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Abstract. We describe the natural framework in which the relative spectral theory
is developed. We give some results and indicate how they relate to two open problems
in ergodic theory. We also compute the relative entropy of gaussian extensions of ergodic
transformations.

1. Introduction. Let (X,A,m, T ) denote a dynamical system; this
means that T is an invertible measure preserving transformation of the
Lebesgue space (X,A,m). As usual, we shall frequently condense the pre-
vious notation to (X,T ) or even, when there is no ambiguity, to T . The
unitary operator UT induced by T on L2(X), defined by f(x) 7→ f(T (x)),
the Koopman operator , is a powerful tool to study questions related to the
transformation T . It is obvious (and well known) that if two transformations
S and T are isomorphic, then UT and US are unitarily equivalent. It is there-
fore possible, just spectral considerations relating to Koopman operators, to
show that some transformations cannot be isomorphic. Furthermore, in the
case where the Koopman operators have purely atomic spectral measures,
unitary equivalence of the Koopman operators implies isomorphism of the
corresponding transformations. The spectral theorem gives a complete set
of invariants for unitary equivalence. (For a treatment of spectral theory see,
for instance [8].) If the spectral measures of the Koopman operators associ-
ated to two transformations S and T are mutually singular, then S and T
are disjoint in the ergodic-theoretical sense (first defined by Furstenberg).
The spectral multiplicity of the Koopman operator is by itself a powerful
invariant. For instance, if a transformation is rank one (that is, for every
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finite partition P and every ε, there exists a Rokhlin tower such that ev-
ery set in P can be approximated by some union of levels of the tower to
within ε for the distance which is the measure of symmetric difference), its
cartesian square cannot be rank one. This is because the Koopman oper-
ator associated to a rank one transformation has spectral multiplicity one
while the Koopman operator associated to a cartesian square has spectral
multiplicity at least two.

The relative spectral theory deals with the following objects. We are
given (X,A,m, T ) as before, and a family of separable Hilbert spaces Hx

associated to every x ∈ X equipped with a measurable structure coming
from a countable fundamental family of sections (vector fields). The set of
measurable sections is denoted

	⊕
Hx dm(x) and is naturally endowed with

a structure of module over L∞(X) (see [3, p. 138]). In most circumstances in
this paper, Hx will be a copy of a fixed separable Hilbert space H, and the
fundamental family of sections generating the measurable structure will be
the family of constant vectors vi(x), i ∈ N, where every vi(x) is a copy of vi,
the family vi, i ∈ N, forming an orthonormal basis of H. We will refer to
this as the standard Hilbert bundle. Two Hilbert bundles

	⊕
H1,x dm(x) and	⊕

H2,x dm(x) are said to be isomorphic if there is a measurable family Ux of
unitary isomorphisms H1,x → H2,x (that is, for every v(x) ∈

	⊕
H1,x dm(x),

Ux(v(x)) ∈
	⊕
H2,x dm(x)). In case

	⊕
H1,x dm(x) is the constant field of

Hilbert spaces as above, if we equip U(H), the set of unitary operators on H,
with the Borel structure associated to the topology of strong convergence,
a measurable map from (X,A) to U(H), x 7→ Ux, will naturally provide the
family H2,x = Ux(H1,x), x ∈ X, with a measurable structure such that Ux
defines an isomorphism between

	⊕
H1,x dm(x) and

	⊕
H2,x dm(x).

A unitary cocycle U above (X,A,m, T ) acting on the standard Hilbert
bundle

	⊕
Hx dm(x) is a measurable map from (X,A) to U(H) (H being

the constant fiber space), x 7→ Ux, and its action is defined as follows: for
v(x) ∈

	⊕
Hx dm(x), we set

Uv(x) = UT−1(x)v(T−1(x)).

We then call U a standard unitary cocycle.
On a general Hilbert bundle

	⊕
Hx dm(x), a unitary cocycle U will be

a measurable mapping from (X,A), x 7→ Ux, where for almost every x,
Ux is a unitary isomorphism from Hx to HTx. Given two unitary Hilbert
bundles

	⊕
H1,x dm(x) and

	⊕
H2,x dm(x) and two unitary cocycles above

(X,A,m, T ), U1 and U2, acting on
	⊕
H1,x dm(x) and

	⊕
H2,x dm(x) re-

spectively, they are said to be cohomologous if there exists an isomorphism
W = Wx, x ∈ X, from

	⊕
H1,x dm(x) to

	⊕
H2,x dm(x) such that

U1,x = W−1
T (x)U2,xWx.
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(This is just expressing U1 in the isomorphic Hilbert bundle given by the
family Wx.)

Note that if X is the one-point space endowed with the Dirac mea-
sure, a cocycle is just a single unitary operator, and cohomology reduces to
unitary equivalence. The purpose of the relative spectral theory is to find,
when possible, cohomology invariants for these cocycles. It does not seem
realistic to hope, in general, for a complete set of invariants, as was the
case in the “absolute” situation. However, in the relative spectral theory
framework, the relatively discrete finite-dimensional spectrum is well under-
stood (see [5], [14]) and has been used in the ergodic-theoretical proof by
H. Furstenberg of the theorem of Szemerédi on the existence of arithmetic
progressions in subsets of the integers with upper positive density. A num-
ber of questions occur in the general framework and we shall mention some
of them. We are going to give two results (Propositions 1 and 2) which be-
long to the relative spectral theory and which have some relevance to the
following two open problems:

(1) Consider two K-automorphisms (X1,A1,m1, T1) and (X2,A2,m2, T2)
which have the same entropy a. We recall that a joining λ of these two
systems is a T1× T2-invariant measure on X1×X2 whose marginals are m1

and m2. The question, due to B. Weiss, is whether there exists a joining λ
such that the system (X1 ×X2, T1 × T2, λ) is a K-automorphism and keeps
a as its entropy. In ordinary words, is it possible to find a K-joining of T1

and T2 which does not increase entropy?

(2) Consider a Bernoulli shift (X,A,m, T ) and a factor algebra B (a T -
invariant subalgebra of A). (Here, and in the future, by abuse of language,
subalgebras are really sub-σ-algebras.) We form the relatively independent
joining of T with itself above B (that is, we endow X ×X with the T × T -
invariant measure which gives to sets of the form A1 × A2 the measure	
EB1A1E

B1A2 dm). Assuming that this relatively independent joining is er-
godic, is it automatically K? If not, what kind of 0-entropy transformation
can appear as a factor of such a joining? If it is K, is it Bernoulli?

2. We recall a theorem of Rokhlin: Let (X,A,m, T ) be an ergodic
dynamical system and B a T -invariant subalgebra of A. We denote by
(XB,B,m, T ) the system which is the restriction of the action of T to B.
There is a Lebesgue measure space (Y, C, µ), and a B-measurable mapping
from XB to Aut(Y ) (the group of measure preserving transformations of
(Y, C, µ) endowed with the Borel structure associated to the weak topol-
ogy), x 7→ ψx, such that the transformation Tψ on XB × Y equipped with
the invariant measure m× µ defined by

Tψ(x, y) = (T (x), ψx(y))
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is isomorphic to (X,A,m, T ) via an isomorphism which is the identity when
restricted to B. Furthermore, this representation is uniquely defined up to
cohomology, that is, if Tψ1 is isomorphic to Tψ2 via an isomorphism which is
the identity when restricted to B, then there exists a B-measurable mapping
from XB to Aut(Y ), x 7→ φx, such that

ψ1
x = φ−1

Txψ
2
xφx a.e.

We shall refer to ψx as the Rokhlin cocycle associated to the factor B of T
(see, for instance, [6]). If one only considers the unitary action of this cocycle
on L2(Y ), one obtains a cocycle Ux of unitary transformations (Ux is the
unitary Koopman operator induced by ψx). We call Ux the standard unitary
Rokhlin cocycle associated to B or the unitary cocycle associated to TB, the
restriction of T to B. The operator Ux acts on

	⊕
Hx dm(x) (where Hx is a

copy of L2(Y ) above every x ∈ XB).
Let us mention that there exist examples (due to A. Rosenthal, unpub-

lished Ph.D. thesis) of two cohomologous Rokhlin cocycles above an irra-
tional rotation which are constants (i.e. ψ1

x = T1 and ψ2
x = T2, ψ1 and ψ2 co-

homologous) but T1 and T2 are non-isomorphic K-automorphisms with the
same entropy. However, if one of the constants is isomorphic to a Bernoulli
shift, then so must be the other. In the same way, due to results in the rel-
ative isomorphism theory, it has been proved by the author (unpublished)
that if two unitary operators, viewed as cocycles above an ergodic trans-
formation T , which are constant almost everywhere, are cohomologous, and
if one of the constants has absolutely continuous spectral measure, then so
does the other. Let us also mention that there are examples, due to Ornstein
[10], where the Rokhlin cocycle associated to a factor B is not cohomologous
to a constant transformation, but where the associated unitary cocycle is
cohomologous to a constant.

Although it is really the same as the Rokhlin cocyle, we slightly change
our viewpoint to introduce the notion of (ir)reducibility for a cocycle (of
measure preserving transformations, or unitary) defined above an ergodic
measure preserving transformation. It will play an important role in the
future.

Definition. Let (X,A,m, T ) be an ergodic dynamical system, (Y,B, µ)
a Lebesgue space and ψx a cocycle of measure preserving transformations
acting on Y . This gives rise to a transformation Tψ of (X×Y,A×B,m×µ),
(x, y) 7→ (T (x), ψx(y)). The cocycle ψx is said to be reducible if there is a
subalgebra C ⊂ B and a cocycle φx such that Tφ−1

Txψxφx
leaves A⊗C invariant;

it is said to be reducible to a constant if there exists a transformation W of
YC such that the restriction of φ−1

Txψxφx to (YC , C, µ) is cohomologous to the
constant W . In other words, ψx is reducible if there exists a Tψ-invariant
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algebra A1 such that A ( A1 ( A× B; and it is reducible to a constant if,
restricted to A1, Tψ is isomorphic to T ×W via an isomorphism which is
the identity when restricted to A. A cocycle which is not reducible is said
to be irreducible.

We now give the unitary version of this definition. Let (X,A,m, T ) be
an ergodic dynamical system, U = Ux, x ∈ X, a unitary cocycle acting on
a Hilbert bundle

	⊕
Hx dm(x). We recall that this action is defined on the

Hilbert bundle
	⊕
Hx dm(x) by U(v)(x) = UT−1(x)v(T−1(x)). The cocycle Ux

is said to be reducible if there exists a measurable field H1,x, where for a.e. x,
H1,x is a closed subspace of Hx, not equal to Hx and not equal to 0, such that
Ux(H1,x) = H1,T (x) (

	⊕
H1,x dm(x) is then called an invariant subbundle).

If there is no such field, the cocycle U is said to be irreducible. It is said to
be reducible to a constant if the restriction of Ux to

	⊕
H1,x dm(x) is coho-

mologous to a constant unitary operator W . Two subbundles
	⊕
Hi,x dm(x),

i = 1, 2, are said to be orthogonal if H1,x ⊥ H2,x a.e.
We prove a first lemma which shows that there are very strong analogies

between the relative spectral theory and the absolute one.

Lemma 0. Let (X,A,m, T ) be ergodic, and U = Ux, x ∈ X, a unitary
cocycle acting on a Hilbert bundle

	⊕
Hx dm(x). Given two invariant sub-

bundles
	⊕
H1,x dm(x) and

	⊕
H2,x dm(x) which are not orthogonal , there

exist two non-trivial invariant subbundles
	⊕
H ′i,x dm(x) of

	⊕
Hi,x dm(x),

i = 1, 2, respectively such that the restrictions of U to
	⊕
H ′i,x dm(x), i = 1, 2,

are cohomologous.

Proof. Given a section vi(x) in
	⊕
Hi,x dm(x), we denote by Hvi the L2

closure of the L∞(X)-submodule generated by Unvi,x, n ∈ Z. The hypoth-
esis implies that there exist two sections vi(x) in

	⊕
Hi,x dm(x), i = 1, 2,

such that for almost every x, v2(x) is the projection of v1(x) on H2,x;
both sections are almost everywhere 6= 0, as a consequence of the ergod-
icity of T . We consider the projection operators Tx from Hv1,x on Hv2,x

(Hvi =
	⊕
Hvi,x dm(x), i = 1, 2). Clearly they satisfy TTxUx = UxTx (in

particular, Tx(v1(x)) = v2(x)). For every x, T ∗x is the projection operator
from Hv2,x to Hv1,x. Let H ′v2,x be the orthogonal complement in Hv2,x to
the kernel of T ∗x . It is now true that UxT ∗x = T ∗TxUx (these two operators
send H2,x to H1,Tx) and, as a consequence, UxT ∗xTx = T ∗TxTTxUx and, for
every k ∈ N, Ux(T ∗xTx)k = (T ∗TxTTx)kUx (easily checked). Therefore, denot-
ing |Tx| = (T ∗xTx)1/2, we have Ux|Tx| = |TTx|Ux. Let H ′v1 be the orthogonal
complement in Hv1 to the kernel of Tx. It is clear that T ∗xTx, and hence
(T ∗xTx)1/2, commutes with Ux. Thus, if Tx = Vx|Tx| is the polar decompo-
sition of Tx, then UxVx|Tx| = VTx|TTx|Ux = VTxUx|Tx| where Vx is a field
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of unitary operators sending H ′v1,x onto H ′v2,x. This gives the announced
cohomology.

As an easy corollary, which should, in fact, have been part of [5], let us
mention the following.

Corollary 1. Let an ergodic dynamical system (X,A,m, T ) be given
together with a non-trivial invariant subalgebra B. Consider the standard
unitary Rokhlin cocycle U = Ux, x ∈ XB, acting on

	⊕
Hx dm(x) (Hx a

copy of L2 of the fiber space above every x). Assume that
	⊕
Hi,x dm(x),

i = 1, 2, are two U -invariant finite-dimensional irreducible subbundles of	⊕
Hx dm(x) and let U1,x and U2,x be the two finite-dimensional unitary

cocycles corresponding to the restrictions of U to these two subbundles (rel-
ative eigenvalues). Then either the two subbundles are orthogonal , or the
cocycles Ui,x, i = 1, 2, are cohomologous.

This is immediate from Lemma 0.
One specific feature of the relative situation is that there can exist irre-

ducible subbundles of infinite dimension. Let us say that a unitary cocycle Ux
above (X,A,m, T ) acting on

	⊕
Hx dm(x) has purely infinite discrete spec-

trum if there exists a family of U -invariant subbundles
	⊕
Hi,x dm(x), i ∈ N,

pairwise orthogonal, such that (1)
	⊕
Hx dm(x) =

∑∞
i=1

	⊕
Hi,x dm(x),

(2) the restriction of the action of Ux to
	⊕
Hi,x dm(x) is irreducible for

all i ∈ N, and (3) for all i ∈ N, dimHi,x =∞. (Note that we did not assume
that the restrictions of the actions of Ux to different invariant subbundles
were necessarily inequivalent.)

If a transformation (X,A,m, T ) has finite entropy and is K and not
Bernoulli, given a full entropy Bernoulli factor B, the Rokhlin cocycle above
B is irreducible. However, it is not known whether one can find a full entropy
Bernoulli factor B for which the Rokhlin unitary cocycle is irreducible, or
even has purely infinite discrete spectrum.

Another interesting issue is the following: Consider again a K-non-Ber-
noulli transformation with entropy a. Consider a full entropy Bernoulli factor
and the associated unitary Rokhlin cocycle U . Is it possible to find, inside
the Bernoulli shift of entropy a, a full entropy factor such that the associated
unitary Rokhlin cocycle V is cohomologous to U? (In other words, are there
spectral characterisations of the property of being K and not Bernoulli?)
In this direction, let us mention the following theorem of Rudolph [11]: if
the Rokhlin unitary cocycle above a full entropy Bernoulli factor of a trans-
formation has a relative discrete finite-dimensional spectrum (that is, the
associated Hilbert bundle is the direct sum of finite-dimensional invariant
irreducible subbundles), then the transformation is Bernoulli.
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We now prove two results concerning the question of B. Weiss men-
tioned above. Let us first observe the following (we keep the notations used
in formulating the question (1)). Let λ be a joining of (X1,A1,m1, T1) and
(X2,A2,m2, T2) constructed as the relatively independent joining over a full
entropy Bernoulli factor B (obtained by choosing an isomorphism between
two full entropy Bernoulli factors of T1 and T2). Because of the preced-
ing theorem of Rudolph, T1 and T2 can be assumed to be both relatively
weakly mixing with respect to this full entropy Bernoulli factor. Therefore,
for λ, the T1 × T2 action is weakly mixing. If the joining constructed is not
K, then the action of T1 × T2 restricted to the Pinsker algebra C is also
weakly mixing. Due to the fact that 0-entropy transformations are disjoint
from K-automorphisms [4], C is independent of A1 × X2 and X1 × A2 re-
spectively. If we consider the following three factor algebras of the action
of T1 × T2 equipped with the joining measure λ: A1 × X2, X1 × A2 and
B × C, relative to B, they have relative 0 entropy, are pairwise relatively
independent, but are not globally relatively independent. Therefore we are
faced with a relative version of an “absolute” problem which is still unsolved:
Does there exist a joining of three weakly mixing 0-entropy transformations
such that all its 2-marginals are independent, but it is not the product
joining?

Proposition 0. Let (X1,A1,m1, T1) be a K-automorphism of entropy
log 2 and (Y,B, µ, S) be the T, T−1 transformation. The transformation S is
given, with T denoting the Bernoulli 2-shift , by the following skew-product
above T : in the 2-shift T on the product space ((+1)(−1))Z with associ-
ated algebra B1, let f(x) be the function which takes the values +1 or −1
according to whether x0 = +1 or x0 = −1 (x = (xi), i ∈ Z) and let S
be defined on the product B1 ⊗ B1 equipped with the product measure by
S(x, y) = (Tx, T f(x)y). In this situation there is an entropy preserving K-
joining λ of T1 and S.

Proof. In fact, we only need to choose any full entropy Bernoulli factor of
T1 relative to which T1 is weakly mixing. As T1 and S have the same entropy,
this full entropy factor is isomorphic to T . We fix one isomorphism and we
then take for λ the relatively independent joining of T1 and S above T .
Endowed with this joining measure λ, T1 × S will always be K. The proof
is a direct consequence of the result of D. Rudolph ([12, Corollary 8]) which
says that if theK property does not hold, then, considering S as an extension
of T1 (for the joining measure λ which we have just defined), the function f
has to be cohomologous to a constant with a transfer function measurable
with respect to A1. But due to the spreading of the distributions of the
sums

∑n
i=1 f(T ix) the cohomology equation cannot be solved, even when

the transfer function is allowed to be only A1-measurable.
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Proposition 1. Let (X1,A1,m1, T1) and (X2,A2,m2, T2) be two K-
automorphisms with the same entropy. Let there be given two full entropy
Bernoulli factors B1 and B2 of T1 and T2 respectively such that the unitary
Rokhlin cocycles associated to the actions of T1 over B1 and of T2 over B2

have purely infinite discrete spectrum. The relatively independent joining of
T1 and T2 above their common full entropy Bernoulli factor B is K.

Proof. We again denote by λ the joining which has just been defined.
Assume that on X1 ×X2 equipped with λ, T1 × T2 has a 0-entropy factor
algebra C. Let H1

i,x and H2
i,x, i ∈ N, be the infinite-dimensional invariant

irreducible subbundles for the Rokhlin cocycles associated to the action of
T1 and T2 respectively above B. Let us consider the unitary Rokhlin cocycle
corresponding to the action of T1×T2 restricted to A1⊗C above B. The only
discrete part in the decomposition of this unitary cocycle into irreducible
components is

∑∞
i=1H

1
i,x ⊗ 1C (here we have used that if Kµ1

x and Kµ2
x

are one-dimensional invariant subbundles associated to the Rokhlin cocycle
corresponding to the action of T1×T2 on C above B and on which this action
is multiplication by µ1 and µ2 respectively, then H1

1,x⊗K
µ1
x and H1

1,x⊗K
µ2
x

are both irreducible and inequivalent if µ1 and µ2 are distinct). We have also
used the fact that the restriction of T1 × T2 to C is weakly mixing. But the
bundle

∑∞
i=1H

1
i,x ⊗ 1C is orthogonal to

∑∞
i=1H

2
i,x. Since L2(A1 ⊗ C) is not

orthogonal to L2(A2), Lemma 0 shows that the unitary cocycle associated
to the action of T2 above B does not have a purely discrete spectrum. This
contradiction implies that C is the trivial algebra.

It is very likely that more is true and that in fact the following can be
shown to hold with not much difficulty: If T1 and T2 are two K-transforma-
tions with the same entropy such that there exists a full entropy Bernoulli
factor of T1 relative to which the unitary Rokhlin cocycle is not cohomol-
ogous to a constant having absolutely continuous spectrum, for any full
entropy Bernoulli factor of T2 relative to which T2 is weakly mixing, the
relatively independent joining defined as above will be K. In view of Host’s
theorem [7], this is as much as what can be hoped for, using (relative) spec-
tral considerations.

3. We now study gaussian extensions associated to a unitary cocycle.
We first recall that, a separable H being given, there exists a Lebesgue

space (Y,B, µ) such that L2(Y ) can be identified to the sum

1 +
∑
n≥1

Hn�

of the symmetric tensor powers of H in such a way that to every unitary
operator U acting on H, one can associate a measure preserving transfor-
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mation τU acting on Y such that the unitary action of τU leaves every Hn�,
n ≥ 1, invariant, and restricted to Hn� it is exactly Un� (in particular, the
unitary action of τU on H is exactly U ; τU is the gaussian automorphism
associated to U , see [1]). The entropy of τU is known: either the spectral
measure of U is singular and the entropy of τU is 0, or it has an absolutely
continuous component and the entropy of τU is +∞ (see [2]).

If we are given (X,A,m, T ) and a standard unitary cocycle U = Ux,
x ∈ X, above T acting on

	⊕
Hx dm(x) where Hx is a copy of a fixed H

above every x, we can define TτU acting on (X × Y,A ⊗ B,m × µ) by
(x, y) 7→ (Tx, τUx(y)). We call TτU the gaussian extension of T by the stan-
dard unitary cocycle U . Restricted to a proper subspace of L2(Y ), the uni-
tary cocycle associated to this extension TτU of T acts exactly as U . We are
going to show that for such gaussian skew-products, the relative entropy of
the gaussian extension given the base is also 0 or +∞. Furthermore, in case
the entropy is positive, the cocycle U is reducible to a constant which has
an absolutely continuous part in its spectrum.

Now we prove the functoriality of the Rokhlin cocycle.

Lemma 1. Let (X,A,m, T ) and a T -invariant subalgebra B of A be
given. Let ψx be the associated Rokhlin cocycle (acting on (Y, C, µ)). Let D
be another T -invariant algebra which contains B as a subalgebra. Then there
exists a cocycle φx above TB and a subalgebra E of C such that TB,φ−1

Txψxφx

restricted to B × E is isomorphic to the restriction of T to D via an iso-
morphism which is the identity when restricted to B. We call φ−1

Txψxφx the
D-straightened version of ψ, and DY the associated fiber subalgebra.

Proof. This is an immediate application of the unicity of the Rokhlin
cocycle, up to cohomology. We consider the Rokhlin cocycle ψ1,x associated
to the restriction of T to D above B (acting on Y1 ) and the Rokhlin cocycle
ψ2,x,y1 (acting on Y2) for the action of T on A above XB × Y1. A model for
the Rokhlin cocycle associated to the action of T on A above B is therefore
ψ1,x×ψ2,x,y1 , given that the fiber is Y1× Y2. (The fiber transformations are
themselves Rokhlin skew-products.) This last cocycle is cohomologous to ψx
by φx, which provides the announced structure.

We recall the notion of relative Pinsker algebra. Let (X,A,m, T ) be an
ergodic transformation and B a T -invariant subalgebra of A. The greatest
subalgebra B̂ of A containing B and such that the entropy of T acting on
B̂ relative to B is 0 is the relative Pinsker algebra of the action of T on A
with respect to the algebra B (see [13]).

Proposition 2. Let (X,A,m, T ), with T ergodic, be endowed with an
invariant subalgebra B. Let ψx and U = Ux, x ∈ X be respectively the
Rokhlin and unitary Rokhlin cocycles associated to B. If the relative Pinsker
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algebra B̂ is not equal to A, then the cocycle U is reducible and , on the
subspace on which it acts as a constant unitary operator , this operator has
countable Lebesgue spectrum.

Proof. We first assume that the action of T has finite relative entropy
with respect to B. There is therefore a finite relative generator P for the
action of T on A, and denoting by B̂ the relative Pinsker algebra, we
have

(∗) T−nP− ∨ B̂ ↘ B̂ and TnP− ∨ B̂ ↗ A as n→ +∞.
(see [13]; we recall that P− =

∨−∞
n=−1 T

nP ). We prove that the unitary
Rokhlin cocycle U2 = U2,x above B̂ is cohomologous to a constant unitary
operator with countable Lebesgue spectrum. This is a consequence of the
following. Let Y2 be the space on which the Rokhlin cocycle associated to
B̂ acts. Let H2,x be a copy of L2(Y2) above every x ∈ XB̂. There exists
a family of sections in

	⊕
H2,x dm(x), x 7→ vi,k(x) (i ∈ N, k ∈ Z), such

that:

(1) the L2 closure of the L∞(XB̂)-module generated by the vi,k(x), i ∈ N,
k ∈ Z, is the whole of

	⊕
H2,x dm(x).

(2) If (i, k) 6= (j, l) then for almost every x ∈ XB̂, vi,k(x) is orthogonal
(as an element of H2,x) to vj,l(x).

(3) For all (i, k) ∈ N× Z, U2,x(vi,k(x)) = vi,k+1(T (x)).

To construct these sections vi,k(x), we first consider, above almost every x,
the subspaces Hx of H2,x which are, with P as before being a partition of
XB̂ × Y2, L2(trace of P− on x × Y2) 	 L2(trace of T−1(P−) on x × Y2).
These spaces have infinite dimension, vary measurably and we can therefore
find a measurable family vi,0(x), i ∈ N, which is orthonormal and forms, for
almost every x, a basis of Hx. The fields vi,k are now defined inductively
by

U2,T−1(x)vi,k−1(T−1(x)) = vi,k(x) or vi,k(x) = Uk2 vi,0(x).

This way, (3) is automatically satisfied. Because of the choice of the vi,0 and
of this last definition for the general vi,k, we get (2). For the same reason,
(1) is a consequence of (∗).

We use Lemma 1 with B̂ playing the role of C and we can therefore
assume that there is a subalgebra C1 of Y such that for almost every x,
ψx leaves C1 invariant, and the restriction of Tψx to B × C1 is exactly the
action of T on B̂. It now follows from what has been done that Ux restricted
to L2(C1)⊥ is reducible to a constant unitary operator. In case the relative
entropy of T given B is infinite, one only needs to take an increasing se-
quence of finite partitions Pn which converge to A. An increasing limit of
cocycles which are all cohomologous to a constant operator with countable
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Lebesgue spectrum remains of the same form. This finishes the proof of
Proposition 2.

As an easy corollary, we obtain:

Proposition 3. Let (X,A,m, T ) be an ergodic dynamical system and
B be an invariant subalgebra of A. If the unitary Rokhlin cocycle associated
to B has purely infinite discrete spectrum, then the relative entropy of the
action of T conditioned on B is 0.

Proposition 4. Let (X,A,m, T ) be an ergodic dynamical system, U a
standard unitary cocycle, and TτU the associated gaussian extension. If the
relative entropy of TτU given A is positive, then U is reducible to a con-
stant which has an absolutely continuous spectral measure, and this relative
entropy is therefore infinite.

Proof. Since the relative entropy of TτU given A is positive, the Pinsker
algebra of TτU relative to A is a strict factor of the algebra on which TτU
acts (A⊗B). Let Â be this relative Pinsker algebra. We consider ˜τUi , the Â-
straightened version of τU with associated fiber algebra ÂY . It follows from
Lemma 1 and Proposition 2 that the unitary cocycle acting on L2(ÂY )⊥ (we
call this last subspace W ) is cohomologous to a constant which is a unitary
operator with countable Lebesgue spectrum. If Hx is orthogonal to W , this
says that Hx ⊂ L2(ÂY ), which implies that the relative Pinsker algebra of
TτU with respect to A is exactly A ⊗ B, which contradicts the hypothesis.
Therefore Hx is not orthogonal to W , and Lemma 0 implies the conclusion.
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