ∈ X. By Lemma 4.3, S is syndetic and by our assumption
S − S and therefore also N(U,U) contain a Bohr neighborhood of zero. By
Proposition 4.8 we conclude that every N(U,U), i.e. every member of EBir,
contains a member of EBo, whence F(EBir) = F(EBo), and Bir = Bo (see
Remark 2.6 above).

Conversely, assume now that Bir = Bo, and let S ⊂ Z be a syndetic
subset. By Lemma 4.5, S − S contains a set of the form N(U,U) for some
minimal system (X,T ) and an open nonempty U ⊂ X. If the set S−S is not
a Bohr neighborhood of zero then, for every Kronecker system (Y, T ) and
nonempty open V ⊂ Y , N(V, V ) ∩ N(U,U)c 6= ∅, and therefore N(U,U)c
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is in Bo. This contradicts our assumption since N(U,U) ∩ N(U,U)c = ∅
implies that N(U,U)c is not in Bir.

We do have the following facts:

4.10. Theorem. Let S ⊂ Z be a syndetic subset.

(1) (Veech [27]) There exists a Bohr neighborhood of zero B such that
(S − S)4B is a subset of upper Banach density zero.

(2) (Ellis and Keynes [7]) There exists a Bohr neighborhood of zero B
with S − S + S − s ⊃ B for some s ∈ S.

Recall that a topological group G is called minimally almost periodic
(MAP) if it admits no nontrivial continuous homomorphism into a compact
group. Or, equivalently, if it admits no nontrivial minimal equicontinuous
action on a compact space. There are many examples of MAP monothetic
Polish groups (see e.g. [1]). A topological group G has the fixed point on
compacta property (FPC) if every compact G-dynamical system has a fixed
point; see [18] and [12]. Some authors call this property extreme amenability.
Recently, the theory of Polish groups with the fixed point on compacta
property received a lot of attention and new and exciting connections with
other branches of mathematics (like Ramsey theory, Gromov’s theory of
mm-spaces, and concentration of measure phenomena) were discovered; see
V. Pestov’s book [24]. In [12] it is shown that the Polish group G of all
measurable functions f from a nonatomic Lebesgue measure space (Ω,B,m)
into the circle {z ∈ C : |z| = 1}, with pointwise product and the topology of
convergence in measure, is monothetic and has the FPC property. Of course,
every topological group with the FPC property is also MAP. The following
problem is posed in [12].

4.11. Problem (A′′). Is there a Polish monothetic group which is MAP
but does not have the fixed point on compacta property?

It is shown there that a positive answer to Problem (A′′) would provide
a negative answer to Problem (A′).

5. More on topological recurrence. Let (X,T ) be a dynamical sys-
tem, where X is a compact metrizable space and T : X → X is a homeo-
morphism of X onto itself. We fix a compatible metric d on X. Recall the
following familiar definition. A point x ∈ X is recurrent if for every ε > 0
there is an n ∈ Z \ {0} with d(Tnx, x) < ε. Equivalently, setting

φ(x) = inf{d(Tnx, x) : n ∈ Z \ {0}},
we see that x is recurrent iff φ(x) = 0. More generally, given an infinite
subset L ⊂ Z \ {0}, set

φL(x) = inf{d(Tnx, x) : n ∈ L},
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and call a point x ∈ X, L-recurrent when φL(x) = 0. Let us remark that the
role of the metric d in these definitions is not essential. It is not hard to show
that although the functions φL usually depend on the choice of a compatible
metric d, the sets of L-recurrent points do not. We say that a subset A ⊂ X
is wandering if there is an infinite set J ⊂ Z such that the sets T jA, j ∈ J ,
are pairwise disjoint. We say that the system (X,T ) is nonwandering if X
contains no nonempty wandering open subsets. Following Furstenberg, [10,
Theorem 1.27], we have:

5.1. Theorem.

(1) The function φL is upper-semicontinuous.
(2) The set of L-recurrent points is a Gδ subset of X.
(3) If (X,T ) is nonwandering then the set of recurrent points is a dense

Gδ subset of X.
(4) If there is a T -invariant probability measure µ on X with full support

(i.e. µ(U) > 0 for every nonempty open U) and L is a Poincaré set
then the set of L-recurrent points is a dense Gδ subset of X.

(5) If (X,T ) is minimal and L is a Birkhoff set then the set of L-
recurrent points is a dense Gδ subset of X.

Proof. We leave the proofs of claims (1) and (2) as an exercise. For (3)
see Furstenberg [10, Theorem 1.27] (or adapt the following proof). For the
proof of claim (4) we first recall that an upper-semicontinuous function on
X has a dense Gδ set of continuity points. Let XL ⊂ X be the dense Gδ
set of continuity points of φL. Suppose φL(x0) = a > 0 for some x0 ∈ XL.
Then, by continuity, there is a 0 < δ < a/4 such that φL(x) > a/2 for every
x is an open ball U of radius δ around x0. Since µ(U) > 0 and L is Poincaré
we have L ∩ N(U,U) 6= ∅. For n in this intersection there are u1, u2 ∈ U
with Tnu1 = u2, hence d(u1, T

nu1) < a/2. In particular, φL(u1) < a/2.
This contradicts our choice of U and we conclude that φL(x) = 0 for every
x ∈ XL. This completes the proof of claim (4). A similar argument will
prove claim (5).

In the next two theorems we establish several characterizations of
Birkhoff sets. We will use the following lemma which is valid for every min-
imal system.

5.2. Lemma. Let (X,T ) be a minimal system and let η > 0 be given.
Then there exists a positive integer M ≥ 1 such that for every x ∈ X the set
{T jx}Mj=0 is η-dense in X; that is, for every x′ ∈ X there is some 0 ≤ j ≤M
with d(x′, T jx) < η.

Proof. Assuming the contrary we would have, for each n, points xn, yn∈X
such that Bη(yn) ∩ {T jxn}nj=0 = ∅. By compactness there are convergent
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subsequences, say xnj → x and ynj → y. By minimality there is a posi-
tive m ≥ 1 such that d(Tmx, y) < η/3. We now choose j so large that: (i)
nj > m, (ii) d(y, ynj ) < η/3, and (iii) xnj is sufficiently close to x to ensure
that d(Tmxnj , T

mx) < η/3. With this choice of j we now have

d(Tmxnj , ynj )<d(Tmxnj , T
mx)+d(Tmx, y)+d(y, ynj )<η/3+η/3+η/3 = η.

Since nj > m, this contradicts the choice of xnj and ynj .

5.3. Theorem. The following conditions on a subset L ⊂ Z∗ are equiv-
alent :

(1) L is Birkhoff.
(2) L ∩ (S − S) 6= ∅ for every syndetic subset S ⊂ Z.
(3) For every minimal dynamical system (X,T ), the set of L-recurrent

points is dense and Gδ.
(4) For every dynamical system (X,T ) and ε > 0 there are x ∈ X and

m ∈ L with d(Tmx, x) < ε.

Proof. From Lemmas 4.4 and 4.5 we easily deduce the equivalence of
properties (1) and (2). The implication (1)⇒(3) is proven in Theorem 5.1.5.
Next assume (3). Given a minimal system (X,T ) and a nonempty open
subset U ⊂ X we clearly have L∩N(U,U) 6= ∅, whence L is Birkhoff. Thus
(3)⇒(1).

As every dynamical system has a minimal subsystem we clearly have
(3)⇒(4). Finally, we show that (4) implies (3). Let (X,T ) be a minimal
system. For ε > 0 set

VL(ε) = {x ∈ X : ∃m ∈ L with d(Tmx, x) < ε}.
Clearly, VL(ε) is open and assuming (4) we know that it is nonempty. Given
η > 0 there is, by Lemma 5.2, an M ≥ 1 such that for every x ∈ X
the set {T ix}Mi=0 is η-dense. Let δ > 0 be such that d(x, x′) < δ implies
d(T ix, T ix′) < ε for every 0 ≤ i ≤M . It now follows that for every x ∈ VL(δ),
we have {T ix}Mi=0 ⊂ VL(ε), and consequently, that VL(ε) is η-dense. Since η
is arbitrary, we conclude that VL(ε) is dense. By Baire’s theorem we conclude
that X0 =

⋂
ε>0 VL(ε) is a dense Gδ subset of X. Clearly, every x ∈ X0 is

L-recurrent.

In order to achieve additional characterizations for Birkhoff sets we in-
troduce the following definition. For r ∈ N we define Nr = {1, . . . , r}.

5.4. Definition. Let r ∈ N. A subset L ⊂ Z∗ is said to be r-Birkhoff
(notation: L ∈ Birr) if the following two equivalent conditions hold:

(1) For every sequence {zi}i∈Z over Nr, there are m ∈ L and i ∈ Z such
that zi = zi+m.

(2) For every coloring c : Z→ Nr there are i, j ∈ Z with c(i) = c(j) and
i− j ∈ L.
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5.5. Remark. In the above definition one can replace Z by N.

5.6. Theorem. The following conditions on a subset L ⊂ Z∗ are equiv-
alent :

(1) L is Birkhoff.
(2) For any compact metric space (Z, d), every sequence {zi}i∈Z with

zi ∈ Z, and every ε > 0, there are m ∈ L and i ∈ Z such that
d(zi, zi+m) < ε.

(3) L is r-Birkhoff for all r ∈ N.

Thus, by the above theorem, Bir =
⋂
r∈N Birr.

Proof. (1)⇒(2): Suppose L is Birkhoff and let Y = ŌT (ζ), where Ω =
ZZ, T : Ω → Ω is the shift and the element ζ ∈ Ω is defined by ζ(i) = zi.
Let M ⊂ Y be a minimal subset. Applying Theorem 5.3 we see that there
is a point x ∈M ⊂ Y which is L-recurrent. Fix a compatible metric ρ on Ω
and let 0 < δ be such that ρ(ω, ω′) < δ implies d(ω(0), ω′(0)) < ε. Let m ∈ L
be such that d(Tmx, x) < δ. Let i ∈ Z be chosen so that T iζ is sufficiently
close to x to ensure that also ρ(TmT iζ, T iζ) < δ. By our choice of δ we have
d(zm+i, zi) = d(ζ(m+ i), ζ(i)) < ε.

(2)⇒(3): Take Z = Nr = {1, . . . , r}. Let d(i, j) = δij for i, j ∈ Nr and
take ε = 1/2. Then d(zi, zi+m) < ε implies zi = zi+m.

(3)⇒(1): We will show that condition (4) in Theorem 5.3 is satisfied.
So let a minimal system (X,T ) and ε > 0 be given. Let {Vi}ri=1 be an open
cover of X by balls of radius ε/2. Fix x0 ∈ X and choose a sequence zi ∈ Nr

such that T ix0 ∈ Uzi for every i ∈ Z. By (3) we have m ∈ L and i ∈ Z
such that zm+i = zi = j, whence T ix0 and Tm+ix0 are both in Uj . Thus
d(TmT ix0, T

ix0) < ε, and taking x = T ix0 we have the required x.

5.7. Remark. The last condition in Theorem 5.6 can be formulated as
a coloring property: For every r and every coloring c : Z→ {1, . . . , r} there
are i, j ∈ Z with c(i) = c(j) and i − j ∈ L. See [28] for a graph-theoretical
interpretation of this coloring property.

We will now consider some basic properties of r-Birkhoff sets. We leave
the first statement as an easy exercise.

5.8. Proposition (A compactness principle). For r≥1, every r-Birkhoff
set contains a finite r-Birkhoff subset.

For any r ∈ N, each of the sets kNr = {k, 2k, . . . , rk}, k ∈ N, is
r-Birkhoff. Indeed, let (zi) be an arbitrary sequence in Nr. Since card(kNr+1)
= r + 1 > r = card(Nr), there are i, j ∈ kNr+1, i 6= j, such that zi = zj .
Assuming, with no loss of generality, that m = j − i > 0, we get zi = zi+m
with some m ∈ kNr, completing the proof (see Definition 5.4(1)).
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On the other hand, for finite subsets M ⊂ Z∗ the following implication
holds:

card(M) = r ≥ 1 ⇒ M /∈ Birr+1.

Indeed, with no loss of generality we may assume that M ⊂ N (by replacing
M with the set (M ∪ (−M)) ∩ N). Construct a sequence {zi}i∈Z over the
set Nr+1 = {1, . . . , r + 1} as follows. For i ≤ 0, set zi = 1; for i ≥ 1, set
inductively

zi = minXi, where Xi = {x ∈ Nr+1 : x 6= zi−m for all m ∈M}.
(Clearly, Xi 6= ∅ for i ≥ 1, because card(M) = r < r+ 1 = card(Nr+1).) The
above construction implies that zi = zi+m has no solutions in i ∈ N and
m ∈M . It follows that M /∈ Birr+1 (see Definition 5.4 and the subsequent
remark).

We conclude that the sets kNr = {k, 2k, . . . , rk}, k, r ∈ N, provide ex-
amples of r-Birkhoff sets which are not (r + 1)-Birkhoff. More refined ex-
amples will be provided next (see (5.1) below).

5.9. Definition. A subsetM ⊂ Z∗ is called stably r-Birkhoff (notation:
M ∈ Bir′r) if for every finite subset F ⊂ Z, the difference set M \ F is
r-Birkhoff.

Define the sets

(5.1) Lr = {n(r + 2)k : n ∈ {1, . . . , r}, k ≥ 0} ⊂ N for r ∈ N.
We claim that, for every r ≥ 2, the set Lr is:

(a) lacunary;
(b) stably r-Birkhoff;
(c) not (r + 1)-Birkhoff.

The fact that Lr is lacunary is clear. In fact, if {x1 < x2 < · · · } is the
linear ordering of Lr, then mink≥1 xk+1/xk = r/(r − 1) for r ≥ 2.

The set Lr is stably r-Birkhoff because Lr can be represented as a disjoint
infinite union Lr =

⋃
k≥0 Lr,k where each Lr,k = (r+ 2)kNr is r-Birkhoff (as

proved earlier).
Finally, to prove that Lr is not (r+1)-Birkhoff, define a sequence {zk}k∈Z

over Nr+1 by the condition zi ≡ i (mod r+ 1). We claim that zi = zi+m has
no solution in m ∈ Lr and i ∈ Z. Indeed, otherwise

i ≡ i+m (mod r + 1) ⇒ m ≡ 0 (mod r + 1) ⇒ m

r + 1
∈ Z,

which is impossible (see (5.1)). This completes the proof that Lr /∈ Birr+1

(see Definition 5.4(1)).
The fact that the sets Lr ∈ Bir′r are lacunary should be compared with

the fact that no set in Bo (which by Lemma 2.4 contains Bir) is lacunary
(see the examples in Section 3).
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6. The moving recurrence problem. The following question was
recently posed by Boshernitzan, and is still open.

6.1. Problem (B). Let (X,T ) be a dynamical system, µ ∈ MT (X)
a T -invariant probability measure on X and (nk) an infinite sequence of
integers. Define

ψ(nk)(x) = inf
k≥1

d(Tnkx, Tnk+kx).

Is it true that ψ(nk)(x) = 0, µ-a.e.?

In this section we prove a topological analogue using the tools developed
in the previous sections.

6.2. Definition. For a sequence (nk) of elements of Z, let

ψ(nk)(x) = inf
k≥1

d(Tnk+kx, Tnkx).

More generally, given two sequences (nk) and (rk) of elements of Z, let

ψ(nk,rk)(x) = inf
k≥1

d(Tnk+rkx, Tnkx).

We say that a point x ∈ X is (nk)-moving recurrent if ψ(nk)(x) = 0. It is
(nk, rk)-moving recurrent when ψ(nk,rk)(x) = 0. Note that ψ(nk) = ψ(nk,k).

Again we have:

6.3. Lemma. The function ψ(nk,rk) is upper-semicontinuous and the set
of (nk, rk)-moving recurrent points is a Gδ subset of X.

6.4. Theorem. Let (rk) be a Birkhoff set. Then for every sequence (nk)
and every minimal dynamical system (X,T ), the set of (nk, rk)-moving re-
current points is dense and Gδ. In particular , taking rk = k we see that
for every minimal dynamical system (X,T ) the set of (nk)-moving recurrent
points is dense and Gδ.

Proof.

Step 1. Let X0 ⊂ X denote the dense Gδ set of continuity points of
ψ(nk,rk) (Lemma 6.3). Let x0 ∈ X0 and assume that ψ(nk,rk)(x0) = 2ε > 0.
Since x0 is a continuity point we can find a ball U around x0 such that
ψ(nk,rk)(x) > ε for every x ∈ U .

Step 2. We will show that the set

V (ε) = {x ∈ X : ψ(nk,rk)(x) < ε}
is dense.

Fix η > 0 and use Lemma 5.2 to find M ≥ 1 such that for every x ∈ X
the set {T jx}Mj=0 is η-dense in X. Then choose δ > 0 such that d(x, x′) < δ

implies d(T jx, T jx′) < ε for every 0 ≤ j ≤M .
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Next observe that there exist x∈X and k≥1 with d(Tnk+rkx, Tnkx)< δ.
In fact, since (rk) is Birkhoff, we can (applying Theorem 5.3) pick an (rk)-
recurrent point x′ ∈ X and then find k ≥ 1 with d(T rkx′, x′) < δ. Set
x = T−nkx′, so that x′ = Tnkx and

d(Tnk+rkx, Tnkx) = d(T rkx′, x′) < δ.

Now, by the choice of δ, we have

d(Tnk+rkT jx, TnkT jx) < ε for all 0 ≤ j ≤M.

Thus ψ(nk,rk)(T jx) < ε for all 0 ≤ j ≤ M and we conclude that V (ε) is
η-dense. As this holds for every η > 0 we conclude that V (ε) is dense.

Step 3. Now with U as in Step 1 we have U ∩V (ε) 6= ∅ and we reached
the contradiction ε < ψ(nk,rk)(x) < ε for any point x in this intersection.
Since the assumption ψ(nk,rk)(x0) > 0 leads to a contradiction we conclude
that ψ(nk,rk)(x0) = 0 for every x0 ∈ X0, as required.

Recall the following definition from [16].

6.5. Definition. A dynamical system (X,T ) is called an M -system if
(i) it is topologically transitive, and (ii) the union of the minimal subsystems
of X is dense in X.

The class of M -systems is very large, e.g. it contains every infinite topo-
logically transitive system with a dense set of periodic points. (The latter
systems are called chaotic in the sense of Devaney, or P -systems.)

6.6. Corollary. Let (X,T ) be an M -system and (nk) an infinite se-
quence in Z. Then there is a dense Gδ subset X0 ⊂ X such that ψ(nk)(x) = 0
for every x ∈ X0. In particular , the set Xtr ∩X0 of (nk)-moving recurrent
transitive points is a dense Gδ subset of X.

Proof. The set X0 = {x ∈ X : ψ(nk)(x) = 0} is a Gδ subset of X.
By Theorem 6.4 for every minimal subset M ⊂ X the set M0 = M ∩ X0

is a dense Gδ subset of M . Thus
⋃
{M0 : M is a minimal subset of X} ⊂

X0 is dense in
⋃
{M : M is a minimal subset of X}. In turn, the latter is

dense in X and it follows that X0 is dense in X. Finally, as the set Xtr of
transitive points in an M -system is always dense and Gδ we conclude that
so is Xtr ∩X0.

7. Absolute moving recurrence

7.1. Definition. We will say that a system (X,T ) is absolutely moving
recurrent if for every infinite sequence (nk) ⊂ Z we have ψ(nk) ≡ 0 (i.e. every
point of X is (nk)-moving recurrent).

Recall the following definition from [15]:
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7.2. Definition. A dynamical system (X,T ) is called uniformly rigid
if there exists a sequence mi ↗∞ in Z such that

lim
i→∞

sup
x∈X

d(x, Tmix) = 0.

For any dynamical system (X,T ) let

Λ(X,T ) = unif-cls {Tn : n ∈ Z} ⊂ Homeo(X)

be the uniform closure of the powers of T in the Polish group Homeo(X).
Of course, Λ(X,T ) is a Polish monothetic group, and the system (X,T ) is
uniformly rigid iff Λ(X,T ) is not discrete.

7.3. Theorem. A topologically transitive dynamical system (X,T ) is
absolutely moving recurrent if and only if it is uniformly rigid.

Proof. Suppose first that (X,T ) is uniformly rigid with Tmi
unif−→ Id. Let

(nk) ⊂ Z be an arbitrary infinite sequence. Then for every ε > 0 there exists
an i0 such that for i > i0, d(Tmix, x) < ε for every x ∈ X. In particular
then,

d(Tnmi+mix, Tnmix) = d(Tmi(Tnmix), Tnmix) < ε.

Thus, lim infk d(Tnk+kx, Tnkx) = 0 for every x ∈ X, and we have shown that
(X,T ) is absolutely moving recurrent. (Note that topological transitivity is
not needed in this direction.)

Conversely, suppose (X,T ) is not uniformly rigid, that is,

∃ε0 > 0 ∀k ≥ 1 ∃xk ∈ X d(T kxk, xk) > ε0.

Fix x0 ∈ Xtr and for each k choose nk ∈ N such that Tnkx0 is sufficiently
close to xk to ensure that also d(Tnk+kx0, T

nkx0) = d(T kTnkx0, T
nkx0)

> ε0. For the sequence (nk) we have ψ(nk)(x0) ≥ ε0, hence (X,T ) is not
absolutely moving recurrent.
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