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Decomposing Borel functions using
the Shore–Slaman join theorem

by

Takayuki Kihara (Nomi)

Abstract. Jayne and Rogers proved that every function from an analytic space into a
separable metrizable space is decomposable into countably many continuous functions with
closed domains if and only if the preimage of each Fσ set under that function is again Fσ.
Many researchers conjectured that the Jayne–Rogers theorem can be generalized to all
finite levels of Borel functions. In this paper, by using the Shore–Slaman join theorem
on the Turing degrees, we show the following variant of the Jayne–Rogers theorem at
finite and transfinite levels of the hierarchy of Borel functions: For all countable ordinals
α and β with α ≤ β < α · 2, every function between Polish spaces having small transfinite
inductive dimension is decomposable into countably many Baire class γ functions with
∆0

β+1 domains such that γ + α ≤ β if and only if the preimage of each Σ0
α+1 set under

that function is Σ0
β+1, and the transformation of a Σ0

α+1 set into the Σ0
β+1 preimage is

continuous.

1. Summary

1.1. Introduction. In the early 20th century, Nikolai Luzin asked
whether every Borel function on the real line can be decomposed into count-
ably many continuous functions. The Luzin problem was negatively an-
swered in the 1930s. Then, which Borel functions are decomposable into
continuous functions? In the end of the 19th century, Baire introduced a
well-known hierarchy of real functions by iterating pointwise limits of con-
tinuous functions. A famous theorem by Lebesgue and Hausdorff states that
a real function is of Baire class α if and only if the preimage of each open set
under it is a Borel set of additive class α, i.e., a Σ0

α+1 set in the well-known
Borel hierarchy. One can introduce a finer hierarchy of Borel functions than
Baire’s. For countable ordinals α, β < ω1, a function is called Σα,β if the
preimage of each Σ0

α set under that function is Σ0
β. Then, where is the

boundary of decomposability in this finer hierarchy of Borel functions?
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A remarkable theorem proved by Jayne–Rogers [15] states that the Σ2,2

functions are precisely the ∆0
2-piecewise continuous functions, where for a

class Γ of Borel sets and a class F of Borel functions, we say that a function
is Γ-piecewise F (written f ∈ decαF if Γ is a delta class ∆0

α) if f is
decomposable into countably many F-functions with Γ domains (see also
[17] for an alternative proof). Subsequently, Solecki [31] proved a dichotomy
(see also [21, 24, 26]) sharpening the Jayne–Rogers theorem by using the
Gandy–Harrington topology from effective descriptive set theory.

More recently, a significant breakthrough was made by Semmes [28],
who used Wadge-like infinite two-player games and priority arguments to
show that on the zero-dimensional Polish space ωω, the Σ3,3 functions are
precisely the ∆0

3-piecewise continuous functions, and the Σ2,3 functions are
precisely the ∆0

3-piecewise Σ0
2-measurable (i.e., Σ1,2) functions. Countable

decomposability at all finite levels of Borel hierarchy has been studied by
Pawlikowski–Sabok [24] and Motto Ros [21]. Naturally, many researchers
expected that the Jayne–Rogers theorem and the Semmes theorem could
be generalized to all finite levels of the hierarchy of Borel functions (see
Andretta [1], Semmes [28], Motto Ros [21, Conjecture 1.6], and Pawlikowski–
Sabok [24, Conjectures 7.1 and 7.2, and Question 7.3]).

Decomposability Conjecture. On separable metrizable spaces with
analytic domain, we have Σm+1,n+1 = decn+1 Σ1,n−m+1. In other words, the
Σm+1,n+1 functions are precisely the ∆0

n+1-piecewise Σ0
n−m+1-measurable

functions at all finite levels m,n ∈ ω.

In this paper, we introduce the notion of Σ→α,β functions, which are a
special subclass of Σα,β functions. Roughly speaking, a function is said to be
Σ→α,β if a continuous function witnesses that it is Σα,β, that is, a continuous

function maps each code of a Σ0
α set to a code of its Σ0

β preimage (for
a precise definition, see Definition 1.1). One can also realize this notion
by introducing lightface (i.e., computable) versions of Σα,β functions and
relativizing them by oracles.

Here, we should emphasize the significance of the concept of decompos-
ability in computability theory and computer science. As typical examples
from computational complexity theory, nonuniform complexity classes are
usually defined as classes of problems that are feasibly solvable with advice
strings, that is, classes of problems solved by piecewise feasible functions.
For several applications of nonuniform computability on countably-based
topological spaces, see [4, 33]. Moreover, it is important to note that a
certain type of computational learning process (such as the identification
in the limit) can be captured as ∆0

2-piecewise continuity [3, 6, 11, 12].
Further, as a type of piecewise continuity, the concept of layerwise com-
putability based on Luzin’s theorem in measure theory is playing a greater
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role in the algorithmic randomness theory and effective probability theory
[13, 19].

Our main theorem states that for all countable ordinals α and β, every
Σ→α+1,β+1 function between Polish spaces having small transfinite inductive
dimension is decomposable into a countable list {Fn}n∈ω of functions such
that each Fn is Σ0

γ+1-measurable for some ordinal γ with γ + α ≤ β. Fur-
thermore, if α ≤ β < α · 2, a function between Polish spaces having small
transfinite inductive dimension is Σ→α+1,β+1 if and only if it is decomposable

into such a list {Fn}n∈ω where dom(Fn) is ∆0
β+1. This can be considered

as a partial solution to the decomposability conjecture. To achieve our ob-
jective, we employ the Shore–Slaman join theorem on the Turing degrees to
show the lightface (i.e., computable) version of our main theorem, and then
we obtain the boldface theorem by relativizing it.

1.2. Preliminaries. For the basic concepts of computable analysis, see
Weihrauch [32], and for (effective) descriptive set theory, see Kechris [18]
and Moschovakis [20].

The set of all natural numbers is denoted by ω. The notation f : ⊆X → Y
means that f is a partial function from X into Y . For any reals X,Y ∈ ωω,
the symbol X ≤T Y denotes that X is Turing reducible to Y ; X⊕Y indicates
the real Z with Z(2n) = X(n) and Z(2n + 1) = Y (n). Given X ∈ ωω and
e, n,m ∈ ω, the notation Φe(X;n) = m means that the eth Turing machine
with input n and oracle X halts and outputs the value m. As usual, we
sometimes think of each Turing machine Φe as a partial function from ωω

into ωω, where dom(Φe) is the set of all oracles X such that Φe(X;n) is
defined for all n ∈ ω. Let X ′ denote the Turing jump of X, that is, the
halting problem relative to X, and let X(α) denote the αth iterated Turing
jump of X for every computable ordinal α.

Let ωω denote the Baire space of infinite sequences of natural numbers,
that is, the topological product of countably many discrete spaces ω. Each
Borel set is frequently identified with a so-called Borel code in the fields
of (descriptive) set theory. We only require a coding Bα : x 7→ Bα

x of Σ0
α

subsets of a given space X to fulfill the following conditions:

(1) (Total surjectivity) Bα : ωω → Σ0
α(X ) is total and surjective.

(2) (Measurability) {〈x, y〉 ∈ ωω ×X : y ∈ Bα
x } is Σ0

α.

The usual Borel coding restricted to Σ0
α sets satisfies the above two

conditions (see [2, 20]). Hereafter, we fix a Borel coding Bα satisfying (1)
and (2), and then identify each Borel set Bα

x with its code x ∈ ωω. For
instance, we say that a function F : Σ0

α(X )→ Σ0
β(Y) is continuous if there

is a continuous function f : ωω → ωω such that F (Bα
x ) = Bβ

f(x) for every

x ∈ ωω. Then the condition (2) can be rephrased as follows.
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(2′) The membership relation ∈α : X ×Σ0
α(X )→ S is Σ0

α-measurable,

where ∈α(x,A) is the truth value of x ∈ A, and S = {0, 1} is Sierpiński’s
connected two-point space whose open sets are ∅, {1}, and {0, 1}.

Hereafter, by a represented space, we mean a recursively presented Polish
space (see [20]; or, more generally, the reader may take a represented space
in this paper to mean an admissibly represented space in the sense of [32],
that is, a T0 quotient of a second-countable space endowed with the notion
of computability [27]).

Definition 1.1. Let X ∈ 2ω be a real, let α, β < ωX1 be ordinals, and let
X and Y be represented spaces. A function F : X → Y is Σ→α,β (respectively,

ΣX
α,β) if it is Σα,β, and the function F−1 : Σ0

α(Y) → Σ0
β(X ) sending each

Σ0
α set S ⊆ Y to its preimage F−1(S) ⊆ X is continuous (respectively,

X-computable).

To emphasize its domain and range, we sometimes write F ∈ Σ→α,β(X ,Y)

(respectively, ΣX
α,β(X ,Y)). The inclusion Σ→α,β ⊆ Σ→α+γ,β+γ holds for all

ordinals α, β, γ < ω1. A Σ1,α function and a ΣX
1,α function are often called

a Σ0
α-measurable function and a Σ0,X

α -computable function, respectively.
The effective hierarchy of Borel functions at finite levels has been studied
by Brattka [2]. Pauly and de Brecht [23] have also studied the Markov-
effectivization of Σ2,2 in the sense that F−1 : Σ0

2(Y)→ Σ0
2(X ) is computable.

Definition 1.2. Let F be a class of partial functions from a represented
space X into a represented space Y.

(1) A function F : X → Y is countably F (written F ∈ decF) if there
is a countable partition {Qi}i∈ω of X such that F �Qi ∈ F for each
i ∈ ω. Moreover, if each piece Qi can be chosen to be a ∆0

α set, then
F is said to be ∆0

α-piecewise F (written F ∈ decαF).

(2) A function F : X → Y is countably Σ0,X
β -computable (written F ∈

dec ΣX
1,β) if there is a countable partition {Qi}i∈ω of X such that

F �Qi is Σ0,X
β -computable uniformly in i ∈ ω. Moreover, if {Qi}i∈ω is

uniformly ∆0,Y
α , then F is said to be ∆0,Y

α -piecewise Σ0,X
β -computable

(written F ∈ decYα ΣX
1,β).

Σ→2,2 functions have been studied by Pauly–de Brecht [23], who showed
that Σ2,2 = dec2 Σ1,1 and Σ→2,2 = dec2 Σ1,1.

Example 1.3. (1) Σ1,α+1(2
ω) 6⊆ decΣ1,α(2ω) for each α < ωCK1 . In-

deed, the αth Turing jump J (α) : 2ω → 2ω is Σ0
α+1-computable, but is not

countably Σ0
α-measurable.
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(2) Let χQ : R → 2 be Dirichlet’s nowhere continuous function. Then
χQ ∈ Σ3,3 ∩ dec3 Σ1,1, but χQ 6∈ Σ1,2.

1.3. Main theorem. Let β −̂α denote the smallest ordinal δ with δ+α
> β. Note that n −̂m = n−m+ 1 for any natural numbers m ≤ n ∈ ω. To
present our main theorem, we use the notation Σ1,(β−̂α) =

⋃
γ<β−̂α Σ1,γ+1.

Theorem 1.4. Let X and Y be Polish spaces having small transfinite
inductive dimensions, and let α ≤ β < ω1 be countable ordinals. Then

decβ+1 Σ1,(β−̂α)(X ,Y) ⊆ Σ→α+1,β+1(X ,Y) ⊆ dec Σ1,(β−̂α)(X ,Y).

Theorem 1.5. Let X and Y be Polish spaces having small transfinite
inductive dimensions. For any countable ordinals α, β < ω1 with α ≤ β <
α · 2, we have

Σ→α+1,β+1(X ,Y) = decβ+1 Σ1,(β−̂α)(X ,Y).

As a corollary, Σ→m+1,n+1 is precisely the class of ∆0
n+1-piecewise Σ0

n−m+1-
measurable functions (compare with the decomposability conjecture). More-
over, if α ≥ ω, the assumption of transfinite-dimensionality can be removed
from Theorems 1.4 and 1.5.

2. Proof of main theorem

2.1. Boldface versus lightface. Hereafter, we deal with spaces en-
dowed with the notion of computability which fulfills the fundamental rela-
tivization principle that “continuity is equal to computability relative to an
oracle”. For instance, any represented space in our sense (that is, any recur-
sively presented Polish space, or more generally, any admissibly represented
space) satisfies this principle. It clearly implies the equality Σ1,α = Σ→1,α
(see also [8]), whereas it is still open whether Σα,β = Σ→α,β, in general (see
Problem 2.13). The relativization principle also implies the following rela-
tivization lemmas for Σ→α,β and decβ Σ1,α.

Lemma 2.1 (Relativization I). Let X and Y be represented spaces, and
let α, β < ω1 be countable ordinals. A function F : X → Y is Σ→α,β if and

only if it is ΣX
α,β for some X ∈ 2ω with α, β < ωX1 .

Lemma 2.2 (Relativization II). Let X and Y be represented spaces, and
let α, β < ω1 be countable ordinals. A function F : X → Y is decβ Σ1,α if

and only if it is decXβ ΣX
1,α for some X ∈ 2ω with α, β < ωX1 .

The inclusion decβ+1 Σ1,(β−̂α) ⊆ Σ→α+1,β+1 in Theorem 1.4 can be easily
shown by relativizing the following lemma.
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Lemma 2.3. Let X and Y be represented spaces. Fix an oracle X and
ordinals α ≤ β < ωX1 . Then

decXβ+1 ΣX
1,(β−̂α)(X ,Y) ⊆ ΣX

α+1,β+1(X ,Y).

Proof. Assume that F : X → Y is ∆0,X
β+1-piecewise Σ0,X

(β−̂α)-computable.

Fix an X-computable sequence {Pe}e∈ω of ∆0,X
β+1(X ) sets such that He =

F �Pe is Σ0,X
γ(e)+1(X )-computable, where γ(e) < β−̂α. Then, for each Σ0,X

α+1(Y)

set S ⊆ Y, F−1(S) is the union of {H−1e (S) ∩ Pe}e∈ω. Note that H−1e (S) is

Σ0,X
γ(e)+α+1, and γ(e) < β −̂ α implies γ(e) + α ≤ β. Thus, H−1e (S) is Σ0,X

β+1,

and its index is computed from any index of S and e by uniformity. Thus,
F−1(S) =

⋃
e(H

−1
e (S) ∩ Pe) is Σ0,X

β+1, and we can effectively calculate its

index. Hence, F is a ΣX
α+1,β+1 function.

2.2. Shore–Slaman join theorem. The key lemma used to show the
inclusion Σ→α+1,β+1 ⊆ dec Σ1,(β−̂α) in Theorem 1.4 is a join theorem concern-
ing the class of α-REA operators shown by Shore and Slaman. We will use
the Shore–Slaman join theorem only for the α-REA operator J (α) : x 7→ x(α).

Theorem 2.4 (Shore–Slaman join theorem [29]). Let α be a computable
ordinal. The Turing degree structure (DT ,≤,′ ,⊕) satisfies the following for-
mula, for each k ∈ ω:

(∀a,b)(∃c ≥ a) [((∀β < α) b 6≤ a(β))→ (c(α) ≤ b⊕ a(α) ≤ b⊕ c)].

For α = 1, it is exactly the Posner–Robinson join theorem [25]. Histor-
ically, Jockusch and Shore [16] were the first to ask whether the Posner–
Robinson join theorem can be generalized to all n-REA operators for n ∈ ω.
The main tool for addressing their question was introduced by Kumabe and
Slaman, who showed the join theorem for α = ω (for Kumabe–Slaman forc-
ing, see also Day–Dzhafarov [5]). Finally, Shore and Slaman proved the join
theorem for all computable ordinals α. It is noteworthy that by combining
it with the Slaman–Woodin double jump definability theorem, they showed
that the Turing jump is first-order definable in the partial ordering (DT ,≤)
of the Turing degrees (see Slaman–Woodin [30]).

We employ the Shore–Slaman join theorem to show our main theorem.
For Theorem 1.4 with α = β, we only require the Shore–Slaman join theorem
for α = 1, i.e., the Posner–Robinson join theorem. To show Theorem 1.5 on
all levels of Borel hierarchy, we need the Shore–Slaman join theorem for all
countable ordinals α < ω1. By analyzing the proof of Shore–Slaman [29], it
is not difficult to see that their theorem can be generalized to all countable
ordinals α < ωX1 , for any X ∈ 2ω. Here, ωX1 is the least countable ordinal
that is not computable in X. The relativized Shore–Slaman join theorem
implies the following lemma.
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Lemma 2.5. Let X ∈ ωω be a real, and let α < ωX1 be a countable
ordinal. Suppose that (y ⊕ Z)(α) ≤T (x ⊕ Z)(β) for every Z ≥T X. Then
there exists γ < β −̂ α such that y ≤T (x⊕X)(γ).

Proof. Suppose for contradiction that y 6≤T (x⊕X)(γ) for all γ < β −̂α.
Then by the Shore–Slaman join theorem relative to X, there exists Z ≥T
x⊕X such that Z(β−̂α) ≤T y ⊕ Z. Hence,

(y ⊕ Z)(α) ≥T Z(β−̂α+α) >T Z
(β) ≥T (x⊕X)(β).

However, this is a contradiction.

2.3. Turing degree analysis. The condition F−1 : Σ0
α+1 → Σ0

β+1

is equivalent to the condition F−1 : Σ0
α → ∆0

β+1, since Π0,X
α ⊆ Σ0,X

α+1,

and for every Σ0,X
α set A ⊆ Y, the preimages F−1(A) and {F−1(A) =

F−1(Y \ A) are Σ0,X
β+1. This proof is clearly effective. Thus, we can show

that, if F−1 : Σ0
α+1 → Σ0

β+1 is X-computable, then both F−1 : Σ0
α → Σ0

β+1

and {F−1 : Σ0
α → Σ0

β+1 are also X-computable, where {A is the complement
of A in the underlying space.

Lemma 2.6. Let X ∈ 2ω be a real, and let α, β < ωX1 be ordinals. Assume
that F : D → E is a ΣX

α+1,β+1 function, where D and E are subsets of ωω.

If D is Σ0,X
β+1, then (F (x)⊕X)(α) ≤T (x⊕X)(β) for any x ∈ D.

Proof. Note that SXe = {z ∈ E : (z ⊕ X)(α)(e) = 1} is Σ0
α(E). More-

over, the function SX : ω → Σ0
α(E) sending e to SXe is X-computable. To

determine whether (F (x) ⊕ X)(α)(e) = 1, we note that this condition is
equivalent to F (x) ∈ SXe , which is also equivalent to x ∈ F−1SX(e). Then

the condition x ∈ F−1SX(e) is ∆0,X
β+1, since F−1SX , {F−1SX : ω → Σ0

β+1

are X-computable, and by the condition (2) of our Borel coding. Conse-
quently, (F (x)⊕X)(α) ≤T (x⊕X)(β) for any x ∈ D.

Lemma 2.7. Let α, β < ωX1 be countable ordinals, and let D ⊆ ωω. Then
a function F : D → ωω is of class dec ΣX

1,α+1 if and only if

F (x) ≤T (x⊕X)(α) for any x ∈ D.

Proof. (⇒) Fix a countable cover {Xi}i∈ω of D such that F �Xi is Σ0,X
α+1-

computable for each i ∈ ω. By the universality of the Turing jump, there is
a sequence {e(i)}i∈ω of indices such that for each i ∈ ω,

F (x) = Φe(i)((x⊕X)(α);x) for any x ∈ D.

(⇐) Conversely, define Qe = {x ∈ D : Φe((x ⊕ X)(α)) = F (x)}. For
any x ∈ D, if F (x) ≤T (x ⊕ X)(α), there is an algorithm e ∈ ω such that
F (x) = Φe((x⊕X)(α)). Therefore,

⋃
eQe = D. Finally, Fe = Φe((x⊕X)(α))
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is Σ0,X
α+1-computable for each e ∈ ω, and F �Qe = Fe�Qe for each e ∈ ω, as

desired.

Corollary 2.8. Let α, β < ωX1 be countable ordinals, and let D be a

Σ0,X
β+1 subset of ωω. Then

ΣX
α+1,β+1(D,ω

ω) ⊆ dec ΣX
1,(β−̂α)(D,ω

ω).

Proof. Fix a ΣX
α+1,β+1 function F : ωω → ωω. Clearly, F ∈ ΣZ

α+1,β+1 for
every Z ≥T X. By Lemma 2.6,

(F (x)⊕ Z)(α) ≤T (x⊕ Z)(β)

for any Z ≥T X and x ∈ D. By Lemma 2.5, for any x ∈ D, we have
F (x) ≤T (x⊕X)(γ) for some γ < β −̂ α. Thus, by Lemma 2.7, F is of class
dec ΣX

1,(β−̂α).

2.4. Complexity of the decomposition. In this section, we assume
that X = Y = ωω. Kuratowski’s extension theorem states that every partial
Σ0
α+1-measurable function from a metrizable space into a Polish space can

be extended to a Σ0
α+1-measurable function with a Π0

α+2 domain. Obviously,
this theorem is effectivized as follows.

Claim 1. Let α < ωX1 . For any partial Σ0,X
α+1-computable function F :

⊆X → Y, there is a Π0,X
α+2 set D with dom(F ) ⊆ D ⊆ X and a Σ0,X

α+1-
computable extension G : D → Y of F .

Claim 2. Every partial Σ0,X
γ+1-computable function F : ⊆X → Y has a

total multi-valued X-computable extension F̃ : X → Π0
γ+1(Y) in the sense

that F̃ (x) = {F (x)} for any x ∈ dom(Fn).

Proof. Since Y is Polish, the diagonal set ∆Y = {(x, x) ∈ Y2 : x ∈ Y}
is Π0

1. Note that graph(F ) = (F, id)−1(∆Y). Since F is partially Σ0,X
γ+1-

computable, there is a Π0,X
γ+1 set G ⊆ X × Y such that graph(F ) = G ∩

(dom(F ) × Y). Then the function F̃ : X → Π0
γ+1(Y) sending x to G[x] is

X-computable (see Brattka [2, Proposition 3.2]), where G[x] = {y ∈ Y :
(x, y) ∈ G}.

We now estimate the complexity of our decomposition.

Lemma 2.9. Suppose that 2 ≤ α ≤ β < α · 2 < ωX1 . Then

ΣX
α+1,β+1(X ,Y) ∩ dec ΣX

1,(β−̂α)(X ,Y) ⊆ decXβ+1 ΣX
1,(β−̂α)(X ,Y).

Proof. Assume that F is decomposable into a uniform sequence {Fn}n∈ω
of Σ0

(β−̂α)-measurable functions. It suffices to estimate the complexity of

Qn = {x ∈ dom(Fn) : F (x) = Fn(x)} in X .
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Note that α · 2 = α+ α > β implies that β −̂ α ≤ α. Therefore, Π0,X
γ+1 ⊆

Σ0,X
α+1 for any γ < β −̂ α. This implies that the total multi-valued extension

F̃n : X → Σ0
α+1(Y) in the sense of Claim 2 is X-computable. Recall that

the membership relation ∈β+1 : X × Σ0
β+1(X ) → S is Σ0,X

β+1-computable.
Therefore,

Kn = (∈β+1 ◦ (id, F−1 ◦ F̃n))−1({1}) = {(z, x) ∈ X 2 : F (z) ∈ F̃n(x)}.

is Σ0,X
β+1, since F ∈ ΣX

α+1,β+1 implies that ∈β+1 ◦ (id, F−1F̃n) : X 2 → S is

Σ0,X
β+1-computable, and {1} is Σ0

1 in S. Consequently, Qn can be represented
as follows:

Qn = dom(Fn) ∩ (id, id)−1(Kn ∩∆X ).

By Claim 1, we may assume that dom(Fn) is Π0,X
γ+2. Then Π0,X

γ+2 ⊆ Π0,X
β

since α ≥ 2 implies that γ < β −̂ 2. Consequently, Qn is Σ0,X
β+1 uniformly

in n ∈ ω. Let {Qn,m}m∈ω be a uniform sequence of Π0,X
β sets with Qn =⋃

m∈ω Qn,m. Then F �Qn = Fn�Qn,m for all n,m ∈ ω.

As a consequence, we obtain Theorems 1.4 and 1.5 for X = Y = ωω, by
relativizing Corollary 2.8 and Lemma 2.9 via Lemmas 2.1 and 2.2.

2.5. Topological dimension and quasi-Polish spaces. In this sec-
tion, we discuss the possibility of proving our main theorem for a wider
class of topological spaces. This is an important task because it seems that
the original motivations behind pioneering works on first-level Borel isomor-
phisms (i.e., Σ2,2-isomorphisms) by Jayne [14] and Jayne and Rogers [15]
and others were to classify topological spaces. To show our main theorem
for a wider class rather than ωω, we focus on the Borel structure of a given
space.

We call a bijection h : ωω → X a Borel isomorphism at level 3/2 (for
short, a 3/2-isomorphism) if h is ∆0

2-piecewise continuous and h−1 is ∆0
3-

piecewise continuous. Note that an uncountable (quasi-)Polish space having
transfinite small inductive dimension (see Engelking [9]) is 3/2-isomorphic
to ωω (see also [22, Theorem 4.21]).

For instance, if X is the Euclidean n-space Rn or the unit n-sphere Sn (as
a recursively presented Polish space), it is computably 3/2-isomorphic to the
Baire space ωω, where a bijection h : ωω → X is called an X-computable 3/2-
isomorphism for some oracle X ∈ 2ω if h ∈ decX2 ΣX

1,1 and h−1 ∈ decX3 ΣX
1,1.

This is because the boundary sphere ∂B(q; r) of each rational open ball is
Π0

1 uniformly in its center q with ratio r, and the Π0
2 set X \

⋃
q,r ∂B(q; r) is

computably homeomorphic to a Π0
1 subspace of ωω (see also [22, Theorems

4.7 and 4.21]).
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Corollary 2.10. Let X ∈ 2ω be a real. Let X and Y be represented
spaces that are X-computably 3/2-isomorphic to ωω. For any ordinals α, β <
ωX1 with α ≤ β < α · 2, we have

ΣX
α+1,β+1(X ,Y) = decXβ+1 ΣX

1,(β−̂α)(X ,Y).

Proof. For α = 0, the conclusion is obvious. If α = 1, then α ≤ β < α · 2
implies β = 1. Then the conclusion is the computable version of the Jayne–
Rogers theorem proved by Pauly–de Brecht [23]. Thus, we can assume that
α ≥ 2.

Let hX : ωω → X and hY : ωω → Y be X-computable 3/2-isomorphisms.
By Lemma 2.3, we have hX , hY ∈ decXα+1 ΣX

1,1 ⊆ ΣX
α+1,α+1 and h−1X , h−1Y ∈

decXβ+1 ΣX
1,1 ⊆ ΣX

β+1,β+1. Assume that F : X → Y is a ΣX
α+1,β+1 func-

tion. It is not hard to see that hYFh
−1
X : ωω → ωω is ΣX

α+1,β+1, since

h−1X ∈ ΣX
β+1,β+1 and hY ∈ ΣX

α+1,α+1. By Corollary 2.8, we can see that

hYFh
−1
X is in decX ΣX

1,(β−̂α). Then, by Lemma 2.9, we have hYFh
−1
X ∈

decXβ+1 Σ0,X

1,(β−̂α). Consequently, F = hYh
−1
Y FhXh

−1
X ∈ decXβ+1 ΣX

1,(β−̂α) since

hY , h
−1
X ∈ decXβ+1 ΣX

1,1. Conversely, by Lemma 2.3, such an F is ΣX
α+1,β+1.

In general, any two uncountable (quasi-)Polish spaces are Σ0
3-measurably

isomorphic [22, Proposition 4.3], that is, there is a bijection h between them
such that both h and h−1 are Σ0

3-measurable.

Corollary 2.11. Let X ∈ 2ω be a real. Let X and Y be represented
spaces that are Σ0,X

n -computably isomorphic to ωω for some n ∈ ω. For any
ordinals α, β < ωX1 with ω ≤ α ≤ β < α · 2, we have

ΣX
α+1,β+1(X ,Y) = decXβ+1 ΣX

1,(β−̂α)(X ,Y).

Proof. Let hX : ωω → X and hY : ωω → Y be Σ0,X
n -computable isomor-

phisms. By Lemma 2.3, we have hX , h
−1
X , hY , h

−1
Y ∈ ΣX

1,n ⊆ ΣX
ω,ω ⊆ ΣX

α+1,α+1.

Assume that F : X → Y is a ΣX
α+1,β+1 function. As in the proof of Corol-

lary 2.10, we can see that G = hYFh
−1
X ∈ decXβ+1 ΣX

1,(β−̂α). If α ≥ ω, we

now claim that β −̂ α is a limit ordinal. If not, there is an ordinal γ such
that β −̂ α = γ + 1. By definition, γ + α ≤ β and note that 1 + α = α
whenever α ≥ ω. Therefore, β < β −̂ α + α = γ + 1 + α = γ + α ≤ β, a
contradiction.

Now, we have a ∆0,X
β+1 partition {Pn}n∈ω such that each G�Pn is Σ0,X

γ+1-

computable for some γ < β −̂ α. It is easy to see that hYGh
−1
X �hX (Pn) is

Σ0,X
γ+2n-computable. Note that γ + 2n < β −̂ α since β −̂ α is a limit ordinal.

Consequently, F = hYGh
−1
X ∈ decXβ+1 ΣX

1,(β−̂α) since {hX (Pn)}n∈ω is a ∆0,X
β+1

partition of X .
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As a consequence, we obtain Theorem 1.5, by relativizing Corollaries 2.10
and 2.11 via Lemmas 2.1 and 2.2. Indeed, Theorems 1.4 and 1.5 also hold for
quasi-Polish spaces having transfinite small inductive dimensions (see also
de Brecht [7] for quasi-Polish spaces and the modified Borel hierarchy).

2.6. Open questions. The concept of Σα,β-functions was applied by
Jayne [14] to study the Banach space B∗α(X) of bounded real-valued Baire
functions of class α on a realcompact space X . Jayne [14, Theorem 2] showed
that for any realcompact spaces X ,Y and ordinals α, β ≥ 1, B∗β(X ) is linearly
isometric to B∗α(Y) if and only if there exists a Σα+1,β+1-isomorphism of X
onto Y. Here, a bijection f : X → Y is said to be a Σα+1,β+1-isomorphism
if f is Σα+1,β+1 and its inverse function f−1 is Σβ+1,α+1. It is natural to
ask whether the same result holds for Σ→α+1,β+1-isomorphisms. The problem
is how to refine the result by Jayne [14, Theorem 1] to the following form.

Problem 2.12. Is every Boolean algebra isomorphism of ∆0
β+1(X ) onto

∆0
α+1(Y) induced by a Σ→α+1,β+1-isomorphism of X onto Y?

More generally, it is also important to ask whether the classes Σα,β and
Σ→α,β coincide.

Problem 2.13. Does the equality Σα,β(ωω, ωω) = Σ→α,β(ωω, ωω) hold for
all countable ordinals α, β < ω1?

It should also be asked whether Theorem 1.5 can be generalized to all
countable ordinals α, β < ω1. Indeed, Pawlikowski–Sabok [24, Question 7.3]
proposed the problem of finding an analogue of the Jayne–Rogers theorem
at transfinite levels of Borel functions. We conclude the paper with a con-
jectural precise form of decomposability at transfinite levels of the hierarchy
of Borel functions.

Problem 2.14. Let X and Y be separable metrizable spaces with X an-
alytic. Is it true that

Σα+1,β+1(X ,Y) = decβ+1 Σ1,(β−̂α)(X ,Y)

for any countable ordinals α ≤ β < ω1?

Recently, Gregoriades and Kihara [10] succeeded in removing the conti-
nuity assumption from Theorem 1.4, that is, they showed

decβ+1 Σ1,(β−̂α)(X ,Y) ⊆ Σα+1,β+1(X ,Y) ⊆ dec Σ1,(β−̂α)(X ,Y).

in the same cases as in the current paper by a slight extension of the current
idea.
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