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Abstract. For a family of maps

fd(p) = 1− (1− p/d)d, d ∈ [2,∞], p ∈ [0, 1].

we analyze the speed of convergence (including constants) to the globally attracting neu-
tral fixed point p = 0. The study is motivated by a problem in the optimization of routing.

The aim of this paper is twofold: (1) to extend the usage of dynamical systems to
unexplored areas of algorithms and (2) to provide a toolbox for a precise analysis of the
iterates near a non-degenerate neutral fixed point.

1. Reaching out. Dynamical systems initiated by Henri Poincaré in [9]
were first developed for the study of physical systems described by (ordi-
nary) differential equations, then evolved to include discrete iterations, par-
tial differential equations, then by the concept of ergodicity to probabilistic
systems including some number theory problems, by the notion of partitions
to symbolic systems, and by extending the concept of time to (sub)groups to
lattices and other algebraic systems. Whenever someone speaks of evolution
of sorts the dynamical systems people get excited and start looking for new
openings.

One such opening, not too crowded yet, is the area of diverse and in-
teresting problems in algorithms and data structures, say in random graphs
theory. Problems arise when the construction is made of layers and the phe-
nomena on the next layer depend on the previous one. The questions in-
clude estimating probabilities, weights of specific subgraphs, reconstruction
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of trees, optimizing weights and modeling optimal connections with recursive
algorithms [4, 5].

From the ivory tower vantage point these problems are finite and usually
there is an existential proof of a solution and thus they present no motiva-
tion for further studies. But the existence of a solution and its effectiveness
in practice are quite different issues. We present here a technical toolbox
which can be used in estimating the speed of convergence of the surviving
probability of a particle in a random graph, a problem which evolved from
a heuristic optimization of an assignment problem.

In this context an evolution equation appears which leads to a globally at-
tracting fixed point. This could kill any dynamical appeal, but the attractor
is neutral and the problem of the speed of convergence, including constants,
may be of a practical interest. Strong and robust tools exist for hyperbolic
cases, but the structurally unstable neutral situation which marks a transi-
tion from one stable regime to another is more subtle. In such cases there
is an interest in considerable accuracy of the rate of convergence/divergence
which includes the estimates of the constants involved in the asymptotic
behavior.

1.1. Neutral attractors. The aim of this paper is to analyze the behavior
of the sequences which are given recursively as iterations of the functions
with a neutral fixed point. More precisely we consider the family of functions
fd : R+ → [0, 1] given by

fd(p) = 1− (1− p/d)d, d ≥ 2, p ∈ [0, d).

The case d =∞ is included as f∞(p) = 1− exp(−p), and in all subsequent
results in this case one takes first the limit d → ∞ and then performs the
calculations.

An isolated neutral (non-hyperbolic) fixed point x of a map f fulfills
two conditions: first f(x) = x and then |f ′(x)| = 1 (in higher dimensions
one may require that the spectrum of Df(x) lies on the unit circle). As
opposed to hyperbolic repellers, attractors and saddles, the behavior of the
iterates near a neutral point is governed not by the linear approximation
(value of the derivative at the fixed point) but by higher order terms in
the expansion of the map. In particular, the speed of escape or convergence
in the neighborhood of a neutral fixed point is not exponential but rather
polynomial in nature. In a typical situation when the difference equation is
xn+1 = xn − xmn for m > 1 we have xn ≈ (a + bn)−1/(m−1), which follows
from the comparison with the differential equation dx = −xmdt.

The study of neutral fixed points is not very much developed. They are
considered non-typical, in the sense that a small general perturbation of the
map makes them hyperbolic. There is a classification of neutral points for
holomorphic maps of the complex plane [7], some sporadic results in low (1,
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2 and 3) dimensional dynamics and some results concerning the saddle-node
bifurcations and funneling effects for a class of differential equations [1].

For the family of maps fd in this paper we were motivated by an opti-
mization problem, which we will sketch in the Appendix, which deals with
particles competing for a route in a special layered graph and the proba-
bilities of a particle to arrive in the kth layer. There is a way to solve this
optimization, which leads to a bound of order 2/(k + 1). Our intention is
make the bound more precise and to pave the way for a broader approach,
useful hopefully in other classes of problems as well, where the values of
interest form a sequence of iterates of the map fd.

1.2. Main result. For d ≥ 2 and p ∈ [0, d] define

fd(p) = 1− (1− p/d)d,

and with p−1 = d and p0 = 1,

pk = fd(pk−1).

Our main result is to provide the following bounds:

Theorem.

(1) For k ≥ 1 and d ∈ {2, 3} ∪ [4,∞] we have(
1− 3

ln k + 1

)
α

k + β
≤ pk ≤

α

k + β
.

(2) There exists a positive bounded (uniformly in d) sequence εk such that

pk =
α

k + εk ln k
.

Here

α = α(d) =
2d
d− 1

,(1.1)

β = β(d) =
d+ 1
d− 1

, β = α− 1,(1.2)

and for later use define

γ = γ(d) =
3d
d− 2

, d > 2.(1.3)

Remark 1.1. We shall need the Taylor expansion up to the third term
only. The argument we are using works for d = 2, 3 (finite expansions) or
for d ≥ 4 (to have a good remainder estimate). We will skip the details for
d ∈ (2, 3) ∪ (3, 4).

Our approach can be applied to any C3 function which satisfies conditions
(2.1) and (2.2) below with positive α and γ, but the statement of the results
would have to be reformulated carefully to indicate the role of the constants.
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2. Basic properties of iterations and technical lemmata

2.1. Basic properties of fd. For each 2 ≤ d ≤ ∞ the map fd is positive
on (0, d) and for every integer 1 ≤ m ≤ d the mth derivative f (m)(p) has a
constant sign (−1)m+1 on (0, d). The following properties follow immediately
by calculation:

(1) fd(0) = 0, fd(d) = 1, f ′d(0) = 1.
(2) Define

Om(p) =
∣∣∣∣f (m)(p)

m!

∣∣∣∣ =
1
m!

∣∣∣∣(−1)m+1

(
1− p

d

)d−m m−1∏
i=0

d− i
d

∣∣∣∣
=

6
m!

(
1− p

d

)d−3d− 1
2d

d− 2
3d

m−1∏
i=3

d− i
d− p

.

Then for p ∈ (0, 1) we have Om(p) ∈
(
0, 6

αγm!

)
. In particular, for

m = 4 we have

Om(p) =
1

4αγ

(
1− p

d

)d−3 d− 3
d− p

≥ d− 3
4d

1
αγ

e−p.

We have used ex ≥ 1 + x with x = p/(d− p).
(3) For 0 < m < d, f (m)

d (d) = 0.
(4) By Taylor expansion, for some ξ ∈ (0, p),

fd(p) =
m−1∑
i=1

(−1)i+1 p
i

i!

i−1∏
j=0

(
1− j

d

)
+
f (m)(ξ)
m!

pm

=
m−1∑
i=1

(−1)i+1 p
i

i!

i−1∏
j=1

(
1− j

d

)
+ (−1)m+1Om(ξ)pm

where Om(ξ) < Om(p).
(5) For p ∈ (0, d),

fd(p) ≤
m−1∑
i=1

(−1)i+1 p
i

i!

i−1∏
j=0

(
1− j

d

)
for even m,

fd(p) ≥
m−1∑
i=1

(−1)i+1 p
i

i!

i−1∏
j=0

(
1− j

d

)
for odd m.

(6) In particular, as d ≥ 2, for 0 < p < d, using (1.1) and (1.2) we have
fd(p) < p and
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fd(p) ≥ p−
d− 1

2d
p2 = p− p2

α
=: l(p),(2.1)

fd(p) ≤ p−
d− 1

2d
p2 +

(d− 1)(d− 2)
6d2

p3 = p− p2

α
+
p3

αγ
=: u(p).(2.2)

Obviously fd([0, d]) = [0, 1] and as fd is increasing we can trap each
element of the trajectory of any point between two consecutive elements of
the trajectory of p = 1.

Lemma 2.1 (Technicalities 1). For all d ∈ (1,∞] and k ≥ 1,

1
k + β

− 1
(k + β)2

+
α

γ

1
(k + β)3

≤ 1
k + 1 + β

, or in other words,

1
k + d+1

d−1

− 1(
k + d+1

d−1

)2 +
2(d− 2)
3(d− 1)

1(
k + d+1

d−1

)3 ≤ 1
k + 1 + d+1

d−1

.

Proof. Define

(2.3) ∆ = ∆k(d) = k + β = k +
d+ 1
d− 1

.

As we have

1
1 +∆

− 1
∆

+
1
∆2

=
∆2 −∆(1 +∆) + (1 +∆)

∆2(1 +∆)
=

1
∆2(1 +∆)

,

we need to prove that

2(d− 2)
3(d− 1)

1
∆3
≤ 1
∆2(1 +∆)

,

that is,

3(d− 1)∆− 2(d− 2)(∆+ 1) = (d+ 1)∆− 2(d− 2) ≥ 0.

Indeed,

(d+ 1)∆− 2(d− 2) =
(d2 − 1)k + (d+ 1)2 − 2(d− 2)(d− 1)

d− 1

=
(k − 1)(d2 − 1) + 8(d− 1) + 3

d− 1
> 0

as k ≥ 1 and d > 1.

For the second bound we want to estimate 1/f(p) by 1/p+ 1/α+ b(p)p
with a bounded b(p) which we define accordingly:

(2.4) b(p) =
1
p

(
1

f(p)
− 1
p
− 1
α

)
.
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Lemma 2.2 (Further approximation). The function b(p) is positive and
bounded away from 0 and infinity uniformly in p ∈ [0, 1] and d ≥ 2. In
particular , the limit b(0) > 0 exists.

Proof. We use Taylor expansion (2.1) and the definition (2.2) of u(p):
f(p) = u(p)−Op4 for O = O4(ξ) ∈

(
d−3
4d

1
αγ e
−p, 1

4αγ

)
. We have

b(p) =
1

αp2f(p)
(αp− (α+ p)f(p))

=
1

αp2f(p)

(
αp− (α+ p)

(
p− p2

α
+
p3

αγ
− p4O

))
=

1
αp2f(p)

(
αp− αp+ p2 − p3

γ
− p2 +

p3

α
+
(
αO − 1

αγ

)
p4 +Op5

)
=

1

αp3
(
1− p

α + p2

αγ −Op3
) p3

(
(γ − α)− p

αγ
+ αOp+Op2

)
.

As γ − α = d(d+1)
(d−1)(d−2) ≥ 1 that shows that b(p) > 0 for all p. From the

bounds on O we get

1
336

<
(γ − α)− p+ d−3

4d e
−pp(α+ p)

α
(
αγ − γp+ p2 − d−3

4d e
−pp3

) < b(p)

<
(γ − α)− p+ αp+p2

4

α
(
αγ − γp+ p2 − p3

4

) < 5
6
.

Numerical estimations are closer to 1/30 ≤ b(p) ≤ 1/8.

Lemma 2.3 (Technicalities 2). For q0 > 0, a > 0 and a bounded sequence
bn > 0 define

qn+1 = qn + a+ bn/qn.

Then there exists a bounded sequence cn > 0 such that

qn = na+ cn ln(1 + na/q0).

Proof. Let b < bn < B. We have qn+1 > qn + a and hence qn > q0 + na.
Thus ∑

k<n

bk
qk

< B
∑
k<n

1
q0 + ka

< B ln
q0 + na

q0
.

Hence

qn = q0 + na+
∑
k≤n

bk
qk
≤ q0 + na+B ln

q0 + na

q0
.
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We can use it again to get

qn > q0 + na+
∑
k<n

bk

q0 + ka+B ln q0+ka
q0

> q0 + na+
∑
k<n

bk

(
1

q0 + ka+B ln q0+ka
q0

− 1
q0 + ka

)
+
∑
k<n

bk
q0 + ka

≥ q0 + na+ b ln
q0 + (n− 1)a

q0
−
∑
k<∞

B ln q0+ka
q0(

q0 + ka+B ln q0+ka
q0

)
(q0 + ka)

≥ q0 + na+ b ln
q0 + (n− 1)a

q0
− const.

That means that the sequence cn = (qn − q0 − na)/ ln
(
1 + a

q0
n
)
is bounded.

We adjust it to cover small ns where the last estimate may be negative.

3. The bounds in the Theorem. Fix d, set p0 = 1 and define pk+1 =
fd(pk) for integers 0 ≤ k < d. As 0 < f(p) < p < d the sequence pk is
decreasing. We are interested in the asymptotic behavior of pk as k → d and
d→∞.

First we prove:

Proposition 3.1 (The upper bound). For d ≥ 2,

pk ≤
α

k + β
.

The numbers α and β were defined in (1.1) and (1.2).

Proof. Let

u(p) = ud(p) = p− d− 1
2d

p2 +
(d− 1)(d− 2)

6d2
p3

if d <∞, and u∞(p) = p− 1
2p

2 + 1
6p

3. For p ≤ 1 the function u is increasing
as u′(p) > 1 − (d− 1)p/d ≥ 1/d. (In fact, for d ≥ 3 we have u′(p) ≥ 0
for all p.) By (2.2) we have f(p) < u(p) for 0 < p < d. Let u0 = 1 and
uk+1 = u(uk). Then inductively pk ≤ uk, as

pk+1 = f(pk) ≤ u(pk) ≤ u(uk) = uk+1.

It is therefore enough to prove uk ≤ α
k+β . We check for k = 0 and k = 1.

First we get u0 = 1 ≤ 2d
d+1 = α

0+β , as d ≥ 1. Then

u1 = u(u0) = 1− d− 1
2d

+
(d− 1)(d− 2)

6d2
=

6d2 − 3d(d− 1) + (d− 1)(d− 2)
6d2

=
2d2 + 1

3d2
< 1 =

2d
d− 1 + d+ 1

=
α

1 + β
.
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Next for k ≥ 1 we use induction and Lemma 2.1:

uk+1 = u(uk) ≤ u
(

α

k + β

)
=

α

k + β
− d− 1

2d

(
α

k + β

)2

+
(d− 1)(d− 2)

6d2

(
α

k + β

)3

=
2d
d− 1

1
k + d+1

d−1

− d− 1
2d

(
2d
d− 1

)2 1(
k + d+1

d−1

)2
+

(d− 1)(d− 2)
6d2

(
2d
d− 1

)3 1(
k + d+1

d−1

)3
=

2d
d− 1

(
1

k + d+1
d−1

− 1(
k + d+1

d−1

)2 +
2(d− 2)
3(d− 1)

1(
k + d+1

d−1

)3)
≤ α 1

k + 1 + β
(by Lemma 2.1).

Now we prove:

Proposition 3.2 (The lower bound). For d ≥ 2,

pk >

(
1− 3

ln k+2
2 + 2

)
α

k + β
.

Proof. Let

l(p) = p− d− 1
2d

p2 = p− p2

α
.

Then again l(p) is increasing for 0 ≤ p ≤ 1 and l(p) ≤ f(p). Define l0 = 1
and lk+1 = l(lk). Then inductively lk ≤ pk, as

lk+1 = l(lk) ≤ l(pk) ≤ f(pk) = pk+1.

Define µk by
lk = µk

α

k + β
.

It suffices to prove µk > 1− 3/
(
ln k+2

2 + 2
)
.

Given µ0 = β/α = (d+ 1)/2d ∈ [1/2, 3/4] we can define µk recursively:

µk+1 =
k + 1 + β

α
lk+1 =

k + 1 + β

α

(
µk

α

k + β
− 1
α
µ2
k

(
α

k + β

)2)
=
k + 1 + β

k + β
µk −

k + 1 + β

(k + β)2
µ2
k.

With ∆ = k + β as in the proof of Lemma 2.1 (see (2.3)) denote by g = gk
the quadratic function

g(µ) =
∆+ 1
∆

µ− ∆+ 1
∆2

µ2 = µ+
(1− µ)µ

∆
− µ2

∆2
.
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The sequence µk is generated by the iterations of the functions gk, namely
µk+1 = gk(µk). Each function g has two fixed points µ = 0 and µ = µ̄ =
∆/(∆+ 1) and is increasing between 0 and ∆/2, which is greater than 1 for
k ≥ 1. As the derivative at µ = 0 is 1 + 1/δ > 1, and at µ̄ is 1 − 1/∆ < 1,
for 0 < µ < µ̄ we have

(3.1) µ < g(µ) < µ̄,

and for µ̄ < µ < 1 we have µ̄ < g(µ) < µ. We remark that for k = 0 we have

µ̄0 =
d+ 1

d− 1 + d+ 1
=
d+ 1

2d
= µ0 ≥

1
2
,

and that µ̄k+1 > µ̄k as ∆ 7→ µ̄k = ∆/(∆+ 1) is increasing and ∆k+1 =
∆k + 1.

We prove that µk ≤ µ̄k. From µ0 = µ̄0 we have µ1 = g0(µ0) = g0(µ̄0) =
µ̄0 < µ̄1. Now we use (3.1) and inductively for k > 0 we find µk+1 = gk(µk) <
gk(µ̄k) = µ̄k < µ̄k+1. Additionally from (3.1) we obtain µk < gk(µk) = µk+1

for k > 0, that is, µk is increasing. In order to prove the estimate consider
the differences

µj+1 − µj =
(1− µj)µj

∆j
−
µ2
j

∆2
j

.

By definition

∆j = j +
d+ 1
d− 1

,

that is, j+1 ≤ ∆j ≤ j+3, as d ≥ 2. The function µ 7→ µ(1−µ) is decreasing
for µ > 1/2, hence for 0 < j < k we have µk(1 − µk) < µj(1 − µj) ≤
µ0(1− µ0) < 1/4 and

(1− µk)µk ln
k + 2

2
≤ (1− µk−1)µk−1

k−1∑
j=0

1
j + 3

≤
k−1∑
j=0

(1− µj)µj
∆j

.

On the other hand, µj < µ̄j = ∆j/(∆j + 1), so

k−1∑
j=0

µ2
j

∆2
j

<

k−1∑
j=0

µ̄2
j

∆2
j

=
k−1∑
j=0

1
(∆j + 1)2

<

k−1∑
j=0

1
∆j(∆j + 1)

=
1
∆0
− 1
∆k

<
1
∆0
≤ 1.

All the estimates are independent of d. Now

µk = µ0 +
k−1∑
j=0

µj(1− µj)
∆j

−
k−1∑
j=0

µ2
j

∆2
j

,
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and we can use the previous estimates to obtain

µk ≥
1
2

+ (1− µk)µk ln
k + 2

2
− 1 ≥ 1

2
(1− µk) ln

k + 2
2
− 1

2
,

µk ≥
ln k+2

2 − 1

ln k+2
2 + 2

= 1− 3
ln k+2

2 + 2
,

which gives the desired estimate.

Propositions 3.1 and 3.2 prove the first part of the Theorem.

4. The approximation formula. Define

F (q) =
1

f(1/q)
.

Then fn(p) = 1/Fn(1/p) .

Proposition 4.1 (Asymptotics of the conjugacy). For q > 1 there exists
0 < κ(q) < 1/2 such that

F (q) = q +
1
α

+
κ(q)
q
.

Proof. We have to prove that F (q) > q+1/α and the difference isO(1/q).
In other words, we have to prove that f(1/q)(q+1/α) < 1. By (2.1) we have
f(p) < p− p2/α+ p3/αγ, with p = 1/q and γ = 3d/(d− 2). Hence

f

(
1
q

)(
q +

1
α

)
<

(
p− p2

α
+
p3

αγ

)(
1
p

+
1
α

)
= 1− p

α
+
p2

αγ
+
p

α
− p2

α2
+

p3

α2γ

= 1− p2

α2γ
((γ − α)− p) < 1− p2

α2γ
(1− p)

as

γ − α =
d(d+ 1)

(d− 2)(d− 1)
.

Hence κ(q) = q(F (q)− q − 1/α) > 0 for q > 1 (that is, p < 1) as we always
have d ≥ 2. Using f(p) ≤ p we also establish that

κ(q) =
1

pf(p)

(
1− f(p)

(
1
p

+
1
α

))
>

1
pf(p)

p2

α2γ
(1− p) ≥ 1− p

α2γ
=
q − 1
qα2γ

.
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On the other hand, using (2.2) we have

κ(q) =
1

pf(p)

(
1− f(p)

(
1
p

+
1
α

))
≤ 1
p(p− p2/α)

(
1−

(
1
p

+
1
α

)(
p− p2

α

))
=

α

p2(α− p)

(
1− p

pα2
(α+ p)(α− p)

)
=

α

p2(α− p)
p2

α2
=

1
α(α− p)

<
1

α(α− 1)
≤ 1

2
as α > 2.

From Lemma 2.3 we conclude that there exists a bounded positive se-
quence cn such that:

Corollary 4.2. For q > 1 the iterates of F are bounded by

Fn(q) = q +
n

α
+ cn lnn.

Corollary 4.3. For p < 1 the iterates of f are bounded by

fn(p) =
αp

α+ pn+ αpcn lnn
.

This proves the approximation part of the Theorem.

5. The case d = ∞. We include the limit case separately as it is of
special importance and can be treated in a simpler way. Let

G(y) =
1

f∞(1/y)
=

1
1− exp(−1/y)

=
exp(1/y)

exp(1/y)− 1
.

Instead of analyzing f∞(x) near 0 we can investigate G(y) near ∞. Let

H(y) = y(G(y)− y − 1/2).

Lemma 5.1. limy→0+ H(y) = 0, limy→∞H(y) = 1/12 and H ′(y) > 0 for
0 < y < ∞. In other words, H increases from 0 to 1/12 as y varies from 0
to ∞.

Proof. As limy→0+ exp(−1/y) = 0, G(0) = 1 and H(0) = 0. At ∞ first
we calculate the asymptote limy→∞G(y)/y = 1 and limy→∞G(y)−y = 1/2.
Next we return to the variable x = 1/y and calculate the limit

lim
x→0+

1
x

(
1

1− exp(−x)
− 1
x
− 1

2

)
= lim

x→0+

2x− (2 + x)(1− exp(−x))
2x2(1− exp(−x))

where it is easy to use the expansion (up to x3) or de l’Hospital’s rule.
The monotonicity is as elementary but a bit more complicated because the
tangency at infinity is of 6th order. For the record:

H ′(y) =
2e1/y − y + e2/yy − 4y2 + 8e1/yy2 + 4e2/yy2

2(−1 + e1/y)2y
,
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where the denominator is positive. We investigate the numerator after sub-
stituting x = 1/y:

N1(x) =
−4 + 8ex − 4e2x − x+ e2xx+ 2exx2

x2
,

and again the denominator is positive and the value of the numerator at
x = 0 is 0. It will be enough to prove that the numerator is an increasing
function. After taking several derivatives and skipping obviously positive
factors we obtain a sequence of functions which are 0 at x = 0:

N2(x) = N ′1(x) = −1 + e2x(−7 + 2x) + 2ex(4 + 2x+ x2),
N3(x) = N ′2(x) · exp(−x) = 2(6 + 2ex(−3 + x) + 4x+ x2),
N4(x) = N ′3(x) = 4(2 + ex(−2 + x) + x),
N5(x) = N ′4(x) = 4 + 4ex(−1 + x),
N6(x) = N ′5(x) = 4exx.

N6(x) > 0 hence for x > 0 so is N5, as N5(0) = 0, and going up we get
N1(x) > 0, which proves that H ′ > 0 and so H is increasing for y > 0.

Corollary 5.2. For 1 < y <∞,

0.0819 < a =
3− e

2(e− 1)
= H(1) < H(y) < H(∞) =

1
12

= b < 0.0834,

and therefore

y +
1
2

+
a

y
< G(y) < y +

1
2

+
b

y
.

One can also get a slightly worse estimate with y = 0.5, namely H(0.5) >
0.0782.

Define

S(y, n) =
n−1∑
k=0

2
2y + k

.

Then S(y, n) is of order 2 ln
(2y+n

2y

)
. Let

R(y, n) =
n−1∑
k=0

2
2y + k + 2bS(y, k)

.

As S(y, k)/k → 0 as k → ∞, R(y, n) is also of order ln
(2y+n

2y

)
(up to a

constant factor).

Lemma 5.3. There are constants 0 < A < B <∞ such that for all y > 1
and all n,

y + n/2 +A lnn < Gn(y) < y + n/2 +B lnn.
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Proof. First we find G(y) > y+1/2, hence Gn(y) > y+n/2. We use this
to estimate

Gk+1(y) < Gk(y) +
1
2

+
b

Gk(y)
< Gk(y) +

1
2

+
2b

2y + k
.

Hence by iterating we have Gn(y) < y + n/2 + bS(y, n). Now we use this to
obtain

Gk+1(y) > Gk(y) +
1
2

+
a

Gk(y)
> Gk(y) +

1
2

+
2a

2y + k + 2bS(y, k)
.

Summing up we get Gn(y) > y + n/2 + 2aR(y, n). The logarithm estimate
follows.

Corollary 5.4. There exist constants 0 < A < B <∞ such that
1

n+ 1 +B lnn
< fn∞(2) <

1
n+ 1 +A lnn

Proof. Set x = 2, that is, y = 0.5 and take the inverse of the estimate
from the previous lemma.

6. Appendix: A motivational example. In this section we provide a
heuristic reasoning, hence the formulations do not attempt to be rigorous.

Maximum weight problem. For k sets V1, . . . , Vk let V be the set of all k-
tuples (v1, . . . , vk) with vi ∈ Vi for i = 1, . . . , k. Given a feasibility condition
on the subsets of V and a positive weight function wv : V → R+ choose a
feasible subset of k-tuples with maximum sum of weights.

In the maximum k-dimensional axial assignment problem (also known
as maximum k-dimensional matching problem) the set of k-tuples is feasible
if no two k-tuples chosen have the same index in the same coordinate, i.e. if
v, v′ are in a feasible set then vi 6= v′i for i = 1, . . . , k. This problem has the
following integer programming interpretation.

Let the cylinder A(i, s) = {(j1, . . . , jk) ∈ V | js = i ∈ Vs} be the set of
all k-tuples with fixed sth coordinate. Find

max
∑
v∈V

wvxv(6.1)

under the conditions∑
v∈A(i,s)

xv = 1, s = 1, . . . , k, i ∈ Vs,(6.2)

xv ∈ {0, 1}, v ∈ V.(6.3)

The multi-dimensional assignment problems have various practical appli-
cations mainly in the fields of multitarget and multisensor tracking [10, 11].
They are studied extensively in the operations research and theoretical com-
puter science communities (see survey articles [8, 11]).
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While the original problem (6.1)–(6.3) is computationally intractable
(NP-hard) the linear relaxation of the problem obtained by relaxing the
integrality constraint xv ∈ {0, 1} to the constraint 0 ≤ xv ≤ 1 is just a linear
programming problem and therefore can be solved efficiently.

Let (x∗v, v ∈ V ) be the optimal solution of the linear programming relax-
ation for the problem (6.1)–(6.3). Obviously,

∑
v∈V wvx

∗
v provides an upper

bound for the optimal value of (6.1)–(6.3). The goal is to find an integer so-
lution (x̄v, v ∈ V ) with

∑
v∈V wvx̄v ≥ ρ∗

∑
v∈V wvx

∗
v. The number ρ ∈ (0, 1)

is called the performance ratio. The field of design and analysis of approx-
imation algorithms with bounded performance ratios is an active area of
research [6].

Conjecture. There exists an algorithm which given a (so called) frac-
tional solution (x∗v, v ∈ V ) of the linear relaxation for the problem (6.1)–(6.3)
finds an integer feasible solution (x̄v, v ∈ V ) such that∑

v∈V
wvx̄v ≥ pk−1 ·

∑
v∈V

wvx
∗
v.

Below we give a heuristic reasoning showing why this conjecture makes
sense. We start by considering the optimal fractional solution (x∗v, v ∈ V ).
We generate an integral solution at random. At the first step we choose
one k-tuple at random for each index j ∈ V1 using the probability density
function defined by (x∗v). The constraint (6.2) implies that

∑
v∈A(j,1) xv = 1

for each j ∈ V1. Therefore, at the end of the first step we choose a random
set of k-tuples such that all constraints are satisfied for indices from V1 and
Pr(x̄v = 1) = x∗v = p0x

∗
v.

At the second step, we consider the set of indices defined by V2. For
each j ∈ V2 we might have a few k-tuples chosen at the previous step of
the algorithm that have index j as their second coordinate. We choose one
of those k tuples at random using the contention resolution process defined
below.

Contention Resolution. There are d players and one item. Each player i
requests the item independently at random with probability pi. Let A be a
random set of players that request the item. Feige and Vondrak [3] suggested
the scheme for allocating the item to one player only:

(1) If A = ∅ then do not allocate the item;
(2) If |A| = 1 then allocate the item to player k ∈ A;
(3) If |A| > 1 then allocate the item to player k ∈ A with probability( ∑

i∈{A}\{k}

pi
|A| − 1

+
∑
i 6∈{A}

pi
|A|

)/ d∑
i=1

pi.
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Lemma 6.1 (Feige and Vondrak [3]). Conditioned on player k requesting
the item she obtains it with probability exactly

ρ =
1−

∏d
i=1(1− pi)∑d
i=1 pi

(1).

Assuming that each k-tuple having index j as its second coordinate is
chosen independently of any other such k-tuple (which is not generally true)
we deduce therefore that the probability that a k-tuple v with the second
coordinate j2 = j is still chosen after the second step is

1−
∏
u∈V |j2=j(1− x∗u)∑
u∈V |j2=j x

∗
u

x∗v =
(

1−
∏

u∈V |j2=j

(1− x∗u)
)
x∗v

≥
(

1− 1
|A(j, 2)|

)|A(j,2)|
x∗v

≥
(

1− 1
|V |

)|V |
x∗v = p1x

∗
v.

Without loss of generality we assume that the probability of survival is ex-
actly p1x

∗
v since we can easily decrease it by killing a k-tuple v with corre-

sponding probability.
Assume that after t steps we have an integer random solution x̄v, v ∈ V ,

such that all the constraints for the index sets V1, . . . , Vt are satisfied and that
Pr(x̄v = 1) = pt−1x

∗
v. We consider the index set Vt+1 and an index j ∈ Vt+1.

Assuming that each k-tuple having index j as its (t + 1)th coordinate is
chosen independently of any other such k-tuple (again this is not generally
true) and using the contention resolution algorithm defined above we infer
that the probability that a k-tuple v with the (t+ 1)th coordinate jt+1 = j
is still chosen after the (t+ 1)th step is(1−

∏
u∈V |jt+1=j(1− pt−1x

∗
u)∑

u∈V |jt+1=j pt−1x∗u

)
pt−1x

∗
v =

(
1−

∏
u∈V |jt+1=j

(1− pt−1x
∗
u)
)
x∗v

≥
(

1− 1
|A(j, t+ 1)|

)|A(j,t+1)|
x∗v

≥
(

1− 1
|V |

)|V |
x∗v = ptx

∗
v.

Again without loss of generality we assume that the probability of survival
is exactly ptx

∗
v since we can easily decrease it by killing a k-tuple v with

corresponding probability. After repeating the process for k steps we obtain

(1) With pi ≡ p = 1/d we get our evolution ρ = fd(p).
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an integral feasible random solution (x̄v, v ∈ V ) such that

E
(∑
v∈V

wvx̄v

)
=
∑
v∈V

wvPr(x̄v = 1) = pk−1

∑
v∈V

wvx
∗
v.

Although the analysis presented above does not work in the general case
when the random events generated by the algorithm above might be de-
pendent, we believe that there exists an appropriate modification of the
algorithm that achieves the performance ratio of pk−1.

Although the performance guarantee of pk−1 of our method is a little
worse than the performance guarantee of 2/(k + 1) of the best known ap-
proximation algorithm for the maximum k-dimensional axial assignment [2],
our heuristic reasoning can be adapted to more general problems such as
d-fold k-dimensional assignment problem [11]. Moreover, the known approx-
imation algorithm is based on a local search framework that produces an
algorithm with high running time, much slower than an algorithm based on
linear programming.
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