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Abstract. Given a complete, superstable theory, we distinguish a class P of regu-
lar types, typically closed under automorphisms of C and non-orthogonality. We define
the notion of P-NDOP, which is a weakening of NDOP. For superstable theories with
P-NDOP, we prove the existence of P-decompositions and derive an analog of the first
author’s result in Israel J. Math. 140 (2004). In this context, we also find a sufficient con-
dition on P-decompositions that implies non-isomorphic models. For this, we investigate
natural structures on the types in P ∩ S(M) modulo non-orthogonality.

1. Introduction. Results by the first author, most notably Chapter X
of [4] and the first half of [5], demonstrate that ℵε-saturated models of
superstable theories with NDOP admit very desirable decompositions. In
this paper, we generalize these results in three ways. First, we always assume
that the theory T is superstable, but we only have NDOP for a class P of
regular types. Second, we show that the tree structure of a decomposition of
an ℵε-saturated model M can be read off from the non-orthogonality classes
of regular types in S(M). Third, we show that these results for ℵε-saturated
models give information about weak decompositions of arbitrary models of
such theories.

In more detail, throughout the paper we assume we have a fixed, com-
plete, superstable theory and we work within a monster model C. We fix a
set P of stationary, regular types over small subsets of C that is closed under
automorphisms of C and the equivalence relation of non-orthogonality, and
additionally assume that our theory satisfies P-NDOP. Typically, we fix a
model M that is at least ℵε-saturated (i.e., M contains a realization of every
strong type over every finite subset ofM) and study P-decompositions inside
M of many varieties. Of primary interest are prime, (ℵε,P)-decompositions
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d of M over
(
B
A

)
(see Definition 4.16) where A ⊆ B are ε-finite and every

regular type p non-orthogonal to stp(B/A) is in P. We associate a subset
PP(d,M) of S(M) ∩P (see Definition 5.1) to such a pair. The main result
of the paper, Theorem 5.12, asserts that this set of regular types depends
only on

(
B
A

)
. In particular, it is independent of the decomposition d, and

successive results show that these sets have a tree structure under inclusion.

In the final section of the paper, we show how this result, which holds
only for ℵε-saturated models, gives positive information for much weaker
decompositions of models M0 without any saturation assumption.

2. Preliminaries. As mentioned above, we always work in a class of
models of a complete, superstable, first-order theory T . We fix a monster
model C, and all models and sets we discuss will be small subsets of C. We
assume that T eliminates quantifiers, so any model M will be an elementary
submodel of C, and we additionally assume that ‘T = T eq’, so that every
type over an algebraically closed set is stationary.

Definition 2.1. A set A is ε-finite if acl(A) = acl(a) for some a ∈ Ceq.

Recall that as we are working in Ceq, it would be equivalent to say that
acl(A) = acl(ā) for some finite tuple. It is easily seen that the union of
two ε-finite sets is ε-finite. Furthermore, since T is superstable, any subset
B ⊆ A of an ε-finite set is ε-finite. [Why? If B ⊆ A with acl(A) = acl(a),

choose a finite b̄ from B such that B ^̄
b
a. Then acl(B) = acl(b̄).] Thus, the

set of ε-finite subsets of C form an ideal.

Convention 2.2. ℵε is a cardinal strictly between ℵ0 and ℵ1.

Thus, if we write ‘M is λ-saturated for some λ ≥ ℵε’ we mean that
either M is ℵε-saturated (i.e., realizes all types over ε-finite subsets) or M is
λ-saturated for some λ ≥ ℵ1. Recall that by e.g. [4, IV, 2.2(7)], for λ ≥ ℵ1,
M is λ-saturated if and only if for every subset A ⊆ M of size less than λ,
M realizes every type over acl(A).

We record several facts from [4] that will be used throughout this paper.
The first is the Second Characterization Theorem, IV, 4.18, the second is X,
Claim 1.6(5), the third is V, 1.12, and (4) follows easily from (2) and (3).

Fact 2.3. Suppose T is superstable and λ ≥ ℵε.

(1) A model M is λ-prime over a set A if and only if (a) M ⊇ A and is
λ-saturated; (b) M is λ-atomic over A; and (c) every A-indiscernible
sequence I ⊆M has length at most λ. (When λ = ℵε, the λ occurring
in (c) should be replaced by ℵ0.)

(2) If M is λ-saturated, A ⊇M , and N is λ-prime over M ∪A, then N
is dominated by A over M .
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(3) If M � N are both λ-saturated, p ∈ S(M) is regular, and there is
some c ∈ N \M such that tp(c/M) 6⊥ p, then p is realized in N .

(4) If M0 � M1 � M2 are all λ-saturated and there is e ∈ M2 \ M1

such that tp(e/M1) is regular and non-orthogonal to M0, then there
is e∗ ∈ M2 \M1 such that e and e∗ are domination equivalent over
M1, with e∗

M̂0

M1.

3. P-NDOP. Our story begins by localizing the notion of DOP around
a single parallelism class of stationary, regular types.

Definition 3.1. An independent triple of models (M0,M1,M2) are such
that M0 = M1 ∩M2 and {M1,M2} are independent over M0. For λ ≥ ℵε,
a λ-quadruple is a sequence (M0,M1,M2,M3) of λ-saturated models, where
(M0,M1,M2) form an independent triple, and M3 is λ-prime over M1∪M2.
A λ-DOP witness for a stationary, regular type p is a λ-quadruple (M0,M1,
M2,M3) for which Cb(p) ⊆M3, but p ⊥M1 and p ⊥M2. We say that p has
a DOP witness if it has a λ-DOP witness for some λ ≥ ℵε.

Visibly, whether a specific λ-quadruple is a λ-DOP witness for p de-
pends only on the parallelism class of p. To understand the consequences
of this notion, we recall that a set A is self-based on an independent triple
(M0,M1,M2) of models if A ^

A∩Mi

Mi holds for each i < 3. The concept

of self-basedness was defined explicitly in [1] and was used implicitly in
the proof of [4, X, 2.2(c→d)]. The fact that, for any independent triple
(M0,M1,M2), any finite set A can be extended to a finite, self-based B ⊆
AM1M2 follows from [1, Lemma 2.4]. The Claim in [1, proof of Theorem 1.3]
establishes the following fact.

Fact 3.2. If A is self-based on the independent triple (M0,M1,M2),
p ∈ S(A) is stationary, p ⊥M1, and p ⊥M2, then p ` p|AM1M2.

Using this fact, an easy examination of the proof of [4, X, 2.2] yields:

Fact 3.3. Let p be any stationary, regular type with a DOP witness.
Then:

(1) For every λ ≥ ℵε, p has a λ-DOP witness.
(2) For every λ-DOP witness (M0,M1,M2,M3) for p, there is an in-

finite, indiscernible set I ⊆ M3 over M1 ∪M2 whose average type
Av(I,M3) is parallel to p.

(3) For every λ-DOP witness (M0,M1,M2,M3) for p, there is a subset
A ⊆M3, |A| < λ, over which p is based and stationary, and a Morley
sequence 〈bi : i < λ〉 from M3 in p|AM1M2.

We isolate one corollary from this that will be crucial for us later.
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Corollary 3.4. For any λ ≥ ℵε, if (M0,M1,M2,M3) is a λ-DOP wit-
ness for a stationary, regular p ∈ S(M3), then for any realization c of p,
any λ-prime model M3[c] over M3∪{c} is isomorphic to M3 over M1∪M2.
In particular, M3[c] is λ-prime over M1 ∪M2.

Proof. By the uniqueness of λ-prime models, both statements will follow
once we establish that M3∪{c} is the universe of a λ-construction sequence
over M1 ∪M2. To see this, first fix a λ-construction sequence 〈bi : i < δ〉 of
M3 over M1 ∪M2. For each i < δ, write Bi = M1 ∪M2 ∪{bj : j < i} and fix
a subset Xi ⊆ Bi, |Xi| < λ such that stp(bi/Xi) ` stp(bi/Bi).

Next, choose a subset A ⊆ M3, |A| < λ, over which p is based and
stationary. By forming an increasing ω-chain, we can increase A slightly
(still maintaining |A| < λ) so that A is self-based on (M0,M1,M2) and
Xi ⊆ A whenever bi ∈ A.

Let 〈ai : i < γ〉 be the enumeration of A given by the ordering of the
original construction. Easily, 〈ai : i < γ〉 is λ-constructible over M1 ∪M2.

Furthermore, it follows from Fact 3.2 that for any Morley sequence I
in p|A with |I| < λ, we have p|AI ` p|AIM1M2. Using this, we have a
λ-construction sequence 〈ai : i < γ〉ˆ〈cj : j < λ〉 over M1 ∪ M2, where
〈cj : j < λ〉 is any Morley sequence in p|A from M3 (the existence of
such a sequence follows from Fact 3.3(3)). From the uniqueness of λ-prime
models and the fact that such models are λ-constructible we deduce that
there is another λ-construction sequence of M3 over M1 ∪M2 in which 〈ai :
i < γ〉ˆ〈cj : j < λ〉 is an initial segment. Let 〈bk : k < ν〉 be the tail of this
sequence. For each k < ν, let B∗k = M1 ∪M2 ∪A∪{cj : j < λ}∪{b` : ` < k}
and choose Yk ⊆ B∗k, |Yk| < λ, such that stp(bk/Yk) ` stp(bk/B

∗
k). Without

loss of generality, we may assume A ⊂ Yk for each k. To complete the proof,
it suffices to show that

〈ai : i < γ〉ˆ〈c〉ˆ〈ci : i < λ〉ˆ〈bk : k < ν〉
is a λ-construction sequence over M1 ∪M2.

We already know that 〈ai : i < γ〉 is a λ-construction sequence over
M1∪M2. Using the first sentence of the previous paragraph, combined with
the fact that {c} ∪ {cj : j < λ} is independent over A, we inductively
show that 〈ai : i < γ〉ˆ〈c〉ˆ〈cj : j < λ〉 is also a λ-construction sequence
over M1 ∪ M2. Thus, it suffices to prove that stp(bk/Yk) ` stp(bk/B

∗
kc)

for each k < ν. For this, since both tp(c/B∗k) and tp(bk/B
∗
k) do not fork

over Yk, it suffices to show that tp(c/Yk) is almost orthogonal to stp(bk/Yk).
To see this, choose j < λ such that tp(cj/A) does not fork over Yk. Now,
tp(c/Yk) = tp(cj/Yk) and tp(cj/Yk) is almost orthogonal to stp(bk/Yk) since
stp(bk/Yk) ` stp(bk/Ykcj), so we finish.

Next, we show additional closure properties of DOP witnesses.
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Definition 3.5. A regular type q lies directly above p if there is a non-
forking extension p′ ∈ S(M) of p with M ℵε-saturated, a realization c of p′,
and an ℵε-prime model M [c] over M ∪ {c} such that q 6⊥M [c], but q ⊥M .
A regular type q lies above p if there is a sequence p0, . . . , pn of types such
that p0 = p, pn = q, and pi+1 lies directly above pi for each i < n. (We allow
n = 0, so in particular, any regular type lies above itself.)

We say that p supports q if q lies above p.

The nomenclature above is apt if one considers a branch of a decompo-
sition tree. Suppose M0 � · · · � Mn is a sequence of ℵε-saturated models
such that for each i < n there is ai ∈ Mi+1 such that tp(ai/Mi) is regular
(and orthogonal to Mi−1 when i > 0) and Mi+1 is ℵε-prime over Mi ∪ {ai}.
Then any regular q 6⊥ Mn lies over any regular type p non-orthogonal to
tp(a0/M0). Similarly, any such p supports any such q.

Proposition 3.6. Fix a stationary, regular type p with a DOP witness.
Then:

(1) Every type parallel to p has a DOP witness.
(2) Every automorphic image of p has a DOP witness.
(3) Every stationary, regular q non-orthogonal to p has a DOP witness.
(4) Every stationary, regular q lying above p has a DOP witness.

Proof. (1) and (2) are immediate. For (3), choose λ ≥ ℵε and a λ-
quadruple (M0,M1,M2,M3) witnessing that p has λ-DOP. Let q be any
stationary, regular type non-orthogonal to p. As q is non-orthogonal to M3,
there is q′ ∈ S(M3) non-orthogonal to q (and hence to p) and conjugate to q.
But now, q′ ⊥ M1 and q′ ⊥ M2, so (M0,M1,M2,M3) witnesses that q′ has
λ-DOP. Thus, q has a DOP witness by (2).

(4) It suffices to prove this for q lying directly above p. As both notions
are parallelism invariant, we may assume that p ∈ S(N), where N is ℵε-
saturated. Choose c realizing p and N [c] ℵε-prime over N ∪ {c} such that
q 6⊥ N [c], but q ⊥ N . Choose q′ ∈ S(N [c]) non-orthogonal to q. Fix a
cardinal λ > |N |, and choose a λ-DOP witness (M0,M1,M2,M3) for p.
Without loss of generality, we may assume that N � M3 and that c

N̂
M3.

Let M∗ be λ-prime over N [c] ∪M3 and let q∗ be the non-forking extension
of q′ to M∗. We argue that (M0,M1,M2,M

∗) is a λ-DOP witness for q∗.

To see this, first note that N [c] is ℵε-constructible over N ∪ {c}, N is
ℵε-saturated, and c

N̂
M3, so N [c] is ℵε-constructible (hence λ-constructible)

over M3 ∪ {c}. Since M∗ is λ-constructible over N [c] ∪M3, it follows that
M∗ is λ-constructible over M3 ∪ {c}, hence is λ-prime over M3 ∪ {c}. Thus,
by Corollary 3.4, M∗ is λ-prime over M1 ∪M2. That is, (M0,M1,M2,M

∗)
is a λ-quadruple.
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As well, q′ ∈ S(N [c]) is orthogonal to N and N [c]
N̂
M3, so q′ ⊥M3. As

M1 ∪M2 ⊆M3, it follows immediately that q∗ ⊥M1 and q∗ ⊥M2.

Throughout the remainder of this paper, we consider sets P of stationary,
regular types over small subsets of the monster model C. We typically require
P to be closed under automorphisms of C and non-orthogonality.

Definition 3.7. Let Treg denote the set of all stationary, regular types
over small subsets of C and fix a subset P ⊆ Treg that is closed under
automorphisms of C and non-orthogonality.

As notation:

• A stationary type q is orthogonal to P, written q ⊥ P, if q is orthogonal
to every p ∈ P. We write P⊥ = {q ∈ Treg : q ⊥ P}.
• Pactive is the closure of P in Treg under automorphisms, non-ortho-

gonality, and supporting (i.e., if p ∈ Treg supports some q ∈ P, then
p ∈ Pactive.
• Pdull = Treg \Pactive.

Definition 3.8. Let P ⊆ Treg be any set of regular types. A theory T
has P-NDOP if no p ∈ P has a DOP witness.

The following corollary is merely a restatement of Proposition 3.6.

Corollary 3.9. For any P ⊆ Treg, T has P-NDOP if and only if T
has Pactive-NDOP.

Definition 3.10. Given a class P of regular types, we define the P-depth
of a stationary, regular type p, dpP(p) ∈ ON ∪ {−1}, by (1) dpP(p) = −1
if and only if p ∈ Pdull; and (2) dpP(p) ≥ α if and only if p ∈ Pactive and
for every β ∈ α there is a triple (M,N, a) where M is ℵε-saturated, N is
ℵε-prime over M ∪ {a}, p is parallel to tp(a/M), and there is q ∈ S(N)
orthogonal to M with dpP(q) ≥ β.

As in Chapter X of [4], in the preceding definition it would be equivalent
to replace ‘ℵε-saturation’ by ‘λ-saturation’ for any uncountable cardinal λ.
The proof of the following lemma is identical to that of [4, X, Lemma 7.2].

Lemma 3.11. If T has P-NDOP , then any regular p with dpP(p) > 0
is trivial, i.e., the set p(C) has a trivial pre-geometry with respect to the
dependence relation of forking.

We close this section with two technical lemmas that will be used later.
Note that a type q (not necessarily regular) is orthogonal to Pdull if and
only if every regular type non-orthogonal to q is an element of Pactive.

Lemma 3.12. (P-NDOP, λ ≥ ℵε) Suppose that M is λ-prime over an
independent triple (M0,M1,M2) of λ-saturated models, a is ε-finite satisfy-
ing tp(a/M) ⊥ Pdull and tp(a/M) ⊥ M2. Let M [a] be any λ-prime model
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over M ∪ {a}. For any subset N ⊆M [a] that is maximal such that N
M̂1

M
we have:

(1) N �M [a], N is λ-saturated, and M [a] is λ-prime over N ∪M .
(2) For any a∗ ⊆ N such that N ^

M1a∗
a, N is λ-prime over M1 ∪ {a∗}.

Proof. To see that N �M [a] and N is λ-saturated, choose N+ �M [a]
to be λ-prime over N . As M1 is λ-saturated, it follows from Fact 2.3(2)
that N+ is dominated by N over M1, hence N+

M̂1

M , so N+ = N by the

maximality of N .

Next, choose M∗ � M [a] to be maximal such that M∗ is λ-saturated
and λ-atomic over N ∪M . (Since T is superstable, the union of a continuous
chain of λ-saturated models is λ-saturated, so M∗ exists.) Since a is ε-finite,
any subset I ⊆M [a] that is indiscernible over M has size at most λ (when
λ = ℵε, I must be countable). It follows at once that every subset I ⊆ M∗

that is indiscernible over N ∪ M has size at most λ, so by Fact 2.3(1),
M∗ is λ-prime over N ∪M . We complete the proof of (1) by showing that
M∗ = M [a].

Suppose not. Choose c ∈ M [a] \ M∗ such that q = tp(c/M∗) is reg-
ular. The argument splits into cases. First, if q ⊥ N and q ⊥ M , then
(M1, N,M,M∗) is a DOP witness for q, so by Corollary 3.4, any λ-prime
model over M∗ ∪ {c} is λ-prime over N ∪M , which contradicts the max-
imality of M∗. Second, if q 6⊥ N , then choose a regular r ∈ S(M∗) that
does not fork over N but q 6⊥ r. Choose d ∈ M [a] \M∗ realizing r. Then,
by symmetry and transitivity of non-forking, Nd

M̂1

M , which contradicts

the maximality of N . Finally, suppose that q 6⊥ M . As before, there is a
regular p ∈ S(M∗) that does not fork over M but q 6⊥ p, and an element
e ∈M [a] \M∗ realizing p. As p is regular, based on M , and non-orthogonal
to tp(a/M), we have p ∈ Pactive and p ⊥ M2. So, by P-NDOP it must
be that p 6⊥ M1. But then p 6⊥ N , so arguing as above we contradict the
maximality of N . This proves (1).

For (2), choose any such a∗. We show that N is λ-prime over M1 ∪ {a∗}
via Fact 2.3(1). We already know that N is λ-saturated. To see that N is
λ-atomic over M1 ∪ {a∗}, choose any finite set c from N . As N ⊆ M [a],
tp(c/Ma) is λ-isolated. But c ^

M1a∗
Ma, so tp(c/M1a

∗) is λ-isolated as well

(see e.g. [4, IV, 4.1]). Finally, if I ⊆ N is indiscernible over M1 ∪ {a∗}, then
I is indiscernible over M1. But N

M̂1

M , so I is indiscernible over N ∪M . As

M [a] is λ-prime over N ∪M , it follows that I has size at most λ, completing
the proof of (2).

Lemma 3.13. (P-NDOP, λ ≥ ℵε) Suppose that M1 � M are both λ-
saturated, a is ε-finite, tp(a/M) ⊥ Pdull, and either tp(a/M) does not fork
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over M1, or tp(a/M) is regular and non-orthogonal to M1. Let M [a] be any
λ-prime model over M ∪ {a}. For any subset N ⊆ M [a] that is maximal
such that N

M̂1

M we have:

(1) N �M [a], N is λ-saturated, and M [a] is λ-prime over N ∪M .
(2) For any a∗ ⊆ N such that N ^

M1a∗
a, N is λ-prime over M1 ∪ {a∗}.

Proof. The proof is similar to that of Lemma 3.12, only easier. The
hypotheses on tp(a/M) ensure that for any e ∈M [a]\M , as e is dominated
by a over M , we have tp(e/M) 6⊥M1.

To see (1), take N+ �M [a] to be λ-prime over N . As before, the maxi-
mality of N implies that N+ = N , so N � M [a] and N is λ-saturated. As
well, choose M∗ � M [a] that is maximal such that M∗ is λ-saturated and
λ-atomic over N ∪M . As before, indiscernible subsets of M∗ over N ∪M
have size at most λ, so M∗ is λ-prime over N ∪M .

The verification that M∗ = M [a] is also similar. If not, choose c ∈
M [a] \ M∗ such that q = tp(c/M∗) is regular. If q ⊥ N and q ⊥ M ,
then (M1, N,M,M∗) is a DOP witness for q, which again contradicts the
maximality of M∗ by Corollary 3.4. If q 6⊥ N , then arguing as before there
is a regular r ∈ S(M∗) that does not fork over N , q 6⊥ r, and a realization d
of r, which contradicts the maximality of N . Finally, if q 6⊥M , then there is
a regular p ∈ S(M∗) that does not fork over M but q 6⊥ p, and a realization
e of p in M [a]. Our conditions on tp(a/M) imply that tp(e/M) 6⊥M1, hence
tp(e/M) 6⊥ N and we argue as above, completing the reasoning for (1). The
verification of (2) is identical to its counterpart in the proof of Lemma 3.12.

4. P-decompositions. Throughout this section, assume that T is su-
perstable, and that P is a class of regular types, closed under automor-
phisms of C and non-orthogonality. We define a number of species of P-
decompositions, along with a number of ways in which one P-decomposition
can extend another.

Definition 4.1. Fix a model M . A weak P-decomposition inside M is
a sequence d = 〈Nη, aη : η ∈ I〉 indexed by a tree (I,E) satisfying:

(1) {Nη : η ∈ I} is an independent tree of elementary submodels of M .
(2) η E ν implies Nη � Nν .
(3) For each η, aη ∈ Nη (but a〈〉 is meaningless).
(4) For all ν ∈ SuccI(η), Nν is dominated by aν over Nη.
(5) If η 6= 〈〉, then tp(aν/Nη) ⊥ Nη− for each ν ∈ SuccI(η).
(6) For each η ∈ I, {aν : ν ∈ SuccI(η)} is independent over Nη, and

tp(aν/Nη) ⊥ P⊥ for each ν ∈ SuccI(η).
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Note that in the definition above, we do not require that tp(aν/Nη) be
regular. However, the content of (6) is that any regular type q 6⊥ tp(aν/Nη)
is necessarily in P.

Lemma 4.2. Suppose d = 〈Nη, aη : η ∈ I〉 is a weak P-decomposition
inside M . Then:

(1) If I1, I2 ⊆ I are both downward closed and I0 = I1 ∩ I2, then( ⋃
η∈I1

Nη

)
^⋃

η∈I0
Nη

( ⋃
η∈I2

Nη

)
.

(2) Suppose η ∈ I, ν = ηˆ〈α〉, where α is least such that ηˆ〈α〉 6∈ I,
the element aν ∈ M satisfies tp(aν/Nη) ⊥ P⊥, if η 6= 〈〉 then
tp(aν/Nη) ⊥ Nη−, and aν

N̂η
{aγ : γ ∈ SuccI(η)}, and Nν � M is

dominated by aν over Nη. Then d∗ = dˆ〈Nν , aν〉 is a weak P-decom-
position inside M .

There are two ways of defining when a weak P-decomposition inside
a model M is ‘maximal’. Fortunately, at least when both M and each of
the submodels Nη are ℵε-saturated, Lemma 4.4 below shows that the two
notions are equivalent.

Definition 4.3. Suppose that d = 〈Nη, aη : η ∈ I〉 of M is a weak
P-decomposition inside M . For each η ∈ I, let

Cη(M) = {a ∈M \Nη : tp(a/Nη) ⊥ P⊥ and ⊥ Nη− (when η 6= 〈〉)}.
Then:

• d is a weak P-decomposition of M if, for every η ∈ I, {aν : ν ∈
SuccI(η)} is a maximal Nη-independent subset of Cη(M).
• d P-exhausts M if, for every η ∈ I, every regular p ∈ S(Nη)∩P orthog-

onal to Nη− (when η 6= 〈〉) and all e ∈ p(C), if e
N̂η
{aν : ν ∈ SuccI(η)}

then e
N̂η
M .

Lemma 4.4. Suppose that d = 〈Nη, aη : η ∈ I〉 is a weak P-decomposition
inside an ℵε-saturated model M such that every Nη is ℵε-saturated as well.
Then d is a weak P-decomposition of M if and only if d P-exhausts M .

Proof. For both directions, recall that if h ∈ M \ Nη, then there is a
finite, Nη-independent set {bi : i < n} ⊆M domination equivalent to h over
Nη with tp(bi/Nη) regular for each i < n.

For the easy direction, suppose that d is not a weak P-decomposition
of M . Choose η ∈ I such that A = {aν : ν ∈ SuccI(η)} is not maximal
in Cη(M). Choose h ∈ Cη(M) such that h

N̂η
A, and from above, choose

{bi : i < n} ⊆ M domination equivalent to h over Nη. Then, for any i < n,
the element bi and the type tp(bi/Nη) witness that d does not P-exhaust M .
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Conversely, suppose that d is a weak P-decomposition of M . Fix any
η ∈ I, any regular type p ∈ S(Nη) ∩ P that is ortogonal to Nη− when
η 6= 〈〉, and any e ∈ p(C) with e

N̂η
M . We will show that e

N̂η
A, where

A = {aν : ν ∈ SuccI(η)}.
To see this, using the notation above choose n < ω minimal such that

there are h ∈M \Nη and B = {bi : i < n} ⊆M such that e
N̂η
h, and h and

B are domination equivalent over Nη with tp(bi/Nη) regular for each i. It
follows from the minimality of n that tp(bi/Nη) is non-orthogonal to p, hence
each bi is in Cη(M). As A is maximal in Cη(M), we have bi

N̂η
A for each i,

hence tp(bi/NηA) is hereditarily orthogonal to p (i.e., tp(bi/NηA), as well as
every forking extension of it, is orthogonal to p). Thus, tp(B/NηA) is hered-
itarily orthogonal to p. This implies e

N̂η
A. [Why? If not, then tp(e/NηA)

would be parallel to p, so by orthogonality we would have e
N̂ηA

B. This

would imply that e and B (and hence e and h) are independent over Nη,
which is a contradiction.]

For our next series of results, we insist that the model M be sufficiently
saturated, and we additionally require that each submodel occurring in a
decomposition be sufficiently saturated as well. In most applications, ℵε-
saturation would suffice, but it costs little to work in the more general
context of (λ,P)-saturated models, which we now introduce.

Fix, for the remainder of this section, a pair λ = (λ, µ) of cardinals sat-
isfying λ, µ ≥ ℵε. Throughout this paper, if λ = µ = ℵε, we write (ℵε,P) in
place of (ℵε,ℵε,P).

Definition 4.5. We say that a model M is (λ,P)-saturated if it is ℵε-
saturated, and for each finite A ⊆ M we have dim(p,M) ≥ λ for each
p ∈ P∩ S(A), and dim(q,M) ≥ µ for all stationary, regular q ∈ P⊥ ∩ S(A).
(If either λ or µ is ℵε, the associated dimension is at least ℵ0.)

We say that a (λ,P)-saturated model N is (λ,P)-prime over a set X if
N ⊇ X and N embeds elementarily over X into any (λ,P)-saturated model
containing X.

Note that our assumptions on λ guarantee that any (λ,P)-saturated
model is ℵε-saturated, but we include this clause for emphasis. Also, if λ =
µ, then the (λ,P)-saturated models are precisely the λ-saturated models.
The standard facts about the existence of (λ,P)-prime models extend easily
to this context. To see this, call a type tp(a/B) (λ,P)-isolated if any of
the three conditions hold: (1) tp(a/B) is ℵε-isolated (= Faℵ0-isolated), or

(2) tp(a/B) ∈ P and is λ-isolated, or (3) tp(a/B) ∈ P⊥ and is µ-isolated.
Next, call a set B (λ,P)-primitive over A if B = A ∪ {bi : i < α}, where
tp(bi/A ∪ {bj : j < i}) is (λ,P)-isolated for every i, and call a model M ,
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(λ,P)-primary over A if M is (λ,P)-saturated and its universe is (λ,P)-
primitive over A. This notion of isolation satisfies the same axioms as for
Faλ-isolation in [4, Chapter 4] and thus we obtain the same consequences. In
particular:

• If A ⊆M∗ with M∗ (λ,P)-saturated, then there is a M �M∗ that is
(λ,P)-primary over A.
• M (λ,P)-primary over A implies M is (λ,P)-prime over A.
• If M is (λ,P)-saturated, M ⊆ A, and N is (λ,P)-prime over A, then
N is dominated by A over M .

Definition 4.6. Suppose M is (λ,P)-saturated. A weak (λ,P)-decom-
position inside M (of M) is a weak P-decomposition inside M (of M) for
which each of the submodels Nη is a (λ,P)-saturated elementary substruc-
ture of M .

A salient feature of weak (λ,P)-decompositions is that each of the sub-
models is itself ℵε-saturated. The proof of the following lemma is virtually
identical to arguments in [4, Section X.3].

Lemma 4.7. (P-NDOP) Suppose that 〈Nη, aη : η ∈ I〉 is a weak (λ,P)-
decomposition of a (λ,P)-saturated model M . Let M �M be any ℵε-prime
submodel of M over

⋃
η∈I Nη. Then if p ∈ P is non-orthogonal to M , then

there is a unique /-minimal η ∈ I such that p 6⊥ Nη.

Proof. We first show that p 6⊥ Nη for some η ∈ I. As M is ℵε-saturated,
there is q ∈ S(M) that is regular and non-orthogonal to p. As any such q is
in P, we may assume that p ∈ S(M) to begin with. Choose a finite B ⊆M
over which p is based and stationary. As B is ℵε-isolated over

⋃
η∈I Nη, there

is a finite subtree I0 ⊆ I such that B is ℵε-isolated over
⋃
η∈I0 Nη. Choose

any M0 �M such that B ⊆M0 and M0 is ℵε-prime over
⋃
η∈I0 Nη. As there

is some type p′ ∈ S(M0) parallel to p, P-NDOP implies that p 6⊥ Nη for
some η ∈ I0.

Finally, using Lemma 4.2(1) it follows that there is a unique /-minimal
η ∈ I with p 6⊥ Nη.

The point of the following definition is that (λ,P)-decompositions have
no control over types orthogonal to P.

Definition 4.8. An ℵε-saturated model N is P-minimal over X if
N ⊇ X, but for any ℵε-saturated N0 � N containing X, tp(e/N0) ⊥ P
for every e ∈ N \N0.

Corollary 4.9. (P-NDOP) Suppose that 〈Nη, aη : η ∈ I〉 is a weak
(λ,P)-decomposition of a (λ,P)-saturated model M and let M �M be any
ℵε-prime model over

⋃
η∈I Nη. Then:
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(1) Every c ∈M \M satisfies tp(c/M) ⊥ P.
(2) M is P-minimal over

⋃
η∈I Nη.

Proof. (1) Assume for a contradiction that there is c ∈ M such that
tp(c/M) 6⊥ P. As P is closed under non-orthogonality and automorphisms
of C, there is p ∈ P∩S(M) non-orthogonal to tp(c/M). Then, by Fact 2.3(3),
there is e ∈ M realizing p. So, by Lemma 4.7, p 6⊥ Nη for some η ∈ I.
Thus, by Fact 2.3(4) there is e∗ ∈ M domination equivalent to e over M
with e∗

N̂η
M . As {aν : ν ∈ SuccI(η)} ⊆ M , this contradicts the fact that

〈Nη, aη : η ∈ I〉 is a weak (λ,P)-decomposition of M .

(2) Choose any M1 �M that is ℵε-prime over
⋃
η∈I Nη. Then (1) applies

to M1. That is, there is no c ∈M \M1 such that tp(c/M1) 6⊥ P. Thus, M is
P-minimal over

⋃
η∈I Nη.

Next, we show that if we additionally assume that P = Pactive, then
we can extend the previous results to any ℵε-saturated submodel of M
containing the decomposition.

Proposition 4.10. (P-NDOP, P = Pactive) Suppose that 〈Nη, aη :
η ∈ I〉 is a weak (λ,P)-decomposition of a (λ,P)-saturated model M . Let
M∗ � M be any ℵε-saturated model containing

⋃
η∈I Nη. Then there is no

e ∈M \M∗ such that tp(e/M∗) 6⊥ P.

Proof. As both M∗ and M are ℵε-saturated, it suffices to prove that
there is no e ∈M \M∗ such that tp(e/M∗) ∈ P. Assume for a contradiction
that there were such an e. Let M0 � M∗ be any ℵε-prime model over⋃
η∈I Nη. Next, form an increasing sequence 〈Mα : α ≤ δ〉 of ℵε-saturated

models where Mδ = M∗, Mα+1 is ℵε-prime over Mα∪{bα}, with tp(bα/Mα)
regular, and for α < δ a non-zero limit, Mα is ℵε-prime over

⋃
β<αMβ.

Choose α ≤ δ least such that there is some e ∈ M \ Mα for which
tp(e/Mα) ∈ P. By superstability, α cannot be a non-zero limit ordinal.
Now suppose α = β + 1. On the one hand, if p = tp(e/Mα) ∈ P were
non-orthogonal to Mβ, then by Fact 2.3(4), there would be e∗ ∈ M such
that q = tp(e∗/Mβ) is regular and non-orthogonal to p, contradicting the
minimality of α. On the other hand, if p ⊥ Mβ, then as Pactive = P, we
have r = tp(bβ/Mβ) ∈ P, which again contradicts the minimality of α.

Thus, α must equal zero, i.e., there is e ∈ M \ M0 such that p =
tp(e/M0) ∈ P. By Lemma 4.7, choose a /-minimal η ∈ I such that p 6⊥ Nη.

Choose q ∈ S(Nη) regular such that p 6⊥ q and let q′ ∈ S(M0) be the
non-forking extension of q to M0. As both M0 and M are ℵε-saturated, there
is c ∈M \M0 realizing q′. As q′ ∈ P, we have c ∈ Cη(M) in the notation of
Definition 4.3, which contradicts the maximality of {aν : ν ∈ SuccI(η)}.
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Corollary 4.11. (P-NDOP, P = Pactive) Suppose that 〈Nη, aη : η ∈
I〉 is a weak (λ,P)-decomposition of M . Let M∗ �M be any ℵε-saturated el-
ementary submodel containing

⋃
η∈I Nη. If p ∈ P and p 6⊥M , then p 6⊥M∗.

Proof. As in the proof above, form an increasing sequence 〈Mα : α ≤ δ〉
of ℵε-saturated models, this time such that M0 = M∗, Mδ = M , Mα+1

is ℵε-prime over Mα ∪ {bα}, where tp(bα/Mα) is regular, and for α < δ a
non-zero limit, Mα is ℵε-prime over

⋃
β<αMβ. Choose α ≤ δ least such that

p 6⊥Mα. We will show that α = 0. Clearly, α cannot be a non-zero limit by
superstability. Assume for a contradiction that α = β + 1. Then p 6⊥ Mα,
but p ⊥ Mβ. As before, this implies that r = tp(bβ/Mβ) ∈ Pactive = P.
But now, Mβ is an ℵε-saturated model containing

⋃
η∈I Nη, yet there is an

element of M \Mβ realizing r ∈ P, with contradicts Proposition 4.10. Thus,
α = 0, so p 6⊥M∗.

Corollary 4.12. (P-NDOP, P = Pactive) Suppose that 〈Nη, aη : η ∈ I〉
is a weak (λ,P)-decomposition of a (λ,P)-saturated model M . If p ∈ P and
p 6⊥M , then there is a unique /-minimal η ∈ I such that p 6⊥ Nη.

Proof. Let M∗ � M be any ℵε-prime model over
⋃
η∈I Nη. By Corol-

lary 4.11, p 6⊥M∗, so by Lemma 4.7, p 6⊥ Nη for some /-minimal η ∈ I. As
in the proof of Lemma 4.7, the uniqueness follows from Lemma 4.2(1).

Until this point in our discussion, the submodels occurring in a decom-
position could be very large, with an extreme case being that any model M
has a one-element decomposition 〈M〉. The next definition limits the size of
the submodels, while retaining the fact that they are at least ℵε-saturated.

Definition 4.13. A prime (λ,P)-decomposition inside M (of M) is a
weak (λ,P)-decomposition inside M (of M) in which N〈〉 is (λ,P)-prime

over ∅ and, for each η ∈ I \ {〈〉}, Nη is (λ,P)-prime over Nη− ∪ {aη}.

Definition 4.14. Fix a (λ,P)-saturated M . A prime (λ,P)-decom-
position d2 = 〈N2

η , a
2
η : η ∈ J〉 end extends the prime (λ,P)-decomposition

d1 = 〈N1
η , a

1
η : η ∈ I〉 if I ⊆ J and, for each η ∈ I, N2

η = N1
η and a2

η = a1
η.

We say d2 is a regular end extension of d1 if, in addition, tp(aη/Nη−)
is regular for each η ∈ J \ I. Furthermore, d2 is a standardly regular end
extension of d1 if tp(aη/Nη−) = tp(aν/Nν−) whenever η, ν ∈ J \ I, η− = ν−,
and tp(aη/Nη−) 6⊥ tp(aν/Nν−).

The following lemma is straightforward, and relies on the fact that if
N �M are both (λ,P)-saturated with a ∈M \N satisfying tp(a/N) ∈ P,
then there is N [a] �M that is (λ,P)-prime over N ∪{a} and that N [a] con-
tains realizations of every regular type over N non-orthogonal to tp(a/N).
Proofs of similar statements appear in [4, Section X.3].
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Lemma 4.15. Suppose d = 〈Nη, aη : η ∈ I〉 is a prime (λ,P)-decomposi-
tion inside a (λ,P)-saturated model M . Then:

(1) d is a prime (λ,P)-decomposition of M if and only if it has no proper
(standardly regular) end extension.

(2) There is a prime (λ,P)-decomposition d∗ of M that is a standardly
regular end extension of d.

Following the main theme of [5], we wish to identify the class of P-
decompositions that lie above a specific triple (N,N ′, a), where N � N ′,
with tp(a/N ′) ⊥ P⊥ and tp(a/N ′) ⊥ N , that is, triples where a could
play the role of aν in some P-decomposition with N ′ = Nη and N = Nη− .
However, as in [5], this is too much data to record at once, so we seek an
ε-finite approximation of it.

Specifically, for M any model, let

Γ (M) := {(A,B) : A ⊆ B ⊆M are both ε-finite}.
We frequently write

(
B
A

)
for elements of Γ (M), and if A is not a subset of B,

we mean
(
A∪B
A

)
. Let

ΓP(M) :=

{(
B

A

)
∈ Γ (M) : tp(B/A) ⊥ P⊥

}
.

Definition 4.16. For
(
B
A

)
∈ ΓP(M), a prime (λ,P)-decomposition over(

B
A

)
inside M , d = 〈Nη, aη : η ∈ I〉, is a prime (λ,P)-decomposition inside

M in which 〈0〉 is the unique successor of 〈〉 in I, A ⊆ N〈〉, B ⊆ N〈0〉, and
B ⊆ dcl(a〈0〉). By analogy with Definition 4.3,

• such a d is of M if, for every η ∈ I 6= 〈〉, {aν : ν ∈ SuccI(η)} is a
maximal Nη-independent subset of Cη(M); and

• d P-exhausts M over
(
B
A

)
if, for every η ∈ I 6= 〈〉, every regular p ∈

S(Nη) ∩ P orthogonal to Nη− (when η 6= 〈〉) and every e ∈ p(C), if
e
N̂η
{aν : ν ∈ SuccI(η)} then e

N̂η
M .

The following lemma is straightforward. The verification of (5) is analo-
gous to the proof of Lemma 4.4.

Lemma 4.17. Fix a (λ,P)-saturated model M and
(
B
A

)
∈ ΓP(M).

(1) If N〈〉 � M is (λ,P)-prime over ∅, contains A, and B
Â
N〈〉, and

N〈0〉 � M is (λ,P)-prime over N〈〉 ∪ B, then 〈N〈〉, N〈0〉〉 is a prime

(λ,P)-decomposition over
(
B
A

)
inside M .

(2) A prime (λ,P)-decomposition d over
(
B
A

)
inside M is a prime (λ,P)-

decomposition over
(
B
A

)
of M if and only if d has no proper (λ,P)-

decomposition over
(
B
A

)
end extending it.
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(3) Every prime (λ,P)-decomposition over
(
B
A

)
inside M has a (stan-

dardly regular) end extension to a prime (λ,P)-decomposition over(
B
A

)
of M .

(4) Every prime (λ,P)-decomposition d over
(
B
A

)
inside M is a prime

(λ,P)-decomposition inside M , hence has a (standardly regular) end
extension to a prime (λ,P)-decomposition d∗ of M . Moreover, if d

is a decomposition over
(
B
A

)
of M and is indexed by the tree (I, /)

and d∗ is indexed by (J, /), then ¬(〈0〉 E η) for all η ∈ J \ I.
(5) A (λ,P)-decomposition d over

(
B
A

)
inside M is of M if and only if

d P-exhausts M over
(
B
A

)
.

5. Trees of subsets of an ℵε-saturated model. Throughout this sec-
tion, T is superstable with P-NDOP, and P is closed under automorphisms
of C, non-orthogonality, and P = Pactive. In addition, all models M we
consider will be ℵε-saturated, and all decompositions we consider will be
(ℵε,P)-decompositions inside/of M .

Definition 5.1. Fix an ℵε-saturated model M and
(
B
A

)
∈ ΓP(M). Let

d = 〈Nη, aη : η ∈ I〉 be a prime (ℵε,P)-decomposition over
(
B
A

)
of M . Then

PP(d,M) =
{
p ∈ S(M) : p ∈ P, p ⊥ N〈〉,

but p 6⊥ Nη for some η ∈ I \ {〈〉}
}
.

The goal for this section is Theorem 5.12, which asserts that PP(d1,M) =
PP(d2,M) for any two prime (ℵε,P)-decompositions d1, d2 of M above

(
B
A

)
.

We begin by introducing another way of ‘increasing’ a decomposition.

Definition 5.2. A prime (ℵε,P)-decomposition d2 = 〈N2
η , a

2
η : η ∈ J〉

inside C is a blow up of the prime (ℵε,P)-decomposition d1 = 〈N1
η , a

1
η : η ∈ I〉

inside C if J = I, but for every η ∈ I, N1
η � N2

η and, when η 6= 〈〉, N2
η is

(ℵε,P)-prime over N1
η ∪N2

η− .

Lemma 5.3. Suppose that M is ℵε-saturated,
(
B
A

)
∈ΓP(M), d2 =〈N2

η , aη :

η ∈ I〉 is a blow up of d1 = 〈N1
η , aη : η ∈ I〉, A ⊆ B ⊆ N1

〈0〉, and for each η,

N2
η �M . Then:

(1) If ν ∈ SuccI(η), then N2
η ^
N1
η

N1
ν .

(2) If Y = {ρ ∈ I : ¬(η / ρ)}, then N2
η ^
N1
η

⋃
ρ∈Y N

1
ρ and η / ν implies

N2
ν ^
N1
η

⋃
ρ∈Y N

1
ρ .

(3) d2 is an (ℵε,P)-decomposition inside M above
(
B
A

)
if and only if

d1 is.
(4) d2 is an (ℵε,P)-decomposition of M above

(
B
A

)
if and only if d1 is.
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Proof. This is exactly analogous to [5, Fact 1.20]. In the proof of (4), we
need to appeal to P-NDOP instead of NDOP.

Lemma 5.4. Suppose M is ℵε-saturated and
(
B
A

)
∈ ΓP(M). If d2 is a

blow up of d1 and both d1, d2 are (ℵε,P)-decompositions of M over
(
B
A

)
,

then PP(d1,M) = PP(d2,M).

Proof. This is very much like [5, Fact 1.22], but we give details. As
notation, say d` = 〈N `

η, aη : η ∈ I〉 for ` = 1, 2. Fix p ∈ S(M) ∩ P, so in
particular, p is regular. We must prove that

(p ⊥ N1
η− and p 6⊥ N1

η ) ⇔ (p ⊥ N2
η− and p 6⊥ N2

η )

for every η 6= 〈〉.
First, assume η 6= 〈〉 and p ⊥ N1

η− and p 6⊥ N1
η . As N1

η � N2
η , p 6⊥ N2

η

trivially. Also, choose a regular q ∈ S(N1
η ) with p 6⊥ q. Then q ⊥ N1

η− since

p is, and it suffices to show that q is orthogonal to N2
η− . But this follows

immediately since N1
η ^
N1
η−

N2
η− .

Conversely, assume η 6= 〈〉 and p ⊥ N2
η− and p 6⊥ N2

η . Then, since

N1
η− � N2

η− , p ⊥ N1
η− . As well, (N1

η− , N
2
η− , N

1
η ) form an independent triple

of ℵε-saturated models (see Definition 3.1) and N2
η is ℵε-prime over their

union. Thus, as p ∈ P, it follows from P-NDOP that p 6⊥ N1
η .

Lemma 5.5. Suppose that M is ℵε-saturated,
(
B
A

)
∈ ΓP(M), and for

` = 1, 2, d` = 〈N `
η, a

`
η : η ∈ I`〉 are each prime ℵε-decompositions of M

above
(
B
A

)
. If N1

〈〉 = N2
〈〉 then PP(d1,M) = PP(d2,M).

Proof. First, by Lemma 4.17(4), choose a prime, ℵε-prime decomposition
d∗1 = 〈N1

η , a
1
η : η ∈ J1〉 of M end extending d1. As notation, let H = J1 \ I1

and for each η ∈ H, let N2
η = N1

η and a2
η = a1

η. It is easily checked that

d∗2 := 〈N2
η , a

2
η : η ∈ I2 ∪H〉 is an (ℵε,P)-decomposition of M .

Now, for each p ∈ S(M) ∩ P with p ⊥ N1
〈〉 and for each ` = 1, 2 there

is a unique η(p, `) ∈ I` ∪H such that p 6⊥ Nη(p,`), but p ⊥ Nη(p,`)− . But, as

N2
η = N1

η for each η ∈ H, η(p, 1) ∈ H if and only if η(p, 2) ∈ H.

Thus, for each p ∈ S(M) ∩ P that is orthogonal to N1
〈〉 = N2

〈〉 we have

p ∈ PP(d1,M) if and only if η(p, 1) ∈ H if and only if η(p, 2) ∈ H if and
only if p ∈ PP(d2,M).

We come to the issue of the existence of blow-ups of decompositions. It
is comparatively easy to blow up a decomposition inside an ℵε-saturated
model M .

Lemma 5.6. Suppose that M is ℵε-saturated and d = 〈Nη, aη : η ∈ I〉
is a prime (ℵε,P)-decomposition inside M . For any N∗ satisfying N〈〉 �
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N∗ �M that is ℵε-prime over ∅, there is a prime (ℵε,P)-decomposition d∗

inside M with Nd∗

〈〉 = N∗ that is a blow up of d.

Proof. Choose any enumeration 〈ηi : i < i∗〉 of I such that ηi /ηj implies
i < j and, for some α∗ ≤ i∗, ηi ∈ SuccI(〈〉) if and only if 1 ≤ i < α∗. Note
that η0 = 〈〉 for any such enumeration. Put N∗〈〉 := N∗. Then, by induction

on 1 ≤ i < i∗, argue that

N∗
N̂〈〉

⋃
j<i

N∗ηj

and let N∗ηi � M be any ℵε-prime model over N∗
η−i
∪ Nηi . Then it is easily

checked that d∗ = 〈N∗η , aη : η ∈ I〉 is an (ℵε,P)-decomposition inside M
that is a blow up of d.

‘Blowing down’ a decomposition is more delicate and requires two tech-
nical lemmas, 3.12 and 3.13, that assert the existence of ℵε-submodels of a
given ℵε-saturated structure with certain properties.

Lemma 5.7. Suppose that M is ℵε-saturated and d = 〈Nη, aη : η ∈ I〉
is a prime (ℵε,P)-decomposition inside M . Fix any ℵε-saturated N0 � N〈〉
such that for every η ∈ SuccI(〈〉), either tp(aη/N〈〉) does not fork over N0

or tp(aη/N〈〉) is regular and non-orthogonal to N0. Then there is a prime

(ℵε,P)-decomposition d0 inside M with Nd0
〈〉 = N0 such that d is a blow up

of d0.

Proof. Choose an enumeration 〈ηi : i < i∗〉 of I as in the proof of
Lemma 5.6. That is, η0 = 〈〉, ηi / ηj implies i < j, and ηi ∈ SuccI(〈〉) if
and only if 1 ≤ i < α∗ for some α∗ ≤ i∗.

Put N0
η0 = N0. For 1 ≤ i < i∗ we inductively construct N0

ηi to satisfy:

• N0
ηi � Nηi and N0

ηi ^
N0

(η−
i

)

N1
η−i

;

• Nηi is ℵε-prime over N0
ηi ∪Nη−i

; and

• aηi ∈ N0
ηi and N0

ηi is ℵε-prime over N0
ηi ∪ {aηi}.

To accomplish this, for each 1 ≤ i < α∗, use Lemma 3.13 to define N0
ηi

(where M1 = N0, M = Nηi). We can take N0
ηi to be the N there, and we

can take a∗ to be aηi . Similarly, for α∗ ≤ i < i∗ we apply Lemma 3.12, where
M is taken to be Nη−i

, M1 is N0
η−i

, M2 is Nη−−i
, a is aηi , and we take N0

ηi to

be the N produced there.

Definition 5.8. Suppose M is ℵε-saturated and
(
B
A

)
∈ ΓP(M). We say

that an ε-finite subset W ⊆M has a base W0 ⊆W respecting
(
B
A

)
if A ⊆W0,

W0
Â
B, and W is dominated by B over W0.
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Lemma 5.9. If d = 〈Nη, aη : η ∈ I〉 is an (ℵε,P)-decomposition inside

M over
(
B
A

)
and V ⊆

⋃
η∈I Nη is ε-finite, then there is an ε-finite W with

V ⊆W and W \ V ⊆ N〈〉 that has a base W0 ⊆W ∩N〈〉 respecting
(
B
A

)
.

Proof. Without loss of generality, we may assume A ⊆ V . It follows from
the definition of an (ℵε,P)-decomposition inside M over

(
B
A

)
that B

Â
N〈〉

and that B dominates
⋃
η∈I Nη and hence V over N〈〉. As both B and V are

ε-finite, it follows from superstability that there is an ε-finite C ⊆ N〈〉 such
that BV

Ĉ
N〈〉. So B dominates V over C. Again without loss of generality,

A ⊆ C. Take W = V ∪ C. Then W0 := W ∩N〈〉 is a base respecting
(
B
A

)
.

Lemma 5.10. Suppose W ⊆ M is ε-finite and has a base W0 ⊆ W
respecting

(
B
A

)
and that N � M is ℵε-prime over ∅, W0 ⊆ N , with N

Â
B.

Then there is N [B] �M that is ℵε-prime over N ∪B such that W ⊆ N [B]
and such that the two-element sequence 〈N,N [B]〉 is an (ℵε,P)-decomposi-
tion inside M over

(
B
A

)
(we take a〈0〉 to be B).

Proof. As A,B,W are all ε-finite, N
Â
B, W is dominated by B over W0,

and tp(W/acl(W0 ∪ B)) is stationary, it follows that tp(W/NB) is ℵε-
isolated. Thus, W ⊆ N [B] for some ℵε-prime model over N ∪ B. Checking
that 〈N,N [B]〉 is an (ℵε,P)-decomposition inside M over

(
B
A

)
is routine.

Proposition 5.11. If M is ℵε-saturated,
(
B
A

)
∈ ΓP(M), and the ε-finite

set W ⊆ M has a base W0 ⊆ W respecting
(
B
A

)
, then there is an (ℵε,P)-

decomposition d of M over
(
B
A

)
with W0 ⊆ Nd

〈〉 and W ⊆ Nd
〈0〉. Moreover,

if d0 is any (ℵε,P)-decomposition of M over
(
B
A

)
, then d can be chosen so

that PP(d,M) = PP(d0,M).

Proof. Suppose d0 = 〈Nη, aη : η ∈ I〉 is given. As dcl(a〈0〉) = dcl(B), we
may assume that a〈0〉 = B. Thus, B

Â
N〈〉. Choose a finite D ⊆ N〈〉 such

that A ⊆ D and W
D̂B

N〈〉B. By e.g. [5, 1.18(9)] there is N1 � N〈〉 that is

ℵε-prime over ∅, N1

Â
D, and N〈〉 is ℵε-prime over N1 ∪D.

As for non-forking, we claim that the set {B,W0, N
1} is independent

over A. To see this, first recall that B
Â
W0 sinceW0 is a base respecting

(
B
A

)
.

As well, B
Â
N〈〉 since d is over

(
B
A

)
. Thus, B

D̂
N〈〉. Hence, by our choice

of D and forking calculus, W0B
D̂
N〈〉, so W0B

D̂
N1 since N1 � N〈〉. But

now, as N1

Â
D, we have N1

Â
BW0, which gives the independence.

By Lemma 5.7, there is an (ℵε,P)-decomposition d1 inside M over
(
B
A

)
with Nd1

〈〉 = N1. By Lemma 5.3(4), d1 is an (ℵε,P)-decomposition of M

over
(
B
A

)
, so by Lemma 5.4, PP(d0,M) = PP(d1,M).
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Next, let N2 � M be ℵε-prime over N1 ∪W0. As B^
N1
W0, by the ℵε-

isolation of N1 we have N2
^
N1
B. Thus, by Lemma 5.6 there is an (ℵε,P)-

decomposition d2 inside M over
(
B
A

)
with Nd2

〈〉 =N2. Again by Lemma 5.3(4),

d2 is an (ℵε,P)-decomposition of M over
(
B
A

)
, and by Lemma 5.4, PP(d1,M)

= PP(d2,M).

Put N := N2. Clearly, W0 ⊆ N and we showed B^
N1
N . But, as B and

N1 are independent over A, we see that B
Â
N . So, by Lemma 5.10 there

is N [B] �M , ℵε-prime over N ∪B, such that W ⊆ N [B] and 〈N,N [B]〉 is
an (ℵε,P)-decomposition inside M over

(
B
A

)
.

Finally, by Lemma 4.17 there is an (ℵε,P)-decomposition d3 of M over(
B
A

)
end extending 〈N,N [B]〉. As Nd3

〈〉 =N=Nd2
〈〉 we conclude by Lemma 5.5

that PP(d3,M) = PP(d2,M). Thus, PP(d3,M) = PP(d0,M) and we fin-
ish.

We are finally ready to prove our main theorem.

Theorem 5.12. Suppose that M is ℵε-saturated and
(
B
A

)
∈ ΓP(M).

Then PP(d1,M) = PP(d2,M) for any two prime (ℵε,P)-decompositions
d1, d2 of M over

(
B
A

)
.

Proof. Suppose d1 = 〈Nη, aη : η ∈ I〉. By symmetry, it suffices to prove
that every p ∈ PP(d1,M) is in PP(d2,M). Fix such a p and choose η ∈
I \ {〈〉} such that p 6⊥ Nη but p ⊥ Nη− . Choose q ∈ S(Nη) regular such that
p 6⊥ q and choose a finite V ⊆ Nη on which q is based and stationary. By
Lemma 5.9 there is an ε-finite W such that V ⊆ W ⊆M that has a subset
W0 = W∩N〈〉 respecting

(
B
A

)
. Note that since p ⊥ N〈〉 we have p ⊥W0, hence

q ⊥W0. By applying Proposition 5.11 to W and d2, we find that there is a
prime (ℵε,P)-decomposition d∗ of M over

(
B
A

)
with PP(d∗,M) = PP(d2,M).

But, by construction, there is a type parallel to q (and hence non-orthogonal
to p) in S(Nd2

〈0〉). As well, since B dominates W over W0 and B
Â
N〈〉 we

have W
Ŵ0

N〈〉. As q is based on W and q ⊥W0, we see that q (and hence p)

is orthogonal to N〈〉. Thus, p ∈ PP(d∗,M) = PP(d2,M).

The previous theorem inspires the following definition.

Definition 5.13. For M ℵε-saturated and
(
B
A

)
∈ ΓP(M), PP

((
B
A

)
,M
)

=
PP(d,M) for some (equivalently for every) prime (ℵε,P)-decomposition d
of M over

(
B
A

)
.

Corollary 5.14. Suppose that M is ℵε-saturated,
(
B
A

)
∈ ΓP(M), and

that d = 〈Nη, aη : η ∈ I〉 is a prime (ℵε,P)-decomposition of M satisfying
(1) N〈〉 is ℵε-prime over A; (2) B

Â
N〈〉; and (3) N〈0〉 is ℵε-prime over
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N〈〉 ∪ B. Then, for every p ∈ S(M) ∩ P, p ∈ PP
((
B
A

)
,M
)

if and only if
〈0〉 E η(p), where η(p) is the unique E-minimal η ∈ I satisfying p 6⊥ Nη (see
Corollary 4.12).

Proof. For d = 〈Nη, aη : η ∈ I〉 as above, let X = {ν ∈ I \ {〈〉} :
¬(〈0〉 E ν} and let I0 = I \ X. The conditions on d ensure that d0 :=
〈Nη, aη : η ∈ I0〉 is a prime (ℵε,P)-decomposition of M above

(
B
A

)
. Thus, by

Theorem 5.12, for any p ∈ S(M) ∩P we have

p ∈ PP
((
B
A

)
,M
)
⇔ p ∈ PP(d0,M) ⇔ 〈0〉 E η(p).

The following characterization is analogous to [5, Claim 1.24].

Proposition 5.15. Assume that M1 � M2 are ℵε-saturated and
(
B
A

)
∈

ΓP(M1). Then the following are equivalent:

(1) No p ∈ PP
((
B
A

)
,M1

)
is realized in M2.

(2) There is a prime (ℵε,P)-decomposition of M1 above
(
B
A

)
that is also

a prime (ℵε,P)-decomposition of M2 above
(
B
A

)
.

(3) Every prime (ℵε,P)-decomposition of M1 above
(
B
A

)
is also a prime

(ℵε,P)-decomposition of M2 above
(
B
A

)
.

Proof. (3)⇒(2) is immediate since prime (ℵε,P)-decompositions of M1

over
(
B
A

)
exist.

(2)⇒(1). Let d = 〈Nη, aη : η ∈ I〉 be a prime (ℵε,P)-decomposition

of M1 above
(
B
A

)
and assume that there is e ∈ M2 \ M1 such that p =

tp(e/M1) ∈ PP(d,M1). Choose η ∈ I to be /-minimal such that p 6⊥ Nη.
Note that 〈0〉 E η. By Fact 2.3(4) and because Nη,M1,M2 are ℵε-saturated,
we can replace e by the realization of a non-orthogonal regular type that
satisfies e

N̂η
M1. As e ∈ Cη(M2), {aν : ν ∈ SuccI(η)} is not a maximal Nη-

independent subset of Cη(M2), so d is not a prime (ℵε,P)-decomposition of

M2 above
(
B
A

)
.

(1)⇒(3). Let d = 〈Nη, aη : η ∈ I〉 be a prime (ℵε,P)-decomposition ofM1

above
(
B
A

)
, and assume that it is not a prime (ℵε,P)-decomposition of M2.

Then, by Definition 4.16, there is η ∈ I \ {〈〉} such that {aν : ν ∈ SuccI(η)}
is not a maximal Nη-independent subset of Cη(M2). As both Nη and M2 are
ℵε-saturated, this implies that there is e ∈ Cη(M2) such that tp(e/Nη) ∈ P,

but e
N̂η
{aν : ν ∈ SuccI(η)}. By Lemma 4.17(5), d P-exhausts M1 over

(
B
A

)
so e

N̂η
M1. Thus, p = tp(e/M1) is an element of PP

((
B
A

)
,M1

)
that is realized

in M2.

For pairs
(
B1

A1

)
and

(
B2

A2

)
from Γ (M), we consider two ways in which

(
B2

A2

)
can extend

(
B1

A1

)
, corresponding to the former ‘having more information’ or

‘appearing higher up in a P-decomposition’.
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First, write
(
B1

A1

)
≤a

(
B2

A2

)
if both are from Γ (M), A1 ⊆ A2, B1 ⊆ B2,

B1
Â1

A2, and B2 is dominated by B1 over A2. Intuitively, think of
(
B2

A2

)
as

being a ‘better approximation’ of (N,N ′, a).
The next approximation, which should be thought of as ‘stepping up in

the tree’, is given by
(
B1

A1

)
≤b
(
B2

A2

)
if and only if A2 = B1, and tp(B2/A2) is

regular and is orthogonal to A1.
Finally, let ≤∗ be the transitive closure of ≤a ∪ ≤b.
Proposition 5.16. Fix an ℵε-saturated model M and

(
B1

A1

)
,
(
B2

A2

)
in

ΓP(M).

(1) If
(
B1

A1

)
≤a
(
B2

A2

)
, then PP

((
B1

A1

)
,M
)

= PP
((
B2

A2

)
,M
)
.

(2) If
(
B1

A1

)
≤b
(
B2

A2

)
, then PP

((
B2

A2

)
,M
)

is a proper subset of PP
((
B1

A1

)
,M
)
.

(3) If
(
B1

A1

)
≤∗
(
B2

A2

)
then PP

((
B2

A2

)
,M
)
⊆ PP

((
B1

A1

)
,M
)
.

(4) If A1 =A2 (whose common value denoted by A), tp(B1/A), tp(B2, A)
are both regular, and B1

Â
B2, then PP(

(
B1

A

)
,M) = PP

((
B2

A

)
,M
)
.

(5) If A1 = A2 = A and B1
Â
B2, then PP(

(
B1

A

)
,M) and PP

((
B2

A

)
,M
)

are disjoint.

Proof. (1) Let N〈〉 �M be ℵε-prime over ∅ with A2 ⊆ N〈〉 and B2
Â2

N〈〉.

Let N〈〉 be ℵε-prime over N〈〉∪B2, let a〈0〉 = B2, and let d = 〈Nη, aη : η ∈ I〉
be a prime (ℵε,P)-decomposition of M over

(
B2

A2

)
end extending 〈N〈〉, N〈0〉〉.

By the forking calculus, d is also a prime (ℵε,P)-decomposition of M over(
B1

A1

)
. Thus, two applications of Theorem 5.12 yield

PP
((

B2

A2

)
,M

)
= PP(d,M) = PP

((
B1

A1

)
,M

)
.

(2) Given A1 ⊆ B1 = A2 ⊆ B2 ⊆ M with tp(B2/A2) ⊥ A1, first choose
an ℵε-prime N〈〉 � M containing A1 with B2

Â1

N〈〉. Note that tp(B2/A2)

⊥ N〈〉. Let a〈〉 be an arbitrary element of N〈〉, let a〈0〉 := A2, and choose
N〈0〉 � M to be ℵε-prime over N〈〉 ∪ A2, with N〈0〉 ^

N〈〉A2

B2. Also, choose

N〈0,0〉 �M to be ℵε-prime over N〈0〉 ∪B2 and let a〈0,0〉 := B2.
Let d0 be the three-element prime (ℵε,P)-decomposition 〈Nη, aη : η ∈

{〈〉, 〈0〉, 〈0, 0〉}〉 inside M above
(
B1

A1

)
. Next, by ‘collapsing’, let d′0 = 〈N ′η, a′η :

η ∈ {〈〉, 〈0〉}〉 be the two-element prime (ℵε,P)-decomposition inside M
above

(
B2

A2

)
, where N ′〈〉 := N〈0〉, a

′
〈〉 := a〈0〉, N

′
〈0〉 := N〈0,0〉, and a′〈0〉 := a〈0,0〉.

Now, choose a prime (ℵε,P)-decomposition d′ = 〈N ′η, a′η : η ∈ I ′〉 of

M above
(
B2

A2

)
end extending d′0. It follows immediately from Theorem 5.12

that PP
((
B2

A2

)
,M
)

= PP(d′,M), so to obtain the inclusion PP
((
B2

A2

)
,M
)
⊆

PP
((
B1

A1

)
,M
)

it suffices to construct a prime (ℵε,P)-decomposition d =
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〈Nη, aη : η ∈ J〉 inside M over
(
B1

A1

)
such that, for any p ∈ S(M) ∩ P,

if p 6⊥ N ′η but p ⊥ N ′η− for some η ∈ I ′ with 〈0〉 E η′, then there is η ∈ J
such that 〈0〉 E η, p 6⊥ Nη, but p ⊥ Nη− .

We accomplish this as follows: Recall that Nη, aη were defined for η ∈
{〈〉, 〈0〉, 〈0, 0〉} above. Let J ′ ⊆ I ′ be {〈〉} ∪ {η ∈ I ′ : 〈0〉 E η}, and define a
function h with domain J ′ by h(η) := 〈0〉ˆη if η 6= 〈〉. That is, h is ‘undoing’
the collapse given above. Let J = {〈〉, 〈0〉} ∪ {h(η) : η ∈ J ′}, and for each
η ∈ J ′, set Nh(η) := N ′η and ah(η) := a′η. Then d := 〈Nη, aη : η ∈ J〉 is a prime

(ℵε,P)-decomposition inside M above
(
B1

A1

)
, and for any p ∈ PP(d′,M), if

p 6⊥ N ′η for some η ∈ J ′, then p 6⊥ Nh(η). Thus, d is as required.
To show that the inclusion is strict, choose any regular type q ∈ S(N〈0〉)

that is non-orthogonal to tp(B2/N〈0〉). It is easy to check that the non-

forking extension of q to S(M) is an element of PP
((
B1

A1

)
,M
)
\PP(

(
B2

A2

)
,M).

(3) follows immediately from (1) and (2).
(4) By symmetry, it suffices to show that PP

((
B2

A

)
,M
)
⊆ PP

((
B1

A

)
,M
)
,

so fix a regular type p ∈ S(M)∩P\PP
((
B1

A

)
,M
)
. We will eventually produce

a prime (ℵε,P)-decomposition d2 inside M over
(
B2

A

)
with the property that

p 6⊥ Nη for some η satisfying ¬(〈0〉 E η), which suffices by Lemma 4.17(4)
and Theorem 5.12.

We begin by choosing an ℵε-prime (over ∅) N〈〉 � M that contains A,
but B1B2

Â
N〈〉. Note that B1 and B2 are domination equivalent over N〈〉.

Let a〈〉 ∈ N〈〉 be arbitrary, let N1 be ℵε-prime over N〈〉 ∪ B1, and let
a〈0〉 := B1. Then d1 := 〈Nη, aη : η ∈ {〈〉, 〈0〉}〉 is a two-element prime

(ℵε,P)-decomposition inside M over
(
B1

A

)
. Let d′1 = 〈Nη, aη : η ∈ I〉 be a

prime (ℵε,P)-decomposition of M over
(
B1

A

)
end extending d1. Next, let d∗1 =

〈Nη, aη : η ∈ J〉 be a prime (ℵε,P)-decomposition of M end extending d′1.
Let H = {η ∈ J : ¬(〈0〉 E η)}. Then H is a subtree of J , whose intersection
with I is {〈〉}. Furthermore, as p ∈ P, it follows from Corollary 4.12 that
p 6⊥ Nη for some η ∈ J . However, since p 6∈ PP

((
B1

A

)
,M
)
, Theorem 5.12

implies that p 6∈ PP(d′1,M), hence p 6⊥ Nη for some η ∈ H.
But now, chooseN2 �M to be ℵε-prime overN〈〉∪B2. Let d2 := 〈Nη, aη :

η ∈ H〉ˆ(N2, B2). As B1 and B2 are domination equivalent over N〈〉, it is

easily checked that d2 is a prime (ℵε,P)-decomposition inside M over
(
B2

A

)
.

Let d∗2 = 〈Nη, aη : η ∈ I2〉 be any prime (ℵε,P)-decomposition inside M end
extending d2. But, as p 6⊥ Nη for some η ∈ H, it follows from independence

that p ⊥ Nν for any ν ∈ I2 satisfying 〈0〉 E ν. Thus, p 6∈ PP(
(
B2

A

)
,M) by

Theorem 5.12 again.
(5) Let N〈〉 � M be ℵε-prime over A with N〈〉

Â
B1B2 and choose an

ε-finite B0 ∈ N〈〉 arbitrarily. For ` = 1, 2, choose N〈`〉 to be ℵε-prime over
N〈〉 ∪B`. Clearly,
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d′ := {(N〈〉, B0), (N〈0〉, B1), (N〈1〉, B1)}
is a three-element, prime (ℵε,P)-decomposition insideM . By Lemma 4.15(2)
there is a prime (ℵε,P)-decomposition d = 〈Nη, aη : η ∈ I〉 of M end extend-
ing d′. It is easily checked that d satisfies the hypotheses of Corollary 5.14, as
does the modification formed by exchanging the roles of 〈0〉 and 〈1〉. Thus,
for any p ∈ S(M)∩P, we see that p ∈ PP

((
B1

A

)
,M
)

if and only if 〈0〉 E η(p),

and that p ∈ PP
((
B2

A

)
,M
)

if and only if 〈1〉 E η(p). As the elements 〈0〉 and

〈1〉 are incompatible, it follows that the sets PP
((
B1

A

)
,M
)

and PP
((
B2

A

)
,M
)

are disjoint.

Corollary 5.17. Suppose that M is ℵε-saturated and that d = 〈Nη, aη :
η ∈ I〉 is any weak P-decomposition inside M . Choose any incompara-
ble nodes η1, η2 ∈ I. If, for each ` = 1, 2, A` ⊆ N−η` is ε-finite on which
tp(aη`/N

−
η`

) is based and stationary and B` = acl(A` ∪ {aη`}), then the sets

PP
((
B1

A1

)
,M
)

and PP
((
B2

A2

)
,M
)

are disjoint.

Proof. As η1 and η2 are incomparable, neither one is 〈〉, so let µ de-
note the meet η−1 ∧η

−
2 . By incomparability again, there are distinct ordinals

α1 6= α2 such that µˆ〈α1〉 E η1, while µˆ〈α2〉 E η2. Choose an ε-finite
E ⊆ Mµ over which both types tp(aµˆ〈α`〉/Mµ) are based and stationary,
and let C` = acl(aµˆ〈α`〉∪E) for each `. As C1

Ê
C2 it follows from Proposi-

tion 5.16(5) that the sets PP
((
C1

E

)
,M
)

and PP
((
C2

E

)
,M
)

are disjoint. But,

by Proposition 5.16(3), PP
((
B`
A`

)
,M
)
⊆ PP

((
C1

E

)
,M
)

for each `, and the
result follows.

Proposition 5.18. Suppose that M is ℵε-saturated, and p1 ∈ S(A1) and
p2 ∈ S(A2) are non-orthogonal, trivial, regular types over ε-finite subsets
of M . If, for ` = 1, 2, I` is a maximal, A`-independent subset of p`(M),
then there are cofinite subsets J` ⊆ I` and a bijection h : J1 → J2 such that

PP
((

c

A1

)
,M

)
= PP

((
h(c)

A2

)
,M

)
for every c ∈ J1.

Proof. Let D = A1∪A2. For ` = 1, 2, let J` := {c ∈ I1 : c
Â`
D} and let q`

denote the non-forking extension of p` to S(D). Then J` is a cofinite subset
of I` and is a maximal, D-independent subset of q`(M). As the regular types
are trivial and non-orthogonal, p1 and p2 are not almost orthogonal, so as
M is ℵε-saturated, we see that for every c ∈ q1(M), there is c′ ∈ q2(M) such
that c1

D̂
c2. It follows that there is a unique bijection h : J1 → J2 satisfying

c
D̂
h(c) for each c ∈ J1. Thus, PP

((
c
A1

)
,M
)

= PP
((h(c)

A2

)
,M
)

by clauses (1)

and (4) of Proposition 5.16.
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6. Decompositions and non-saturated models. Until this point,
we have been looking at various flavors of decompositions of ℵε-saturated
models. Now it would be desirable to see what effect these results have on
understanding decompositions of arbitrary models. In the first subsection,
given an arbitrary model M and a sufficiently saturated elementary exten-
sion M∗, one can produce an (ℵε,P)-decomposition d = 〈Mη, aη : η ∈ I〉
of M∗ that ‘enumerates M as slowly as possible’. In particular, given any
ε-finite A ⊆ M , there is a finite subtree J ⊆ I, an elementary submodel
MJ � M∗ that is ℵε-prime over

⋃
η∈JMη, and an ε-finite B, A ⊆ B ⊆ M ,

that satisfy M
B̂
MJ .

In the second subsection, we obtain a weak uniqueness result for P-
decompositions of unsaturated models M subject to certain constraints.
Whereas these conditions seem contrived, Theorem 6.19 plays a major role
in [2].

6.1. Large extensions of weak decompositions. As usual, we as-
sume that P is a set of stationary, regular types closed under isomorphism
and non-orthogonality, and we assume that our theory T is superstable with
P-NDOP.

Definition 6.1. Suppose M �M∗ are given, with M arbitrary, but M∗

sufficiently saturated. A prime (ℵε,P)-decomposition d∗ = 〈Nη, aη : η ∈ I〉
of M∗ respects M if there is a continuous, elementary chain 〈Mα : α≤α∗〉
of ℵε-saturated elementary substructures of M∗ with

⋃
α≤α∗Mα=M∗; a se-

quence 〈dα : α ≤ α∗〉 of prime (ℵε,P)-decompositions of Mα with dα∗ = d∗;
and a sequence 〈aα : α ≤ α∗〉 of elements from M∗ that satisfy the following
constraints:

(1) M0 = N〈〉 and the sets M and M0 are independent.
(2) If β ≤ α then dα end extends dβ with dγ =

⋃
dα for γ a limit ordinal.

(3) The trees Iα indexing the decompositions dα satisfy |Iα+1 \ Iα| ≤ 1
for each α < α∗.

(4) If Iα+1\Iα={η}, thenNη is ℵε-prime overNη−aα andNη ^
Nη−aα

MMα.

Lemma 6.2. Suppose that M �M∗, where M∗ is saturated and ‖M∗‖ >
‖M‖ + 2|T |. Then a prime (ℵε,P)-decomposition d∗ of M∗ respecting M
exists.

Proof. We recursively construct sequences 〈Mα〉, 〈dα〉 and 〈aα〉 with the
additional constraint of ‖Mα‖ < ‖M∗‖ for each α < α∗ as follows. First,
choose N〈〉 �M∗ to be ℵε-saturated with N〈〉^M , let M0 = N〈〉, I0 = {〈〉},
and d0 = 〈N〈〉〉. For α ≤ α∗ a limit ordinal, simply take unions.

Next, fix an enumeration 〈ci : i < λ〉 of M∗ with λ = ‖M∗‖ and the
elements of M forming an initial segment, and assume that Mβ and dβ have
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been defined. Let c∗ be the least element of M∗ that is not an element of Mβ.
There are now two cases, depending on tp(c∗/Mβ).

Case 1: tp(c∗/Mβ) ⊥ Pactive. In this case, choose a regular type q ∈
S(Mβ) non-orthogonal to tp(c∗/Mβ). As M∗ is saturated, choose an element
aβ ∈ M∗ realizing q with aβ

M̂β

c∗. Let dβ+1 = dβ, and let Mβ+1 � M∗ be

ℵε-prime over Mβ ∪ {aβ} and satisfying Mβ+1
M̂βaβ

M .

Case 2: tp(c∗/Mβ) 6⊥ Pactive. In this case, choose a regular type q ∈
S(Mβ) ∩ Pactive non-orthogonal to tp(c∗/Mβ). By Corollary 4.12, there is
a unique η ∈ Iβ such that q 6⊥ Nη, but q ⊥ Nη− (if η 6= 〈〉). Without
loss of generality, we may assume that q does not fork over Nη. As M∗ is
saturated, we can choose an element aβ ∈ M∗ realizing q with aβ

M̂β

c∗.

Let γ be the least ordinal such that ν := ηˆ〈γ〉 6∈ Iβ. Choose Nν � M∗ to
be ℵε-prime over Nη ∪ {aβ} and satisfying Nν ^

Nη∪{aβ}
MMβ. As Nη is ℵε-

saturated, it follows by Fact 2.3(2) that Nν
N̂η
Mβ. Choose Mβ+1 � M∗ to

be ℵε-prime over Mβ∪Nν and satisfying Mβ+1
M̂βNν

M . Let Iβ+1 = Iβ∪{ν},

let dβ+1 = dβˆ〈Nν〉, and let Mβ+1 �M∗ be ℵε-prime over Mβ ∪Nν .

Note that in either case, R∞(c∗/Mβ+1) < R∞(c∗/Mβ), so by continuing
in this fashion, c∗ will be contained in Mβ+k for some finite k.

Suppose that M �M∗, and that d∗ is a prime (ℵε,P)-decomposition of
M∗ respecting M , as witnessed by the sequences 〈Mα〉, 〈dα〉, 〈aα〉. Consider
the following statement:

(?)α For all finite sets A ⊆ M , B ⊆ Mα, and a finite subtree t ⊆ Iα,
there is a finite set A∗ ⊆ M containing A and a finite subtree
t∗ ⊆ Iα containing t such that tp(B/

⋃
{Nρ : ρ ∈ t∗}) is ℵε-isolated

and M^
A∗
{Nρ : ρ ∈ t∗}B.

Lemma 6.3. (?)α holds for all α ≤ α∗.

Proof. We prove this by induction on α. For α = 0, this is immediate
since M0 = N〈〉 and is independent of M over ∅, hence over any finite subset
of M . For α a non-zero limit ordinal, the statement follows easily from
superstability.

For the successor case, fix α = β + 1 and assume that (?)β holds. The
verification of (?)α splits into two cases, depending on whether or not Iβ is
extended. Here, we discuss the case where Iα = Iβ ∪{ν} and leave the other
(easier) case to the reader. So Nν is ℵε-prime over Nν− ∪ {aβ}, Nν

N̂ν−
Mβ,

and Mα is ℵε-prime over both sets
⋃
{Nρ : ρ ∈ Iα} and Mβ ∪Nν .
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Towards verifying (?)α, fix finite sets A ⊆ M , B ⊆ Mα, and a finite
subtree t ⊆ Iα. Begin by choosing finite sets Cν ⊆ Nν and Cβ ⊆ Mβ such
that

stp(B/CβCν) ` stp(B/MβNν)

Without loss, we may assume aβ ∈ Cν and Cη ∪ Cβ ⊆ B.

Next, by superstability choose finite sets D ⊆
⋃
{Nρ : ρ ∈ Iβ} and

A′ ⊆M containing A such that

Cν ^
DA′

⋃
{Nρ : ρ ∈ Iβ}M.

Similarly, choose finite sets Eβ ⊆Mβ and A′′ ⊆M containing A′ such that

B ^
EβA

′′
MβM.

Without loss of generality, we may assume D ⊆ Eβ, ν ∈ t, and D ⊆
⋃
{Nρ :

ρ ∈ s}, where s := t \ {ν}.
Now apply (?)β to the triple (A′′, Eβ, s) and get a finite set A∗ ⊆M and

a finite tree s∗ ⊆ Iβ. Let t∗ := s∗∪{ν}. We claim that (A∗, t∗) are as desired
in the statement of (?)α.

Claim 1. B/
⋃
{Nρ : ρ ∈ t∗} is ℵε-isolated.

To see this, first note that Cβ ⊆ Mβ is ℵε-isolated over
⋃
{Nρ : ρ ∈ s∗}.

Since Mβ
N̂ν−

Nν and Nν− is ℵε-saturated, it follows that Cβ is ℵε-isolated

over
⋃
{Nρ : ρ ∈ t∗} as well. Also, Cν ⊆ Nν , so it follows immediately

that CβCν/
⋃
{Nρ : ρ ∈ t∗} is ℵε-isolated as well. But, as stp(B/CβCν) `

stp(B/
⋃
{Nρ : ρ ∈ t∗}, the result follows.

Claim 2. M^
A∗
N0NνB, where N0 :=

⋃
{Nρ : ρ ∈ s∗}.

First, it follows from our application of (?)β that M^
A∗
N0Eβ. We next

consider Cν . By the definition of Eβ and A′′ we have Cν ^
EβA

′′
MβM . So,

by monotonicity, we see that Cν ^
EβA

∗
N0M , hence Cν ^

EβA
∗N0

M . Thus, the

transitivity of non-forking yields

M^
A∗
N0EβCν .

Finally, our choice of Nν gives Nν ^
Nν−aβ

MβM . But aβ ∈ Cν ⊆ Nν , so

Nν ^
Nν−Cν

N0EβA
∗M . As Nν− ⊆ N0, monotonicity yields

M ^
N0EβA

∗
Nν ,

and we finish by invoking the transitivity of non-forking.
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Proposition 6.4. Suppose that M �M∗ with M∗ saturated and ‖M∗‖
> ‖M‖ + 2|T |. If d∗ is a prime (ℵε,P)-decomposition of M∗ respecting M ,
then for every finite A ⊆ M and every finite subtree t ⊆ Id∗, there is a
finite set A∗ ⊆ M containing A, a finite subtree t∗ ⊆ Id∗ extending t, and
Mt∗ � M∗ that is ℵε-prime over

⋃
{Nρ : ρ ∈ t∗} such that A ⊆ Mt∗, but

M^
A∗
Mt∗.

Proof. Fix finite A ⊆M and t ⊆ Id∗ . If M∗ = Mα∗ , then applying (?)α∗

to the triple (A,A, t) yields a finite set A∗ ⊆ M containing A and t∗ such
that tp(A/

⋃
{Nρ : ρ ∈ t∗}) is ℵε-isolated and M^

A∗
{Nρ : ρ ∈ t∗}. Thus, as

M∗ is saturated, we can find Mt∗ �M∗ containing A that is both ℵε-prime
over

⋃
{Nρ : ρ ∈ t∗} and independent of M over A∗.

6.2. A weak uniqueness theorem for P-decompositions. The goal
of this subsection is Theorem 6.19, which is used in [2]. As we only seek a
sufficient condition, the statements and assumptions in Theorem 6.19 are
inelegant at best. Additionally, throughout this subsection we assume

T is totally transcendental with P-NDOP and P = Pactive.

The assumption of the theory T being totally transcendental is only used in
Lemma 6.7, and one could easily imagine it being replaced by much weaker
assumptions.

We begin with a standard fact about superstable theories.

Lemma 6.5. Suppose that p ∈ S(A) is stationary and that J is an infi-
nite, A-independent set of realizations of p. Let B ⊇ A ∪ J , let p′ ∈ S(B)
denote the non-forking extension of p, and let C ⊇ B be constructible over B.
Then p′ has a unique extension to S(C).

Definition 6.6. Given any model M , a Pr-decomposition d = 〈Mη, aη :
η ∈ I〉 inside M is a weak P-decomposition inside M with the additional
property that tp(aν/Mν−) ∈ P (hence is regular) for every ν ∈ I \ {〈〉}.
Further, d is a Pr-decomposition of M if, in addition, for every η ∈ I,
{aν : ν ∈ Succ(η)} is a maximal Mη-independent set of realizations of types
in P. A Pr-decomposition of M is P-finitely saturated if, for every ε-finite
A ⊆ M and every b ∈ M such that tp(b/A) ∈ P, there is some η ∈ I such
that tp(b/A) 6⊥Mη.

As notation, given a Pr-decomposition d = 〈Mη, aη : η ∈ I〉 of M , let
I ′ = I \ {〈〉}. For each η ∈ I ′, let pη = tp(aη/Mη−) and fix an ε-finite

Aη ⊆Mη− over which pη is based and stationary. We let PP
(aη
Aη

)
abbreviate

PP
((acl(Aηaη)

Aη

)
,C
)
. Note that by Proposition 5.16(1), PP

(aη
Aη

)
= PP

(aη
A′η

)
for

any ε-finite A′η ⊆Mη− on which pη is based and stationary.
Let Cη := {ρ ∈ I ′ : ρ− = η− and pρ = pη} and let Jη := {aρ : ρ ∈ Cη}.
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Lemma 6.7. Fix any Pr-decomposition d = 〈Mη, aη : η ∈ I〉 of M and
choose any η ∈ I ′ for which Cη is infinite. Denote pη, Aη, Cη, Jη by p,A,C, J ,
respectively. For any b ∈ C realizing p|A, if b

Â
Mη−J then b

Â
M .

Proof. Fix any element b such that b
Â
Mη−J . Let D :=

⋃
{Mρ : ρ ∈ C}

and let E :=
⋃
{Mν : ν ∈ I}. First, as J is infinite,

tp(b/Mη−J) ` tp(b/D)

by Lemma 6.5. Next, tp(b/D) ` tp(b/E) by the independence of the tree,
orthogonality, and the non-forking calculus. Now, form a maximal, contin-
uous elementary chain 〈Mα : α < β〉 of submodels of M such that M0 is
constructible over E, and given Mα, Mα+1 is constructible over Mα ∪ {bα}
for some bα such that tp(bα/Mα) is regular. (Here is where we use the as-
sumption that T is totally transcendental.) Clearly, the maximality of the
sequence implies that the union is all of M . However, by Lemma 6.5 and
the fact that tp(bα/Mα) ⊥ P (which follows from P = Pactive) we conclude
that

tp(b/E) ` tp(b/M).

That b
Â
M follows by the transitivity of non-forking.

Lemma 6.8. Suppose that d = 〈Mη, aη : η ∈ I〉 is a Pr-decomposition
of M and there is q ∈ P and η ∈ max(I ′) such that q 6⊥ Mη, but q ⊥ Mη−.
Then, for any ν ∈ I,

ν E η if and only if q ∈ PP
(
aν
Aν

)
.

Proof. First, assume that ν E η. Let d0 := 〈Mδ, aδ : ν− E δ E η〉. As in
the proof of Lemma 5.6, we can blow up d0 to a sequence d∗0 := 〈M∗δ , aδ :
ν− E δ E η〉, where d∗0 is an (ℵε,P)-decomposition inside C, with q 6⊥ M∗η ,

but q ⊥M∗η− . Thus, q ∈ PP
(
aν
Aν

)
by its definition and Lemma 4.17(3).

Conversely, assume for a contradiction that q ∈ PP
(
aν
Aν

)
but ¬(ν E η).

As ν 6= η and η ∈ max(I ′), ν and η are incomparable. However, since
q ∈ PP

(aη−
Aη−

)
by the above, it follows from Corollary 5.17 that ν and η− are

comparable. Thus, η− E ν. But then, as q ⊥ Mη− and Mη
M̂η−

aνMν− , it

follows that q is orthogonal to any chain starting with Mν− and aν .

Definition 6.9. Suppose S ⊆ P. A Pr-decomposition d = 〈Mη, aη :
η ∈ I〉 (inside C) supports S if, for every q ∈ S, there is a (unique) η(q) ∈
max(I ′) such that q 6⊥Mη(q), but q ⊥Mη(q)− . If d supports S, we let

• Field(S) := {η(q) ∈ max(I ′) : q ∈ S}; and
• IS := {ν ∈ I : ν E η for some η ∈ Field(S)}.
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Lemma 6.10. Suppose S ⊆ P and fix a Pr-decomposition d = 〈Mη, aη :
η ∈ I〉 (inside C) that supports S. Then:

(1) If ν ∈ IS, then tp(aν/Mν−) is trivial.
(2) For ν ∈ I ′, ν ∈ IS if and only if PP

(
aν
Aν

)
∩ S 6= ∅.

(3) If, for all δ ∈ IS, there is a single ε-finite A∗ ⊆ Mδ such that
tp(aν/Mδ) is based and stationary on A∗ for every ν ∈ SuccIS (δ),
then for any ν ∈ SuccIS (δ) and any b ∈ C realizing tp(aν/A

∗), if
PP
(
b
A∗

)
∩ S 6= ∅, then b^

A∗
Mδ.

Proof. (1) It follows immediately from the definitions of Pr-decomposi-
tion and IS that tp(aν/Mν−) is in P and has positive P-depth. Hence, the
type is trivial by Lemma 3.11.

(2) This is immediate from unpacking the definitions and Lemma 6.8.

(3) Choose A∗, δ, ν, and b as required. Choose r ∈ PP
(
b
A∗

)
∩ S and look

at η(r) ∈ max(I ′). By Lemma 6.8, δ / η(r). Choose µ ∈ SuccIS (δ) satisfying
µ E η(r). By our choice of A∗ and Lemma 6.8 again, r ∈ PP

(aµ
A∗

)
, so by

Proposition 5.16(5), b^
A∗
aµ But then, as tp(b/A∗) is a trivial regular type,

b is domination equivalent to aµ over A∗. Since aµ^
A∗
Mδ, we conclude that

the same holds for b.

Definition 6.11. Fix S ⊆ P and a model M . A Pr-decomposition
d = 〈Mη, aη : η ∈ I〉 of M is S-reasonable if

(1) d is P-finitely saturated and supports S;
(2) for each η ∈ I ′:

(a) Cη ∩ IS is infinite;
(b) pρ = pη iff pρ 6⊥ pη for every ρ ∈ I ′ such that ρ− = η−; and

(c) if b ∈ C and tp(b/Aη) = pη|Aη and PP
(
b
Aη

)
∩ S 6= ∅, then

b
Âη
Mη− .

Definition 6.12. A weak bijection between two infinite sets I and J is
a bijection h : I ′ → J ′, where I ′, J ′ are cofinite subsets of I, J , respectively.

For η ∈ IS \ {〈〉}, let JSη = {aρ : ρ ∈ Cη ∩ IS}.

Proposition 6.13. Fix a set S ⊆ P and a model M . For ` = 1, 2,
let d` = 〈Mη` , aη` : η` ∈ I`〉 be two S-reasonable Pr-decompositions of M .

For any η` ∈ IS` , choose η3−` ∈ I3−` such that pη1 6⊥ pη2. There is a

weak bijection h : JSη1 → JSη2 satisfying PP
(
a
Aη1

)
= PP

(h(a)
Aη2

)
for each a in

dom(Jη1).
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Proof. For definiteness, assume that η1 ∈ IS1 . Let E = Aη1 ∪ Aη2 . For
` = 1, 2, let p` ∈ S(E) be parallel to pη` , let J ′` = {a ∈ Jη` : a

Âη`

E}, and let

JS` =

{
a ∈ J ′` : PP

(
a

Aη`

)
∩ S 6= ∅

}
,

which is a cofinite subset of JSη` . In particular, JS1 6= ∅ since Cη1 ∩ IS is
infinite. As well, choose a maximal E-independent set J∗` of realizations of
p` in C extending J`. As p1 and p2 are non-orthogonal trivial regular types,
it follows from Proposition 5.18 that there is a unique bijection h : J∗1 → J∗2
satisfying h(a)

Ê
a for each a ∈ J∗1 .

As a`
Âη`

E for ` = 1, 2 and every a` is in J∗` , by Proposition 5.16(1) we
have

PP
(
a

Aη1

)
= PP

(
a

E

)
= PP

(
h(a)

E

)
= PP

(
h(a)

Aη2

)
for each a ∈ J∗` .

Claim. For every a ∈ JS1 , h(a) ∈ JS2 .

Proof. Choose any a ∈ JS1 . We first find an element b ∈ Jη2 such that
h(a)

Ê
b. Since a = aρ for some ρ ∈ IS1 satisfying ρ− = η−1 , PP

(
a
Aη1

)
∩S 6= ∅.

As the two sets are equal, PP
(h(a)
Aη2

)
∩ S 6= ∅ as well. As d2 is S-reasonable,

this implies h(a)
Âη2

Mη−2
. Next, we argue that h(a) must fork with Jη2

over Mη−2
. Indeed, if this were not the case, then by Lemma 6.7 we would

have h(a)
Ê
M . But, as a

Ê
h(a), the fact that pη2 has weight one would

imply that a
Ê
M , which is absurd since a ∈M .

Thus, h(a) forks with Jη2 over Mη−2
. By triviality, there is a unique

b ∈ Jη2 such that h(a)
M̂
η−2

b. However, as both h(a) and b are free from Mη−2

over Aη2 , it follows that h(a) and b fork over Aη2 , completing the first part
of our argument.

Next, since h(a) realizes p2, it is free from E over Aη2 . As pη2 has weight
one, the last two statements imply that b is free from E over Aη2 as well.

Thus, b ∈ J ′2. Also, we have PP
(
a
E

)
= PP

(
b
E

)
, so the latter has non-empty

intersection with S. Thus, b ∈ JS2 .
Finally, note that both h(a) and b are elements of J∗2 that fork with each

other over E. Thus, h(a) = b by the E-independence of J∗2 . So h(a) ∈ JS2 ,
completing the proof of the Claim.

It follows from the Claim that JS2 is non-empty. Once we know this,
the situation becomes symmetric, so by running the Claim backwards, h−1

maps JS2 into JS1 . That is, the restriction of h to JS1 is a bijection with JS2 ,
which completes the proof of Proposition 6.13.
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We set some notation for partial maps between trees. Given a tree I,
a large subtree of I is a non-empty (downward closed) subtree J such that
for every η ∈ J , SuccI(η) \ J is finite. Given two trees J and K, an almost
embedding h from J to K has dom(h) a large subtree of J , range(h) ⊆ K,
h(〈〉J) = 〈〉K , and for all η, ν ∈ dom(h),

η / ν if and only if h(η) / h(ν).

The trees J and K are almost isomorphic if there is an almost embedding
h from J to K in which range(h) is a large subtree of K.

For J any tree and ν ∈ J , let JDν be the tree with root ν and universe
{η ∈ J : η D ν}. Given two trees J and K and ν ∈ J , µ ∈ K, an almost
embedding h from J to K over (ν, µ) is an almost embedding from JDν
to KDµ.

Finally, if J and K are trees indexing decompositions, we call a pair
(η, ν) ∈ J × K PP-equivalent if either η = 〈〉 = ν, or both η, ν 6= 〈〉 and
PP
(aη
Aη

)
= PP

(
aν
Aν

)
. An almost PP-embedding from J to K is an almost

embedding h from J to K with the pair (η, h(η)) PP-equivalent for each
η ∈ dom(h). Note that if h is an almost PP-embedding and h(η) = ν,
then the restriction of h to JDη := {δ ∈ dom(h) : δ D η} is an almost
PP-embedding over (η, ν).

Given all of this notation, the proof of the following corollary simply
involves successively iterating Proposition 6.13, using the fact that each
decomposition is P-finitely saturated.

Corollary 6.14. Fix a set S ⊆ P and a model M . For ` = 1, 2, suppose
that d` = 〈Mη` , aη` : η` ∈ I`〉 are S-reasonable Pr-decompositions of M with
the additional property that for each ` and ν` ∈ I`,{

p : there is η` ∈ Succ(ν`) such that pη` = p ∧ PP
(
aη`
Aη`

)
∩ S 6= ∅

}
is finite. Then:

(1) For ` = 1, 2, there is an almost PP-embedding h from IS` to IS3−`.

(2) For ` = 1, 2 and any PP-equivalent pair (η`, η3−`) ∈ IS` × IS3−` there

is an almost P-embedding from IS` to IS3−` over (η`, η3−`).

If we wish to conclude more, namely that the trees IS1 and IS2 are almost
isomorphic, then we need to show that the almost embeddings given above
preserve lengths, i.e., lg(h(η)) = lg(η) for every η ∈ dom(h). To accomplish
this, we need to put additional constraints on the shapes of the trees IS .
The conditions we require are severe, but will be easily satisfied in our
construction in [2].

Definition 6.15. A two-coloring of a tree I is a sequence 〈Eη : η ∈ I〉
where each Eη is an equivalence relation on Succ(η) with at most two classes,
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each of which is infinite. (If Succ(η) = ∅, then of course Eη is empty as well.)
A node η ∈ I has uniform depth n if every branch of the tree IDη has length
exactly n. A node η often has unbounded depth if every large subtree J ⊆ IDη
has an infinite branch. A node η is an (m,n)-cusp if there are infinite sets
Am, An, B ⊆ Succ(η) such that

(1) the set Am ∪An is pairwise Eη-equivalent;
(2) each δ ∈ Am has uniform depth m;
(3) each ρ ∈ An has uniform depth n; and
(4) each γ ∈ B is often unbounded.

A cusp is an (m,n)-cusp for some m 6= n.

Fix any function Φ : ω → ω. We say the two-colored tree I is Φ-proper
if, for every node η ∈ I,

(5) either η has uniform depth n for some n, or else η often has un-
bounded depth;

(6) if η is an (m,n)-cusp, then lg(η) = Φ(m− n);
(7) if Eη has two classes, then η is a cusp; and
(8) if J is a large subtree of I, and η ∈ J is often unbounded, then there

is a cusp ν ∈ J with ν D η.

Note that if I is a two-colored tree satisfying the conditions above, then
for every γ ∈ I that is of any uniform depth k, there are unique η, δ such
that δ E γ, η = δ−, η is a cusp, and δ has uniform depth n for some
n ≥ k.

Lemma 6.16. Suppose that M,S, d1, d2 satisfy the assumptions of Corol-
lary 6.14 and additionally assume that both IS1 , I

S
2 , when two-colored by the

relations Eη defined by Eη(δ, ρ) iff δ− = η = ρ− and pδ = pρ, are Φ-proper
for the same function Φ. Then for every PP-equivalent pair (η, ν) ∈ IS1 ×IS2 :

(1) η is often unbounded in IS1 if and only if ν is often unbounded in IS2 .
(2) For any n, η has uniform depth n if and only if ν has uniform

depth n.
(3) If lg(η) = lg(ν) and η has uniform depth n for some n, then any

almost PP-embedding over (η, ν) preserves lengths.
(4) If lg(η) ≤ lg(ν) and η is an (m,n)-cusp, then ν is also an (m,n)-

cusp, lg(η) = lg(ν), and for any almost PP-embedding h over (η, ν),
lg(h(δ)) = lg(δ) for all δ ∈ dom(h) ∩ Succ(η) of uniform depth m
or n.

(5) If lg(η) = lg(ν), then every almost PP-embedding over (η, ν) pre-
serves lengths.

(6) If lg(η) = lg(ν), then the number of Eη-classes in IS1 equals the
number of Eν-classes in IS2 .
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Proof. (1) First assume that η is often unbounded. By Corollary 6.14(2),
choose an almost PP-embedding h from IS1 to IS2 over (η, ν). Choose a
strictly /-increasing sequence 〈ηn : n ∈ ω〉 from dom(h) with η0 = η. Then
〈h(ηn) : n ∈ ω〉 is a strictly /-increasing sequence in IS2 with h(η0) = ν. Thus,
ν cannot have any finite uniform depth, so it must be often unbounded by
properness. The converse is symmetric.

(2) Suppose that ν has uniform depth n. Then by (1), η has uniform
depth m for some m. Arguing as in (1) shows that m ≤ n, since if we choose
any almost PP-embedding h from IS1 to IS2 over (η, ν), then the image of any
strictly /-increasing sequence 〈ηi : i < m〉 with η0 = η would be a strictly
/-increasing sequence of length m over ν. But then, by symmetry, we would
also have n ≤ m, so n = m. The converse is symmetric.

(3) Suppose that h is any almost PP-embedding over (η, ν), where lg(η)
= lg(ν) and η has uniform depth n. Then ν also has uniform depth n. So,
every maximal /-increasing sequence extending η has length n, the image of
any such sequence under h is also a strictly /-increasing sequence of length n,
but there is no strictly /-increasing sequence of length more than n extend-
ing ν. Thus, h must map immediate successors to immediate successors, and
consequently preserve lengths.

(4) Suppose that η is an (m,n)-cusp and lg(η) ≤ lg(ν). Choose an
almost PP-embedding h from IS1 to IS2 over (η, ν). Choose Eη-equivalent
δ ∈ Succ(η)∩ dom(h) of uniform depth m and ρ ∈ Succ(η)∩ dom(h) of uni-
form depth n. Choose µ ∈ IS2 and q ∈ S(M2

µ) such that pδ (which equals pρ)
is non-orthogonal to q. By the definition of h, both h(δ), h(ρ) ∈ Succ(µ).
We argue that µ = h(η). To see this, first note that since h is /-preserving,
h(η) / h(δ) and h(η) / h(ρ), so h(η) E µ. But it follows from (2) that h(δ) is
uniformly of depth m and h(ρ) is uniformly of depth n. Thus, µ is an (m,n)-
cusp and hence lg(µ) = Φ(m−n) = lg(η). As we assumed that lg(η) ≤ lg(ν)
and h(η) = ν, we see that lg(µ) = lg(h(η)), hence µ = h(η) = ν. This yields
lg(ν) = lg(η). Finally, the argument above showed that h(δ) ∈ Succ(ν)
whenever δ ∈ dom(h) ∩ Succ(η) has uniform depth m or n.

(5) Assume that lg(η) = lg(ν) and fix any almost PP-embedding h from
IS1 to IS2 over (η, ν). Note that lg(h(µ)) ≥ lg(µ) for any µ ∈ dom(h) simply
because h is /-preserving. We first consider the often unbounded nodes µ ∈
dom(h). Specifically, we argue by induction on k that lg(h(µ)) = lg(µ) for
every often unbounded node µ ∈ dom(h) for which there is a cusp ζ D µ
with ζ ∈ dom(h) and lg(ζ) = lg(µ) + k.

When k = 0, this means that any such µ is itself a cusp, so lg(h(µ)) =
lg(µ) by (4). Next, assume that the statement holds for k, and choose µ ∈
dom(h) with some cusp ζ ∈ dom(h) with µ E ζ and lg(ζ) = lg(µ) + k + 1.
Choose ρ ∈ Succ(µ) with µ E ρ E ζ. Then lg(h(ρ)) = lg(ρ) by our inductive
assumption, so h(ρ) ∈ Succ(h(µ)), hence lg(h(µ)) = lg(µ) as well. Thus,
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we have shown that lengths are preserved for all often unbounded nodes
µ ∈ dom(h).

Next, assume that γ ∈ dom(h) has uniform depth. By the remark fol-
lowing Definition 6.15, choose µ and δ such that µ is a cusp, µ = δ−, δ E γ,
and δ has uniform depth n for some n ≥ k. The last sentence of (4) im-
plies that lg(h(δ)) = lg(δ). Thus, lg(h(γ)) = lg(γ) follows from (3). So h is
length-preserving.

(6) As the hypotheses are symmetric, it suffices to prove that the num-
ber of Eη-classes is at most the number of Eν-classes. Using Corollary 6.14,
choose an almost PP-embedding h over (η, ν). By (5), h maps immedi-
ate successors of η to immediate successors of ν. As well, for each δ ∈
dom(h) ∩ Succ(η), pδ 6⊥ ph(δ). As non-orthogonality is an equivalence rela-
tion on regular types, this implies that h maps Eη-classes to Eν-classes, and
maps distinct Eη-classes to distinct Eν-classes. As there are at most two
Eη-classes, the inequality follows.

Theorem 6.17. Fix a set S ⊆ P and a model M . For ` = 1, 2, suppose
that d` = 〈Mη` , aη` : η ∈ I`〉 satisfy the hypotheses of Lemma 6.16. Then
there is an almost PP-isomorphism h from IS1 to IS2 .

Proof. Using Corollary 6.14, choose any almost PP-embedding h of IS1
into IS2 such that, for any δ ∈ dom(h), dom(h) ∩ Cδ is a cofinite subset
of Cδ and range(h)∩Ch(δ) is a cofinite subset of Ch(δ). From Lemma 6.16 we
know that h preserves levels and, for each node η ∈ dom(h), the number of
Eh(η)-classes is equal to the number of Eη-classes. It follows that range(h)

is a large subtree of IS2 , so h is an almost PP-isomorphism between IS1
and IS2 .

Finally, we exhibit an extreme case, whose hypotheses are satisfied in [2].

Definition 6.18. Fix S ⊆ P, a model M , and a function Φ : ω → ω.
A Pr-decomposition d = 〈Mη, aη : η ∈ I〉 of M is (S, Φ)-simple if

(1) d supports S and P-finitely saturates M ;
(2) for every η ∈ IS:

(a) SuccIS (η) is empty or infinite, but Eη is trivial, i.e., pν = pµ for
all ν, µ ∈ SuccIS (η);

(b) η is either of some finite uniform depth or is a cusp; and
(c) if η is an (m,n)-cusp, then Φ(m− n) = lg(η).

Theorem 6.19. Fix a set S ⊆ P and a model M , and a function Φ :
ω → ω. If d1 and d2 are both (S, Φ)-simple Pr-decompositions of M , then
the trees IS1 and IS2 are almost PP-isomorphic.

Proof. Because of Theorem 6.17, we only need to verify that the hy-
potheses of Lemma 6.16 are satisfied for each of the decompositions. But
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this is routine, once one notes that Clause (2)(b) of Definition 6.18 is satis-
fied because of the triviality of Eη and Lemma 6.10(3).
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