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Results and open questions on some
invariants measuring the dynamical complexity of a map
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Abstract. Let f be a continuous map on a compact connected Riemannian mani-
fold M . There are several ways to measure the dynamical complexity of f and we discuss
some of them. This survey contains some results and open questions about relationships
between the topological entropy of f , the volume growth of f , the rate of growth of pe-
riodic points of f , some invariants related to exterior powers of the derivative of f , and
several invariants measuring the topological complexity of f : the degree (for the case when
the manifold is orientable), the spectral radius of the map induced by f on the homology
of M , the fundamental-group entropy, the asymptotic Lefschetz number and the asymp-
totic Nielsen number. In general these relations depend on the smoothness of f . Various
examples are provided.

1. Introduction. In this paper we consider various invariants that can
be used to measure the dynamical complexity of a continuous (or smooth)
map on a compact connected (Riemannian) manifold. We survey some rela-
tionships between these invariants and open questions related to them. We
present examples for some situations encountered.

On one hand, we will consider the degree of the map, the spectral radius,
the fundamental-group entropy, the asymptotic Lefschetz number and the
asymptotic Nielsen number. These are algebraic topology invariants of f ,
which are homotopy invariants by definition. Consequently, for continuous
maps on manifolds, they are stable under small perturbations.

On the other hand, there are invariants measuring the dynamical com-
plexity of a map at the “local” level. Here we will consider the rate of growth
of periodic points, the topological entropy, the volume growth, and some
other invariants related to the growth rate of exterior powers of derivatives.
These invariants are not stable in general, they can always be modified
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by small C0 perturbations, and sometimes, if the map is not structurally
stable, they can be modified by small smooth perturbations. However, they
are invariant under (maybe smooth) conjugacies.

The relationships between these invariants depend on the smoothness
of the map and the main principle is the following: if we assume enough
smoothness, then some dynamical complexity at the global level should im-
ply at least the same dynamical complexity at the local level. This is the
main idea behind Shub’s entropy conjecture, and there are many results in
this direction. We will mention some of them.

The converse of this is of course not true: there are maps with some
dynamical complexity coming from some local dynamics, a horseshoe for
example, while at the global level there may be no dynamical complexity,
the map may be homotopic to the identity.

There are some good surveys on this topic, especially relating to the
topological entropy: see for example [11], [17], [24], [26], [38], [46], [51], or
for the holomorphic case [14]. In our paper we try to give a basic introduction
to these invariants, mention several known facts about them, and provide
examples and proofs of some simple results. The results are well known to
the people working in the area, so our survey is intended mostly for non-
experts, and that is why the examples are chosen as simple as possible. We
are aware that we leave out some other invariants measuring the complexity
of the map (like metric or local entropy, Lyapunov exponents, etc.), and we
do not discuss flows or other actions, nor generic situations. Also in the case
of surfaces there are more results available, because one can use Nielsen–
Thurston theory for the study of the global dynamics of homeomorphisms
(see for example [4], [5]), while the local invariants are sometimes better
described using Pesin theory and Lyapunov exponents; however, we want to
keep our survey short and easy to read, and covering all those things would
probably require another survey.

The paper is organized as follows. In Section 2 we present the definitions
of the notions that we consider. In Section 3 we discuss the global invariants,
while in Section 4 we consider the local invariants. Finally, in Section 5 we
present some known relationships between the local and global invariants
that we think relevant for this survey.

2. Preliminary definitions. LetM be anm-dimensional compact con-
nected manifold and f : M → M a continuous map. A point x ∈ M is a
fixed point for f if f(x) = x. A point x ∈M is a periodic point of f of (least)
period n if fn(x) = x and fk(x) 6= x for 1 ≤ k < n.

We say that f satisfies the hypothesis (H1) if the following holds:

(H1) The fixed points of fn are isolated for all positive integers n.
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We use this condition to define the rate of growth of periodic points, and
in connection with the Lefschetz fixed point formula. There are weaker con-
ditions under which one can use these notions, but for simplicity of pre-
sentation we restrict to this strong condition, which is however true for Cr

generic maps, r ≥ 1. Here we say that a property is Cr generic, r ≥ 0, if it
holds for a residual subset of Cr maps, considered with the Cr topology.

If f satisfies the hypothesis (H1), then we denote by #Fix(fn) the num-
ber of fixed points of fn (this is the number of periodic points whose periods
are divisors of n). Then one can define the rate of growth of periodic points
to be the rate of growth of these numbers with respect to n, i.e.

Per∞(f) = lim sup
n→∞

(max{#Fix(fn), 1})1/n.

The map f will induce an action on the homology groups of M , which
we denote f∗,k : Hk(M,Q)→ Hk(M,Q), for k ∈ {0, 1, . . . ,m}. The spectral
radius of f∗,k is denoted sp(f∗,k) and equal to the largest modulus of an
eigenvalue of the linear map f∗,k. The spectral radius of f∗ is

sp(f∗) = max
k=0,...,m

sp(f∗,k).

If we assume that M is oriented, then the top homology group Hm(M,Q)
is isomorphic to Q and f∗,m is just multiplication by an integer deg(f)
called the degree of f . If f is C1 then the degree of f is also the alge-
braically counted number of pre-images of a regular value y of f , i.e. the
sum

∑
f(xi)=y

sign(detDf(xi)), provided that local coordinates at all points
agree with the orientation.

Fix p ∈ M and a path α joining p to f(p). Define the endomorphism
fα∗ : π = π1(M,p)→ π by fα∗ (γ) = αf(γ)α−1. Let Γ = {γ1, . . . , γs} be a set
of generators of π and define the length of an element γ ∈ π as

L(γ, Γ ) = min
{ l∑
j=1

|ij | : γ = γi1s1 . . . γ
il
sl
, l ≥ 1, 1 ≤ s1, . . . , sl ≤ s

}
.

The fundamental-group entropy of f is

h∗(f) = lim sup
n→∞

1
n

log
(

max
1≤i≤s

L((fα∗ )n(γi), Γ )
)
.

It can be proved that h∗(f) is well defined and independent of Γ , p and α; for
more about this see e.g. [18] or [2] (in Bowen’s paper the fundamental-group
entropy is called the logarithm of the growth rate of f∗ on π1(M)).

For every positive integer n we define the n-Lefschetz number of f as

Ln(f) =
m∑
k=0

(−1)k Tr(fn∗,k),

where as usual Tr(fn∗,k) denotes the trace of the linear map fn∗,k.
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By the Lefschetz formula, if f satisfies the hypothesis (H1), then we also
have

Ln(f) =
∑

fn(x)=x

ind(x, fn),

where ind(x, fn) is the Poincaré index of the fixed point x for the map fn

(for more details see [7, 10]). We call the rate of growth of these numbers
the asymptotic Lefschetz number of f , i.e.

L∞(f) = lim sup
n→∞

(max{|Ln(f)|, 1})1/n.

A good reference for the properties of n-Lefschetz numbers and the asymp-
totic Lefschetz number is also [20].

Similarly for every positive integer n one has the n-Nielsen number of f ,
denoted by Nn(f), defined as follows. First we consider the following equiv-
alence relation ∼ on the set of fixed points of f : x ∼ y if and only if there
exists a curve γ joining x and y such that f(γ) is homotopic to γ relative
to its endpoints. An equivalence class is called a fixed point class; it is an
isolated subset of the set of fixed points of f , and hence its index can be
defined. The number of fixed point classes with non-zero index (also called
essential classes) is called the Nielsen number of f , denoted by N(f). If
we denote the Nielsen number of fn by Nn(f) then the asymptotic Nielsen
number of f is

N∞(f) = lim sup
n→∞

(max{|Nn(f)|, 1})1/n.

For more information about Nielsen numbers see for instance [21].
We will also consider the topological entropy of f , defined as follows.

First define the metric dn on M by

(1) dn(x, y) = max
0≤i≤n

d(f i(x), f i(y)), ∀x, y ∈M.

A finite set S is called (n, ε)-separated with respect to f if for any different
x, y ∈ S we have dn(x, y) > ε. The maximal cardinality of an (n, ε)-separated
set is denoted Sn. Define

h(f, ε) = lim sup
n→∞

1
n

logSn.

Then the topological entropy of f is

h(f) = lim
ε→0

h(f, ε).

For equivalent definitions and properties of the topological entropy we refer
the reader to [18].

Now suppose that there is a Riemannian metric on the manifold M . If
D ⊂M is a C1 disk inside M and f is at least C1, then the volume growth
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of D under f is

v(D, f) = lim sup
n→∞

1
n

log Vol(fn(D)),

where the volume Vol is with respect to the Riemannian metric induced on
fn(D) by the metric on M . For 1 ≤ r ≤ ∞, the supremum of all the volume
growths over all the Cr disks in M is the r-volume growth of f :

vr(f) = sup
D⊂M Cr disk

v(D, f).

For 1 ≤ r1 < r2 we clearly have

vr1(f) ≥ vr2(f).

There are some other related invariants involving exterior powers of the
derivative of f ; we will define and discuss them in Section 4.

The degree, spectral radius and (asymptotic) Lefschetz numbers are ho-
mology invariants, they depend only on the action of the map f on the ho-
mology of M . The (asymptotic) Nielsen numbers and the fundamental-group
entropy are homotopy invariants: two maps which are homotopic have the
same (asymptotic) Nielsen numbers. The topological entropy and the rate
of growth of periodic points are invariant under conjugacy. The r-volume
growth is invariant under Cr conjugacies.

3. Relations between global invariants. A first well known fact is
that the degree and the asymptotic Lefschetz number are always smaller
than the spectral radius.

Proposition 1. For any continuous map f on a compact manifold M
we have

L∞(f) ≤ sp(f∗).

If M is also orientable then

|deg(f)| ≤ sp(f∗).

The proof is easy, it follows directly from the definitions. We remark
that the inequalities of Proposition 1 can be strict, and there is no general
relation between the degree and the asymptotic Lefschetz number, as we
will show in some examples at the end of the section.

The asymptotic Nielsen number and the fundamental-group entropy are
somehow different, because they are related to the fundamental group of M ,
and not to the homology groups. For example, if the fundamental group is
trivial, every closed loop is contractible, so there can be at most one Nielsen
class, and also the fundamental-group entropy must be zero. On the other
hand, we have the following result (for a proof see for example [18]).
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Proposition 2. If f is a continuous map on a compact manifold M ,
then

log(sp(f∗,1)) ≤ h∗(f).

Also for some manifolds the Nielsen numbers can be easily related to
the Lefschetz numbers, as in the following theorems. A nilmanifold is the
quotient of a nilpotent connected simply connected Lie group modulo a
discrete uniform (cocompact) subgroup. A solvmanifold is defined similarly,
with “nilpotent” replaced by “solvable”. The definitions of infranilmanifold
and infrasolvmanifold are slightly more complicated, but they have always
finite covers consisting of nilmanifolds and solvmanifolds respectively.

Theorem 3 (Anosov [1]). If f is a continuous map on a nilmanifold M ,
then N(f) = |L(f)|, so N∞(f) = L∞(f).

Theorem 4 (McCord [33]). If f is a continuous map on an infrasolv-
manifold M , then N(f) ≥ |L(f)|, so N∞(f) ≥ L∞(f).

Now we will give several examples to illustrate different relationships
between these invariants. We start with the case when the invariants are
trivial.

Example 1. If f is homologous to the identity , then

|deg(f)| = L∞(f) = sp(f∗) = 1.

If f is also homotopic to the identity , then

N∞(f) = eh∗(f) = e0 = 1.

We remark that there are cases where the map is homologous to the
identity but not homotopic to the identity, for example M can be a surface
of negative Euler characteristic, and f an orientation preserving homeomor-
phism inducing a non-trivial element in the Torelli group of outer auto-
morphisms of the fundamental group. In such cases the fundamental-group
entropy can be greater than one, while the homological invariants, the de-
gree, the asymptotic Lefschetz number, and the spectral radius are all equal
to one (see for example [2] for a version of the Plykin attractor, with homo-
logy/homotopy relative to some fixed points).

Another simple situation is when the manifold M is simply connected.

Example 2. If M is simply connected , i.e. the fundamental group is
trivial , then

N∞(f) = eh∗(f) = e0 = 1.

The other invariants can be strictly greater , for example the map f(z) = z2

on the Riemann sphere S2 has

|deg(f)| = L∞(f) = sp(f∗) = 2.
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Proof. The first part follows easily from the remarks made before Propo-
sition 2. However, the other invariants can be greater: the map f(z) = z2

on S2 has clearly degree two, also f∗,0 is multiplication by one, H1(M,Q) is
trivial and f∗,2 is multiplication by two, so sp(f∗) = 2 and Ln(f) = 2n + 1,
and consequently L∞(f) = 2.

We remark that we have a similar situation every time when M is a
sphere Sn or a complex projective space CPn. For Sn the only non-trivial
homology groups are H0(M,Q) and Hn(M,Q), the (non-trivial) action in-
duced by a continuous self-map f is then multiplication by 1 and respectively
deg(f) = d on Q, so we have

N∞(f) = eh∗(f) = e0 = 1,

and
|deg(f)| = L∞(f) = sp(f∗) = |d|.

For M = CPn we have a similar situation: Hi(M,Q) is trivial if i is odd
and one-dimensional if i is even, and the action induced by a continuous
self-map f is multiplication by di/2 for some integer d (see [9] for example),
and if d 6= 0 then we get

N∞(f) = eh∗(f) = e0 = 1,

and
|deg(f)| = L∞(f) = sp(f∗) = |d|n.

The next examples are for the case when M is the torus. The degree can
be strictly smaller than the other invariants if there is growth coming from
the action on some intermediate homology group which is greater than the
one coming from the top homology group.

Example 3. For the cat map

g(x, y) = (2x+ y, x+ y) (mod Z2)

on R2/Z2 ≡ T2 we have

deg(g) = 1 < L∞(g) = sp(f∗) = N∞(g) = eh∗(g) = h(g) =
3 +
√

5
2

.

For the map g × g on T4 we have

deg(g × g) = 1 < eh∗(g×g) =
3 +
√

5
2

< L∞(g × g) = sp((g × g)∗)

= N∞(g × g) = h(g × g) =
(

3 +
√

5
2

)2

.
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If t(z) = z+α (mod Z), α ∈ R \Q, is an irrational translation on T1, then
for g × t on T3 we have

deg(g × t) = L∞(g × t) = N∞(g × t) = 1

< eh∗(g×t) = sp((g × t)∗) = h(g × t) =
3 +
√

5
2

.

The proof is straightforward, one just has to use the fact that for the
torus the n-Nielsen number coincides with the absolute value of the n-
Lefschetz number, and with the number of periodic points of period n if
the map is hyperbolic (all the indices of periodic points are equal to 1 or
−1), π1(M) coincides with H1(M,Z), and all the maps induced on homology
can be explicitly computed. The topological entropy can also be computed
directly from the definition, or by using the results from Section 4.

Remark 1. Actually one can show that for a linear endomorphism of
the torus A, if all the eigenvalues have absolute value one, then all the
invariants we defined are trivial (zero or one). Also we always have h∗(A) =
log sp(A∗,1) = log sp(A) ≤ sp(A∗). If there are eigenvalues λ1, . . . , λi with
absolute value strictly greater than one, we have

log sp(A∗) = h(A) = vr(A) = h1(A) =
i∑

k=1

log |λk|

for 1 ≤ r ≤ ∞ (see the next section for the definition of h1), and

log sp(A∗,1) = h∗(A) = max
1≤k≤i

log |λk|.

If there is an eigenvalue equal to one, then N∞(A) = L∞(A) = 1. If all
eigenvalues are different from one then we also have

logN∞(A) = logL∞(A) = log sp(A∗) = h(A) = vr(A) = h1(A)

=
i∑

k=1

log |λk|.

We finish with an example where the degree is strictly greater than the
asymptotic Lefschetz (Nielsen) number, because in the sum of the traces
there are cancellations.

Example 4. For the smooth map f = f1× f2 from the product space of
the Riemann sphere S2 by the circle T1, where f1(z) = z2 and f2(x) = x+α,
α ∈ R \Q, is an irrational translation, we have

deg(f) = sp(f∗) = 2 > N∞(f) = L∞(f) = eh∗(f) = 1.

Also in this case h(f) = log 2.
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Proof. The degree of f1 is two and the degree of f2 is one, so the degree
of f is deg(f) = 2. All the homology groups are one-dimensional, and the
action induced by f is multiplication by 1, 1, 2, 2 respectively, so the spectral
radius of f∗ is also sp(f∗) = 2. All the Lefschetz and Nielsen numbers of f are
zero because there are no periodic points, so L∞(f) = N∞(f) = 1 (one can
see this also from the cancellations in the trace formula). The map induced
on the fundamental group is the identity, so the fundamental-group entropy
is zero. The topological entropy of f is

h(f) = h(f1) + h(f2) = h(f1) = h(f1|{|z|=1}) = log 2

by a simple calculation.

4. Relations between local invariants. First, for Cr maps, with
r > 1, the volume growth is greater that the topological entropy.

Theorem 5 (Newhouse [37]). If f is Cr on a compact Riemannian
manifold M , with r > 1, then the volume growth of f is greater than its
topological entropy :

vr(f) ≥ h(f).

The proof is based on Pesin theory, and this is why the map is required
to be Cr with r > 1. The volume growth can also be bounded from above
in terms of the topological entropy.

Theorem 6 (Yomdin [49], [50]; see also [15]). Suppose that f is Cr on
a compact Riemannian manifold M , with r ≥ 1. Set

R(f) = lim
n→∞

1
n

log( sup
x∈M
‖dfnx‖).

Then
vr(f) ≤ h(f) +

m

r
R(f).

In [50] Yomdin actually proves this estimate for the volume growth of
l-dimensional disks, with m replaced by l (and this estimate is sharp). As a
consequence, we get the following corollary.

Corollary 7. If f is C∞ on a compact Riemannian manifold M , then

v∞(f) = h(f).

We will mention examples of Cr maps, 1 ≤ r <∞, with volume growth
strictly greater than entropy at the end of the section. We do not know if
there are examples of C1 maps with topological entropy strictly greater than
volume growth.

Now we discuss some other invariants involving exterior powers of the
derivatives of f . We assume that f is at least C1 and M is a Riemannian
manifold. Denote by Df∧(x) the mapping between the full exterior algebras
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of the tangent spaces TxM and Tf(x)M , induced byDf(x), and let ‖Df∧(x)‖
be the operator norm induced by the Riemannian metric on M . Katok [27],
Ruelle [41] and Krzyżewski [29] proved the following estimate for C1 maps:

h(f) ≤ log sup
x∈M
‖Df∧(x)‖.

This can be easily improved to

h(f) ≤ 1
n

log sup
x∈M
‖Dfn∧(x)‖, ∀n ∈ N.

Because supx∈M ‖Df∧(x)‖ is an upper bound for the Jacobian of f restricted
to any submanifold of M , for every 1 ≤ r ≤ ∞ we also have

vr(f) ≤ log sup
x∈M
‖Df∧(x)‖.

A better estimate involves the following invariant, introduced in [43]:

h1(f) = lim sup
n→∞

1
n

log
�

M

‖Dfn∧(x)‖ dm,

where m is the Riemannian measure on M . This is independent of the
Riemannian metric on M and clearly does not exceed supx∈M ‖Df∧(x)‖.
The following theorem was proved by Przytycki [39] for diffeomorphisms and
extended by Newhouse [37] to maps. The equality for C∞ diffeomorphisms
was proved by Kozlovski [28].

Theorem 8. If f is a Cr map on a Riemannian manifold M , with r > 1,
then

h(f) ≤ h1(f).

If f is a C∞ diffeomorphism then

h(f) = h1(f).

The nature of this result is similar to Theorem 5 and also bases on Pesin
theory. Again, there are examples of Cr maps, 1 ≤ r <∞, with topological
entropy strictly smaller than h1, due to Misiurewicz and Szlenk [36]; we will
mention them at the end of the section. As a consequence of the previous two
theorems one finds that if f is C∞ then h1(f) = v∞(f) and h1(f) ≤ vr(f)
(the inequality may be strict, see Example 6). It would be of interest to
know if the inequality also holds for Cr maps.

Let dn be the metric on M defined by (1), let Mn be the mth Hausdorff
measure of M with the metric dn, and

h2(f) = lim sup
n→∞

1
n

logMn.

An equivalent definition of this invariant using the volume of graphs is given
by Gromov (see [15], [16]). In [43] it is proved that for a C1 map we have
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h1(f) ≤ h2(f). It was hoped these invariants could be used to prove the
entropy conjecture, but the examples of Misiurewicz and Szlenk showed
that this is not possible.

The rate of growth of periodic points is again a bit more complicated,
and it cannot be related in general to the topological entropy and the volume
growth. For a C1 map the volume growth is always finite, and for a Lipschitz
map the topological entropy is finite, but the rate of growth of periodic points
may be infinite for Cr maps with r ≥ 2.

Theorem 9 (Kaloshin [23]). There exists an open set of Cr diffeomor-
phisms, with r ≥ 2, which contains a residual set of maps with super-
exponential growth of periodic points, so in this case Per∞(f) =∞.

Of course in such a situation the logarithm of the rate of growth of
periodic points is strictly greater than both the topological entropy and the
volume growth.

For Axiom A diffeomorphisms Bowen proved that the entropy is equal
to the logarithm of the rate of growth of periodic points.

Theorem 10 (Bowen [3]). If f is an Axiom A diffeomorphism on a
compact manifold M , then

h(f) = log Per∞(f).

On the other hand, there are maps for which the entropy and the volume
growth are both strictly positive, while there are no periodic points at all.

Example 5. The product of the cat map with an irrational translation
g × t on T3 from Example 3 has

Per∞(g × t) = 1

and for any 1 ≤ r ≤ ∞,

h(g × t) = h1(g × t) = vr(g × t) = log sup
x∈M
‖D(g × t)∧(x)‖ = log

3 +
√

5
2

.

Proof. There are no periodic points, so

Per∞(g × t) = 1.

A segment in some unstable manifold of g × t is expanded at a rate of
(3 +

√
5)/2, and the map is C∞, so for 1 ≤ r ≤ ∞ we get

log
3 +
√

5
2

≤ v∞(g × t) = h(g × t) = h1(g × t) ≤ vr(g × t).

On the other hand, we have

vr(g × t) ≤ log sup
x∈M
‖D(g × t)∧(x)‖ = log

3 +
√

5
2

,

which finishes the proof.
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The topological entropy h(g×t) can also be computed as the sum of h(g)
and h(t), which can actually be shown to be log 3+

√
5

2 and 0 respectively.
The other invariants can also be computed only from the definitions, without
using the previous theorems.

Now we will sketch the examples with volume growth strictly greater
than entropy and with h1 strictly greater than entropy.

Example 6 (see [15], [49]). For any 1 ≤ r < ∞ there exists a C∞

diffeomorphism f on S2 such that

h(f) = 0 < vr(f).

Also for any 1 ≤ r <∞ there exists a Cr diffeomorphism f on S2 such that

h(f) = 0 < v∞(f).

Proof. Let f be a C∞ map on S2 which has topological entropy zero
and a fixed point p which is hyperbolic (this can be a double cover of the
projectivization of a linear map on R3 with three different real eigenvalues).
Assume that around p there is a smooth chart in which f has the form

f(x, y) =
(

1
λ
x, λy

)
for some λ > 1. Choose s > 0 such that t 7→ ts sin(1/t) is Cr and let γ be
the Cr curve given in the same chart by

γ(t) =
(
t, ts sin

1
t

)
, t ∈ [0, ε],

for some ε > 0. A simple calculation shows that

Vol(fn(γ)) ≥ Cλn/s

for some constant C > 0, so

vr(f) ≥ log λ
s

> 0 = h(f).

For the second part of the example one can just make a change of coordinates
such that γ becomes C∞ and f becomes Cr.

We remark that one can adapt this example to prove that the inequalities
in Theorem 6 are sharp. Based on the same idea we have the next example.

Example 7 (Misiurewicz and Szlenk [36]). For any 1 ≤ r < ∞ there
exists a Cr map f from [−1, 1] to itself such that

h(f) = 0 < h1(f).

Proof. Let f : [−1, 1]→ [−1, 1] be an odd Cr function such that zero is
a repelling fixed point, there are two other fixed points p and −p which are
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attracting and no other periodic points, and in a small neighborhood of 1
we have

f(t) = (1− t)s sin
1

1− t
,

where s > 0 is such that f is Cr. The non-wandering set of f consists of
three points, so the topological entropy of f must be zero. The manifold in
our case is one-dimensional, so we have

h1(f) = lim sup
n→∞

1
n

log
1�

−1

|(fn)′(t)| dt,

hence h1 corresponds to the growth of the total variation of fn. Again, a
simple calculation shows that if f ′(0) = λ > 1 then

h1(f) ≥ log λ
s

> 0 = h(f).

This example can be easily modified to be on the circle.

5. Relationships between global and local invariants

5.1. Entropy and global invariants. Now we try to explain some known
relations between local and global invariants. One of the first such connec-
tions, other than the Lefschetz formula, is due to Dinaburg [8], who relates
the topological entropy of the time-one map of the geodesic flow to the
fundamental group of the manifold. As mentioned before, the basic idea is
that the global dynamical complexity implies local dynamical complexity,
and one of the strongest and classical versions of this idea is still open: it is
the entropy conjecture formulated by Shub [45] (see also [24], and [12] for a
slight generalization).

Conjecture 11 (Entropy conjecture). If f is a C1 map on a compact
manifold M , then the topological entropy is greater than or equal to the
logarithm of the spectral radius of f∗:

(2) log(sp(f∗)) ≤ h(f).

Inequality (2) is not true for Lipschitz maps, and an example is the
following (see also [45], [15]).

Example 8. For the map f(z) = 2z2/‖z‖ extended to S2 by f(0) = 0,
f(∞) =∞, we have

h(f) = 0 < log(deg(f)) = log(sp(f∗)) = log(L∞(f)) = log 2.

Proof. We have
‖f(z)‖ = 2‖z‖,

which means that zero is a source, infinity is a sink, and all the other orbits
move from zero to infinity. This means that the non-wandering set of f
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contains only zero and infinity. It is known that the topological entropy of f
is equal to the topological entropy of the restriction to the non-wandering
set of f , NW(f), and if this is finite then it must be zero, i.e.

h(f) = h(f |NW(f)) = h(f |{0,∞}) = 0.

On the other hand, every point on S2 other than zero and infinity has two
pre-images, so deg(f) = 2. Because f∗,0 is the identity and H1(S2,Q) = 0,
we get

log(sp(f∗)) = log(deg(f)) = log(L∞(f)) = log 2 > 0 = h(f).

Remark 2. The map in Example 8 is obviously Lipschitz, actually it is
differentiable everywhere except at two points, and it can be modified to a
map differentiable at infinity too, leaving only one singularity at z = 0. It
is not a homeomorphism, but there are known examples of piecewise linear
homeomorphisms (see [40]).

The entropy conjecture seems to be very difficult in general, but there
are many partial results, and we will mention some of them. First, a weaker
version of the conjecture is known to be true if we require f to be C∞.

Theorem 12 (Yomdin [49]). If f is C∞ on a compact manifold M , then
the entropy conjecture is true:

log(sp(f∗)) ≤ h(f).

The proof is the combination of Theorem 6 and Proposition 22 below.
As a consequence, the entropy conjecture is true for holomorphic maps too.

Some weaker versions of the entropy conjecture are obtained by replac-
ing the spectral radius of f by some other global invariants mentioned in
Section 3. For example, the logarithm of the degree is smaller than or equal
to the topological entropy for C1 maps:

Theorem 13 (Misiurewicz and Przytycki [34]). If f is C1 on a compact
oriented manifold M , then

log(deg(f)) ≤ h(f).

Remark 3. Again this is not true for Lipschitz maps: see Example 4
where log deg(f) > h(f).

Also the logarithm of the asymptotic Nielsen number is smaller than or
equal to the topological entropy for C0 maps:

Theorem 14 (Ivanov [19]; see also [22]). If f is C0 on a compact man-
ifold M , then

log(N∞(f)) ≤ h(f).



Invariants measuring dynamical complexity 321

Manning proved that the entropy is greater than or equal to the loga-
rithm of the spectral radius of the map induced by f on the first homology
group.

Theorem 15 (Manning [33]). If f is C0 and M is a compact manifold ,
then

log(sp(f∗,1)) ≤ h(f).

Bowen extended the result of Manning to the fundamental group of M .

Theorem 16 (Bowen [2]). If f is C0 and M is a compact manifold ,
then

h∗(f) ≤ h(f).

Question 1. Is it true that log(L∞(f)) ≤ h(f) for C1 maps? (This is
not true again for Lipschitz maps because of the same Example 8).

This is a weaker version of the entropy conjecture because of Propo-
sition 1. We remark that L∞(f) can be strictly smaller than sp(f∗) as in
Example 4 or the last map in Example 3.

Other versions of the entropy conjecture are obtained by adding some
restrictions on the manifold M . In [35] Misiurewicz and Przytycki showed
that the entropy conjecture is true for continuous maps on tori, and in [24]
Katok proposed another version for the entropy conjecture.

Conjecture 17 (Katok’s version of entropy conjecture). If f is a con-
tinuous self-map on a compact manifold M with universal cover homeomor-
phic to a Euclidean space then

log(sp(f∗)) ≤ h(f).

On one hand, this is weaker than Shub’s entropy conjecture because
there are some restrictions on the manifold M , but on the other hand it is
stronger because it only requires that f is continuous. In [31] Marzantowicz
and Przytycki showed that the entropy conjecture is true for continuous self-
maps on nilmanifolds, and in [32] they obtained the following generalization.

Theorem 18 (Marzantowicz and Przytycki [32]). If f is a continuous
self-map of a compact K(π, 1) manifold M with the fundamental group π
torsion free and virtually nilpotent , then

log(sp(f∗)) ≤ h(f).

This is the situation if M is an infranilmanifold for example. Also the
entropy conjecture is true if f is C1 and M is a sphere Sn (this is just a
consequence of Theorem 13, as is mentioned in [15] for example), or if f is
a diffeomorphism and dimM ≤ 3 (this is a consequence of Poincaré duality
and Theorems 13 and 15, as is remarked in [46] for instance).



322 J. Llibre and R. Saghin

Another way to obtain versions of the entropy conjecture is to add some
restrictions on the dynamics of f . Shub and Williams, and Ruelle and Sulli-
van, proved that the entropy conjecture is true for Axiom A diffeomorphisms
satisfying the no-cycle condition.

Theorem 19 (see [42], [48]). If f is a diffeomorphism on M which
satisfies Axiom A and the no-cycle condition, then

log(sp(f∗)) ≤ h(f).

Saghin and Xia proved that the entropy conjecture is true for partially
hyperbolic diffeomorphisms with one-dimensional center.

Theorem 20 (Saghin and Xia [44]). If f is a partially hyperbolic dif-
feomorphism on a compact manifold M and the center bundle of f is one-
dimensional , then

log(sp(f∗)) ≤ h(f).

Fried and Shub proved that the entropy conjecture also holds when the
map f is C1 and has a finite chain-recurrent set.

Theorem 21 (Fried and Shub [13]). If f is a C1 diffeomorphism on a
compact manifold M and the chain-recurrent set of f is finite, then

log(sp(f∗)) ≤ h(f).

5.2. Volume growth and global invariants. The relationship between the
volume growth and the topological invariants is easier. The next proposition
shows the well known fact (see for instance [49]) that for a C1 map the
volume growth is greater than or equal to the logarithm of the spectral
radius (and of the degree and asymptotic Lefschetz number).

Proposition 22. If f is C1 on a compact manifold M then for all
1 ≤ r ≤ ∞ we have

log(sp(f∗)) ≤ vr(f),

and consequently

log(deg(f)) ≤ vr(f), log(L∞(f)) ≤ vr(f).

For the first inequality just use the fact that the integral of a differential
form over a cycle is bounded from above by the sum of the volumes of
the simplexes forming the cycle (up to a constant), because the manifold is
compact. The other inequalities follow from Proposition 1.

Using the relationships with the topological entropy, it is also clear that
for Cr maps with r > 1, the volume growth is greater than or equal to the
logarithm of the asymptotic Nielsen number and the fundamental-group
entropy.
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Question 2. What is the relationship between the volume growth of a
C1 map and the homotopy invariants, i.e. the (logarithm of the) asymptotic
Nielsen number and the fundamental-group entropy?

5.3. Rate of growth of periodic points and global invariants. Now we try
to relate the rate of growth of periodic points to the topological invariants.
A first easy remark is the following.

Proposition 23. For any continuous map f on a compact manifold M
we have

N∞(f) ≤ Per∞(f).

If f satisfies the hypothesis (H1) and the indices of periodic points are uni-
formly bounded , then

L∞(f) ≤ Per∞(f).

If f satisfies the hypothesis (H1) and the indices of periodic points are all
strictly positive (or all strictly negative), then

Per∞(f) ≤ L∞(f).

The proof is again straightforward from the definitions. We remark that
the condition that the indices of periodic points are uniformly bounded is
a Cr generic property, r ≥ 1. Actually a Cr generic map, with r ≥ 1, has
all periodic points hyperbolic, so each index is plus or minus one. Shub and
Sullivan [47] proved that the index of a fixed periodic point is uniformly
bounded for all the powers of a C1 map f . The following natural question
was posed by M. Shub in [45].

Question 3. Is it true that for a C1 map on a compact manifold M we
always have

L∞(f) ≤ Per∞(f)?

This inequality is not true for Lipschitz maps, a counterexample is again
the map from Example 8, where we have only two periodic points, so the rate
of growth of periodic points is one, but the asymptotic Lefschetz number is
two.

The condition that all the indices of periodic points have the same sign
is satisfied for example if the diffeomorphism is uniformly hyperbolic, when
all the indices are one or all are minus one, or if the map is holomorphic
(see [9]).

In general there is no relation between the rate of growth of periodic
points and the other global invariants. The global invariants may be non-
trivial while there may be no periodic points at all because of the existence
of an irrational translation (see Examples 3 and 4). On the other hand
there may be superexponential growth of periodic points while the global
invariants are finite (see Theorem 9), or there may be growth of periodic
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points because of some local complexity while at the global level the map is
trivial (see Example 10 below).

For the identity map all the invariants are trivial. The simplest non-
trivial example where all the invariants are equal (up to taking the logarithm
if necessary) is the following.

Example 9. Let f : T1 → T1, f(x) = 2x (mod Z). Then for every
1 ≤ r ≤ ∞ we have

log 2 = log(N∞(f)) = log(L∞(f)) = log(deg(f)) = log(sp(f∗)) = h∗(f)
= h(f) = h1(f) = h2(f) = vr(f) = log(Per∞(f)).

Proof. Follows from the definitions.

An example where all the global invariants are trivial while the local
ones are not is the following.

Example 10. Let f be a C∞ map on the sphere S2 which is homotopic
to the identity and has a Smale horseshoe. Then

log(N∞(f)) = log(L∞(f)) = log(deg(f)) = log(sp(f∗)) = h∗(f) = 0,

while for every r ≥ 1 we have

h(f), h1(f), h2(f), vr(f), log(Per∞(f)) ≥ log 2 > 0.

Proof. As in Example 1, because the map is homotopic to the identity,
all the global invariants must be trivial. On the other hand, there exists
an invariant hyperbolic set on which the map is conjugate to the full two-
shift σ2, so

#Fix(fn) ≥ #Fix(σn2 ) = 2n.

Thus the rate of growth of periodic points is at least 2, Per∞(f) ≥ 2. Also
we have h(f) ≥ h(σ2) = log 2. The map is C∞, so

vr(f) ≥ v∞(f) = h(f) = h1(f)

and h2(f) ≥ h1(f) and the conclusion follows.

A map on the 2-dimensional sphere homotopic to the identity and con-
taining a Smale horseshoe can be easily constructed. Using homotopy, one
can deform a small square to create a thin rectangle, and then bend it so
that the rectangle will intersect the original square transversally twice, while
keeping everything unchanged outside a neighborhood of the small square.
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