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Abstract. We study a certain class of weakly order preserving, non-invertible circle
maps with irrational rotation numbers and exactly one flat interval. For this class of
circle maps we explain the geometric and dynamic structure of orbits. In particular, we
formulate the so called upper and lower scaling rules which show an asymmetric and
double exponential decay of geometry.

1. Introduction

1.1. Motivation. The objective of our presentation is to give a possi-
bly complete description of the dynamics of a certain class of weakly order
preserving, non-invertible circle maps which appear in a natural way (upper
maps) while studying the dependence of the rotation interval on the parame-
ter value for one-parameter families of endomorphisms of the circle (see [4]).
A prototype family of this type is the sine family which constitutes one of
the most famous models of transition to chaos:

(1) gt(x) = x+ (c/2π) sin(2πx) + t (mod 1).

Family (1) models a variety of physical phenomena and was studied in-
tensively by mathematicians as well as physicists.

For c ≤ 1 the maps gt are homeomorphisms of the circle to itself and the
rotation number ρ(gt) of gt constitutes a topological invariant that measures
the rate at which the orbit of a point wraps around the circle.

In general, for a weakly order preserving circle map the concept originated
with Poincaré and is defined in terms of a lift f to the real line as:

ρ = lim
n→∞

fn(x)
n
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where x is any initial point. Both f and the rotation number are defined
uniquely up to shifts by integers.

When c > 1 the maps gt are not invertible and have no rotation num-
ber (chaos). However, for these maps the notion of rotation interval can
be introduced as a natural extension of the concept of rotation number for
homeomorphisms [2]. There is an important result of [3] which says that the
upper endpoint of the rotation interval is equal to the rotation number of a
certain weakly order preserving circle map (upper map) which satisfies all
our assumptions.

Assumptions and notation. We fix counterclockwise orientation of the
circle. The metric on S1 is given by the natural projection

Π(x) = exp(2πix)

from the real line. Continuous circle maps can be lifted to the universal cover
and written as continuous real maps obeying f(x+ 1)− f(x) ∈ Z for every
real x. In this paper we will not make a strong distinction between objects
defined on the circle and their lifts to the real line using both concepts
according to our needs.

We denote by |J | the length of the interval J ⊂ S1 and by dist(x, y) or
simply |x− y| the length of the shortest closed interval which contains both
x and y.

The distance dist(X,Y ) between two sets X and Y is defined as

inf{dist(x, y) : x ∈ X, y ∈ Y }.
The left and the right endpoints of an interval J will be denoted by l(J) and
r(J) respectively.

Here is a list of the hypotheses.

Hypotheses.

1. We consider weakly order preserving circle maps f , at least twice con-
tinuously differentiable except for at most two points (endpoints of a
flat interval).

2. The first derivative of f is everywhere positive except for the closure
of an open non-degenerate interval I (the flat interval) on which it is
equal to zero.

3. The right-sided derivative of f at r(I) is different from zero (r(I) is
not critical).

4. There exists a left-sided neighborhood of l(I) and a real number ` > 1
so that for every x from this neighborhood f can be written as f(x) =
−|φ(x)|` + f(I), where φ is a C2 diffeomorphism on a neighborhood
of l(I).

5. The rotation number ρ ∈ (0, 1) of f is irrational.
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1.2. Preliminaries

Uniform constants. We will mean by a uniform constant a function on
our class of maps which depends continuously on the quasi-symmetric norm
of the map on S1 \ I, the logarithm of the size of I, the order ` of the
singularity of f at l(I), the C2 norm of f on S1\I and the lower bound of the
first derivative on S1\(I∪U), where U (see Fact 2.1 in the next subsection) is
a left-sided neighborhood of l(I) on which the second derivative is negative.
Uniform positive constants will be usually denoted by the letters K, A, M
with suitable subscripts, and we always assume 0 < λ < 1.

Superexponential convergence. In our estimates we will often use a con-
vergence which is faster than exponential. Typically, it will be double expo-
nential convergence given by sequences of the form exp(− exp(Kn)) where
K is a uniform constant.

Definition 1.1. We say that a sequence of real numbers cn tends to
c ∈ R uniformly superexponentially if there exist uniform positive constants
M and K such that for every n ≥M ,

|cn − c| ≤ exp(− exp(Kn)).

Continued fractions and dynamics. The rotation number ρ can be writ-
ten as an infinite continued fraction

ρ =
1

a1 + 1
a2+ 1

···

,

where ai are positive integers. If we cut off the portion of the continued
fraction beyond the nth position, and write the resulting fraction in lowest
terms as pn/qn then the numbers qn for n ≥ 1 satisfy the recurrence relation

qn+1 = an+1qn + qn−1, q0 = 1, q1 = a1.

The number qn is the iterate of the rotation by ρ for which the orbit of any
point makes the closest return so far to the point itself.

By the Poincaré Theorem, maps from our class are semi-conjugate to a
rotation. In particular, this implies the same order of orbits for both f and
the rotation by ρ. The numbers qn are called closest returns.

Continued fractions and partitions. We will use the preimages of the flat
interval I to define a system of partitions of the circle.

Consider all qn + qn+1 − 1 preimages of I and I itself together with all
holes between successive preimages of I. Set, for n even,

�n
i = f−i(r(f−qn(I)), l(I)) and �n+1

i = f−i(r(I), l(f−qn+1(I))),

and for n odd,

�n
i = f−i(r(I), l(f−qn(I))) and �n+1

i = f−i(r(f−qn+1(I)), l(I)).
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Thus, all holes of the nth partition can be divided into two groups:

• qn+1 “long” holes �n
0 , . . . ,�

n
qn+1−1,

• qn “short” holes �n+1
0 , . . . ,�n+1

qn−1.

The partition obtained by the above construction will be denoted by An and
called the nth dynamical partition of the circle.

We will briefly explain the structure of the partitions. Take two sub-
sequent dynamical partitions of order n and n + 1. The latter is clearly a
refinement of the former. All “short” holes of An become “long” holes of An+1

while all “long” holes of An split into an+2 preimages of I and an+2 “long”
holes and one “short” hole of the next partition An+1:

�n
i =

an+2⋃
j=1

f−i−qn−jqn+1(I) ∪
an+2−1⋃
j=0

�n+1
i+qn+jqn+1

∪�n+2
i .

Several of the proofs in the following will strongly depend on the relative
positions of the points and intervals of the dynamical partitions. When read-
ing the proofs the reader is advised to keep the following picture in mind,
which shows some of these objects near the flat interval I. To denote the
relevant objects in the picture we use temporary notation: i stands for f i(I)
and 0 stands for I.

s · · · s s−qn−2

?

−qn + (an − 1)qn−1

?

−qn + qn−1

?
−qn

?
0

?
−qn−1

?

anqn−1

6
2qn−1

6
qn−1

6

Remark. Observe that f qn(I) lies to the right of I for n even, and to
the left of I for n odd. If we do not want to specify holes of the nth partition
then we denote them briefly by �(n).

1.3. Presentation of results

Description and statement of results. We begin by recalling the definition
of the set Ω.

Definition 1.2. A point x belongs to the set of non-wandering points
Ω(f) if and only if for any open neighborhood V 3 x there exists an integer
n > 0 such that the intersection of V and fn(V ) is non-empty, where fn
stands for the nth composition of f .

Our goal is to describe both the behavior of high iterates of the map f
and the geometric structure of the set Ω of non-wandering points.

Upper scaling rules. The crucial technical observation is stated as the
First Basic Lemma (FBL) below. The scaling rules formulated there, by
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which we mean the ratio of the distance between the flat interval and its
two successive closest returns from the same side, give the upper bounds of
the geometry of the Cantor set Ω. We prove that the scaling rules are at
least superexponentially decreasing and do not depend on even coefficients
in the continued fraction expansion of the rotation number. This reflects the
hybrid dynamics of f which is topologically expansive, i.e. maps a proper
interval (S1 \ I) onto the whole circle, critical of polynomial type at the left
side of I, and non-degenerate at the right side of I.

Let pn/qn be the nth convergent to the continued fraction representation
of the rotation number ρ = [0, a1, . . . , an, . . . ]. Put γ(1) = 1 and for all n > 1,

γ(n) := γ(ρ, n) =
∏

0<i≤[n/2]

(
1 +

a2i+1

`

)
.

Lemma 1.1 (First Basic Lemma). Suppose that f satisfies the Hypothe-
ses. There is a uniform constant P > 0 and a constant 0 < λ < 1 such that
for every n ≥ 1:

dist(f qn(I), I) ≤ λγ(n),
|f−qn(I)|

dist(f−qn(I), I)
≥ Pλ−γ(n).

Further, there exist uniform constants N,A > 0 such that for every integer
n ≥ N , the constant λ can be chosen as (dist(f qN (I), I))A/γ(N).

A uniform version of FBL is stated in Section 4. As an immediate corol-
lary of the upper scaling rules we obtain Theorem 1 which says that inde-
pendently of the rotation number the flat interval I is approximated at least
superexponentially by successive closest returns f qn(I).

Theorem 1. If f satisfies the Hypotheses then there is a positive con-
stant 0 < λ < 1 such that dist(f qn(I), I) tends to zero faster than λ(

√
1+1/`)n

.

Lower scaling rules. The upper scaling rules allow us to formulate distor-
tion and convexity lemmas in Sections 5 and 6. These analytic estimates lead
to the Second Basic Lemma (SBL) setting lower bounds for scaling rules.

Put γ(1) = 1 and for every n > 1 define

γ(n) := γ(ρ, n) =
∏

0<i≤[n/2]

(
1 +

`+ 1
`− 1

a2i+1

)
.

Lemma 1.2 (Second Basic Lemma). Let f satisfy the Hypotheses. There
is a uniform constant N and a constant 0 < λ < 1 such that for every
n ≥ N ,

dist(f qn(I), I) ≥ λγ(n),
|f−qn(I)|

dist(f−qn(I), I)
≤ λ−γ(n).

The constant λ can be chosen as (dist(f qN (I), I))A/γ(N), where A is a uni-
form constant.
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Remarks. Similar but somewhat different scaling rules were considered
in [5] for rotation numbers of bounded type; that is, where all coefficients
ai of the continued fraction expansion of ρ are supposed to be bounded. A
further study of scaling rules for circle maps with a flat interval and rotation
numbers of bounded type can be found in [1].

Scaling rules of Fact 3.3 below imply that the set Ω of non-wandering
points coincides with S1 \

⋃∞
n=0 f

−n(I) and is of zero Lebesgue measure for
every map satisfying the Hypotheses (Proposition 1). For rotation numbers
of bounded type, the Hausdorff dimension of Ω was studied in [1].

2. Technical tools. Our main technical tools are right-ratio and cross-
ratio inequalities.

The cross-ratio inequality (CRI). We shall adapt the cross-ratio inequal-
ity introduced in [4] to our needs. For four points a, b, c, d arranged according
to the standard orientation of the circle so that a < b < c < d and b, c ∈ (a, d)
we define their cross-ratio as

Cr(a, b, c, d) =
|a− b| |c− d|
|a− c| |b− d|

.

By the distortion of the cross-ratio we mean

DCr(a, b, c, d) =
Cr(f(a), f(b), f(c), f(d))

Cr(a, b, c, d)
.

Let us consider a set of quadruples {ai, bi, ci, di} with the following proper-
ties:

1. Each point of the circle belongs to at most k intervals (ai, di).
2. The intervals (bi, ci) do not intersect I.

Then n∏
i=0

DCr(ai, bi, ci, di) ≤ Ck

and the constant Ck does not depend on the set of quadruples.

The right-ratio inequality (RRI). Suppose we have three points a, b, c so
that a < b < c. The right-ratio and its distortion are defined as follows:

R(a, b, c) =
|b− c|
|a− b|

, DR(a, b, c) =
R(f(a), f(b), f(c)

R(a, b, c)
.

Consider now a set of triples {ai, bi, ci}, 0 ≤ i ≤ n, which satisfy the
following conditions:

1. Each point of the circle belongs to at most k intervals (a, c).
2. The intervals (ai, bi) do not intersect the flat interval I and I is not

contained in (bi, ci).
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Then n∏
i=0

DR(ai, bi, ci) ≤ Rk

and the constant Rk does not depend on the set of triples.
Remark. In this paper we will consider only sets of triples and quadru-

ples formed by taking iterations either of an initial triple or quadruple. There-
fore, to characterize a given set of triples or quadruples we will indicate the
initial object in braces followed after a semicolon by the number of iterates
one must perform to get all of them.

Proof of the right-ratio inequality. We start with a simple fact from cal-
culus.

Fact 2.1. There is a left-sided neighborhood U of the point l(I) such that
for all y ∈ U the second derivative of f is negative. We can also assume that
|U | < 1/2 is so small that |f(U)| < 1/2.

Next we list some properties of the right-ratio which immediately yield
the desired result.

1. Upper convexity of f restricted to U implies that the distortion of the
right-ratio is strictly less than 1 for triples contained in U ∪ I.

2. Let U ′ be a left-sided neighborhood of l(I) strictly contained in U .
A total distortion of the right-ratio for triples contained in the com-
plement of I ∪ U ′ is bounded by the variation of log df

dx over this set.
3. There are at most k triples which are not covered by any of the above

two cases. For these triples the distortion of the right-ratio is also
bounded, as can be checked by a direct calculation.

3. Topological description of the set Ω. There is the following char-
acterization of the set Ω.

Proposition 1. The set Ω is equal to S1 \
⋃∞
i=0 f

−i(I) and is of zero
Lebesgue measure.

We start the proof of Proposition 1 with two simple observations. Let U
be the neighborhood from Fact 2.1.

Fact 3.1. There are constants K1,K2 such that if y ∈ U then
K1|l(I)− y|` ≤ |f(l(I))− f(y)| ≤ K2|l(I)− y|`,

K1|l(I)− y|`−1 ≤ df

dx
(y) ≤ K2|l(I)− y|`−1.

Fact 3.2. There is a constant K3 such that for every y, z ∈ U ,
|f(y)− f(z)|
|f(y)− f(I)|

≤ K3
|y − z|
|y − l(I)|

provided z ∈ (y, l(I)).
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Lemma 3.1. There is a uniform constant K4 > 0 such that

|f−qn(I)|
dist(f−qn(I), I)

≥ K4.

The sequence dist(f qn(I), I) tends to zero uniformly and at least exponen-
tially.

Proof. First, we prove that the length of f−qn(I) cannot be too small in
comparison to the distance to the flat interval I. Assume that n is even, i.e.
f−qn(I) is to the left of I.

Apply CRI to

{l(f−qn+1(I)), r(f−qn+1(I)), l(f−qn+1+1(I)), r(f−qn+1+1(I)); qn − 1}
to obtain

(2)
|I|

|l(I)− l(f−qn+1+qn(I))|
|f−qn+1+qn(I)|

|r(I)− r(f−qn+1+qn(I))|

≤ C1
|f−qn+1(I)|

|l(f−qn+1(I))− l(f−qn+1+1(I))|
|f−qn+1+1(I)|

|r(f−qn+1(I))− r(f−qn+1+1(I))|
.

Fact 3.2 yields

|f−qn+1(I)|
|l(f−qn+1(I))− f(I)|

≤ K3
|f−qn(I)|

|l(f−qn(I))− l(I)|
.

The first factor of the left-hand side of (2) is bounded away from zero while
the second factor on the right-hand side is less than 1. Therefore,

(3)
|f−qn(I)|

|l(f−qn(I))− l(I)|
≥ K5

|f−qn+1+qn(I)|
|r(I)− r(f−qn+1+qn(I))|

.

The interval f−qn+1+qn(I) lies between r(I) and r(f−qn+1+qn(I)). Therefore,
RRI written for {r(I), l(f−qn+1+qn(I)), r(f−qn+1+qn(I)); qn+1 − qn} gives a
lower bound of (3), which yields the inequality from Lemma 3.1.

For n odd, the considerations are much simpler. To get the same estimates
as above it is enough to write RRI for {r(I), l(f−qn(I)), r(f−qn(I)); qn}.

Finally for both cases, since f qn+1(I) lies between f−qn(I) and I we
obtain

dist(f qn+1(I), I) ≤ (1/(1 +K4)) dist(f qn−1(I), I),

which completes the proof of Lemma 3.1.

First estimates. We write down four simple inequalities which will set a
basis for the proof of the main estimates in the next section. We will also
use them to prove Proposition 1.

Consider the nth partition of the circle. We form a set of initial triples by
taking the endpoints of all holes �(n) ∈ An together with the right endpoint
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of the preimage I(�(n)) ∈ An of the flat interval I lying immediately to the
right of �(n) ∈ An. RRI implies:

Fact 3.3. The ratio
|�(n)|
|I(�(n))|

is bounded from above by either

• (R1/|I|) dist(f qn(I), I)) or (R1/|I|) dist(f−qn+1(I), I)) for n odd,
• (R1/|I|) dist(f−qn(I), I)) or (R1/|I|) dist(f qn+1(I), I)) for n even.

Proof of Proposition 1. The inclusion Ω ⊂ S1 \
⋃∞
i=0 f

−i(I) is evident.
So, we have to prove that each point in S1 \

⋃∞
i=0 f

−i(I) is non-wandering.
By Fact 3.3 the complement of all preimages of I does not contain any
density point with respect to the Lebesgue measure. Hence, by the Lebesgue
Density Lemma the set of non-wandering points is of zero Lebesgue measure.
In particular,

⋃∞
i=0 f

−i(I) is dense in S1. Moreover, S1\
⋃∞
i=0 f

−i(I) contains
no isolated points, because such an isolated point would lie on the boundary
of two inverse images of I and therefore would imply the existence of a
periodic point. Since f is order preserving, we see that {f i(I) : i > 0} is
dense in S1 \

⋃∞
i=0 f

−i(I). Hence, every point in S1 \
⋃∞
i=0 f

−i(I) has a dense
orbit, by the property of f being order preserving.

4. Scaling rules—upper bounds. We recall that pn/qn is the nth
convergent of the continued fraction representation of the rotation number
ρ = [0, a1, . . . , an, . . . ].

Let 1 ≤ m < n and define

γ(n,m) := γ(ρ, n,m) =
∏

[m/2]<i≤[n/2]

(
1 +

a2i+1

`

)
.

In the above definition, we adopt the rule that the product over an empty
set of indices is equal to 1. For example, if n is odd then γ(n, n − 1) = 1.
Also, γ(n, n) = 1. We see that γ(n) = γ(n, 1). By the definition, for any
m ≤ k ≤ n, γ(n,m) = γ(n, k)γ(k,m).

Our main technical task in this section is to prove FBL.
We want to compare the length of f−qn(I) with dist(f−qn(I), I) and show

that the latter is much smaller than the former. Our considerations fall into
two parts:

4.1. Proof of FBL when f−qn(I) is to the left of I

Lemma 4.1. There are uniform constants n0,K6 such that

|r(I)− l(f−qn−1(I))|1/` ≤ K6|f−qn(I)| for all n ≥ n0.

Proof. From Lemma 3.1 there is n0 such that for every n ≥ n0 even,
f−qn−2(I) ⊂ U , where U is the neighborhood from Fact 2.1.
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We will show that the opposite inequality

(4) |r(I)− l(f−qn−1(I))|1/` ≥ (1/α)|f−qn(I)|
leads to a contradiction if only α is small enough.

Since the right-sided derivative of f at r(I) is positive, the lengths
|f(I) − l(f−qn−1+1(I))| and |r(I) − l(f−qn−1(I))| are comparable. By the
inequality (4) we get

|f(I)− l(f−qn−1+1(I))|1/` ≥ (K7/α)|f−qn(I)|
and consequently, by Lemma 3.1 and Fact 3.1,

≥ (K8/α)|l(f−qn+1(I))− f(I)|1/`.
Thus

(5) |f(I)− l(f−qn−1+1(I))| ≥ (K8/α)`|l(f−qn+1(I))− f(I)|.
For an ≥ i ≥ 0 set

βi = |l(f−qn+iqn−1(I))− f iqn−1(I)|, Si = |l(f−qn+iqn−1(I))− l(I)|.
We shall show that

(6)
βi+1

Si+1
≤
(
K9α

Si
β0

)` βi
Si

for all 0 ≤ i ≤ an − 1.
Writing CRI for

{l(f−qn+iqn−1+1(I)), f iqn−1+1(I), l(f−qn−1+1(I)), r(f−qn−1+1(I)); qn−1 − 1},
we obtain

(7)
|I|

|f (i+1)qn−1(I)− r(I)|
βi+1

Si+1

≤ C1
|l(f−qn+iqn−1+1(I))− f iqn−1+1(I)|
|l(f−qn+iqn−1+1(I))− l(f−qn−1+1(I))|

|f−qn−1+1(I)|
|f iqn−1+1(I)− r(f−qn−1+1(I))|

.

By Facts 3.2 and 3.1 we have
|l(f−qn+iqn−1+1(I))− f iqn−1+1(I)|
|l(f−qn+iqn−1+1(I))− f(I)|

≤ K3
βi
Si
,(8)

|l(f−qn+iqn−1+1(I))− f(I)|
|l(f−qn+1(I))− f(I)|

≤ (K2/K1)
(
Si
β0

)`
.(9)

The first factor on the left-hand side of (7) is greater than a uniform constant.
We can also neglect the last factor on the right-hand side of (7) as it is smaller
than 1. Further, we substitute (8) and (9) into the resulting inequality to
obtain

(10)
βi+1

Si+1
≤ K10

(
Si
β0

)` |f(I)− l(f−qn+1(I))|
|l(f−qn+iqn−1+1(I))− l(f−qn−1+1(I))|

βi
Si
.
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Note that

(f(I), l(f−qn−1+1(I))) ⊂ (l(f−qn+iqn−1+1(I)), l(f−qn−1+1(I))).

Therefore, substituting (5) into (10) we finally obtain (6).
We pass to estimating the rate of growth of βi/Si. To simplify the nota-

tion we set new α to be equal to K9α.
We begin by showing that Si+1 − Si ≤ κβi+1 for a uniform constant

κ > 1. To do this we define εi+1 = |f (i+1)qn−1(I)− l(f−qn+iqn−1(I))|. Observe
that Si+1 − Si = βi+1 + εi+1. The interval (f (i+1)qn−1(I), l(f−qn+iqn−1(I)))
is contained in the hole (r(f−qn+(i+1)qn−1(I)), l(f−qn+iqn−1(I))) of the dy-
namical partition An−1, and therefore the error term εi+1 can be estimated
using the cross-ratio inequality written for the endpoints of the intervals
f−qn+(i+1)qn−1(I) and f−qn+iqn−1(I) and the number of iterates qn −
(i + 1)qn−1 (see the figure below with a temporary notation i := f i(I)
and 0 := I).

· · · · · ·s−qn−2

?

−qn + (i + 1)qn−1

?

−qn + iqn−1

?
−qn

?
0

?
−qn−1

?

(i + 1)qn−1

6

Indeed, using simple algebra and Lemma 3.1, we have

βi+1

εi+1 + βi+1
≥ 1
C1

|I|
|l(I)− l(f−qn−1(I))|

|f−qn−1(I)|
|r(I)− r(f−qn−1(I)|

≥ K4|I|
C1(1 +K4)

.

In particular, there exists a uniform constant κ > 1 such that βi+1 + εi+1

≤ κβi+1 for every 0 ≤ i ≤ an − 1.
We shall show that for all 0 ≤ i ≤ an the following inequalities are true

if only α is small enough:

(i) Si ≤ β0(1 + 2α`−1)(1 + α`−1)(1 + α`−1/2) · · · (1 + α`−1/2i−1),
(ii) βi/Si ≤ αi(l−1).

Induction. For i = 0 our inequalities trivially hold. Suppose that the
induction hypothesis is true for some i ≤ an − 1 and α is chosen so that
α exp(4`α`−1) ≤ 1. Further, using (6) with the new α, we obtain

βi+1/Si+1 ≤ (α exp(4α`−1))`(βi/Si) ≤ α`−1(βi/Si) ≤ α(`−1)(i+1).

To prove the first inequality we assume additionally that α`−1 < 1/4κ
and use the fact that the function x 7→ x/(1− x) is increasing for x < 1.
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Then

Si+1 = Si + βi+1 + εi+1 ≤
(

1 +
(εi+1 + βi+1)/Si+1

1− (εi+1 + βi+1)/Si+1

)
Si

=
(

1 +
κα(i+1)(`−1)

1− κα(i+1)(`−1)

)
Si ≤

(
1 +

καi(`−1)

1− καi(`−1)
α`−1

)
Si

≤ β0(1 + 2α`−1) · · · (1 + α`−1/2i).

Conclusion of the proof of Lemma 4.1. As a consequence of (ii), we obtain

βan/San ≤ α(`−1)an .

Let us recall that −qn−2 = −qn + anqn−1. Fact 3.2 and CRI written for

{l(f−qn−2+1(I)), fanqn−1+1(I), l(f−qn−1+1(I)), r(f−qn−1+1(I)); qn−2 − 1}

imply that

βan

San

≥ 1
K3

|l(f−qn−2+1(I))− fanqn−1+1(I)|
|l(f−qn−2+1(I))− l(f−qn−1+1(I))|

≥ |I|
C1K3

|f−qn−1+qn−2(I)|
|f qn(I)− r(f−qn−1+qn−2(I))|

.

By RRI, the right-hand side of the above inequality is bounded from below
by a constant K11. Choosing α`−1 smaller than |I|K11/C1K1, we obtain a
contradiction.

Conclusion of the proof of FBL. By Lemma 4.1 and Fact 3.1 we obtain

(11)
|f−qn(I)|

|r(f−qn(I))− l(I))|
≥ K12

(
|f(I)− l(f−qn−1+1(I))|
|r(f−qn+1(I))− f(I)|

)1/`

.

Let 0 ≤ i ≤ an+1 − 2 (we temporarily assume that an+1 > 1). RRI written
for

{f(I), l(f−qn−1−(i+1)qn+1(I)), l(f−qn−1−iqn+1(I)); qn−1 + (i+ 1)qn − 1}

yields

(12)
|f(I)− l(f−qn−1−(i+1)qn+1(I))|
|f(I)− l(f−qn−1−iqn+1(I))|

≤ (R1/|I|) dist(f qn−1(I), I).

Multiply through the inequalities (12) for 0 ≤ i ≤ an+1 − 2 to get

(13)
|f(I)− l(f−qn+1+qn+1(I))|
|f(I)− l(f−qn−1+1(I))|

≤ ((R1/|I|) dist(f qn−1(I), I))an+1−1.

The next inequality will relate estimates (13) and (11). RRI written for
{r(f−qn+1(I)), f(I), l(f−qn+1+qn+1(I)); qn+1 − 1} implies



Dynamics of circle maps with flat spots 279

(14)
|f(I)− l(f−qn+1+qn+1(I))|
|f(I)− r(f−qn+1(I))|

≥ (1/R1)
|f qn(I)− f qn+1(I)|

|f qn+1(I)− f qn+1−qn(I)|

≥ |I|/R1

|l(I)− f qn+1−qn(I)|
≥ (|I|/R1) dist(f qn−1(I), I)−1.

Combining the inequalities (11), (13) and (14) we obtain

(15)
|f−qn(I)|

|r(f−qn(I))− l(I)|
≥ K12((R1/|I|) dist(f qn−1(I), I))−an+1/`

and consequently

(16) dist(f qn+1(I), I)

≤ K13((R1/|I|) dist(f qn−1(I), I))an+1/` dist(f qn−1(I), I)

≤ (K14 dist(f qn−1(I), I))1+an+1/`.

If an+1 = 1 then (15) and (16) follow directly from (14) and (11).
Let 1 ≤ m ≤ n be even numbers. Then

γ(n,m) =
∏

m/2<i≤n/2

(1 + a2i+1/`).

The recursive estimate (16) implies that

dist(f qn+1(I), I) ≤ Kγ(n,n−2)+γ(n,n−4)+···+γ(n,m)
14 dist(f qm+1(I), I)γ(n,m).

Observe that
(n−m)/2∑
i=0

γ(n,m+ 2i) = γ(n,m)
(n−m)/2∑
i=0

γ(m+ 2i,m)−1

≤ γ(n,m)
∞∑
i=0

(1 + 1/`)−i ≤ (`+ 1) · γ(n,m).

Consequently,

(17) dist(f qn+1(I), I) ≤ (K15 dist(f qm+1(I), I))γ(n,m).

By Lemma 3.1, there is a uniform constant 0 < λ1 < 1 such that for every
n ∈ N, dist(f qn(I), I) < λn1 . Choose n0 even so that K15 dist(f qn0+1(I), I) ≤
1/2. The constant n0 is uniform and, from (17), if n ≥ n0 is even then

(18) dist(f qn+1(I), I) ≤ (1/2)γ(n,n0).

Let λ2 = (1/2)1/γ(n0). Using (17) and (18), we see that for every n ≥ n0

even,

(19) dist(f qn+1(I), I) ≤ (1/2)γ(n,n0) = (1/2)γ(n,1)/γ(n0,1) = λ
γ(n)
2 = λ

γ(n+1)
2 .

The constant λ2 is not uniform and it depends on the rotation number. Since
dist(f qn+1(I), I) are all smaller than 1, we obtain the first formula of FBL
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for all n odd. The second formula of FBL for n even follows from the first
for n odd and (15).

Let N ≥ n0 +1 be an odd number chosen so that K15(dist(f qN (I), I))1/2

< 1. The explicit formula for λ stated in FBL can be derived from (17).
Let A = 1/2 and denote θ = (dist(f qN (I), I))A/γ(N). If n+ 1 ≥ N then the
inequality (17) with m+1 := N implies that dist(f qn+1(I), I) is bounded by

(dist(f qN (I), I))γ(n,N−1)/2 = (dist(f qN (I), I))γ(n,N)/2 = θγ(n+1).

4.2. Proof of FBL when f−qn(I) is to the right of I. The claims
of FBL in this case follow easily from the estimates of the last subsec-
tion. Indeed, note that f qn+1(I) lies between f−qn+2(I) and f−qn+2+qn+1(I).
Therefore,

(20) dist(f qn+1(I), I) ≤ |r(I)− l(f−qn+2+qn+1(I))|.

Apply RRI for

{r(I), l(f−qn−iqn+1(I)), r(f−qn−iqn+1(I)); qn + iqn+1},

where 0 ≤ i ≤ an+2 − 1, and a simple algebra to get

(21)
|r(I)− l(f−qn−iqn+1(I))|

|f−qn−iqn+1(I)|
≤ (R1/|I|) dist(f qn(I), I).

Multiplying through (21) for 0 ≤ i ≤ an+2 − 1, we obtain

|r(I)− l(f−qn+2+qn+1(I))|
|r(I)− r(f−qn(I))|

≤
an+2−1∏
i=0

|r(I)− l(f−qn−iqn+1(I))|
|r(I)− r(f−qn−iqn+1(I))|

(22)

≤ ((R1/|I|) dist(f qn(I), I))an+2 .

The inequality (20) and |r(I) − r(f−qn(I))| ≤ dist(f qn−1(I), I) allow us to
write (21) in the recursive form

(23) dist(f qn+1(I), I) ≤ dist(f qn−1(I), I)((R1/|I|) dist(f qn(I), I))an+2 .

We recall that n0 is a uniform constant defined in the discussion leading
to the estimate (18). Suppose that R1/|I| > 2 and choose n1 > n0 so that
(|I|/R1)2 > (1/2)γ(n1,n0). The constant n1 is uniform since it can be defined
as a number for which

(2/log 2) log(R1/|I|) < (1 + 1/`)(n1−n0)/2.

Further, for every 1 ≤ m ≤ n,

(24) an+2 · γ(n,m) ≥ γ(n+ 1,m)/(`+ 1).
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We use the estimate (19). Consequently, for every n ≥ n1 there exists λ3 ∈
(0, 1) such that

dist(f qn+1(I), I) ≤ ((R1/|I|)(1/2)γ(n,n0))an+2(25)
≤ (1/2)(γ(n,n0)−(1/2)γ(n1,n0))an+2

≤ (1/2)an+2·γ(n,n1)

≤ (1/ `+1
√

2)γ(n+1,n1) ≤ λγ(n+1)
3 .

This proves the first estimate of FBL. The constant λ3 is not uniform as it
is defined by

λ3 = (1/2)1/((`+1)γ(n1)).

The second inequality of FBL follows directly from the first and RRI
written for {r(I), l(f−qn(I)), r(f−qn(I)); qn−1}. Indeed,

(26)
|f−qn(I)|

|r(I)− l(f−qn(I))|
≥ (|I|/R1)(dist(f qn(I), I))−1.

The explicit formula for λ in the statement of FBL is a consequence of
(23) combined with the estimates (24) and (17). Indeed, chooseN≥n0 odd so
that (K15R1/|I|)(dist(f qN (I), I))1/2 < 1. We can also drop dist(f qn−1(I), I)
from the inequality (23). Set A=1/(2(`+1)) and θ=(dist(f qN (I), I))A/γ(N).
Then, for all n ≥ N odd,

dist(f qn+1(I), I) ≤ ((R1/|I|) dist(f qn(I), I))an+2

≤ (K15(R1/|I|) dist(f qN (I), I))γ(n+1,N−1)/(`+1)

≤ (dist(f qN (I), I))γ(n+1,N)/2(`+1) = θγ(n+1).

4.3. Uniform version of FBL

Lemma 4.2. There is a uniform constant n0 ∈ N such that for every
n ≥ n0,

dist(f qn(I), I) ≤ 2−γ(n,n0),
|f−qn(I)|

dist(f−qn(I), I)
≥ 2γ(n,n0).

Proof. The first inequality follows directly from the estimate (19) when n
is odd and from (23) when n is even. The second inequality is a consequence
of the first and the inequalities (15) and (26).

4.4. Proof of Theorem 1. The coefficients ai in the statement of FBL
are positive integers.

5. Analytic description of the dynamics

5.1. Distortion. The crucial observation made in this subsection is that
the logarithm of the total distortion of an iterate f i on an interval J with the
property that J, . . . , f i−1(J) are contained in the holes of the nth partition
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An tends to 0 uniformly superexponentially provided J, . . . , f i−1(J) do not
intersect the hole ∆ ∈ An adjacent to the critical point l(I). The explanation
of this phenomenon is the following: by FBL the holes are substantially
shorter than the neighboring preimages of the flat interval I which separate
the holes from the critical point.

Lemma 5.1 (Distortion Lemma). Let J, . . . , f i−1(J), i ≥ 1, be a col-
lection of intervals contained in the holes of An which do not intersect the
hole ∆ ∈ An adjacent to l(I). Then for any z1, z2 ∈ J the logarithm of the
distortion ∣∣∣∣log

df i

dx
(z1)− log

df i

dx
(z2)

∣∣∣∣
tends to 0 uniformly superexponentially when n goes to infinity.

Proof. Let z1, z2 be in the same hole of An different from ∆. By the
Mean Value Theorem,

D :=
∣∣∣∣log

df i

dx
(z1)− log

df i

dx
(z2)

∣∣∣∣ ≤ i−1∑
j=0

(∣∣∣∣d2f

dx2
(ξj)

∣∣∣∣/∣∣∣∣ dfdx(ξj)
∣∣∣∣)|f j(J)|(27)

≤ M0

∑
�(n)∈An\{∆}

|�(n)|
dist(�(n), I)

,

where ξj ∈ f j(J). Let I(�(n)) ∈ An be a preimage of the flat interval I lying
immediately to the right of �(n). By Fact 3.3, the ratio |�(n)|/|I(�(n))| is
bounded from above by

(R1/|I|) dist(f qn(I), I)) if n is odd,(28)
(R1/|I|) dist(f−qn(I), I)) if n is even.(29)

If n is odd then ∆ coincides with (r(f−qn+1(I)), l(I)) and f qn(I) lies in
the hole ∆1 ∈ An between f−qn+1+qn(I) and f−qn+1(I), i.e. ∆1 is to the left
of f−qn+1(I). By RRI written for {f qn(I), l(f−qn+1(I)), r(f−qn+1(I)); qn+1},

(30)
|f qn(I)− l(f−qn+1(I))|

|f−qn+1(I)|
≤ (R1/|I|) dist(f qn+1+qn(I), I) ≤ R1/|I|

and

dist(f qn(I), I) = dist(∆1, I) + |f qn(I)− l(f−qn+1(I))|

≤ dist(∆1, I)
(

1 +
|f qn(I)− l(f−qn+1(I))|

|f−qn+1(I)|

)
≤ dist(∆1, I)(1 +R1/|I|).
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Hence, for n odd,

D ≤M1

∑
�(n)∈An\{∆}

|�(n)|
|I(�(n))|

|I(�(n))|
dist(�(n), I)

(31)

≤M2

∑
�(n)∈An\{∆,∆1}

dist(∆1, I)
(

1 +
|I(�(n))|

dist(�(n), I)

)

≤M3 dist(∆1, I)
1�

dist(∆1,I)

1
x
dx

= M3 dist(∆1, I)|log(dist(∆1, I))|.

For n even, ∆ coincides with (r(f−qn(I)), l(I)). Therefore,
|�(n)|
|I(�(n))|

≤ (R1/|I|)|∆|

and

D ≤M4

∑
�(n)∈An\{∆}

|∆| |I(�(n))|
dist(�(n), I)

(32)

≤M5|∆|
1�

|∆|

1
x
dx = M5|∆| |log(|∆|)|.

In view of FBL, the proof of Lemma 5.1 is complete.

In the next step we will estimate distortion on the holes of An adjacent to
the flat interval I. We recall that the rotation number ρ of f has a continued
fraction representation ρ = [0, a1, . . . , an, . . . ].

Lemma 5.2. Denote by ∆ ∈ An the hole adjacent to I from the left and
by ∆′ the whole adjacent to I from the right.

• For every n ∈ N even and every 0 ≤ k < qn+1, the logarithm of the
distortion of fk on f(∆) tends uniformly and superexponentially to 0.

• For every n ∈ N odd and every 0 ≤ i < an+1, the logarithm of the dis-
tortion of f qn−1 on f iqn+1(∆′) tends uniformly and superexponentially
to 0.

Proof. For n even, ∆ = �n
0 . Observe that the intervals {f i(∆) : 0 ≤

i < qn+1} and {f−j(I) : 0 < j ≤ qn} are pairwise disjoint. This means that
the intervals {f i(∆) : 0 ≤ i < qn+1} are contained in the holes of An−2 as
qn−1 + qn−2 ≤ qn. Consider now those intervals of {f i(∆) : 0 ≤ i < qn+1}
which lie in the hole ∆1 := �n−2

0 ∈ An−2 adjacent to l(I). Every such f i(∆)
is disjoint from {f−qn−2−mqn−1(I) : 0 ≤ m ≤ an} and thus it is contained in
the union of the holes of An−1 \ {∆}.
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Denote by Bn−1 the set of all holes of An−1 contained in ∆1 \∆. As in
the proof of Lemma 5.1 (see (27)), for every z1, z2 ∈ f(∆) we have

D :=
∣∣∣∣log

dfk

dx
(z1)− log

dfk

dx
(z2)

∣∣∣∣(33)

≤
k−1∑
j=0

(∣∣∣∣d2f

dx2
(ξj)

∣∣∣∣/∣∣∣∣ dfdx(ξj)
∣∣∣∣)|f j+1(∆)|

≤ M6

( ∑
�∈An−2\{∆1}

|�|
dist(�, I)

+
∑

�∈Bn−1

|�|
dist(�, I)

)
,

where ξj ∈ f j+1(∆). Since Bn−1 ⊂ An−1 \ {∆}, we apply the estimates (31)
and (32) to conclude the proof.

For n odd, ∆′ = �n
0 . Fix 0 ≤ i < an+1 and observe that the intervals

{f iqn+j(∆′) : 1 ≤ j < qn} are pairwise disjoint and contained in the union
of the holes of An−1 \ {�n−1

0 }. The claim follows by Lemma 5.1.

We conclude this section with a corollary that the graph of f qn+1 for n
even and large in “the small scale” is similar to the graph of x` up to an
affine change of coordinates.

Corollary 5.1. There are uniform constants n0,M7 such that for every
n ≥ n0 even and any two points z1, z2 ∈ �n

i , 0 ≤ i < qn+1,

1
M7

(
|z1 − r(�n

i )|
|z2 − r(�n

i )|

)`−1

≤ df qn+1

dx
(z1)

/df qn+1

dx
(z2) ≤M7

(
|z1 − r(�n

i )|
|z2 − r(�n

i )|

)`−1

.

Proof. Combine the estimates of Lemma 5.1, Lemma 5.2, and Fact 3.1.

5.2. Miscelaneous estimates. Now, we are in a position to show that
the holes of the nth partition are very small not only in comparison to the
preimages of I which lie immediately to their right (see FBL) but also to
their left.

Lemma 5.3. There are uniform constants n0,M8 such that for every
n ≥ n0 even and every 0 ≤ i < qn+1,

|f−i−qn(I)|
|�n

i |
≥ (M8 dist(f qn−1(I), I))−an+1/`.

Proof. By RRI and the uniform version of FBL, the interval f−i−qn(I)
is very small in comparison to f−i(I). Hence, the ratio |f−qn−i(I)|/|�n

i |
is greater than a uniform constant multiple of |f−qn(I)|/|�n

0 |. The lemma
follows by the estimate (15).

We will show that the map f qn+1(z) is expanding with a large derivative
provided z ∈ �n

i is not too close to l(�n
i ).
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Lemma 5.4. There are uniform constants n0,M9 with the following
property.

• For every z ∈ �n
i , 0 ≤ i ≤ qn+1, and n ≥ n0 even,

df qn+1

dx
(z) ≥ (M9 dist(f qn−1(I), I))−an/`

(
|z − r(�n

i )|
|�n

i |

)`−1

.

• For every z ∈ (l(�n
i ), l(f

−qn+1−qn−i(I)), 0 ≤ i < qn+1, and n ≥ n0

odd,
df qn+1

dx
(z) ≥ M9

dist(f qn(I), I)
.

Proof. Assume that n is even. Note that f−qn−i(I) ⊂ f qn+1(�n
i ). By the

Mean Value Theorem and the Convexity Lemma, there exists ξ ∈ �n
i such

that
df qn+1

dx
(l(�n

i )) ≥
df qn+1

dx
(ξ) ≥ |f

−i−qn(I)|
|�n

i |
.

Substitute the above inequality in the formula of Corollary 5.1 with z1 and z2
replaced, respectively, by z and l(�n

i ). The estimate follows by Lemma 5.3.
Assume now that n is odd. Since f−qn+1−qn−i(I) ⊂ �n

i , there is ξ ∈
f−qn+1−qn−i(I) such that

df qn+1

dx
(ξ) ≥ |f

−i−qn(I)|
|�n

i |
.

By Lemma 5.1, the graph of f qn+1 on (l(�n
i ), l(f

−qn+1−qn−i(I)) is almost
linear. Hence, for every z from that interval,

df qn+1

dx
(z) > M10

|f−i−qn(I)|
|�n

i |
.

The second estimate of the lemma follows from (26).

5.3. Nonlinearity. The one-form N f = (f ′′/f ′) dx, called the nonlin-
earity of f , measures the infinitesimal change of the distortion of f at the
point x. We will use this quantity to get convexity estimates of the second
derivative of f qn .

Fact 5.1. There exist uniform positive constants H1 and H2 with the
following properties. For every x outside the flat interval I, we have

|N f(x)| dist(x, I) ≤ H1.

Additionally, if x is close enough to l(I) then

N f(x) dist(x, I) ≤ −H2.

Let I ⊂ R be an interval and f : I → R be a C2 function. We say that f
is upper convex if f ′′(x) ≤ 0 for every x ∈ I.
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The Convexity Lemma states that f qn+1 on �n
i is upper convex for n even

and large.

Lemma 5.5 (Convexity Lemma). There are uniform constants n0, H > 0
with the following property. If n ≥ n0 is even then for every �n

i of the
partition An,

|�n
i |N f qn+1(x) ≤ −H.

In particular, the graph of f qn+1 restricted to �n
i is upper convex.

Proof. We choose n0 so that for every n even and greater than n0, the
second derivative of f is negative on �n

0 .
By Lemma 5.1, there is H4 such that for every z ∈ �n

i ,

df i

dx
(x) ≥ H4

|�n
0 |

|�n
i |
.

There is a uniform constant H5 such that N+f := max(0,N f) ≤ H5. Af-
ter these preparations we are ready to estimate the rescaled nonlinearity
|�n

i |N f qn+1(x) on the interval �n
i . By the chain rule, Lemmas 5.1, 5.2, and

Fact 5.1,

|�n
i |N f qn+1(x) = |�n

i |
qn+1−1∑
j=0

N f(f j(x))
df j

dx
(x)

≤ H6|�n
0 |N f(f i(x)) +H7

qn+1−1∑
j=0, j 6=i

N+f(f j(x))
df j

dx
(x)|�n

i |

≤ −H8
|�n

0 |
dist(f i(x), I)

+H9

qn+1−1∑
j=0, j 6=i

|f j(�n
i )|

≤ −H8 +H9

∑
�∈An−1∪An−2

|�| ≤ −H10,

as the total length of the holes of An−1 and An−2 tends to 0 uniformly
superexponentially. The estimate

df j

dx
(x)|�n

i | ≤ H10|f j(�n
i )| for every 0 ≤ j < qn+1

also uses Fact 3.1.

6. Scaling rules—lower bounds. The proof of SBL falls into two
parts.

6.1. Proof of SBL when f−qn(I) is to the left of I. Through-
out the proof of SBL we will usually use the letter A with suitable sub-
scripts to denote subsequent uniform constants appearing in the estimates.
By Lemma 4.1,
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(34) dist(f qn+1(I), I) ≥ |f−qn+2(I)| ≥ K6|r(I)− l(f−qn+1(I))|1/`.
Since the first derivative of f is bounded,

(35) |r(I)− l(f−qn+1(I))| ≥ A0|f(I)− l(f−qn+1+1(I))|.
By Fact 3.1,

(36) |r(f−qn+1(I))− f(I)| ≥ K1|r(f−qn(I))− l(I)|`.
Write RRI for {r(f−qn+1(I)), f(I), l(f−qn+1+1(I)); qn+1 − 1} and then

combine it with (35), (36) to obtain
|r(I)− l(f−qn+1(I))|
|r(f−qn(I))− l(I)|l

≥ A0K1

R1

|f qn+1(I)− l(I)|
|f−qn+qn+1(I)− f qn+1(I)|

(37)

≥ A1
|f qn+1(I)− l(I)|
|l(f−qn(I))− l(I)|

,

the last inequality being a consequence of the fact that f−qn+qn+1(I) ∈ �n
qn

(Fact 3.3 and FBL imply that |f−qn+qn+1(I) − l(f−qn(I))| is much smaller
than |f−qn(I)|).

Substituting (34) into (37) and then taking the `th root of both sides,
we get

(38)
|f qn+1(I)− l(I)|
|r(f−qn(I))− l(I)|

≥ A2
|f qn+1(I)− l(I)|1/`

|l(f−qn(I))− l(I)|1/`
.

Let bn = |f qn(I)) − l(I)|. By FBL (see also Lemma 4.2), bn−1 and
|l(f−qn(I)) − l(I)| are equal up to a superexponentially small error when
n goes to infinity. Also, |r(f−qn(I))− l(I)| ≥ bn+1. Therefore, (38) becomes(

bn+1

bn−1

)(`−1)/`

≥ A3
|r(f−qn(I))− l(I)|
|l(f−qn(I))− l(I)|

.

Applying RRI for {l(f−qn+1(I)), r(f−qn+1(I)), f(I); qn − 1} and using
the fact that |�n

0 | is superexponentially smaller than |f−qn(I)|, we get

(39)
(
|r(f−qn(I))− l(I)|
|l(f−qn(I))− l(I)|

)`
≥ A4bn,

and consequently (
bn+1

bn−1

)`−1

≥ A5bn.

Our objective now is to find a recurrence formula for bn+1/bn−1. To this
end we prove the following lemma.

Lemma 6.1. For every 2 ≤ i ≤ an+1,

|r(I)− f (i−1)qn(I)|
|r(I)− f iqn(I)|

≥ A6|r(I)− l(f−qn−1(I))|.
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Proof. By Lemmas 4.1 and 3.1,
(40) |f(I)− l(f−qn−1+1(I))| ≤ A7|f(I)− l(f−qn+1(I))|.
By (40) and RRI written for {l(f−qn+1(I)), f(I), f (i−1)qn+1(I); qn − 1},

|r(I)− f (i−1)qn(I)|
|r(I)− l(f−qn−1(I))|

≥ A8
|f(I)− f (i−1)qn+1(I)|
|f(I)− l(f−qn+1(I))|

≥ A9
|f qn(I)− f iqn(I)|
|f qn(I)− l(I))|

≥ A10|f qn(I)− f iqn(I)|.
Since (f qn(I), f iqn(I)) ⊃ f−qn+1+qn(I), the lemma follows by Fact 3.3.

Multiplying through the inequalities of Lemma 6.1 for 2 ≤ i ≤ an+1, we
obtain
(41) bn ≥ |r(I)− fan+1qn(I)|(A10|r(I)− l(f−qn−1(I))|)an+1−1.

Note that f−qn−qn−1(I) ⊂ (r(I), fanqn(I)). Hence, Lemma 5.3 implies that
the intervals (r(I), fanqn(I)) and (r(I), l(f−qn−1(I))) are of the same size up
to a superexponentially small error. Hence,
(42) bn ≥ (A11|r(I)− l(f−qn−1(I))|)an+1 .

The inequality (42) is also true for an+1 = 1 and follows directly from
Lemma 5.3 and the inequality

r(f−qn+1(I)) = r(f−qn−qn−1(I)) ≤ f qn(I) ≤ l(f−qn−1(I)).

Indeed, |f−qn−1−qn(I)| ≥M8|�n
qn−1
| = M8 |r(f−qn+1(I))− l(f−qn−1(I))| and

hence bn and |r(I)− l(f−qn−1(I))| are uniformly comparable.
The inequality
|r(I)− l(f−qn−1(I))|

b`n−1

≥ A12bn−1(dist(f2qn−1(I), f qn−1(I)))−1(43)

≥ A12
bn−1

bn−3

is a simple consequence of Fact 3.1 and RRI written for {f qn−1+1(I), f(I),
l(f−qn−1(I)); qn−1 − 1}. By FBL, the quantity A12/bn−3 tends uniformly
to ∞. The inequality (43) becomes
(44) |r(I)− l(f−qn−1(I))| ≥ A13(bn−1)`+1,

where A13 can be made arbitrarily large by increasing n.
Substituting (44) into (42), we obtain

(45) bn ≥ (A14bn−1)(`+1)an+1 ,

which together with (39) gives the recurrence formula

bn+1 ≥ (A15bn−1)
1+an+1

`+1
`−1 .
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There is a uniform constant N such that A14, A15 > 1 for every n ≥ N . We
may assume that N is odd. Let ω = b

1/γ(N)
N . The recurrence formula yields

for every n+ 1 ≥ N ,

(46) bn+1 ≥ A15b
γ(n+1)/γ(N)
N = A15 ω

γ(n+1) ≥ ωγ(n+1).

This proves the first formula of SBL for n odd. The second formula of SBL
for n even is an immediate consequence of the first and the inequalities (39)
and (45) if only A14 is chosen large enough.

6.2. Proof of SBL when f−qn is to the right of I. The first inequality
follows directly from (45) and (46). We adjust the indices in these formulas to
reflect the fact that n is assumed to be odd in Subsection 6.2. Since A14 > 1,
there is a uniform constant A16 such that for every n ≥ N odd,

bn+1 ≥ A14b
(`+1)an+2
n ≥ A14ω

(`+1)an+2γ(n) ≥ ωA16γ(n+1).

The second inequality can be obtained from CRI written for

{r(I), l(f−qn(I)), r(f−qn(I)), l(f−qn−qn−1(I)); qn}.
Indeed, using bn ≥ A15ω

γ(n) and bn−1 ≥ ωA16γ(n−1), we deduce that for every
n ≥ N odd,
|r(I)− l(f−qn(I))|

|f−qn(I)|
≥ A10bnbn−1 ≥ (A10A15)ωγ(n)+A16γ(n−1) ≥ ωA17γ(n),

where A17 is a uniform constant and A15 is chosen so that A15A10 > 1.
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