
FUNDAMENTA
MATHEMATICAE

230 (2015)

On embeddability of automorphisms into measurable flows
from the point of view of self-joining properties

by
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Abstract. We compare self-joining and embeddability properties. In particular, we
prove that a measure preserving flow (Tt)t∈R with T1 ergodic is 2-fold quasi-simple (resp.
2-fold distally simple) if and only if T1 is 2-fold quasi-simple (resp. 2-fold distally simple).
We also show that the Furstenberg–Zimmer decomposition for a flow (Tt)t∈R with T1

ergodic with respect to any flow factor is the same for (Tt)t∈R and for T1. We give an
example of a 2-fold quasi-simple flow disjoint from simple flows and whose time-one map
is simple. We describe two classes of flows (flows with minimal self-joining property and
flows with the so-called Ratner property) whose time-one maps have unique embeddings
into measurable flows. We also give an example of a 2-fold simple flow whose time-one
map has more than one embedding.
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1. Introduction

1.1. Embeddability. The problem of embeddability of automorphisms
into measurable flows has been studied in ergodic theory for more than 60
years. Even today, the basic problem—a necessary and sufficient condition
for embeddability—remains the most interesting open question in this area.
The first articles on this subject dealt with a simpler problem, namely the
existence of roots. In [31] Halmos gave a necessary condition for the existence
of a square root (the absence of −1 in the spectrum). In the discrete spectrum
case this is also sufficient. These results were later generalized in various
ways—both in the discrete [42, 5, 39, 61] and quasi-discrete spectrum [30,
50, 51, 52] case. They include necessary and sufficient conditions for the
existence of roots and for the existence of embedding into a flow in the
discrete and quasi-discrete spectrum cases (1). In particular, Lamperti [42]
gave an example of a discrete spectrum automorphism with roots of all
orders, which is however not embeddable into a flow.

The problem turned out to be much more challenging in the weakly mix-
ing case. Already in 1956, Halmos [32] ([33]) asked about the existence of
square roots of weakly mixing automorphisms, the existence of roots for
Bernoulli shifts and the embeddability of Bernoulli shifts into flows. The an-
swers came relatively fast. Chacon constructed a non-mixing automorphism
with continuous spectrum having no square root [7] and a bit later one having
no roots at all [8]. Since the centralizer of an automorphism embeddable into
a flow contains all time-t automorphisms of this flow, a necessary condition
for embeddability is that the centralizer of the automorphism is uncount-
able. Del Junco [16], continuing the study of Chacon type constructions,
showed in particular that the centralizer of Chacon’s classical automor-
phism [9] consists only of its powers, whence it is too small for the automor-
phism even to admit roots. Further results were provided by Ornstein: he
answered positively the remaining two questions of Halmos on the Bernoulli

(1) Hahn and Parry [30] showed that automorphisms with quasi-discrete, non-discrete
spectrum are not embeddable into flows.
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embedding [55, 57]. While all previous constructions were not mixing, and
Bernoulli shifts have strong mixing properties, it seemed natural that suf-
ficiently strong mixing properties could imply embeddability (in 1966 this
problem was still open [5]). This, however, turned out to be false. Ornstein
constructed a mixing automorphism [58] and a K-automorphism [60] without
square roots.

After that there seems to have been no substantial progress until 2000
when King [37] showed that a generic automorphism admits roots of all or-
ders. Three years later de la Rue and de Sam Lazaro proved even more: that
a generic automorphism can be embedded into a flow [15]. This result was
later generalized (in various ways) to Zd-actions [76, 77, 71]. In 2004 Stepin
and Eremenko [74] showed that typically there are uncountably many pair-
wise spectrally non-isomorphic embeddings, thus strengthening the result
from [15].

1.2. Joining properties. Joinings were introduced by Furstenberg [26]
in 1967, and have since been a very fruitful tool for studying the dynam-
ical systems. A joining of two (or more) systems (in our case automor-
phisms or flows) is a measure invariant under the product action, whose
marginals are the invariant measures of the original systems. We deal with
self-joinings, i.e. joinings of copies of a fixed system. Depending on the
“number of ways” a system can be joined with itself in an ergodic way,
one defines several classes of dynamical systems. We will be mostly inter-
ested in 2-fold joinings. The self-joining properties of higher order are de-
fined using the so-called PID property [20] (2). We distinguish systems with
minimal self-joining property (MSJ) (Rudolph [69]), 2-fold simple systems
(Veech [78], del Junco, Rudolph [20]), 2-fold quasi-simple (2-QS) systems
(Ryzhikov, Thouvenot [70]), 2-fold distally simple (2-DS) systems (del Junco,
Lemańczyk [19]). A particular case of 2-QS systems are systems whose 2-fold
ergodic self-joinings other than the product measure are finite extensions
of the marginal factors. We will denote them by “n : 1” for n ≥ 1. For
n = 1 this notion is equivalent to 2-fold simplicity. We also consider joining
primeness property (JP) (Lemańczyk, Parreau, Roy [45]). Unlike the pre-
vious classes, systems with the JP property were originally not defined in
terms of self-joinings—instead, some restriction was imposed on the type of
ergodic joinings with Cartesian products of weakly mixing systems. Precise
definitions are given in Section 2.4, and those classes are related as follows:
MSJ ⊂ 2-fold simple ⊂ 2-QS ⊂ 2-DS ⊂ JP.

One more property we will consider is the so-called R-property, which was
first observed by Ratner [66] for horocycle flows. It describes the behavior

(2) Danilenko showed [11] that T has the PID property if and only if T1 has this
property.
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of orbits of nearby distinct points. Roughly speaking, sufficiently long pieces
of their orbits are close to each other, up to a time shift. An important
ingredient of the definition of the R-property is the restriction on how large
this time shift can be. Precise conditions (see [66, 24, 25, 22]) form a variety
of combinatorial properties, all yielding the same dynamical consequences
in the case of a weakly mixing flow: each of them implies that the flow is
“n : 1” for some n ∈ N (3). In fact, it implies more: ergodic joinings with
other flows, different from the product measure, are also finite extensions
of the coordinate factor of the “additional” flow [66] (see also [75]). Apart
from the horocycle flows, several classes of flows satisfying the R-property
are known: see [24, 25, 35, 22].

1.3. Motivation and results

1.3.1. Between simplicity and JP : 2-QS and 2-DS. A starting point for
our investigations is a result of del Junco and Rudolph [21] who showed
that whenever T = (Tt)t∈R (with T1 ergodic) is 2-fold simple then T1 is also
2-fold simple. On the other hand, it is not difficult to prove that given a
flow T = (Tt)t∈R (with T1 ergodic), T has the JP property whenever T1 has
the JP property (see Section 3.2). Analogous results hold for automorphisms
and their powers.

Since the 2-QS and 2-DS properties are “intermediate” between simplicity
and the JP property, it is reasonable to expect that 2-QS and 2-DS system
will share either the features of simple systems or of JP systems, or both.
Moreover, it is quite easy to see that if T1 is 2-fold simple then T is 2-QS.
This makes it even less surprising that indeed either both T and T1 are 2-QS
(resp. 2-DS) or none of them is:

Theorem 1.1. Let T = (Tt)t∈R be an ergodic flow. The following con-
ditions are equivalent:

(i) T is 2-DS (resp. 2-QS ).
(ii) Tt is 2-DS (resp. 2-QS ) for t ∈ R such that Tt is ergodic.
(iii) There exists t0 ∈ R such that Tt0 is ergodic and Tt0 is 2-DS (resp.

2-QS ).

Therefore, even though rather few explicit examples of 2-QS and 2-DS
systems are known, these notions seem very natural. We first provide the
proof of Theorem 1.1 for the 2-QS property. Then, building on the results
obtained, we pass to the 2-DS property (see Sections 3.3.1 and 3.3.2). An
essential role is played by lemmas which describe the relation between an
extension of a flow and the corresponding extension of its time-one map.

(3) Another version of the R-property can be found in [79]; there however the notion
was investigated from another point of view.
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Roughly speaking, these extensions are of the same character (e.g. either
both relatively distal or both relatively weakly mixing; for the definitions
see Section 2.3). Our main tool is the so-called T-compactness property [47].
In the extended version of the paper (available on arXiv), we provide another,
more direct proof of Theorem 1.1 in the case of the 2-DS property. It uses the
notion of so-called separating sieves [63] which helps to avoid some technical
difficulties.

1.3.2. Mixing properties. Recall the following classical result:

Proposition 1.2. Let T be a measurable flow. Then T is weakly mix-
ing (resp. mildly mixing, lightly mixing, partially mixing, mixing, mixing of
order n, rigid, partially rigid) if and only if T1 has the respective property.

In the course of proving Theorem 1.1, as a by-product, we show that a
“relative version” of the above proposition is true in the case of weak mixing.
In fact, we show more. To state the result, we need to recall a classical
theorem of Furstenberg and Zimmer (valid also for flows and other group
actions):

Theorem 1.3 (Furstenberg–Zimmer). Let T be an ergodic automor-
phism on (X,B, µ) with a factor A ⊂ B. Then there exists a unique in-
termediate factor A ⊂ C ⊂ B such that the extension B → C is relatively
weakly mixing and C → A is relatively distal.

The factorization from the above theorem is called Furstenberg–Zimmer
decomposition. We show that for a flow and for its ergodic time-t automor-
phism this decomposition is the same with respect to any flow factor (4).

Theorem 1.4. Let T = (Tt)t∈R : (X,B, µ) → (X,B, µ) be a flow with
T1 ergodic and let A ⊂ B be T -invariant. Then the Furstenberg–Zimmer de-
compositions for T and for T1 with respect to A are the same. In particular,
T is relatively weakly mixing (resp. relatively distal) over A if and only if
T1 is relatively weakly mixing (resp. relatively distal) over A.

1.3.3. (Non-)uniqueness of the embedding. Rudolph [68] gave an exam-
ple of two non-isomorphic K-automorphisms with isomorphic squares (see
also [67]). Also, Stepin and Eremenko [74] showed that for T with simple
spectrum, which is embeddable into a measurable flow, either the embedding
is unique, or T has infinitely many spectrally non-isomorphic embeddings.
In a typical situation the set of possible embeddings (or roots of a given or-
der) has cardinality continuum and no two different members are spectrally
isomorphic.

In Section 4, we discuss the problem of uniqueness of the embedding from
the point of view of self-joining properties. We show that for the time-one

(4) Again, an analogous result holds for automorphisms and their powers.



20 J. Kułaga-Przymus

map of a flow with the MSJ property the embedding is unique. A similar phe-
nomenon can be observed for time-one maps of flows having the R-property,
in particular for horocycle flows. For flows with the MSJ property we provide
two independent proofs. The first of them can be easily adapted to yield a
similar result for roots. The second proof can be seen as a special case of a
more general argument. Namely, we show that given a weakly mixing flow T ,
a sufficient condition for the uniqueness of the embedding for T1 is that any
ergodic joining of T with a weakly mixing flow S remains weakly mixing.
This is also the core of the argument we apply to horocycle flows (using the
theory of Ratner [64, 65, 66]).

Except for the Bernoulli shifts (both in the finite and the infinite entropy
cases) [55, 56, 57, 59], ergodic automorphisms that are time-t maps of MSJ
flows or flows with the R-property (5) seem to be the first concrete examples
of automorphisms with a unique embedding into a measurable flow.

Finally, we turn to “negative” examples. They are given in terms of com-
pact group extensions of 2-fold simple systems. To construct a weakly mixing
2-fold simple automorphism which has two non-isomorphic square roots, we
use the dihedral group of order 6 (one of these roots is 2-fold simple, the
other is only 2-QS). To give an example of a weakly mixing automorphism
which is 2-fold simple and embeddable into two non-isomorphic flows we use
the group SU(2) (again, one of the flows obtained is 2-fold simple, the other
is only 2-QS) (6). Another natural class of automorphisms, which is of a
different nature, consists of Gaussian automorphisms (7).

1.3.4. Counterexamples. In Section 5, we focus on various types of coun-
terexamples related to Theorem 1.1. The examples mentioned at the end of
Subsection 1.3.3 show immediately that 2-fold simplicity of an (ergodic)
time-one map of a flow does not imply that also the whole flow is 2-fold sim-
ple. Similarly, 2-fold simplicity of T 2 does not imply 2-fold simplicity of T .
In other words, Theorem 1.1 is “the most” we can hope for, and the afore-
mentioned result of del Junco and Rudolph [20] cannot be reversed. In fact,
already Danilenko [11] constructed an automorphism T such that T 2 is 2-fold

(5) Recall that both flows with the MSJ and R-property are of zero entropy.
(6) Contrary to what was claimed in [50], it is possible to have non-uniqueness of

embedding and roots also in the quasi-discrete spectrum case (cf. footnote 1). To see
this, consider an irrational rotation on the circle Tx = x + α. It has countably many
non-isomorphic embeddings: Tn,tx = x+ t(α+n). This also immediately yields countably
many non-isomorphic roots for T . In a similar way, we can obtain non-isomorphic roots
in the case of quasi-discrete, non-discrete spectrum. For T (x, y) = (x+ α, x+ y) we have
R ∈ C(T ) for R(x, y) = (x, y + 1/2), whence T 2 = (TR)2.

(7) It was shown in [45] that JP systems are disjoint from Gaussian systems. Other
related results can be found in [75, 18, 41]. We refer the reader e.g. to [10] or [53] for an
introduction to Gaussian systems.
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simple and T is only “2 : 1”. The key tool is the so-called (C, F)-construction
procedure, which is an algebraic counterpart of the well-known cutting and
stacking technique (8). A general idea behind this type of construction is to
use a larger (usually non-abelian) group with some special algebraic proper-
ties, which are reflected in the dynamics of a properly chosen subaction. The
example given in [11] actually has even stronger properties than we need: the
constructed automorphism is 2-QS (it is “2 : 1”), it is disjoint from simple
systems, and its square is 2-fold simple. Notice that each of the actions con-
structed in Subsection 1.3.3 has a factor which is 2-fold simple. In particular,
they are not disjoint from 2-fold simple systems. On the other hand, these
constructions are much simpler than the example from [11].

The next example we consider has the same basic properties: T 2 is 2-fold
simple whereas T is only 2-QS. It is given in terms of a double group exten-
sion of an automorphism with the MSJ property (so it is again much simpler
than the example from [11], but not disjoint from 2-fold simple automor-
phisms). The second group extension in our construction is very explicit:
we use the affine cocycle. This is however not necessarily a strong point: it
is unclear how to adjust this example to obtain a 2-QS flow with a 2-fold
simple time-one map.

In Section 5.2, using the construction from [11] as the starting point, we
provide an example of a flow T with T2 ergodic and 2-fold simple, such that T
is only 2-QS (and not 2-fold simple). Moreover, the flow obtained has a factor
with the same self-joining properties as the original flow and disjoint from
2-fold simple flows. To prove this, we show that given a 2-fold simple flow T
on (X,B, µ) with Tt ergodic and a flow factor A ⊂ B, either both T |A and
Tt|A are 2-fold simple or none of them is. In particular, the horocycle flows
and their factors cannot serve as an example here. In our (C, F)-construction
we deal with uncountable non-abelian groups. This results in additional tech-
nical difficulties related to equidistribution of sequences (cf. [12, 13]); since
this part of the paper is of a different flavor than the rest of it, we include
the necessary tools in Appendix A.

2. Preliminaries. We deal with measure-preserving automorphisms and
flows, i.e. Z- and R-actions on standard Borel spaces, preserving a probability
measure. In particular, we assume that all flows are measurable, i.e. the map
X × R 3 (x, t) 7→ Ttx ∈ X is measurable. Sometimes the invariant measure
is not fixed and we work with a standard Borel space (X,B) (the existence
of an invariant measure will always be guaranteed). The properties which
are of our interest are invariant under measure-theoretical isomorphisms.

(8) This method is a useful tool for producing examples and counterexamples of dif-
ferent types of behavior. For a detailed survey, see [12].
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Therefore, without loss of generality, we can make a tacit assumption that
the flows we consider are continuous flows on compact metric spaces (9).

We formulate most of the definitions in terms of Z-actions. However, they
can be transferred directly (or almost directly) to other group actions.

2.1. Topology, invariant measures, ergodic decomposition. Let
X be a compact metric space. Denote by M1(X) the set of probability mea-
sures on X. With the usual weak topology, M1(X) is compact and metriz-
able. For a flow T = (Tt)t∈R and automorphism T on X we define

PR(T ) := {µ ∈M1(X) : µ ◦ Tt = µ for all t ∈ R},
PeR(T ) := {µ ∈ PR(T ) : µ is ergodic for T },
PZ(T ) := {µ ∈M1(X) : µ ◦ T = µ},
PeZ(T ) := {µ ∈ PZ(T ) : µ is ergodic for T}.

Remark 2.1. Since X is a compact metric space and T is assumed to
be continuous, it follows that the map R 3 t 7→ µ◦Tt ∈M1(X) is continuous
whenever PR(T ) 6= ∅.

We will identify the following spaces: R/Z, [0, 1), T = {z ∈ C : |z| = 1}
([0, 1) will be understood additively and T multiplicatively), and we will
equip them with the Lebesgue measure. Furthermore, given a measurable
flow T = (Tt)t∈R and a measure ν ∈ PeZ(T1) we set

(2.1) ν =

1�

0

ν ◦ Tt dt.

Recall the following folklore result (see, e.g., [11]):

Lemma 2.2. The measure ν is T -invariant and ergodic. Moreover, the
map

(2.2) PeZ(T1) 3 ν 7→ ν ∈ PeR(T )
is onto and (2.1) is the ergodic decomposition of ν for T1.

Note that the measures ν ◦ Tt in (2.1) need not be pairwise orthogonal.
However, we have the following:

Lemma 2.3. In the decomposition (2.1) either all measures ν ◦ Tt are
equal to ν or there exists k ≥ 1 such that

(2.3) ν =
�

T

ν ◦ Tt dt = k

1/k�

0

ν ◦ Tt dt

and for 0 ≤ t < 1/k all measures ν ◦ Tt are mutually singular.

(9) In the case of flows one uses the special flow representation [2, 3] and a result
from [38] on the homology class of integrable functions.
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Proof. Notice that any two measures in (2.1) are either equal or mutually
singular. Let A := {t ∈ T : η = η ◦ Tt}. This is clearly a subgroup of T.
Moreover, A is closed by Remark 2.1. Therefore either A = T or A is finite.
In the latter case we obtain formula (2.3) with k = #A.

Remark 2.4. If T is a suspension flow with the first return time to the
base equal to a > 0 and a weakly mixing first return time map, then the
discrete part of the spectrum is concentrated on (1/a)Z.

Remark 2.5. Recall that a flow is a suspension flow (with a constant
first return time to the base) if and only it has a rational point in its discrete
spectrum [82]. Therefore, whenever (2.3) holds, the flow T can be represented
as a suspension flow over its 1/k-time map with common return time to the
base equal to 1/k. In other words, the whole space can be identified with
(X× [0, 1/k], ν⊗λ[0,1/k]), where we glue together each pair of points (x, 1/k)
and (T1/kx, 0), with the action of (Tt)t∈R given by Tt(x, s) = (x, s+t). More-
over, by Remark 2.4, the discrete part of the spectrum is concentrated on kZ.

2.2. Joinings I: Basic definitions and properties. Let T and S be
automorphisms of (X,B, µ) and (Y, C, ν) respectively. By J (T, S) we denote
the set of all joinings between T and S, i.e. the set of all T × S-invariant
probability measures on (X×Y,B⊗C) whose projections onto X and Y are
equal to µ and ν respectively. For J (T, T ) we write J (T ) and we speak about
self-joinings. If we assume additionally that both T and S are ergodic, then
J (T, S) is a simplex whose extreme points are joinings ergodic for T × S;
we then write J e(T, S) (or J e(T ) if S = T ). If J (T, S) = {µ ⊗ ν} we say
that T and S are disjoint [26] and write T ⊥ S.

In a similar way one defines joinings of higher order, i.e. joinings of more
than two automorphisms. We denote them by J (T1, . . . , Tk), k ≥ 2, and
J (T1, T2, . . . ) in the case of a finite and an infinite number of automorphisms
respectively. Again, we may be interested in the situation where all the Ti
are isomorphic and speak about self-joinings. To distinguish self-joinings of
different orders we write e.g. J e∞(T ) for infinite ergodic self-joinings of T
or J3(T ) for three-fold self-joinings of T . By J2(T ;A), where A is a factor
of T , we denote all 2-fold self-joinings of T which project onto A ⊗ A as
the diagonal measure. Sometimes, to simplify the notation, we will denote a
joining between T and S by T ∨ S.

Recall that 2-fold joinings are in one-to-one correspondence with Markov
operators Φ : L2(X,B, µ) → L2(Y, C, ν) such that Φ ◦ T = S ◦ Φ. This iden-
tification allows us to view J2(T ) as a metrizable compact semitopological
semigroup endowed with the weak operator topology. A metric compatible
with the weak topology on J2(T ) can be defined in the following way. Fix
a dense subset {f ′i : i ≥ 1} ⊂ L2(X,B, µ), set fi := f ′i/‖f ′i‖L2(X,µ) for i ≥ 1
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and let d{fn}n∈N be given by

(2.4) d{fn}n∈N(ξ, ν)

=

∞∑
i,j=1

1

2i+j

∣∣∣ �

X×X
fi(x)fj(y) dξ(x, y)−

�

X×X
fi(x)fj(y) dν(x, y)

∣∣∣.
Notice that for ξ, ν ∈ J2(T ) we always have
(2.5) d{fn}n∈N(ξ ◦ (T × T ), ν ◦ (T × T )) = d(fn)n∈N(ξ, ν).

Remark 2.6. We will often use Lemmas 2.2 and 2.3 for joinings. Notice
that given a flow T with T1 ergodic, the map η 7→ η has values in J e2 (T )
whenever η ∈ J e2 (T1). Moreover, it is surjective.

Recall that S is a factor of T (or T is an extension of S) if there exists
π : X → Y such that π ◦ T = S ◦ π and ν = π∗(µ), i.e. for any A ∈ C we
have µ(π−1A) = ν(A). We then write T → S. Notice that if S is a factor
of T then π−1(C) ⊂ B is T -invariant. On the other hand, every T -invariant
sub-σ-algebra A ⊂ B corresponds to some factor of T . If no confusion arises
we will write B → A.

We will use the following types of joinings:
• For S2, . . . , SN ∈ C(T ) (10) the measure ν = µS2,...,SN defined by

µS2,...,SN (A1 × · · · ×AN ) = µ(A1 ∩ S−12 A2 ∩ · · · ∩ S−1N (AN ))

(with an obvious modification for N = ∞) is an N -self-joining of T called
a graph self-joining (or off-diagonal self-joining). If S2 = · · · = SN = Id, we
speak about the diagonal self-joining and we denote it by ∆N . For N = 2
we often write ∆ instead of ∆2. When confusion may arise, we denote the
marginals of ∆ in parentheses: ∆(µ).
• Each pair of factors A1,A2 ⊂ B, together with λ ∈ J (T |A1 , T |A2),

yields a self-joining of T defined by

λ̂(A1 ×A2) =
�

X/A1×X/A2

E(A1|A1)(x)E(A2|A2)(y) dλ(x, y).

It is called a relatively independent extension of λ. In particular, when A1 =
A2 = A and λ = ∆ we say that ∆̂ is a relatively independent extension
over A. We denote it by µ⊗A µ.
• Let λ ∈ J (T1, . . . , Tn). Then λ|Xi,Xj = λ|Xi×Xj defined by

λ|Xi×Xj (C ×D) = λ(X × · · · ×X︸ ︷︷ ︸
i−1

×C ×X × · · · ×X︸ ︷︷ ︸
j−i−1

×D ×X × · · · ×X︸ ︷︷ ︸
n−j

)

is an element of J (Ti, Tj). Moreover, if λ ∈ J e(T1, . . . , Tn) then λ|Xi,Xj ∈
J e(Ti, Tj).

(10) C(T ) stands for the centralizer of T , i.e. the group of all measure-preserving
automorphisms which commute with T .
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• Let λ ∈ J (T1, T2) and let A1,A2 be factors of T1, T2, respectively. Then
λ|A1⊗A2 ∈ J ((T1)|A1 , (T2)|A2).

2.3. Factors and extensions. Any ergodic extension T̃ → T is isomor-
phic to a skew product over T , i.e. to an automorphism T on (X × Y,B ⊗ C,
µ⊗ ν) of the form

(2.6) T (x, y) = (Tx, Sxy),

where (Sx)x∈X is a measurable family of automorphisms of some standard
probability space (Y, C, ν) (see [1]). A particular case of skew products are
Rokhlin extensions, i.e. automorphisms of the form TS,ϕ(x, y) = (Tx, Sϕ(x)y),
where (Sg)g∈G is a measurable representation of a locally compact abelian
group G in the group of automorphisms of (Y, C, ν), and ϕ : X → G is a
measurable function.

2.3.1. Relatively weakly mixing extensions. Following [27], we say that
T : (X,B, µ) → (X,B, µ) is relatively weakly mixing with respect to factor
A ⊂ B if the relatively independent extension of the diagonal self-joining
of T |A is ergodic. In terms of the skew product representation (2.6), the
property of relative weak mixing is equivalent to the ergodicity of the au-
tomorphism T acting on (X × Y × Y,B ⊗ C ⊗ C, µ ⊗ ν ⊗ ν), given by
T (x, y1, y2) = (Tx, Sxy1, Sxy2).

2.3.2. Relatively isometric and relatively distal extensions. Relative dis-
tality is a concept of “opposite nature” to relative weak mixing (cf. Theo-
rem 1.3).

Compact group extensions. Let G be a compact metrizable group with
the normalized Haar measure λG and let ϕ : X → G be measurable. Then
Tϕ : (x, g) 7→ (Tx, ϕ(x)g) is an automorphism of (X ×G,B⊗B(G), µ⊗ λG).
It is called a (compact) group extension of T . We have the following:

Proposition 2.7 (see e.g. [20]). If T : (X,B, µ) → (X,B, µ) is an er-
godic compact group extension of its factor A then Je2(T ;A) consists of graph
joinings.

Proposition 2.8 (Z-actions: [75, 78]; actions of other groups: [20]). If
T : (X,B, µ)→ (X,B, µ) is ergodic, A is a factor of T and Je2(T ;A) consists
of graph joinings then B → A is a compact group extension.

Lemma 2.9 ([43]). Let T : (X,B, µ) → (X,B, µ) be a (not necessarily
ergodic) compact group extension of an ergodic factor A. Then every ergodic
component of T is also isomorphic to some compact group extension of A.
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Isometric extensions. Let G be a compact group with a closed subgroup
H and let ϕ : X → G be measurable. The action of Tϕ restricted to X×G/H
is called an isometric extension of T .

In [81] Zimmer introduced the notion of relatively discrete spectrum. It is
based on the classical notion of discrete spectrum of a unitary representation.
As we will not need the precise definition, let us only remark that

(2.7) an ergodic extension has relatively discrete spectrum if and only if it
is isometric.

Distal extensions. We say that an extension T̃ : (X̃, B̃, µ̃)→ (X̃, B̃, µ̃) of
T : (X,B, µ) → (X,B, µ) is relatively distal [80] if there exists a transfinite
sequence (Bα)α≤β of factors of T̃ such that B0 = B, B = B̃, the extensions
Bα+1 → Bα are isometric and, for α being a limit ordinal, Bα is the inverse
limit of the preceding factors.

2.4. Joinings II: Self-joining properties. Let T : (X,B, µ)→(X,B, µ)
be an ergodic automorphism. We say that:

• T has the pairwise independence property (PID) if every pairwise in-
dependent self-joining of T is equal to the product measure;
• T is 2-fold simple if J e2 (T ) ⊂ {µS : S ∈ C(T )} ∪ {µ⊗ µ}; T is simple

if it is 2-fold simple and PID;
• T has minimal self-joinings (MSJ) if it is 2-fold simple and C(T ) =
{T k : k ∈ Z};
• T is 2-fold quasi-simple (2-QS) if J e(T ) \ {µ⊗µ} consists of isometric

extensions of each of the coordinate factors; T is quasi-simple if it is
2-QS and PID;
• T is “n : 1” for some n ∈ N if J e(T ) \ {µ⊗µ} consists of “n : 1”-exten-

sions of each of the coordinate factors (it is a special case of 2-QS);
• T is 2-fold distally simple (2-DS) if J e(T ) \ {µ⊗ µ} consists of distal

extensions of each of the coordinate factors; T is distally simple if it is
2-DS and PID.

We say that T has the joining primeness property (JP) if for every pair
of weakly mixing systems S1, S2 and every λ ∈ J e(T, S1 × S2) we have
λ = λ|X,Y1 ⊗ ν2 or λ = λ|X,Y2 ⊗ ν1. Notice that assuming S1 and S2 are
isomorphic would give an equivalent definition. We will show later that JP
is, in fact, an intrinsic notion and we will provide an equivalent definition in
terms of self-joinings.

Finally, we mention Ratner’s property (R-property) of flows. It has a
different flavor than all the properties mentioned above. Since the definition
is very technical and will not be used explicitly, we will not quote it here.
Instead, we refer the reader to [25, 66, 10, 24] for the details. Note that
although the definition of R-property does not refer to joinings, it imposes
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restrictions on the joinings of the flow under consideration. The following
proposition is a little imprecise, but it will be sufficient for our needs.

Proposition 2.10 ([25]). Let T = (Tt)t∈R be a weakly mixing flow on
(X,B, µ) which has the R-property. Let S = (St)t∈R be an ergodic flow on
(Y, C, ν) and let λ ∈ J e(T ,S). Then either λ = µ ⊗ ν or λ is a finite
extension of ν.

2.5. Distal and isometric extensions: T-compactness. Let A be a
factor of T . Following [47], we say that an extension B → A is T-compact if
for any ε > 0 there exists N ≥ 2 such that for each ν ∈ JeN (T ;A) we can
find 1 ≤ i < j ≤ N such that d(ν|Xi×Xj , ∆N |Xi×Xj ) < ε (11).

Proposition 2.11 ([47]). Assume that T is an ergodic automorphism
on (X,B, µ) and let A ⊂ B be its factor. Then the following are equivalent:

(i) B → A has relatively discrete spectrum,
(ii) B → A is isometric,
(iii) B → A is T-compact.

3. Self-joining properties of T and T1, part I

3.1. Simplicity. Our starting point is a result of del Junco and Rudolph.
We rephrase it slightly and also include a proof, using the language compat-
ible with that used later on.

Proposition 3.1 ([20]). Let T = (Tt)t∈R be a weakly mixing flow. The
following are equivalent:

(i) T is 2-fold simple,
(ii) T1 is 2-fold simple and C(T ) = C(T1).

Remarks. (1) In particular, C(T ) = C(T1) whenever C(T1) is abelian.
(2) An analogous result to Proposition 3.1 holds for automorphisms and

their powers.
(3) A flow T which is not weakly mixing, and which has an ergodic time Tt

which is 2-fold simple, is also 2-fold simple. Indeed, as T is not weakly mixing,
Tt is not weakly mixing either, whence it has purely discrete spectrum [20].
Therefore T also has purely discrete spectrum, and in particular, it is 2-fold
simple.

Proof of Proposition 3.1. Suppose that T is 2-fold simple. It suffices to
show that J e2 (T ) = J e2 (T1). We have J e2 (T ) ⊂ J e2 (T1). Suppose that we can

(11) See the definitions in Section 2.2.
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find η ∈ J e2 (T1) \ J e2 (T ). Define

(3.1) η =

1�

0

η ◦ (Tt × Tt) dt.

By Remark 2.6, we have η ∈ J e2 (T ) ⊂ J e2 (T1). It follows by Lemma 2.3 and
by the uniqueness of ergodic decomposition that (3.1) takes the form η = η,
which contradicts the choice of η.

The other implication follows easily: we obtain J e2 (T1) ⊂ J e2 (T ), whence
J2(T1) ⊂ J2(T ). The reverse incclusion is obvious.

Remark 3.2. Let T and S be 2-fold simple such that T k = Sl for some
k, l ∈ Z \ {0}. It follows from Proposition 3.1 that T k = Sl is 2-fold simple
and C(T ) = C(T k) = C(Sl) = C(S). In particular, J e2 (T ) = J e2 (S).

For a measure-preserving flow T = (Tt)t∈R let

Is(T ) = {t ∈ R : Tt is 2-fold simple} ∪ {0}.

Lemma 3.3. Let T = (Tt)t∈R be a weakly mixing flow. Suppose that Tα
and Tβ are 2-fold simple for some α, β 6= 0 such that α/β 6∈ Q. Then T is
2-fold simple. In particular, Is(T ) = R.

Proof. We may assume without loss of generality that β = 1 and α 6∈ Q.
There are two possibilities: (i) C(T1) = C(Tα), (ii) C(T1) 6= C(Tα).

In case (i), fix t0 ∈ R. For n ∈ N choose tn ∈ Z + αZ such that tn → t0
(this can always be done as α 6∈ Q). Take S ∈ C(T1) = C(Tα). We have

STtn → STt0 and TtnS → Tt0S.

Since STtn = TtnS, it follows that STt0 = Tt0S, i.e. C(T1) = C(T ). By
Proposition 3.1, T is 2-fold simple.

In case (ii), we may assume that there exists S ∈ C(T1)\C(Tα). Consider

(3.2) µS :=

1�

0

µS ◦ (Tt × Tt) dt.

By Remark 2.6, µS ∈ J e2 (T ). Clearly µS 6∈ Je2(T1) (otherwise the mea-
sures in the decomposition (3.2) would be all equal, which would imply that
S ∈ C(T ) ⊂ C(Tα)). By Lemma 2.3, the ergodic decomposition of µS for
T1 × T1 is

(3.3) µS = k

1/k�

0

µS ◦ (Tt × Tt) dt

for some k ≥ 1. By Remark 2.5,

(3.4) the set of eigenvalues of (T × T ,µS) is equal to kZ.
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Suppose that µS is not ergodic for Tα× Tα. Then, by Lemma 2.2, µS =

(1/α)
	α
0 µW ◦ (Tt × Tt) dt for some W ∈ C(Tα). By Lemma 2.3 the ergodic

decomposition of µS for Tα×Tα is therefore of the form µS = (l/α)
	α/l
0 µW ◦

(Tt × Tt) dt for some l ≥ 1. Hence, by Remark 2.5, the set of eigenvalues
(T × T ,µS) is equal to (l/α)Z. This contradicts (3.4).

Suppose now that µS is ergodic for Tα × Tα. Then µS = µW for some
W ∈ C(Tα). It follows that (Tα × Tα,µS) is weakly mixing, whence also
(T × T ,µS) is weakly mixing. This contradicts (3.4) again.

Proposition 3.4. Let T = (Tt)t∈R be a weakly mixing flow. Then
Is(T ) = R or Is(T ) = βZ for some β ∈ R. Moreover, if Is(T ) = R then T
is 2-fold simple.

Proof. Suppose that Is(T ) 6= βZ for all β ∈ R. Then either (i) there exist
t1, t2 ∈ Is(T ) \ {0} which are rationally independent, or (ii) all numbers in
Is(T ) are rationally dependent.

In case (i) it follows from Lemma 3.3 that T is 2-fold simple and
Is(R) = R. In case (ii) there exists α > 0 such that Is(T ) ⊂ αQ. Take
t1, t2 ∈ Is(T ). We claim that the whole additive subgroup generated by t1
and t2 is in Is(T ). Indeed, t1 = p1/q, t2 = p2/q for some p1, p2, q ∈ Z.
Let d = gcd(p1, p2). Then for some k, l ∈ Z we have kp1 + lp2 = d. Hence
d/q = kp1/q + lp2/q. It follows by Remark 3.2 that C(Tp1/q) = C(Tp2/q).
Therefore C(Tp1/q) ⊂ C(Td/q). On the other hand, C(Td/q) ⊂ C(Tp1/q) since
Td/q is a root of Tp1/q. Hence C(Td/q) = C(Tp1/q) and it follows that Td/q is
2-fold simple. Therefore, for all k ∈ Z also Tkd/q is 2-fold simple. It follows
that Is(T ) = Is(T ) ∩ αQ is an additive subgroup of αQ. Notice that Is(T )
cannot be dense in R. Indeed, if it were, an argument similar to the one in
case (i) in the proof of Lemma 3.3 would imply Is(T ) = R.

3.2. Joining primeness property. We will now show that the converse
of Proposition 3.1 is true if we replace “2-fold simple” with “JP”:

Proposition 3.5. Let T = (Tt)t∈R be a measure-preserving flow with
T1 ergodic. If T1 has the JP property then T has the JP property.

Proof. Let η ∈ Je(T ,R× S) ⊂ J(T1, R1 × S1) for some weakly mixing
flowsR and S. If η ∈ Je(T1, R1×S1) then η = η|X×Y ⊗ν2 or η = η|X×Z⊗ν1.
If η 6∈ Je(T1, R1 × S1) then by Lemmas 2.2, 2.3 and Remark 2.6 we may
assume that for some η ∈ Je(T1, R1 × S1) we have

η =

1�

0

η ◦ (Tt ×Rt × St) dt.

Notice that η cannot be the product measure. Indeed, it would then be
invariant under the product flow R×S = (Rt×St)t∈R and equal to η, which
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is impossible since η 6∈ J e(T1, R1 × S1). Therefore, up to a permutation of
the coordinates, we have η = η|X×Y ⊗ ν2. Hence

η =

1�

0

η|X×Y ◦ (Tt ×Rt)⊗ ν2 dt =
(1�
0

η|X×Y ◦ (Tt ×Rt) dt
)
⊗ ν2.

Remark 3.6. If T (1) and T (2) are weakly mixing and all ergodic joinings
of T (1) and T (2) are weakly mixing then J (T (1), T (2)) = J (T (1)

1 , T
(2)
1 ) and

J e(T (1), T (2)) = J e(T (1)
1 , T

(2)
1 ). Indeed, by Lemma 2.2 the only possibility

to obtain a new ergodic joining is via suspension, but every suspension has
a discrete spectrum factor.

Remark 3.7. If J2(T ) = J2(T1) then T and T1 have the same invariant
σ-algebras and C(T ) = C(T1).

Given an ergodic automorphism R on a standard probability Borel space
(Z,D, ρ), we denote by JF(R) the family of all factors of all infinite ergodic
self-joinings of R. Notice that

JF(R) is closed under (infinite) ergodic self-joinings and factors.(3.5)

Therefore, for each ergodic automorphism S acting on (Y, C, ν) there exists
a largest factor AR(S) ⊂ C of S such that AR(S) ∈ JF(R) (12). Since
S|WAR(S) and S|AR(S) are isomorphic for each W ∈ C(S), we find that

(3.6) AR(S) is invariant under all W ∈ C(S).

Now, fix a weakly mixing automorphism R : (Z,D, ρ) → (Z,D, ρ) and an
ergodic automorphism S : (Y, C, ν)→ (Y, C, ν). Then, by (3.6), AR×R(S×S)
is a factor of the product action (Si× Sj)(i,j)∈Z2 . Recall a result on product
Z2-actions:

Proposition 3.8 ([6]). Let T̃ : (X̃, B̃, µ̃)→ (X̃, B̃, µ̃) and S̃ : (Ỹ , C̃, ν̃)→
(Ỹ , C̃, ν̃) be ergodic automorphisms of standard probability Borel spaces. Con-
sider the corresponding Z2-action, i.e. the action of (T̃n × S̃m)n,m∈Z2 on
(X̃ × Ỹ , B̃ ⊗ C̃, µ̃ ⊗ ν̃). Suppose that Ã is a factor of the Z2-action. Let
B ⊗ C be the smallest product factor containing Ã (13). Then there exists a
compact metric group G and two continuous 1− 1 homomorphisms

g 7→ R̃g ∈ C(T̃ ), g 7→ R̃′g ∈ C(S̃),

such that Ã = {A ∈ B ⊗ C : (R̃g × R̃′g)A = A}.

(12) By separability, the smallest σ-algebra including all factors of S from JF(R) is
countably generated, whence it corresponds to a joining of at most countably many factors.

(13) The existence of such a factor was also proved in [6].
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From the above proposition and from (3.6) applied to AR×R(S × S), it
follows that AR×R(S × S) is a product-σ-algebra. Therefore

(3.7) AR×R(S × S) = AR(S)⊗AR(S),
as this is the largest product σ-algebra in JF(R×R).

Moreover, using (3.5) and a result from [4] (see also [14]), we conclude
that for any λ ∈ J e(R,S) we have λ = (λ|D⊗AR(S)) ,̂ i.e. λ is the rel-
atively independent extension of λ|D⊗AR(S). In particular, using (3.7), for
λ ∈ J e(R,S × S) we obtain

(3.8) λ = (λ|D⊗AR(S)⊗AR(S)) .̂
We will now show that JP is an intrinsic property.

Proposition 3.9. Let R be an ergodic automorphism such that in the
class JF(R) there is some weakly mixing transformation. An automorphism
R has the JP property if and only if for each weakly mixing S ∈ JF(R) and
each λ ∈ Je(R,S × S), either λ = (λ|Z×Y1)⊗ ν or λ = (λ|Z×Y2)⊗ ν.

Proof. Fix a weakly mixing automorphism S and let λ ∈ Je(T, S × S).
Then (3.8) holds, equivalently, D and C ⊗ C are relatively independent over
AR(S) ⊗ AR(S). Take f ∈ L∞(Z, ρ), gi ∈ L∞(Yi, ν) for i = 1, 2. Assume
that

	
g2 = 0. We have

(3.9)
�
f ⊗ g1 ⊗ g2 dλ =

�
Eλ(f ⊗ g1 ⊗ g2|AR(S)⊗AR(S)) dλ

(3.8)
=

�
Eλ(f)|AR(S)⊗AR(S))Eλ(g1 ⊗ g2|AR(S)⊗AR(S)) dλ.

To distinguish the two σ-algebras AR(S) we will write A1
R(S) for AR(S) ⊗

{∅, Y } and A2
R(S) for {∅, Y } ⊗ AR(S). By the assumption D ⊗ A1

R(S) ⊥
A2
R(S) (up to a permutation of coordinates) with respect to λ, whence the

last integral in (3.9) equals
�
Eλ(f |A1

R(S))E
ν(g1|A1

R(S))E
ν(g2|A2

R(S)) dλ

(∗)
=
(�
Eλ(f |A1

R(S))E
ν(g1|A1

R(s)) dλ
)
·
�
Eν(g2|A2

R(S)) dλ = 0,

where (∗) follows by the independence of A1
R(S) and A2

R(S).

Remark 3.10. Notice that if in JF(R) there are no weakly mixing
automorphisms, then R is disjoint from all weakly mixing systems (see The-
orem 4.10), which implies the JP property.

Remark 3.11. It was shown in [44], using Rokhlin extensions, that there
exists a non-weakly mixing automorphism such that the class JF(R) in-
cludes some weakly mixing systems (14).

(14) Recall that the class of JP systems is closed under taking Rokhlin extensions.
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Corollary 3.12. Let T = (Tt)t∈R be such that all of its ergodic self-
joinings are weakly mixing. Then T1 has the JP property if and only if T
does.

Proof. This is immediate by Remarks 3.6, 3.7 and Proposition 3.9.

The following problem remains open:

Question 3.13. Does the JP property of a weakly mixing flow T =
(Tt)t∈R imply the JP property for Tt, t 6= 0?

3.3. Isometric, distal and relatively weakly mixing extensions

3.3.1. Isometric extensions. Suppose that T : (X,B, µ) → (X,B, µ) is
embeddable into some measurable flow T = (Tt)t∈R, i.e. T = T1. Let {f ′n :
n ∈ N} ⊂ L2(X,µ) be dense and let fn := f ′n/‖f ′n‖L2(X,µ) for n ∈ N. Let
d{fn}n∈N be the metric defined as in (2.4), using {fn}n∈N.

Lemma 3.14. For any ε> 0 there exists δ > 0 such that for all ξ ∈J2(T )
and t ∈ R with |t| < δ we have d{fn}n∈N(ξ ◦ (Tt × Tt), ξ) < ε/4.

Proof. Fix ε > 0. Let N ∈ N be such that
∑

i>N 1/2i < ε/32. Let
δ > 0 be such that for 1 ≤ i ≤ N and t ∈ R such that |t| < δ we have
‖fi ◦ Tt − fi‖L2(X,µ)s < ε/8. Then for t ∈ R and ξ ∈ J2(T ) by the Cauchy–
Schwarz inequality we obtain

d{fn}n∈N(ξ ◦ (Tt × Tt), ξ) =
∑
i,j≥1

1

2i+j

∣∣∣ �

X×X
(fi ◦ Tt ⊗ fj ◦ Tt − fi ⊗ fj) dξ

∣∣∣
≤
∑
i,j≥1

1

2i+j

∣∣∣ �

X×X
(fi ◦ Tt ⊗ fj ◦ Tt − fi ◦ Tt ⊗ fj) dξ

∣∣∣
+
∑
i,j≥1

1

2i+j

∣∣∣ �

X×X
(fi ◦ Tt ⊗ fj − fi ⊗ fj) dξ

∣∣∣
≤
∑
i,j≥1

1

2i+j
‖fj ◦ Tt − fj‖L2(X,µ) +

∑
i,j≥1

1

2i+j
‖fi ◦ Tt − fi‖L2(X,µ)

= 2

( N∑
i=1

1

2i
‖fi ◦ Tt − fi‖L2(X,µ) +

∑
i>N

1

2i
‖fi ◦ Tt − fi‖L2(X,µ)

)

≤ 2

( N∑
i=1

1

2i
· ε/8 + ε/16

)
< ε/4.

Let Aσ := {(m, p, q) ∈ N3 : m ≥ 1, q ≥ 0, 0 ≤ p ≤ 2q − 1, p is odd} and
σ : Aσ → N be a bijection. For i ≥ 1 let

gi := fm ◦ Tp/2q where (m, p, q) = σ(i).
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Then {gn : n ∈ N} ⊂ L2(X,B, µ) is clearly a dense subset as it includes
{fn : n ∈ N}. Let d be the metric on J2(T ) defined as in (2.4), but using
{gn}n∈N instead of {fn}n∈N.

Lemma 3.15. For any ε > 0 and any q ∈ N there exists C = C(ε, q)
such that for all 0 ≤ p ≤ 2q − 1 and all ρ1, ρ2 ∈ J2(T ) we have

d
(
ρ1 ◦ (Tp/2q × Tp/2q), ρ2 ◦ (Tp/2q × Tp/2q)

)
≤ C(ε, q) · d(ρ1, ρ2) + ε/2.

Proof. Fix ε > 0 and q ∈ N. Let 0 ≤ p ≤ 2q − 1 and let ρ1, ρ2 ∈ J2(T ).
Take N ∈ N such that

(3.10)
N∑
i=1

∑
j>N

1

2i+j
+
∑
i>N

N∑
j=1

1

2i+j
< ε/2.

Let ai,j := |
	
X×X gi ⊗ gj dρ1 −

	
X×X gi ⊗ gj dρ2| for i, j ≥ 1. Then

d(ρ1, ρ2) =
∑
i,j≥1

1

2i+j
ai,j .

Let π : N→ N be a bijection defined in the following way:

π(i) = j ⇔
{
σ−1(i) = (m, pi, qi),

σ−1(j) = (m, pj , qj),

for some m ∈ N and qi, qj ∈ N, 0 ≤ pi ≤ 2qi − 1, 0 ≤ pj ≤ 2qj − 1 such that
pi
2qi

+
p

2q
− pj

2qj
∈ Z.

The permutation π is well-defined as the addition of p/2q mod 1 is a bijection
of the set {pi/2qi : (1, pi, qi) ∈ Aσ}. Recall also that ρ1, ρ2 are T×T -invariant
as elements of J2(T ). Therefore

d
(
ρ1 ◦ (Tp/2q × Tp/2q), ρ2 ◦ (Tp/2q × Tp/2q)

)
=
∑
i,j≥1

1

2i+j
aπ(i),π(j).

By (3.10) we obtain∑
i,j≥1

1

2i+j
aπ(i),π(j) ≤

N∑
i,j=1

1

2i+j
aπ(i),π(j) + ε/2

=

N∑
i,j=1

2π(i)−i+π(j)−j
1

2π(i)+π(j)
aπ(i),π(j) + ε/2

≤
max{π(i): 1≤i≤N}∑

i,j=1

22max{|π(i)−i|: 1≤i≤N} 1

2i+j
ai,j + ε/2

≤ 22max{|π(i)−i|: 1≤i≤N}
∑
i,j≥1

1

2i+j
ai,j + ε/2 = C(ε, p, q) · d(ρ1, ρ2) + ε/2,
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where C(ε, p, q) = 22max{|π(i)−i|: 1≤i≤N}. To end the proof it suffices to put
C(ε, q) := max{C(ε, p, q) : 0 ≤ p ≤ 2q − 1}.

Lemma 3.16. For any ε> 0 there is δ> 0 such that for any ξ1, ξ2 ∈J2(T ),
if d(ξ1, ξ2) < δ then d(ξ1 ◦ (Tt × Tt), ξ2 ◦ (Tt × Tt)) < ε for all t ∈ R. In
particular, d(

	1
0 ξ1 ◦ (Tt × Tt) dt,

	1
0 ξ2 ◦ (Tt × Tt) dt) < ε.

Proof. Fix ε > 0. By Lemma 3.14, we can find δ0 > 0 such that for
|t| < δ0 and ξ ∈ J2(T ),

(3.11) d(ξ ◦ (Tt × Tt), ξ) < ε/8.

Let q ∈ N be such that 1/2q < δ0 and take C = C(ε, q0) as in Lemma 3.15.
For any t ∈ R find 0 ≤ p ≤ 2q − 1 such that |t − p/2q| < δ0. Using (3.11)
we obtain

d(ξ1 ◦ (Tt × Tt), ξ2 ◦ (Tt × Tt))

≤ d(ξ1 ◦ (Tp/2q × Tp/2q), ξ2 ◦ (Tp/2q × Tp/2q)) + ε/4

≤ Cd(ξ1, ξ2) + ε/4 + ε/4 = Cd(ξ1, ξ2) + ε/2,

Let 0 < δ < ε/(2C). Then d(ξ1, ξ2) < δ implies d(ξ1 ◦ (Tt×Tt), ξ2 ◦ (Tt×Tt))
< ε. It follows that

d
(1�
0

ξ1 ◦ (Tt × Tt) dt,
1�

0

ξ2 ◦ (Tt × Tt) dt
)

≤
1�

0

d(ξ1 ◦ (Tt × Tt), ξ2 ◦ (Tt × Tt)) dt < ε.

Proposition 3.17. Let T = (Tt)t∈R be an ergodic flow on (X,B, ν̃) with
a factor A. Let ν = ν̃|A. Let ν̃ =

	1
0 ν̃ ◦Tt dt and ν =

	1
0 ν ◦Tt|A dt for some

ν̃ ∈ PeZ(T1), ν ∈ PeZ(T1|A) (15). Additionally assume that ν̃|A = ν. Then the
extension (T1, ν̃) → (T1|A, ν) is isometric if and only if (T , ν̃) → (T |A,ν)
is isometric.

Proof. Suppose that (T , ν̃) → (T |A,ν) is isometric. Let T = (T t)t∈R :

(X,B,ν) → (X,B,ν) be an ergodic extension of T such that (T ,ν) →
(T |A,ν) is a compact group extension. By Lemma 2.2 there exists ν ∈
PeZ(T 1) such that ν =

	1
0 ν ◦ T t dt (it may happen that ν = ν). By the

uniqueness of ergodic decomposition and by Lemma 2.3, there exist k, l,m ∈

(15) It may happen that ν = ν or ν̃ = ν̃. The existence of ν and ν̃ follows from
Lemma 2.2.
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N ∪ {∞} such that (16)

ν = k

1/k�

0

ν ◦ T t dt, ν̃ = kl

1/kl�

0

ν̃ ◦ Tt dt, ν = klm

1/klm�

0

ν ◦ Tt|A dt.

We may assume that ν|B = ν̃. Since (T ,ν) → (T |A,ν) is a compact group
extension, so is (T 1,ν) → (T1|A,ν). Notice that in the decomposition ν =

k
	1/k
0 ν ◦ T t dt the only measures which project down to ν are of the form

ν ◦ Ti/(lm) for 0 ≤ i ≤ lm− 1. Therefore(
T 1,

1

lm

lm−1∑
i=0

ν ◦ Ti/(lm)

)
→ (T1|A, ν)

is a compact group extension (if lm =∞, we interpret 1
lm

∑lm−1
i=0 ν ◦ Ti/(lm)

as ν). It follows that also (T 1, ν) → (T1, ν) is a compact group extension.
Thus (T1, ν̃)→ (T1, ν) is isometric, which ends the first part of the proof.

Assume now that (T1, ν̃) → (T1|A, ν) is isometric. As above, there exist
k, l ∈ N ∪ {∞} such that

(3.12) ν̃ = k

1/k�

0

ν̃ ◦ Tt dt, ν = kl

1/kl�

0

ν ◦ Tt|A dt

are the corresponding ergodic decompositions (see footnotes 15 and 16).
By Proposition 2.11 the extension (T1, ν̃) → (T1|A, ν) is T-compact. Fix
ε > 0. Let 0 < δ < ε be as in Lemma 3.14. Let N ∈ N come from the
definition of T-compactness for (T1, ν̃) → (T1|A, ν) with ε replaced with δ.
Take λ ∈ JeN ((T, ν̃);A). Then λ ∈ PZ(T

×N
1 ) and either (i) λ ∈ PeZ(T

×N
1 ),

or (ii) λ 6∈ PeZ(T
×N
1 ).

Case (i) may occur only if k = ∞, i.e. ν̃ = ν̃, ν = ν (otherwise the
marginals of λ are not ergodic for T1, so λ is not ergodic for T×N1 ). Then by
Proposition 2.11 there exist 1 ≤ i < j ≤ N such that

d(λ|Xi×Xj , ∆Xi×Xj (ν̃)) < δ < ε.

For case (ii), to fix ideas, we will assume that k, l ∈ N, i.e. ν̃ 6= ν̃ and
ν 6= ν (in the other cases the proof is similar). By Lemma 2.2 there exists
λ ∈ PeZ(T

×N
1 ) such that

(3.13) λ =

1�

0

λ ◦ T×Nt dt.

(16) We interpret
	1/∞
0

λ ◦ St dt as λ for any measure λ and any flow (St)t∈R such
that this formula makes sense.
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We will show that

(3.14) λ can be chosen from J eN ((T1, ν̃);A).
We will use the fact that ergodic decompositions are unique. We have

λ|A⊗N =

1�

0

λ|A⊗N ◦ (Tt|A)×N dt,

λ|A⊗N = ∆A⊗N (ν) = kl

1/(kl)�

0

∆A⊗N (ν) ◦ (Tt|A)×N dt

(3.15)

(the latter follows from the second formula in (3.12)). Therefore we may
assume (changing λ ∈ PeZ(T

×N
1 ) if necessary) that

(3.16) λ|A⊗N = ∆A⊗N (ν)

and λ|A⊗N = kl
	1/(kl)
0 λ|A⊗N ◦ (Tt|A)×N dt. Moreover, for 1 ≤ i ≤ N we have

λ|Xi = k

1/k�

0

λ|Xi ◦ Tt dt, λ|Xi = ν̃ = k

1/k�

0

ν̃ ◦ Tt dt,

whence there exists ti ∈ [0, 1/k) such that

(3.17) λ|Xi = ν̃ ◦ Tti .
It follows that

(λ|Xi)|A = ν̃|A ◦ Tti |A = ν ◦ (Tti |A).
On the other hand, by (3.16), we have (λ|Xi)|A = ν. Hence ti = 0, and (3.14)
follows from (3.16) and (3.17). By Proposition 2.11 there exist 1 ≤ i < j ≤ N
such that

(3.18) d(λ|Xi×Xj , ∆Xi×Xj (ν̃)) < δ.

By (3.13) we have

(3.19) λ|Xi×Xj =
1�

0

λ|Xi×Xj ◦ (Tt × Tt) dt.

Moreover,

(3.20) ∆Xi×Xj (ν̃) =

1�

0

∆Xi×Xj (ν̃) ◦ (Tt × Tt) dt

From the choice of δ, from (3.18)–(3.20) and from Lemma 3.16, we deduce
that d(λ|Xi×Xj , ∆Xi×Xj (ν̃)) < ε. The claim follows from Proposition 2.11.

Proposition 3.18. Let l ∈ N and let T be an ergodic automorphism
of (X,B, ν̃) with a factor A. Let ν = ν̃|A. Let ν̃ = (1/l)

∑l−1
i=1 ν̃ ◦ T i and

ν = (1/l)
∑l−1

i=0 ν ◦ T i|A for some ν̃ ∈ PeZ(T l), ν ∈ PeZ(T l|A). Additionally
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assume that ν̃|A = ν. Then the extension (T l, ν̃) → (T l|A, ν) is isometric if
and only if (T, ν̃)→ (T |A,ν) is isometric.

Proof. The proof goes along the same lines as the proof of Proposi-
tion 3.17.

3.3.2. Distal extensions and Furstenberg–Zimmer decomposition

Distal extensions via isometric extensions. We start with

Proposition 3.19. Let T = (Tt)t∈R be an ergodic flow on (X,B, ν̃) with
a factor A. Let ν = ν̃|A. Let ν̃ =

	1
0 ν̃ ◦ Tt dt and ν =

	1
0 ν ◦ Tt dt for some

ν̃ ∈ PeZ(T1), ν ∈ PeZ(T1|A) (17). Additionally assume that ν̃|A = ν. Then the
extension (T1, ν̃) → (T1|A, ν) is distal if and only if (T , ν̃) → (T |A,ν) is
distal.

Proof. Suppose that (T , ν̃)→ (T |A,ν) is distal. Since any factor of T is
a factor of T1, it clearly follows from the definition of a distal extension and
Proposition 3.17 that also (T1, ν̃)→ (T1|A, ν) is distal.

Suppose now that (T1, ν̃) → (T1|A, ν) is distal. Let (Cα)α≤β be a trans-
finite sequence of factors of T1 such that C0 = A, Cβ = B, the extension
Cα+1 → Cα for T1 is isometric and for α being a limit ordinal, Cα is the
inverse limit of the preceding factors. We may assume that for each α the
factor Cα+1 is the largest extension of Cα inside B such that Cα+1 → Cα is
isometric. In particular, for each α, Cα is T -invariant, i.e. it is a factor of T .
Indeed, for α which is not a limit ordinal, T1|Cα is isomorphic to T1|TtCα , and
both Cα → Cα−1, TtCα → Cα−1 are isometric, whence Cα ∨ TtCα → Cα−1 is
also isometric, which follows e.g. from (2.7) (18). For α which is a limit or-
dinal it suffices to notice that the property of being T -invariant is preserved
under taking inverse limits.

The same proof works in the co-finite case:

Proposition 3.20. Let T be an ergodic automorphism acting on (X,B, ν̃)
with a factor A. Fix l ∈ N. Let ν = ν̃|A. Let ν̃ = (1/l)

∑l−1
i=0 ν̃ ◦ Ti and

ν = (1/l)
∑l−1

i=0 ν ◦ Ti|A for some ν̃ ∈ PeZ(T l), ν ∈ PeZ(T l|A). Additionally
assume that ν̃|A = ν. Then the extension (T l, ν̃)→ (T l|A, ν) is distal if and
only if (T, ν̃)→ (T |A,ν) is distal.

Furstenberg–Zimmer decomposition. Using the techniques from the proof
of Proposition 3.19 and arguing by contradiction one can show more:

Corollary 3.21. Under the assumptions of Proposition 3.19 the fol-
lowing statements are true and equivalent:

(17) See footnote 16.
(18) Cα ∨ TtCα stands for the σ-algebra generated by Cα and TtCα.
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(i) (T1, ν̃) → (T1|A, ν) is distal if and only if (T , ν̃) → (T |A,ν) is
distal.

(ii) (T1, ν̃)→ (T1|A, ν) is relatively weakly mixing if and only if (T , ν̃)
→ (T |A,ν) is relatively weakly mixing.

(iii) The Furstenberg–Zimmer decompositions for (T1, ν̃) → (T1|A, ν)
and for (T , ν̃)→ (T |A,ν) are the same, i.e. there exists A ⊂ C ⊂ B
which is a factor of T such that B → C is relatively weakly mixing
for both (T , ν̃) and (T1, ν̃), and C → A is distal for both (T , ν̃|C)
and (T1, ν̃|C).

In the co-finite case we have the following:

Corollary 3.22. Under the assumptions of Proposition 3.20 the follow-
ing statements are true and equivalent:

(i) (T l, ν̃)→ (T l|A, ν) is distal if and only if (T, ν̃)→ (T |A,ν) is distal.
(ii) (T l, ν̃)→ (T l|A, ν) is relatively weakly mixing if and only if (T, ν̃)→

(T |A,ν) is relatively weakly mixing.
(iii) The Furstenberg–Zimmer decompositions for (T l, ν̃)→ (T l|A, ν) and

for (T, ν̃) → (T |A,ν) are the same, i.e. there exists A ⊂ C ⊂ B
which is a factor of T such that B → C is relatively weakly mixing
for both (T, ν̃) and (T l, ν̃) and C → A is distal for both (T, ν̃|C) and
(T l, ν̃|C).

3.4. Quasi- and distal simplicity. In this section we prove counter-
parts of Propositions 3.1 and 3.5 for the 2-QS and 2-DS properties.

3.4.1. Quasi-simplicity

Proposition 3.23. Let T = (Tt)t∈R be a measure-preserving flow on
(X,B, µ) with T1 ergodic. Then T is 2-QS if and only if T1 is 2-QS.

Proof. Suppose that T is 2-QS and let λ ∈ J e2 (T1), λ 6= µ⊗µ. There are
two possibilities:

(i) λ = λ ◦ (Tt × Tt) for all t ∈ R,
(ii) λ ⊥ λ ◦ (Tt × Tt) for some t ∈ (0, 1).

In case (i) apply Proposition 3.17 to (T × T , λ), (T1 × T1, λ) and the
coordinate factors. In case (ii) consider λ :=

	1
0 λ ◦ (Tt × Tt) dt and ap-

ply Proposition 3.17 to (T × T ,λ), (T1 × T1, λ) and the coordinate fac-
tors.

Suppose now that T1 is 2-QS. Let λ ∈ J e2 (T ), λ 6= µ ⊗ µ. Again there
are two possibilities:

(i) λ ∈ J e2 (T ), (ii) λ 6∈ J e(T ).
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In case (i) apply Proposition 3.17 to (T × T ,λ), (T1 × T1, λ) and the
coordinate factors. In case (ii) take λ ∈ J e2 (T1) such that λ =

	1
0 λ◦(Tt×Tt) dt

and apply Proposition 3.17 to (T × T ,λ), (T1 × T1, λ) and the coordinate
factors.

Proposition 3.24. Let l ≥ 1 and let T be an automorphism of (X,B, µ)
such that T l is ergodic. Then T is 2-QS if and only if T l is 2-QS.

Proof. The proof goes along the same lines as the proof of Proposi-
tion 3.23. It suffices to replace integrals by finite averages and apply Propo-
sition 3.18 instead of Proposition 3.17.

Remark 3.25. In the extended version of the paper (available on arXiv)
we also give a short proof that, given T such that T1 is ergodic, T is 2-QS
whenever T1 is 2-fold simple.

3.4.2. Distal simplicity

Proposition 3.26. Let T = (Tt)t∈R be a measure-preserving flow on
(X,B, µ) with T1 ergodic. Then T is 2-DS if and only if T1 is 2-DS.

Proof. In the proof of Proposition 3.23 replace “Proposition 3.17” with
“Proposition 3.19”.

Proposition 3.27. Let l ≥ 1 and let T be an automorphism of (X,B, µ)
such that T l is ergodic. Then T is 2-DS if and only if T l is 2-DS.

Proof. In the proof of Proposition 3.24 replace “Proposition 3.18” with
“Proposition 3.20”.

4. (Non-)uniqueness of embedding

4.1. Uniqueness. We will now discuss the problem of the uniqueness
of embedding of automorphisms into measurable flows (and the uniqueness
of roots of automorphisms) from the point of view of self-joining properties.

Remark 4.1. Given a flow T the following conditions are equivalent:

(i) for any flow S the condition T1 = S1 implies T = S,
(ii) for any flow S such that T1 ' S1, the isomorphism between T1 and

S1 is an isomorphism between T and S.
Remark 4.2. For weakly mixing flows T , S such that T1 6⊥ S1, we always

have T 6⊥ S. Indeed, every non-trivial joining between T1 and S1 lifts to a
non-trivial joining between T and S. This holds in particular when T1 = S1.

Proposition 4.3. Let T be a weakly mixing, measure-preserving flow
on (X,B, µ) with the MSJ property. Then T1 has a unique embedding.

Proof. Let S = (St)t∈R on (X,B, µ) be such that T1 = S1. Then T1 = S1
is 2-fold simple by Proposition 3.1. It follows from Proposition 3.23 that S is
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2-QS. Since, by Remark 4.2, T 6⊥ S, we find that T and S have a non-trivial
common factor (see [19]). Since T has the MSJ property this factor is equal
to B and there exists C ⊂ B invariant under S and such that S|C = T . On
the other hand, T1 = S1, which implies C = B and the claim follows.

Proposition 4.4. If T is a weakly mixing automorphism with the MSJ
property then for k ∈ N the automorphism T k has a unique root of order k.

Proof. The proof of Proposition 4.3 can be easily adjusted to the case of
automorphisms.

We will now show a more universal way of proving uniqueness of embed-
ding. It will be the main tool for proving the analogue of Proposition 4.3 for
flows with the R-property.

Proposition 4.5. Let T be a weakly mixing flow on (X,B, µ) such that
for any weakly mixing flow S on (Y, C, ν) and any λ ∈ J e(T ,S) either
λ = µ⊗ ν or the fibers in the extension (T × S, λ)→ (S, ν) are finite. Then
for any λ ∈ J e(T ,S), the flow (T × S, λ) is weakly mixing.

Proof. Let λ ∈ J e(T ,S). If λ = µ⊗ ν then (T × S, λ) is clearly weakly
mixing. Suppose that λ 6= µ⊗ν and (T ×S, λ) is not weakly mixing. Denote
by K the Kronecker factor of (T × S, λ). Then (T × S, λ) has B ⊗ K as a
factor (19). Consider the following disintegrations:

λ =
�
µx dµ, λ =

�
λω dλ|B⊗K, λ|B⊗K =

�
λ̃z dµ.

For f ∈ L1(X × Y,B ⊗ C, λ) we have
	
f dλ =

	 	
f dµx dµ. On the other

hand,
	
f dλ =

	 	
f dλω dλ|B⊗K =

	 	 	
f dλω dλ̃z dµ =

	 	 	
f dλ̃z dλω dµ.

Since (T × S, λ) is not weakly mixing, the discrete part of the spectrum
forms a countable (infinite) subgroup of R and the corresponding factor acts
by rotations on the dual group to this group. The measures λ̃z are equal to
the Haar measure on this group, in particular they have infinite supports. It
follows from the uniqueness of disintegration that also the supports of the
measures µx have an infinite number of points. This is however impossible
by our assumption that λ is a finite extension of µ, i.e. the measures µx are
discrete with a finite number of atoms.

Remark 4.6. The above proposition can be strenghtened, using the
same arguments: If T is a weakly mixing flow such that for any weakly
mixing flow S and any λ ∈ J e(T ,S) the flow (T × S, λ) is also weakly
mixing, then any finite group extension of T has the same property.

(19) The symbol ⊗ used here does not mean that K ⊂ C. By B ⊗ K we denote the
sub-σ-algebra of B⊗C generated by B and by the Kronecker factor K. The action of T ×S
restricted to B ⊗ K is isomorphic to the Cartesian product of T and (T × S)|K.
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Proposition 4.7. Let T be a weakly mixing flow with the following prop-
erty: for any weakly mixing flow S and any λ ∈ J e(T ,S) the flow (T ×S, λ)
is weakly mixing. Then T1 has a unique embedding.

Proof. Suppose that there exists S such that T1 = S1 and consider the
diagonal joining of ∆ ∈ J e(T1, S1). If ∆ 6∈ J (T ,S) then, for some k ∈ N,
∆ :=

	1/k
0 ∆ ◦ (Tt × St) dt ∈ J e(T ,S), where the measures ∆ ◦ (Tt × St)

are pairwise orthogonal for t ∈ [0, 1/k). It follows from Remark 2.5 that
(T ×S,∆) is not weakly mixing, which contradicts our assumptions. Hence
∆ ∈ J (T ,S).

By combining Proposition 4.5 with Propositions 4.7 and 2.10, we obtain
the following:

Corollary 4.8. Let T be a weakly mixing flow with the R-property.
Then T1 has a unique embedding.

Proposition 4.9. Let T be a weakly mixing flow with the MSJ property.
Then for any weakly mixing flow S and any λ ∈ J e(T ,S) other than the
product measure the extension (T × S, λ)→ (S, ν) has finite fibers.

Before we begin the proof, let us recall a result on the absence of dis-
jointness and state a necessary lemma.

Theorem 4.10 ([46]). Let T and S be ergodic flows. If T and S are
not disjoint then there exists λ ∈ J e∞(T ) such that (T ×∞, λ) and S have a
common factor.

Lemma 4.11. Let T , T̃ ,R be ergodic flows. Suppose that the extension
T̃ → T is isometric (“k : 1”). Let ρ̃ ∈ J e(T̃ ,R) and let ρ be the restriction
of ρ̃ to a joining between T and R. Then also the extension (T̃ × R, ρ̃)→
(T ×R, ρ) is isometric (“k : 1”).

Proof. It suffices to show that the claim remains true if we replace “iso-
metric extension” with “compact group extension”. This is however clear,
as for any compact group extension Tϕ, we can write Tϕ ∨ R as (T ∨ R)ϕ̃,
where ϕ̃(x, y) = ϕ(x). In this way we obtain the first part of the claim (about
isometric extensions). The more detailed part (about the extensions being
“k : 1”) follows from the fact that the group G where ϕ and ϕ̃ take their
values is the same. Moreover, any isometric extension with finite fibers is an
intermediate extension for some finite group extension.

Proof of Proposition 4.9. Take µ⊗ν 6= λ ∈ J e(T ,S). It follows from [20]
that there exists n ∈ N such that T �n is a factor of S (20), Moreover, the
restriction of λ to a joining T ∨T �n between T and T �n is such that T ∨T �n

(20) By T �n we denote the symmetric factor of T ×n, i.e. the sub-σ-algebra of sets
invariant under all permutations of coordinates (see e.g. [20]).
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is a factor of T ×n. Since the extension T ×n → T �n has finite fibers, it follows
that also the intermediate extension T ∨ T �n → T �n has finite fibers (see
the proof of Proposition 4.5). Now, applying Lemma 4.11 to T̃ = T ∨ T �n,
we get R = S, and ρ being the joining associated with the factoring map,
we find that the fibers in the extension T ∨ S → S are finite as well.

Remark 4.12. Notice that Proposition 4.3 also follows by combining
Propositions 4.5, 4.7 and 4.9. In the extended version of the paper (available
on arXiv) we give yet another proof of Proposition 4.3.

4.2. Non-uniqueness. Since the R-property implies the 2-QS property,
one could ask if a result analogous to Corollary 4.8 also holds for 2-QS flows.
It turns out that this is not the case. In fact, we “lose” the uniqueness of the
embedding of the time-one map already for 2-fold simple flows.

Let D6 stand for the smallest non-abelian group, the dihedral group of
order 6. Its Cayley table is

(4.1)

∗ e a b c d f
e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d c a b f e
f f b c a e d

Proposition 4.13. There exists an automorphism which is 2-fold simple
and has two non-isomorphic square roots (one 2-fold simple, the other only
2-QS).

Proof. Let T be a weakly mixing automorphism with the MSJ property
and consider ϕ : X → D6 such that Tϕ : X × D6 → X × D6 is also weakly
mixing. Then Tϕ is 2-fold simple. For g ∈ D6 let σg : X ×D6 → X ×D6 be
given by σg(x, h) = (x, hg). Notice that for all g ∈ D6 we have σg ∈ C(Tϕ).
From now on we will be using the notation of (4.1) for elements of D6. Since
a2 = e, we have (σa)

2 = Id, whence

(4.2) (Tϕ ◦ σa)2 = (Tϕ)
2.

Moreover, since a ∗ b 6= b ∗ a, σb 6∈ C(σa), whence σb 6∈ C(Tϕ ◦σa). Therefore

(4.3) C(Tϕ ◦ σa) 6= C(Tϕ).

By Proposition 3.1, we have

(4.4) C(Tϕ) = C((Tϕ)
2).
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Combining (4.2)–(4.4) we conclude that C((Tϕ◦σa)2) 6= C(Tϕ◦σa). It follows
by Lemma 3.1 that Tϕ is 2-fold simple, whereas Tϕ ◦ σa is not 2-fold simple
(it is 2-QS by Proposition 3.24).

Proposition 4.14. There exists a 2-fold simple automorphism which is
embeddable into two non-isomorphic flows (one 2-fold simple and the other
one only 2-QS ).

Proof. Let T = (Tt)t∈R be a weakly mixing flow on (X,B, µ) with the
MSJ property. Let ϕ : X × R → SU(2) be an R-cocycle such that Tϕ =
((Tt)ϕ)t∈R is weakly mixing. For g ∈ SU(2) let σg(x, h) = (x, hg) and let
R = (Rt)t∈R be given by Rt = σgt , where

gt =

(
e2πit 0

0 e−2πit

)
.

Let T ◦R := ((Tt)ϕ ◦Rt)t∈R. Then (T1)ϕ ◦R1 = (T1)ϕ. Moreover, for all g ∈
SU(2) we have σg ∈ C(Tϕ). In particular, σh0 ∈ C(Tϕ), where h0 =

(
0
1
−1
0

)
.

On the other hand, easy calculation shows that h0gt 6= gth0 for t 6∈ 1
2Z, i.e.

σh0 6∈ C(R), whence C(Tϕ ◦ R) 6= C(Tϕ). Thus, arguing as in the proof of
the previous proposition, we obtain C(Tϕ ◦ R) 6= C((T1)ϕ ◦R1) and Tϕ ◦ R
is not 2-fold simple (it is 2-QS by Proposition 3.23).

Remark 4.15. It follows from the above example that the answer to the
following question is negative:

• Suppose that an extension T̃ → T is such that T̃1 → T1 is a com-
pact group extension. Is it true that also T̃ → T is a compact group
extension?

Indeed, if the extensions were compact group extensions, then Tϕ ◦ σa and
T ◦ R would be 2-fold simple, which is not the case.

Also the answer to the following question is negative:

• Suppose that the extension T̃ → T is such that T̃ 2 → T 2 is a com-
pact group extension. Is it true that also T̃ → T is a compact group
extension?

5. Self-joining properties of T and T1, part II. A direct consequence
of Proposition 4.13 and 4.14 is that the condition C(T ) = C(T1) in Propo-
sition 3.1(ii) or in its counterpart for automorphisms and their roots cannot
be omitted. We will now discuss this problem in more detail, providing more
counterexamples. Let us however see first that such counterexamples cannot
be obtained by taking factors of products of simple systems. In particular,
products of horocycle flows, their factors and their weakly mixing distal ex-
tensions cannot be used.



44 J. Kułaga-Przymus

Proposition 5.1. Let T be a 2-fold simple flow with T1 ergodic. Then
any factor A has the following property: T |A and T1|A are either both 2-fold
simple, or both 2-QS but not 2-fold simple.

Proof. Notice that T and T1 have the same factors. Moreover, every
factor corresponds to a compact subgroup of C(T ) = C(T1). If this subgroup
is normal, then T and T1 restricted to the corresponding factor are 2-fold
simple. Otherwise they are both only 2-QS but not 2-fold simple.

Corollary 5.2. Let T (i) be 2-fold simple, weakly mixing flows. Let A
be a factor of T (1) × T (2) × · · · which is 2-QS. Then (T (1) × T (2) × · · · )|A
and (T

(1)
1 ×T

(2)
1 ×· · · )|A are either both 2-fold simple, or both 2-QS but not

2-fold simple.

Proof. This follows immediately from Proposition 5.1 and from the fact
that whenever a 2-fold QS system is a factor of a product of two weakly
mixing systems, then it is a factor of one of the coordinate factors [19].

Consider the following property of T :
(P) T1 is simple and T is only 2-QS.

Corollary 5.3. Let T be a weakly mixing flow with the JP property,
satisfying the following condition: for any factor A of T there exists a factor
C ⊂ A such that T |C has property (P). Then T is disjoint from weakly mixing
extensions of simple flows.

Proof. Recall from [45] that a JP system is disjoint from a weakly mix-
ing simple system if and only if they do not have a common non-trivial
factor. Now it suffices to apply Corollary 5.2 and a result from [26] on lifting
disjointness.

Remark 5.4. The assumptions of the above corollary are satisfied when
T satisfies property (P) and has no non-trivial factors.

5.1. Easy counterexample. Del Junco and Rudolph [20] recall an ex-
ample by Glasner [29] of a weakly mixing group extension of a 2-fold simple
Z-action which is itself not 2-fold simple. It is of the form R(x, z1, z2) =
(Tx, ϕ(x)z1, z1z2), where T is an ergodic automorphism with minimal self-
joinings and ϕ : X → T yields a weakly mixing group extension Tϕ of T . An
example of an ergodic self-joining which is “2 : 1” is given also in [20], showing
that this automorphism is not 2-fold simple. We will follow a similar scheme
and give an example of a Z2-extension (21) of a 2-fold simple map such that
the resulting automorphism is “2 : 1” and its square is 2-fold simple.

Let us first recall some necessary lemmas and tools. Since we will use
them for abelian groups only, we state them in that setting.

(21) We will identify Z2 with {0, 1} equipped with addition modulo 2.
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Lemma 5.5 ([20]). Let Tϕ be an ergodic compact group extension of a
2-fold simple automorphism T . Then Tϕ is 2-fold simple if and only if for
every S ∈ C(T ) there exists S̃ ∈ C(Tϕ) which is an extension of S.

Lemma 5.6 (Z-actions: [54]; abelian groups: [49]; general case: [72]). Sup-
pose that T is 2-fold simple and let Tϕ be its compact group extension, i.e.
Tϕ : X × G → X × G, Tϕ(x, g) = (Tx, ϕ(x) + g). Let S̃ ∈ C(Tϕ). Then
there are a continuous group automorphism v : G → G, a measurable map
f : X → G and S ∈ C(T ) such that S̃(x, g) = (Sx, f(x) + v(g)). Equiva-
lently, ϕ(x)− v(ϕ(x)) = f(Tx)− f(x).

Remark 5.7. If G = Z2 then v(i) = i and f = const, i.e. any S̃ ∈ C(Tϕ)
is of the form S̃(x, g) = (Sx, g) or S̃(x, g) = (Sx, g + 1) for some S ∈ C(T ).

Lemma 5.8 (see e.g. [36]). Let Tϕ be an ergodic compact group extension
of T . Then c ∈ T is an eigenvalue of Tϕ if and only if there exist a measur-
able function f : X → T and a character χ ∈ Ĝ such that χ◦ϕ = c ·f ◦ T/f .

Let T : (X,B, µ)→ (X,B, µ) be weakly mixing and have the MSJ prop-
erty, and let ϕ : X → Z2 yield a weakly mixing group extension Tϕ. Consider
ψ : X × Z2 → Z2 given by the formula ψ(x, s) = s. Let

T (x, s, r) := (Tϕ)ψ(x, s, r) = (Tx, ϕ(x) + s, s+ r).

Lemma 5.9. T is weakly mixing.

Proof. Suppose that T is not weakly mixing. By Lemma 5.8 there exist
c ∈ T \ {1}, ξ : X × Z2 → T and χ ∈ Ẑ2 satisfying the equation

(5.1) χ ◦ ψ = c · ξ ◦ Tϕ/ξ.
There are two possibilities: (a) χ ≡ 1, (b) χ(s) = (−1)s.

In case (a) equation (5.1) takes the form ξ◦Tϕ = c·ξ, i.e. c is an eigenvalue
of Tϕ. This however is not possible, as Tϕ is weakly mixing.

In case (b) equation (5.1) takes the form (−1)s = c · ξ ◦ Tϕ/ξ. Hence
c2 · ξ2 = ξ2 ◦ Tϕ, which implies c2 = 1 and ξ2 = 1 almost everywhere as Tϕ
is weakly mixing (i.e. we have |ξ| = 1 almost everywhere). Now, either (b1)
c = 1, or (b2) c = −1. Equation (5.1) yields

(−1)s = ξ ◦ Tϕ/ξ in case (b1) and (−1)s+1 = ξ ◦ Tϕ/ξ in case (b2),

i.e.

(−1)sξ(x, s) = ξ ◦ Tϕ(x, s) = ξ(Tx, ϕ(x) + s) in case (b1),

(−1)s+1ξ(x, s) = ξ ◦ Tϕ(x, s) = ξ(Tx, ϕ(x) + s) in case (b2).

Using the theory of characters (ξ is a square-integrable function) we get

ξ(x, s) = ξ1(x) + ξ2(x)(−1)s
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for some ξj : X → C, j = 1, 2. Therefore

(−1)s(ξ1(x) + ξ2(x) · (−1)s) = ξ1(Tx) + ξ2(Tx) · (−1)ϕ(x)+s in case (b1),

(−1)s+1(ξ1(x) + ξ2(x) · (−1)s) = ξ1(Tx) + ξ2(Tx) · (−1)ϕ(x)+s in case (b2),

whence

2ξ2(x)− ξ1(Tx) = (−1)s(−ξ1(x) + ξ2(Tx) · (−1)ϕ(x)) in case (b1),

−ξ2(x)− ξ1(Tx) = (−1)s(ξ1(x) + ξ2(Tx) · (−1)ϕ(x)) in case (b2).

Therefore (the above equations hold for all s)

ξ2(x) =

{
ξ1(Tx) for almost every x in case (b1),

ξ1(Tx) for almost every x in case (b2).
This implies

ξ1(x) =

{
ξ2(Tx) · (−1)ϕ(x) = ξ1(T

2x) · (−1)ϕ(x) in case (b1),

−ξ2(Tx) · (−1)ϕ(x) = ξ1(T
2x) · (−1)ϕ(x) in case (b2),

whence |ξ1| is constant. In either case we have
ξ1(x) · ξ1(Tx)
ξ1(Tx) · ξ1(T 2x)

=
ξ1(x)

ξ1(T 2x)
= (−1)ϕ(x),

which means that χ ◦ ϕ is a coboundary. By Lemma 5.8, this yields a con-
tradiction as Tϕ is ergodic.

Proposition 5.10. T is not 2-fold simple, whereas T 2 is 2-fold simple.

Proof. To show that T is not 2-fold simple, by Lemma 5.5, it suffices to
find an element of C(Tϕ) which cannot be lifted to an element of C(T ). We
claim that σ(x, s) = (x, s + 1) is such an automorphism. Suppose that we
can find σ ∈ C(T ) which projects down to σ. By Lemma 5.6, we can solve
for F the following equation:

F ◦ Tϕ − F = ψ ◦ σ − v ◦ ψ,
where v ∈ Aut(Z2) and F : X × Z2 → Z2 is measurable. Since the group
operations are in Z2, we have

F ◦ Tϕ(x, s)− F (x, s) = ψ ◦ σ(x, s) + ψ(x, s)

= ψ(x, s+ 1) + ψ(x, s) = s+ 1 + s = 1.

Applying to this formula χ(r) = (−1)r, we obtain

(−1)F ◦ Tϕ
(−1)F

= −1,

which is not possible as Tϕ is weakly mixing.
We will now show that T 2 is 2-fold simple. We have T 2 = ((Tϕ)

2)ψ+ψ◦Tϕ .
Since Tϕ is 2-fold simple, Proposition 3.1 implies that (Tϕ)

2 is also 2-fold
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simple and, by Lemma 5.5, it suffices to show that all elements of C((Tϕ)2)
can be lifted to C(T 2). By Proposition 3.1, we have C((Tϕ)2) = C(Tϕ).
Therefore (see Remark 5.7) it suffices to show that σ(x, s) = (x, s + 1)
lifts to an element of C(T 2), i.e. we need to find a measurable solution
F : X × Z2 → Z2 for the following cocycle equation:

(5.2) ψ(2) ◦ σ(x, s) + ψ(2)(x, s) = F ◦ (Tϕ)2(x, s) + F (x, s),

where ψ(2) = ψ + ψ ◦ Tϕ. However,

ψ(2)(x, s+ 1) + ψ(2)(x, s)

= ψ(x, s+ 1) + ψ(Tϕ(x, s+ 1)) + ψ(x, s) + ψ(Tϕ(x, s))

= s+ 1 + ϕ(x) + s+ 1 + s+ ϕ(x) + s = 0,

so it suffices to take F ≡ 0 to complete the proof.

5.2. Advanced counterexample. We will construct a 2-QS flow which
is disjoint from simple flows and whose time-one map is 2-fold simple.

5.2.1. (C, F)-constructions. (C, F)-constructions for amenable, unimod-
ular, locally compact second countable (l.c.s.c.) groups were introduced
in [12] (this is the most general setting appearing in the literature). We recall
here this type of construction, correcting a small error appearing in [12] (22).

Let G be a unimodular l.c.s.c. group. Given two subsets E,F ⊂ G, by
EF we mean their product: EF = {ef : e ∈ E, f ∈ F}. If E = {e}, we
write eF for EF . The set {e−1 : e ∈ E} is denoted by E−1. To define a
(C, F)-action of G we need two sequences (Fn)n≥0 and (Cn)n>0 of subsets
of G, satisfying additional conditions:

(Fn)n≥0 is a Følner sequence in G,(5.3)
Cn is finite and #Cn > 1,(5.4)
FnCn+1 ⊂ Fn+1,(5.5)
Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1.(5.6)

We set Xn := Fn ×
∏
k>nCk, endow Xn with the standard Borel product

σ-algebra and define a Borel embedding Xn → Xn+1 by setting

(5.7) (fn, cn+1, cn+2, . . . ) 7→ (fncn+1, cn+2, . . . ).

It is well-defined due to (5.5). Then we have X1 ⊂ X2 ⊂ · · · . Hence X :=⋃
nXn endowed with the natural Borel σ-algebra, say B, is a standard Borel

space. Given a Borel subset A ⊂ Fn, we define

[A]n := {x ∈ X : x = (fn, cn+1, cn+2, . . . ) ∈ Xn and fn ∈ A}

(22) The function Km×D(n)
m ×D(n)

m ∈ (g, x) 7→ T
(n)
m,gx ∈ R(n)

m defined in [12] seems to
have a wrong target set. We bypass this problem in (5.9) and (5.10).
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and call this set an n-cylinder. It is clear that the σ-algebra B is generated
by the family of all cylinders.

Now we are going to define a “canonical” measure on (X,B). Let κn stand
for the equidistribution on Cn, and νn := (#C1 . . .#Cn)

−1λG|Fn on Fn. We
define a product measure µn on Xn by setting µn = νn×κn+1×κn+2× · · · ,
n ∈ N. Then the embeddings (5.7) are measure-preserving. Hence a σ-finite
measure µ on X is well-defined by the restrictions µ|Xn = µn, n ∈ N. Since

µn+1(Xn+1) =
νn+1(Fn+1)

νn+1(FnCn+1)
µn(Xn) =

λG(Fn+1)

λG(Fn)#Cn+1
µn(Xn),

it follows that µ is finite if and only if

(5.8)
∞∏
n=0

λG(Fn+1)

λG(Fn)#Cn+1
<∞, i.e.

∞∑
n=0

λG(Fn+1 \ (FnCn+1))

λG(Fn)#Cn+1
<∞.

From now on we will assume that (5.8) is satisfied. Moreover, we normalize
λG in such a way that µ(X) = 1.

To construct a µ-preserving action of G on (X,µ), we fix a filtration
K1 ⊂ K2 ⊂ · · · of G =

⋃
m≥1Km by compact sets. Additionally assume

that

(5.9) KmKm ⊂ Km+1 for all m ≥ 1.

Given n,m ∈ N set

D(n)
m :=

( ⋂
k∈Km

(k−1Fn) ∩ Fn
)
×
∏
l>n

Cl ⊂ Xn.

It is easy to verify that D(n)
m+1 ⊂ D

(n)
m ⊂ D(n+1)

m . We define a Borel mapping

(5.10) Km ×D(n)
m+1 3 (g, x) 7→ T (n)

m,gx ∈ D(n)
m

by setting, for x = (fn, cn+1, cn+2, . . . ),

T (n)
m,g(fn, cn+1, cn+2, . . . ) := (gfn, cn+1, cn+2, . . . ).

Indeed, for g ∈ Km and fn ∈
⋂
k∈Km+1

(k−1Fn)∩Fn we obtain gfn ∈ Fn and

gfn ∈
⋂

k∈Km+1

gk−1Fn =
⋂

k∈Km+1g−1

k−1Fn ⊂
⋂

k∈Km

k−1Fn,

since Km+1g
−1 ⊃ Km by (5.9). Now let Dm :=

⋃∞
n=1D

(n)
m . Then a Borel

mapping
Tm,g : Km ×Dm+1 3 (g, x) 7→ Tm,gx ∈ Dm

is well-defined by the restrictions Tm,g|D(n)
m

= T
(n)
m,g for g ∈ Km and n ≥ 1.

It is clear that Dm ⊃ Dm+1 and Tm,g|Dm+2 = Tm+1,g for all m. It follows
from (5.3) that µn(D

(n)
m )→ 1 as n→∞. Hence µ(Dm) = 1 for all m ∈ N.
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Finally we set X̂ :=
⋂
m≥1Dm and define a Borel mapping T : G× X̂ 3

(g, x) 7→ Tgx ∈ X̂ by setting Tgx := Tm,gs for some (and hence any) m such
that g ∈ Km. It is clear that µ(X̂) = 1. Thus, T := (Tg)g∈G is a free Borel
measure-preserving action of G on a conull subset of the standard probability
space (X,B, µ). It is easy to see that T does not depend on the choice of
filtration (Km)m≥1.

Definition 5.1. The action T is called the (C, F)-action of G associated
with (Cn, Fn)n.

We now list some basic properties of T. Given Borel subsets A,B ⊂ Fn
we have

[A ∩B]n = [A]n ∩ [B]n, [A ∪B]n = [A]n ∪ [B]n,

[A]n = [ACn+1]n+1 =
⊔

c∈Cn+1

[Ac]n+1,

Tg[A]n = [gA]n if gA ⊂ Fn,(5.11)
µ([A]n) = #Cn+1 · µ([Ac]n+1) for every c ∈ Cn+1,(5.12)

µ([A]n) =
λG(A)

λG(Fn)
µ(Xn),(5.13)

where t stands for disjoint union.

Remark 5.11. (C, F)-actions are of so-called funny rank one (see [23]
for Z-actions and [73] for the general case). In particular, they are ergodic.

5.2.2. Construction of a counterexample. In this section we will provide
an example of a weakly mixing flow T = (Tt)t∈R with T1 2-fold simple such
that T is only 2-QS (i.e. not 2-fold simple). Moreover, we will show later
that our flow has a factor with the same self-joining properties, which is
additionally disjoint from all 2-fold simple flows.

Let SU(2) stand for the special unitary group of order 2, i.e. the group of
complex matrices of the form

(
z
ω
−ω
z

)
with determinant 1. Let λSU(2) denote

the normalized Haar measure on SU(2). Let ϕ : R → Aut(SU(2), λSU(2)) be
given by

ϕt(N) =

(
eπit/2 0

0 e−πit/2

)
N

(
e−πit/2 0

0 eπit/2

)
.

We consider the semidirect product G = R nϕ SU(2). Recall that multipli-
cation in G is given by

(t,M)(s,N) = (t+ s,Mϕt(N)).

Notice that
C(G) = {(2n, I), (2n,−I) : n ∈ Z}.
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Given a > 0 we let

IZ[a] := {m ∈ Z : |m| < a}, IZ+[a] := IZ[a] ∪ {a}, IR[a] := (−a, a].
Let (rn)n≥0 be an increasing sequence of positive integers such that

(5.14) lim
n→∞

n4/rn = 0.

We will impose later one more restriction on the growth of (rn)n≥0. We define
recursively two other sequences (an)n≥0 and (ãn)n≥0 by setting

a0 := ã0 := 1, an+1 := ãn(2rn−1), ãn+1 := an+1 + (2n+1)ãn.(5.15)

For each n ∈ N we let
H := Z, Hn := IZ[rn],

Fn := IR[an]× SU(2), F̃n := IR[ãn]× SU(2),

Sn := IR[(2n− 1)ãn−1]× SU(2).

(5.16)

We also consider the homomorphism φn : H → Z n SU(2) ⊂ G given by

φn(h) = (2hãn, I).

Then we have

Sn ⊂ Fn, FnSn = SnFn ⊂ F̃n ⊂ G,(5.17)

Fn+1 =
⊔
h∈Hn

F̃nφn(h) =
⊔
h∈Hn

φn(h)F̃n,(5.18)

Sn+1 =
⊔

h∈IZ[n+1]

F̃nφn(h) =
⊔

h∈IZ[n+1]

φn(h)F̃n.(5.19)

Fix a sequence εn → 0 as n→∞.
For any two finite sets A,B and a map φ : A→ B we define a probability

measure on B by

dista∈A φ(a) :=
1

#A

∑
a∈A

δφ(a).

Given two measures κ, ρ on a finite set B let

‖κ− ρ‖1 :=
∑
b∈B
|κ(b)− ρ(b)|.

For n ∈ N let Ŝn be as in Proposition A.6 and such that its assertion holds
for sets A′, B′ which are unions of translations of at most #C1 · . . . ·#Cn−1
elements from A (see the remark after Proposition A.6).

Lemma 5.12 ([11], see also [17]). If rn is sufficiently large then there
exists a map sn : Hn → Ŝn such that for any δ ≥ n−2rn,
(5.20) ‖distt∈IZ[δ](sn(h+ t), sn(h′+ t), sn(h′′+ t))−λŜn⊗λŜn⊗λŜn‖1<εn
whenever h, h′, h′′ ∈ Hn are pairwise distinct and {h, h′, h′′}+ IZ[δ] ⊂ Hn.
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From now on we will assume that rn is large enough so that we can use
Lemma 5.12. For every n ∈ N we fix a map sn whose existence is asserted
in the lemma. Without loss of generality we may assume that the following
boundary condition holds:

sn(rn − 1) = sn(−rn + 1) = 0.

Now we can define a map cn+1 : Hn→Fn+1 by setting cn+1(h) := sn(h)φn(h).
We also define Cn+1 := cn+1(Hn).

It is easy to derive from (5.17) and (5.18) that (5.3)–(5.6) are satisfied
for the sequence (Fn, Cn+1)n≥0. Moreover,
(5.21)

λ(Fn+1)

λ(Fn)#Cn+1
=

2an+1

2an(2rn − 1)
=
ãn
an

= 1 +
(2n− 1)ãn−1

an
= 1 +

2n− 1

2rn−1 − 1
.

From this and from (5.14) we deduce that (5.8) holds. Hence we can consider
the associated (C, F)-action T of G on (X,B, µ).

Auxiliary lemmas

Lemma 5.13. Let f = f ′φn−1(h), f̂ = f̂ ′φn−1(ĥ) with f ′, f̂ ′ ∈ F̃n−1 and
h, ĥ ∈ H.

(i) Then F̃n−1φn−1(h+IZ[n−1]) ⊂ fSn∪ f̂Sn ⊂ F̃n−1φn−1(h+IZ[n+1]),
whence

λ(fSn \ F̃n−1φn−1(h+ IZ[n− 1])) ≤ 4λ(F̃n−1),

λ(f̂Sn \ F̃n−1φn−1(h+ IZ[n− 1])) ≤ 4λ(F̃n−1),

and λ(fSn 4 f̂Sn) ≤ 4λ(F̃n−1).
(ii) If, in addition, fSn ⊂ Fn then, for any subset A ⊂ Fn−1,

λ(ACn ∩ fSn)
λ(Sn)

= λFn−1(A) + on(1).

Proof. By (5.19) we have

fSn = f ′φn−1(h)F̃n−1φn−1(I
Z[n]) = f ′F̃n−1φn−1(h+ IZ[n]).

Since F̃n−1F̃n−1 ⊂
⊔
|i|≤1 F̃n−1φn−1(i), there exists a partition of F̃n−1 into

subsets Ai, |i| ≤ 1, such that f ′Ai ⊂ F̃n−1φn−1(i) for any i. Therefore

(5.22) fSn =
⊔
|i≤1|

f ′Aiφn−1(−i)φn−1(i+ h+ IZ[n])

⊂
⊔
|i|≤1

f ′Aiφn−1(−i)φn−1(h+IZ[n+1]) = F̃n−1φn−1(h+I
Z[n+1])
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since
⊔
|i|≤1 f

′Aiφn−1(−i) = F̃n−1. In a similar way we obtain

(5.23) fSn ⊃ F̃n−1φn−1(h+ IZ[n− 1]).

Clearly, (5.22) and (5.23) remain true if we replace f with f̂ . The remaining
assertions of (i) are direct consequences of (5.22) and (5.23).

Suppose that fSn ⊂ Fn. Then K := h+ IZ[n− 1] ⊂ Hn−1, and using (i)
we obtain

λ(ACn ∩ fSn)
λ(Sn)

=
1

λ(Sn)

(
λ(ACn ∩ F̃n−1φn−1(K))± 4λ(F̃n−1)

)
=

1

λ(Sn)

∑
h′∈Hn−1

(
λ(Asn−1(h

′)φn−1(h
′) ∩ F̃n−1φn−1(K))± 4λ(F̃n−1)

)
=

1

λ(Sn)

∑
k∈K

(
λ(Asn−1(h

′))± 4λ(F̃n−1)
)
=

#K

λ(Sn)
λ(A)± 4

λ(F̃n−1)

λ(Sn)

= λFn−1(A) ·
λ(Fn−1)

λ(F̃n−1)
· λ(F̃n−1)
λ(Sn)

·#K ± 4
λ(F̃n−1)

λ(Sn)

= λFn−1(A) ·
an−1
ãn−1

· ãn−1 · (2n−3)

(2n−1) · ãn−1
± 4

ãn−1
(2n−1)ãn−1

= λFn−1(A)+on(1).

Lemma 5.14. Let (G,λ) be a locally compact unimodular group with Haar
measure λ. For any measurable sets A,B, F, S ⊂ G of finite measure λ we
have �

S×S
λ(Av ∩Bw ∩ F ) dv dw =

�

A×B
λ(aS ∩ bS ∩ F ) da db.

Proof. Elementary calculation shows that for any measurable subsets
C,D in G of finite measure we have

	
S λ(Cv ∩ D) dv =

	
C λ(xS ∩ D) dx.

Applying this recursively to
	
S×S λ(Av ∩ Bw ∩ F ) dv dw (first for C = A,

D = Bw ∩ F and then for C = B, v = w and D = aS ∩ F ), we obtain the
desired formula.

5.2.3. Weak mixing

Proposition 5.15. T(2,I) (and hence also T(1,I)) is weakly mixing.

Proof. Let gn = φn(1) = (2ãn, I) = (2, I)ãn . We will show that (gn)n∈N
is mixing for T , i.e.

(5.24) lim
n→∞

µ(TgnD ∩D′) = µ(D)µ(D′).

Since (Tg)g∈G is of funny rank one, it suffices to prove (5.24) for cylinders
D,D′ ∈ A. Let A = A(m), B = B(m) ⊂ Fm be such that A,B ∈ A. We will
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now show that

µ(Tgn [A]m ∩ [B]m) = µ([A]m)µ([B]m) + on(1),

where on(1) means (here and below) a sequence that goes to 0 as n goes
to infinity and that does not depend on A,B. For n ≥ m we have [A]m =
[A(n)]n and [B]m = [B(n)]n for A(n), B(n) ⊂ Fn such that A(n+1) = A(n)Cn+1,
B(n+1) = B(n)Cn+1. For n ≥ m let

F ′n := Fn ∩
⋂

(i1,M1),(i2,M2)∈Sn

Fn(i1,M1)(i2,M2)
−1,

A′(n) := A(n) ∩ F ′n,
B′(n) := B(n) ∩ F ′n,
H ′n := Hn ∩ (Hn − 1).

Notice that

µ([A(n) \A′(n)]n) ≤ µ([Fn \ F
′
n]n), µ([B(n) \B′(n)]n) ≤ µ([Fn \ F

′
n]n).

We claim that

(5.25) µ([Fn \ F ′n]n) = on(1).

Indeed, notice that F ′n = IR[an − 2(2n− 1)ãn−1]× SU(2), whence

λFn(F
′
n) =

λ(F ′n)

λ(Fn)
=
an − 2(2n− 1)ãn−1

an
= 1− 2

(2n− 1)ãn−1
an

(5.26)

= 1− 2
(2n− 1)ãn−1

ãn−1(2rn−1 − 1)
= 1− 2

2n− 1

2rn−1 − 1
→ 1

by (5.14), and (5.25) follows. Therefore

(5.27) µ(Tgn [A(n)]n ∩ [B(n)]n) = µ(Tgn [A
′
(n)]n ∩ [B′(n)]n) + on(1)

=
∑
h∈Hn

µ
(
Tgn [A

′
(n)cn+1(h)]n+1 ∩ [B′(n)]n

)
+ on(1).

Notice also that gn ∈ C(G) for all n ∈ N. Hence

gnAcn+1(h) = gnAsn(h)φn(h) = Asn(h)gnφn(h) = Asn(h)φn(h+ 1)

= Asn(h)sn(h+ 1)−1cn+1(h+ 1)

provided that h, h+ 1 ∈ Hn. Moreover, for all h ∈ Hn,

µ(Tgn [A
′
(n)cn+1(h)]n+1) =

µ([A′(n)]n)

#Cn+1
≤ µ([Fn]n)

#Cn+1
=

µ(Xn)

#Cn+1
= on(1).
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Therefore

(5.28)
∑
h∈Hn

µ
(
Tgn [A

′
(n)cn+1(h)]n+1 ∩ [B′(n)]n

)
=
∑
h∈H′n

µ
(
Tgn [A

′
(n)cn+1(h)]n+1 ∩ [B′(n)]n

)
=
∑
h∈H′n

µ
(
[A′(n)sn(h)sn(h+ 1)−1cn+1(h+ 1)]n+1 ∩ [B′(n)]n

)
.

We also have

A′(n)sn(h)sn(h+ 1)−1cn+1(h+ 1) ⊂ Fncn+1(h+ 1) ⊂ Fn+1.

Moreover,
[B′(n)]n =

⊔
h̃∈Hn

[B′(n)cn+1(h̃)]n+1,

where B′(n)cn+1(h̃) ⊂ Fncn+1(h̃) and

[A′(n)sn(h)sn(h+ 1)−1cn+1(h+ 1)]n+1 ∩ [B′(n)cn+1(h̃)]n+1 = ∅

when h+ 1 6= h̃. Hence

(5.29)
∑
h∈H′n

µ
(
[A′(n)sn(h)sn(h+ 1)−1cn+1(h+ 1)]n+1 ∩ [B′(n)]n

)
=
∑
h∈H′n

(
[(A′(n)sn(h)sn(h+ 1)−1 ∩B′(n))cn+1(h+ 1)]n+1

)
=

1

#H ′n

∑
h∈H′n

µ
(
[A′(n)sn(h)sn(h+ 1)−1 ∩B′(n)]n

)
=

1

#H ′n

∑
h∈H′n

λFn
(
A′(n)sn(h)sn(h+ 1)−1 ∩B′(n)

)
µ(Xn)

=
1

#H ′n

∑
h∈H′n

λFn
(
A′(n)sn(h) ∩B

′
(n)sn(h+ 1)

)
+ on(1)

=
1

#H ′n

∑
h∈H′n

λFn
(
A(n)sn(h) ∩B(n)sn(h+ 1)

)
+on(1).

Recall that A(n) = A(n−1)Cn, B(n) = B(n−1)Cn, and [A(n−1)]n−1, [B(n−1)]n−1
are unions of at most #C1 · . . . ·#Cn−1 translations of some elements from A
(recall that [A(m)]m, [B(m)]m ∈ A). Let ξn := disth∈H′n(sn(h), sn(h + 1)). It
follows from Lemma 5.12 that

‖ξn − λŜn ⊗ λŜn‖ < εn = on(1).
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Define f : Sn × Sn → R by

f(v, w) = λFn(A(n)v ∩B(n)w).

Then

(5.30)
1

#H ′n

∑
h∈H′n

λFn
(
A(n)sn(h) ∩B(n)sn(h+ 1)

)
=

�

Sn×Sn

λFn(A(n)v ∩B(n)w) dξn(v, w) =
�
f dξn =

�
f dλ

Ŝn
⊗ λ

Ŝn
± εn

=
�

Sn×Sn

λFn(A(n−1)Cnv ∩B(n−1)Cnw) dλŜn ⊗ λŜn(v, w)± εn.

Hence by the choice of Ŝn we obtain

(5.31)
�

Sn×Sn

λFn(A(n−1)Cnv ∩B(n−1)Cnw) dλŜn ⊗ λŜn(v, w)

=
�

Sn×Sn

λFn(A(n−1)Cnv ∩B(n−1)Cnw) dλSn ⊗ λSn(v, w)± εn

=
∑

h,h′∈Hn−1

�

Sn×Sn

λ(A(n−1)cn(h)v ∩B(n−1)cn(h
′)w ∩ Fn)

λ(Fn)

· dλSn(v) dλSn(w)± εn

=
∑

h,h′∈Hn−1

�

A(n−1)×B(n−1)

λ(acn(h)Sn ∩ bcn(h′)Sn ∩ Fn)
(λ(Sn))2λ(Fn)

dλ(a) dλ(b)± εn.

For a ∈ A(n−1), b ∈ B(n−1) we have

acn(h) = asn−1(h)φn−1(h) ∈ F̃n−1φn−1(h),(5.32)

bcn(h
′) = bsn−1(h

′)φn−1(h
′) ∈ F̃n−1φn−1(h′).(5.33)

Moreover,

(0, I)cn(h) = cn(h) = sn−1(h)φn−1(h) ∈ F̃n−1φn−1(h),
(0, I)cn(h

′) = cn(h
′) = sn−1(h

′)φn−1(h
′) ∈ F̃n−1φn−1(h′).

Therefore by Lemma 5.13(i) we obtain

(5.34) λ
(
(acn(h)Sn ∩ bcn(h′)Sn ∩ Fn)4 (cn(h)Sn ∩ cn(h′)Sn ∩ Fn)

)
≤ λ(acn(h)Sn 4 cn(hSn) + λ(bcn(h

′)Sn 4 cn(h
′)Sn) ≤ 8λ(F̃n−1).

By (5.32), (5.33) and by Lemma 5.13(i) again,

acn(h)Sn∩ bcn(h′)Sn ⊂ F̃n−1φn−1(h+ IZ[n+1])∩ F̃n−1φn−1(h′+ IZ[n+1]).

Hence acn(h)Sn ∩ bcn(h′)Sn 6= ∅ only if h′ − h ∈ IZ[2n + 1]. If the latter
is satisfied, we say that h and h′ are partners. Denote by P (h) the set of
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partners of h from Hn−1. Clearly, #P (h) ≤ 4n + 1. Therefore we deduce
from (5.27)–(5.31) that

(5.35) µ(Tgn [A]m ∩ [B]m)

=
∑

h∈Hn−1

∑
h′∈P (h)

λ(A(n−1))λ(B(n−1))

(λ(Sn))2λ(Fn)

·
(
λ(cn(h)Sn ∩ cn(h′)Sn ∩ Fn)± 8λ(F̃n−1)

)
=
λ(A(n−1))λ(B(n−1))

(λ(Sn))2λ(Fn)

∑
h∈Hn−1

∑
h′∈P (h)

λ
(
cn(h)Sn ∩ cn(h′)Sn ∩ Fn

)
± λ(Hn−1)(4n+ 1)

(λ(Fn−1))
2

(λ(Sn))2λ(Fn)
· 4λ(F̃n−1)

=
λ(A(n−1))λ(B(n−1))

(λ(Fn−1))2
θn ± λ(Hn−1)(4n+ 1)

(λ(Fn−1))
2

(λ(Sn))2λ(Fn)
· 4λ(F̃n−1)

= λFn−1(A(n−1))λFn−1(B(n−1))θn

± λ(Hn−1)(4n+ 1)
(λ(Fn−1))

2

(λ(Sn))2λ(Fn)
· 4λ(F̃n−1),

where θn > 0. Notice that (5.21) together with (5.14) means that an/ãn → 1
as n→∞. Therefore, by (5.15) and (5.16) we have

λ(Hn−1)(4n+ 1)
(λ(Fn−1))

2

(λ(Sn))2λ(Fn)
· 4λ(F̃n−1)

=
(2rn−1 − 1)(4n+ 1)(2an−1)

2 · 4 · 2ãn−1
((2n− 1)ãn−1)2 · 2an

=
16(4n+ 1)

2n− 1
·
(
an−1
ãn−1

)2

· ãn−1(2rn−1 − 1)

an(2n− 1)

=
16(4n+ 1)

2n− 1
·
(
an−1
ãn−1

)2

· 1

2n− 1
= on(1).

Therefore substituting A(n−1) = B(n−1) = Fn−1 in (5.35) (see Remark A.12)
and passing to the limit we obtain θn → 1 as n→∞. Therefore, using (5.13),
we obtain

(5.36) µ(Tgn [A]m ∩ [B]m) = µ([A]m)µ([B]m) + on(1),

and the assertion follows.

5.2.4. Self-joining properties. Let k∗ := (1, I)(t,M)(1, I)−1 = (t, ϕ1(M)),
for k = (t,M) ∈ G . Notice that (k∗)∗ = k.
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Proposition 5.16. The transformation T(1,I) is “2 : 1”. Moreover,
J e2 (T(1,I)) =

{
1
2(µTk + µTk∗ ) : k ∈ G

}
.

Proof. Take any joining ν ∈ Je2(T(1,I)). Let In := IZ[n−2an], Jn :=

IZ[n−2rn] and Φn := In + 2ãnJn. We first notice that (Φn)
∞
n=1 is a Følner

sequence in Z. Since
an
n2

+
2ãnrn
n2

<
ãn(2rn + 1)

n2
<

2an+1

(n+ 1)2
,

it follows that Φn ⊂ In+1 + In+1, whence
⋃n
m=1 Φm ⊂ In+1 + In+1. This

implies

#
(
Φn+1 −

n⋃
m=1

Φm

)
≤ 3#Φn+1

for every n ∈ N, i.e. Shulman’s condition [48] is satisfied for (Φn)∞n=1. By [48],
the pointwise ergodic theorem holds along (Φn)

∞
n=1 for any ergodic transfor-

mation. Since T(1,I) is ergodic by Proposition 5.15, we have

(5.37)
1

#Φn

∑
i∈Φn

1D(T(i,I)x)1D′(T(i,I)x
′)→ ν(D ×D′)

as n → ∞ for ν-a.a. (x, x′) ∈ X × X and for all cylinders D,D′ ⊂ X. We
call such (x, x′) a generic point for (T(1,I)×T(1,I), ν). Fix one of them. Then
x, x′ ∈ Xn for all sufficiently large n and we have the expansions

x = (fn, cn+1(hn), cn+2(hn+1), . . . ),

x′ = (f ′n, cn+1(h
′
n), cn+2(h

′
n+1), . . . )

with fn, f ′n ∈ Fn and hi, h′i ∈ Hi, i > n. We let H−n := IZ[(1−n−2)rn] ⊂ Hn.
Then

#H−n /#Hn ≥ 1− n−2.
Since the marginals of ν are both equal to µ, by the Borel–Cantelli lemma we
may assume without loss of generality that hn, h′n ∈ H−n for all sufficiently
large n. This implies, in turn, that

fn+1 = fncn+1(hn) ∈ F̃nφn(H−n ) ⊂ IZ+
[
(2rn(1− n−2)− 1)ãn

]
× SU(2),

and similarly,
f ′n+1 ∈ IZ+[(2rn(1− n−2)− 1)ãn]× SU(2).

Notice that given g ∈ Φn we have (g, I) = (b, I)φn(t) for some uniquely
determined b ∈ In and t ∈ Jn. Moreover, t+ hn ∈ Hn. We also claim that

(5.38) (b, I)fnSnSn = (b, I)fnSnS
−1
n ⊂ Fn.

To verify this, it suffices to show that
an
n2

+

(
2rn−1

(
1− 1

(n− 1)2

)
− 1

)
ãn−1 + 2(2n− 1)ãn−1 < an.
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We will show the following stronger inequality for n large enough:
an
n2

+ 2rn−1

(
1− 1

(n− 1)2

)
ãn−1 + 4nãn−1 < an,

i.e.
2rn−1

(
1− 1

(n− 1)2

)
+ 4n < (2rn−1 − 1)

(
1− 1

n2

)
.

Indeed, the latter is equivalent to 1 + 4n− 1
n2 < 2rn−1

(
1

(n−1)2 −
1
n2

)
, which

follows from (5.14) in a routine way. Hence

(g, I)fnsn(hn)φn(hn) = dcn+1(t+ hn),

(g, I)f ′nsn(h
′
n)φn(h

′
n) = d′cn+1(t+ h′n),

where d = (b, I)fnsn(hn)sn(t+ hn)
−1, d′ = (b, I)f ′nsn(h

′
n)sn(t+ h′n)

−1 ∈ Fn
by (5.38).

We consider two cases:
(i) hn = h′n for all n ≥ N ; then fnf ′n

−1 = fNf
′
N
−1 =: k for all n ≥ N ,

so
(b, I)k(b, I)−1 =

{
k when b is even,
k∗ when b is odd.

(ii) hn 6= h′n for infinitely many n.

Our goal is to prove that

ν =

{ 1
2(µTk + µTk∗ ) in case (i),
µ⊗ µ in case (ii).

It suffices to prove the equalities of the measures restricted to the cylinder
sets from A. We may also impose additional assumptions on the cylinders,
provided that every set can still be approximated by finite unions of such
cylinders.

Take [A(m)]m, [B(m)]m ∈ A and for n ≥ m set

A(n+1) := A(n)Cn+1, B(n+1) := B(n)Cn+1.

We have

(5.39)
1

#Φn
#{g ∈ Φn : (T(g,I)x, T(g,I)x

′) ∈ [A(m)]m × [B(m)]m}

=
1

#Φn
#{g ∈ Φn : (T(g,I)x, T(g,I)x

′) ∈ [A(n)]n × [B(n)]n}

=
1

#In

∑
b∈In

#{t ∈ Jn : d ∈ A(n), d
′ ∈ B(n)}

#Jn

=
1

#In

∑
b∈In

ξn
(
A−1(n)(b, I)fnsn(hn)×B

−1
(n)(b, I)f

′
nsn(h

′
n)
)
,

where ξn = distt∈Jn(sn(t+ hn), sn(t+ h′n)).
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We first consider case (i). Take a cylinder D′ ∈ A of order m which is a
finite union of cylinders from A. It is clear that D̃′ := D′ ∩ [k−1Fm]m is also
such a union. Moreover,

µ(D′ 4 D̃′) = µ
([ j0⊔

j=1

Aj

]
m
\ [k−1Fm]m

)

=
λ(
⊔j0
j=1Aj \ k−1Fm)
λ(Fm)

µ(Xm)

≤ λ(Fm \ k−1Fm)
λ(Fm)

= µ([Fm \ k−1Fm]m).

Given ε, for m large enough, µ([Fm \ k−1Fm]m) < ε since (IR[am])m∈R is
a Følner sequence in R. Therefore we may additionally assume that every
cylinder [B]m ∈ A satisfies kB ⊂ Fm if m is large enough. Since kFm =
k∗Fm, it follows immediately that also k∗B ⊂ Fm.

It is easy to deduce from Lemma 5.12 that ‖ξn −∆‖1 < εn for n > N ,
where ∆ is the probability equidistributed on Ŝn × Ŝn. This yields (by the
choice of Ŝn)

(5.40)
1

#In

∑
b∈In

ξn
(
A−1(n)(b, I)fnsn(hn)×B

−1
(n)(b, I)f

′
nsn(h

′
n)
)

=
1

#In

∑
b∈In

λ
Ŝn

(
A−1(n)(b, I)fnsn(hn) ∩B

−1
(n)(b, I)f

′
nsn(hn)

)
± εn

=
1

#In

∑
b∈In

λSn
(
A−1(n)(b, I)fnsn(hn) ∩B

−1
(n)(b, I)f

′
nsn(hn)

)
± 2εn.

We obtain further

(5.41)
1

#In

∑
b∈In

λSn
(
A−1(n)(b, I)fnsn(hn) ∩B

−1
(n)(b, I)f

′
nsn(hn)

)
=

1

#In

∑
b∈In

λ
(
A(n) ∩ (b, I)fnf

′−1
n (b, I)−1B(n) ∩ (b, I)fnsn(hn)Sn

)
λ(Sn)

=
1

#In

∑
2b∈In

λ
(
A(n) ∩ kB(n) ∩ (2b, I)fnsn(hn)Sn

)
λ(Sn)

+
1

#In

∑
2b+1∈In

λ
(
A(n) ∩ k∗B(n) ∩ (2b, I)fnsn(hn)Sn

)
λ(Sn)

.

Since kB(m) ⊂ Fm, we have kB(n) ⊂ Fn. Therefore A(n−1)Cn∩kB(n−1)Cn =
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(A(n−1) ∩ kB(n−1))Cn. It follows from Lemma 5.13(ii) and (5.38) that

(5.42)
λ
(
A(n) ∩ kB(n) ∩ (2b, I)fnsn(hn)Sn

)
λ(Sn)

=
λ
(
(A(n−1) ∩ kB(n−1))Cn ∩ (2b, I)fnsn(hn)Sn

)
λ(Sn)

= λFn−1(A(n−1) ∩ kB(n−1)) + on(1)

=
µ([A(n−1) ∩ kB(n−1)]n−1)

µ(Xn−1)
+ on(1)

= µ([A(m)]m ∩ Tk[B(m)]m) + on(1).

In a similar way we obtain

(5.43)
λ
(
A(n) ∩ k∗B(n) ∩ (2b, I)fnsn(hn)Sn

)
λ(Sn)

= µ([A(m)]m ∩ Tk∗ [B(m)]m) + on(1).

Formulas (5.37) and (5.39)–(5.43) lead to ν = 1
2(µTk + µTk∗ ).

We now consider case (ii). Lemma 5.12 shows that ‖ξn−λŜn⊗λŜn‖1 < εn
for all such n. Therefore

(5.44)
1

#In

∑
b∈In

ξn
(
A−1(n)(b, I)fnsn(hn)×B

−1
(n)(b, I)f

′
nsn(h

′
n)
)

=
1

#In

∑
b∈In

λ
Ŝn

(
A−1(n)(b, I)fnsn(hn)

)
λ
Ŝn

(
B−1(n)(b, I)f

′
nsn(h

′
n)
)
± εn

=
1

#In

∑
b∈In

λSn
(
A−1(n)(b, I)fnsn(hn)

)
λSn
(
B−1(n)(b, I)f

′
nsn(h

′
n)
)
± 2εn,

where the last equality follows from our choice of Ŝn. Now we derive from
Lemma 5.13(ii) that

(5.45) λSn
(
A−1(n)(b, I)fnsn(hn)

)
=
λ
(
A(n) ∩ (b, I)fnsn(hn)Sn

)
λ(Sn)

= λFn−1(B(n−1)) + on(1) =
µ([A(n−1)]n−1)

µ(Xn)
= µ([A(m)]m) + on(1)

and

(5.46) λSn
(
B−1(n)(b, I)f

′
nsn(h

′
n)
)
= µ([B(m)]m) + on(1).

It follows from (5.39)–(5.46) that ν = µ⊗ µ,.

Proposition 5.17. T(1,I) is 3-fold PID.
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Sketch of proof. Let ν ∈ J e3 (T(1,I)) be pairwise independent. We will
show that ν = µ⊗3. To this end, we will follow the same path as in the
proof of Proposition 5.16. Fix a generic point (x, x′, x′′) for (T×3(1,I), ν). Then
x, x′, x′′ ∈ Xn for all sufficiently large n. We may assume that

x = (fn, cn+1(hn), cn+1(hn+1), . . . ),

x′ = (fn, cn+1(h
′
n), cn+1(h

′
n+1), . . . ),

x′′ = (fn, cn+1(h
′′
n), cn+1(h

′′
n+1), . . . ),

with fn, f ′n, f ′′n ∈ Fn and hi, h′i, h
′′
i ∈ H

−
i for i > n. Now take

[A(m)]m, [A
′
(m)]m, [A

′′
(m)]m ∈ A

and setA(n+1)=A(n)Cn+1,A′(n+1)=A′(n)Cn+1,A′′(n+1)=A′′(n)Cn+1 for n≥m.
Then as in the proof of previous proposition we have

(5.47)
1

#Φn
#{g ∈ Ψn : (Tg,Ix, Tg,Ix

′, Tg,Ix
′′) ∈ [A(m)]m × [A′(m)]m × [A′′(m)]m}

=
1

#In

∑
b∈In

ξn(A
−1
(n)d×A

′−1
(n) d×A

′′−1
(n) d),

where d = (b, I)fnsn(hn), d′ = (b, I)f ′nsn(h
′
n), d = (b, I)f ′′nsn(h

′′
n) and

ξn = distt∈Jn(sn(t+ hn), sn(t+ h′n), sn(t+ h′′n)).

Next, given k > 0,

µ⊗ µ({(y, y′) ∈ Xk ×Xk : yi 6= y′i for all i > k})
µ(Xk)µ(Xk)

=
∏
i>k

#C2
i −#Ci
#Ci

∏
i>k

(
1− 1

#Hi

)
> 0,

where (yi)i≥k, (y
′
i)i≥k are the “coordinates” of y, y′ ∈ Xk = Fk × Ck+1

×Ck+2×· · · respectively. Since ν-almost every point is generic for (T×3(1,I), ν),
we can select (x, x′, x′′) in such a way that hi, h′i, h

′′
i are pairwise distinct for

all i ≥ n whenever n is large enough. Therefore, it follows from Lemma 5.12
that ‖ξi−λŜi ⊗λŜi ⊗λŜi‖ < εi for all i ≥ n. Now we derive from (5.47) and
Lemma 5.13 (bearing in mind the choice of Ŝi) that

ν([A(m)]m× [A′(m)]m× [A′′(m)]m) = µ([A(m)]m)µ([A
′
(m)]m)µ([A

′′
(m)]m)+ on(1).

This implies ν = µ⊗3.

Remarks. (1) In view of Proposition 5.16 and the definition of k∗ (see
page 56), one can expect that T(2,I) is 2-fold simple. This is indeed the case
(the proof uses similar arguments to those for Proposition 5.16). Moreover,
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since T(1,I) is 3-fold PID, so is T(2,I) by [11]. It follows by [28] that T(2,I) is
simple (and that T(1,I) is also PID).

(2) It follows from Propositions 5.16 and 3.23 that the constructed exam-
ple has as its subaction the flow (T(t,I))t∈R which is only QS (it is not simple)
with a simple time-2 map T(2,I). However, we cannot say at this stage that
the flow is disjoint from simple flows (cf. Corollary 5.3)—it is only clear that
it has no simple factors (see the next remark).

(3) Recall that since T(2,I) is simple, any of its factors is determined by
a compact subgroup of C(T(2,I)) = G. The largest compact subgroup of G
is {0} × SU(2) ' SU(2) and it is normal in G. It determines the smallest
non-trivial factor of T1; we will denote it by A(SU(2)) =: A. Notice that A
is also a factor of T . Take g ∈ G \ {0} × SU(2). Then 1

2(µTg + µTg∗ )|A⊗A
is a 2-fold ergodic joining of T |A, and it is not difficult to see that it is
“2 : 1” over its marginals (this argument is taken from [11]). Since T |A has
no non-trivial factors, in view of Corollary 5.3 we obtain an example of a
flow disjoint from simple flows, which is QS and whose time-2 map is simple.

(4) An easy linear time change now yields a flow T which is QS, is disjoint
from simple flows, and has T1 simple. In particular, T1 cannot be embedded
into a simple flow.

Appendix. Uniform distribution

A.1. Necessary tools. All the information in this section is taken
from [40], unless stated otherwise. We will often use it freely, without precise
reference.

Definition A.1. Let X be a compact Hausdorff space with a (regular)
probability Borel measure µ. A sequence (xn)n∈N ⊂ X is said to be uniformly
distributed in (X,µ) if for every continuous function f : X → R we have
limN→∞(1/N)

∑
n≤N f(xn) =

	
X f dµ.

Definition A.2. We say that (xn)n∈N ⊂ Rs is uniformly distributed
modulo 1 if ({xn})n∈N is uniformly distributed in [0, 1]s with respect to the
Lebesgue measure.

Definition A.3. Let (xn)n∈N ⊂ Rs. Discrepancy is classically defined
in the following two ways: for N ∈ N we let

D∗N = D∗N (x1, . . . , xN ) := sup
J∗

∣∣∣∣ 1N ∑
n≤N

1J∗({xn})− λRs(J∗)
∣∣∣∣,

DN = DN (x1, . . . , xN ) := sup
J

∣∣∣∣ 1N ∑
n≤N

1J({xn})− λRs(J)
∣∣∣∣.

where J∗ runs over all subsets of [0, 1)s of the form [0, β1)×· · ·× [0, βs), and
J runs over all subsets of [0, 1)s of the form [α1, β1)× · · · × [αs, βs).
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Proposition A.1. Let (xn)n∈N ⊂ Rs. The following are equivalent:

• (xn)n∈N is uniformly distributed modulo 1,
• DN → 0 as N →∞,
• D∗N → 0 as N →∞.

Definition A.4. Let S = {(xn,σ) ⊂ X : σ ∈ J} be a family of sequences
indexed by J . Then S is said to be equi-µ-uniformly distributed in X if for
every f ∈ C(X) we have limN→∞ supσ∈J |

∑
n≤N f(xn,σ)−

	
f dµ| = 0.

Proposition A.2 ([40]). Let X be a compact Hausdorff uniform space.
Suppose that {Pσ : σ ∈ J} is a family of measure-preserving trans-forma-
tions on X (with respect to a given µ ∈ M1(X)) that is equicontinuous
at every point x ∈ X, and suppose that (xn)n∈N ⊂ X is µ-uniformly dis-
tributed. Then the family {(Pσxn) ⊂ X : σ ∈ J} is equi-µ-uniformly dis-
tributed.

Theorem A.3 ([34], see also [40]). Let (xn)n∈N ⊂ Rs be uniformly dis-
tributed modulo 1 and let f : [0, 1]s → R be continuous. Let

D∗N (f, (xn)1≤n≤N ) :=

∣∣∣∣ 1N
N∑
i=1

f(xi)−
�

[0,1]s

f dλRs

∣∣∣∣.
Then

D∗N (f, (xn)1≤n≤N ) ≤ (1 + 22s−1)M
([(

D∗N (f, (xn)1≤n≤N )
)−1/k]−1)

,

where M is the modulus of continuity of f .

Corollary A.4. Let (xn)n∈N ⊂ Rs be uniformly distributed modulo 1
and let F be a family of equicontinuous functions on [0, 1]s. Then

sup
f∈F

D∗N (f, (xn)n∈N)→ 0 as N →∞.

Theorem A.5 (von Neumann, Oxtoby, Ulam, see [62]). Let µ1, µ2
be non-atomic probability Borel measures on [0, 1]s with full support and
such that µi(∂([0, 1]s)) = 0, i = 1, 2. Then there exists a homeomorphism
h : [0, 1]s → [0, 1]s such that µ1 ◦ h−1 = µ2. Moreover, h|∂([0,1]s) = id.

A.2. Technical results. Let G = R nϕ SU(2). By λG, λSU(2) we
will denote the Haar measures on G and SU(2) respectively such that
λG((0, 1) × SU(2)) = 1 and λSU(2)(SU(2)) = 1. Given a measurable set
S ⊂ G, we denote by λS the conditional probability measure on S. Finally,
given a finite set Ŝ ⊂ G, we denote by λ

Ŝ
the normalized counting measure,

i.e. λ
Ŝ
(A) = #(Ŝ ∩A)/#Ŝ. Finally, let εn > 0 for n ∈ N.
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Proposition A.6. There exists a dense family A of subsets of G =
R nϕ SU(2), and for any n ∈ N there exists a finite subset Ŝn ⊂ Sn such
that:

(i) For all A,B ∈ A and all a, b ∈ G we have

λSn(A
−1a ∩B−1b) = λ

Ŝn
(A−1a ∩B−1b)± εn.

(ii) For all A,B ∈ A and all a, b ∈ G we have�

Sn×Sn

f dλSn ⊗ λSn =
�

Sn×Sn

f dλ
Ŝn
⊗ λ

Ŝn
± εn

where f : G×G→ R is given by f(v, w) = λFn(Aav ∩Bbw).

Before we begin the proof, we provide some necessary lemmas. Let Cd
stand for the family of cubes in [0, 1]d. By d : R × R → R we denote the
maximum metric in Rd and by d(x,C) the distance from the point x to the
set C. Given C ∈ Cd and ε > 0 let

Cε := {x 6∈ C : d(x,C) < ε} and fC,ε := max(1− d(x,C)/ε, 0).
Notice that for each ε > 0,

(A.1) {fC,ε : C ∈ Cd} is an equicontinuous family of functions

and

(A.2) λ(Cε) ≤ 2dε for all C ∈ Cd and ε > 0.

Lemma A.7. Let (X,µ) be a compact metric space with a probability
Borel measure and let (yn)n∈N ⊂ X be uniformly distributed with respect to µ.
Let F be a family of measure-preserving equicontinuous homeomorphisms
from X to [0, 1]d. Then

sup
Ψ∈F

D∗N ((Ψ(yn))1≤n≤N )→ 0.

Proof. Let ε > 0 and choose 0 < δ < ε small enough that for every cube
Cδ of edge length at most δ we have Ψ−1(Cδ) ⊂ C ′ε, where C ′ε is some cube
of edge length at most ε. Let K := d · 2d−1 · 1/δ.

We have∣∣∣∣ 1N ∑
n≤N

1C ◦ Ψ(xn)− λ(C)
∣∣∣∣ ≤ ∣∣∣∣ 1N ∑

n≤N
(1C ◦ Ψ(xn)− fC,δ ◦ Ψ(xn))

∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣ 1N ∑
n≤N

fC,δ ◦ Ψ(xn)−
�
fC,δ dλ

∣∣∣∣︸ ︷︷ ︸
I2

+
∣∣∣� fC,δ dλ− λ(C)∣∣∣︸ ︷︷ ︸

I3

.
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Notice that I1 ≤ 1
N

∑
n≤N 1Cδ ◦ Ψ(xn) = 1

N

∑
n≤N 1Ψ−1(Cδ)(xn). By the

choice of K the set Cδ is included in a union of (at most) K cubes of edge
length at most δ. Therefore, by the choice of δ, Ψ−1(Cδ) is included in a
union of (at most) K cubes of edge length at most ε. It follows immediately
that there exists N0 such that I1 ≤ ε for N ≥ N0.

By Theorem A.3 we have I2 → 0. Moreover, taking (A.1) into account, we
see that the rate of convergence can be estimated using only D∗N ((xn)1≤n≤N )
(and ε).

Finally, I3 ≤ λ(Cδ) < 2dδ ≤ 2dε and the claim follows.

Lemma A.8. Let (yn)n∈N ⊂ [0, 1]d be uniformly distributed. Let F be a
family of equicontinuous homeomorphisms of [0, 1]d preserving the Lebesgue
measure. Then

sup
Ψ1,Ψ2∈F

sup
C,D,E⊂Cd

∣∣∣∣ 1N ∑
n≤N

1Ψ1(C)∩Ψ2(D)∩E(yn)− λ(Ψ1(C) ∩ Ψ2(D) ∩ E)

∣∣∣∣→ 0.

Proof. Choose ε > 0 and let

I1 := λ(Ψ1(C) ∩ Ψ2(D) ∩ E)−
�
fC,ε ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε dλ,

I2 :=
1

N

∑
n≤N

1Ψ1(C)∩Ψ2(D)∩E(xn)−
1

N

∑
n≤N

(fC,ε ◦ Ψ−11 · fD,ε ◦Ψ−12 ·fE,ε)(xn),

I3 :=
1

N

∑
n≤N

(fC,ε ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε)(xn)

−
�
fC,ε ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε dλ.

It suffices to show that I1, I2, I3 → 0 and the convergence is uniform with
respect to C,D,E ∈ Cd and Ψ1, Ψ2 ∈ F .

We have

|I1| ≤
∣∣∣� (1C ◦ Ψ−11 · 1D ◦ Ψ−12 · 1E − 1C ◦ Ψ−11 · 1D ◦ Ψ−12 · fE,ε) dλ

∣∣∣
+
∣∣∣� (1C ◦ Ψ−11 · 1D ◦ Ψ−12 · fE,ε − 1C ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε) dλ

∣∣∣
+
∣∣∣� (1C ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε − fC,ε ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε) dλ

∣∣∣
≤

�
|1E − fE,ε| dλ+

�
|1D ◦ Ψ−12 − fD,ε ◦ Ψ−12 | dλ

+
�
|1C ◦ Ψ−11 − fC,ε ◦ Ψ−11 | dλ

=
�
|1E − fE,ε| dλ+

�
|1D − fD,ε| dλ+

�
|1C − fC,ε| dλ

≤ λ(Eε) + λ(Dε) + λ(Cε) ≤ 6dε,

where the last inequality follows from (A.2).



66 J. Kułaga-Przymus

We will now estimate I2:

|I2| ≤
∣∣∣∣ 1N ∑

n≤N

[
(1Ψ1(C) · 1Ψ2(D) · 1E)(xn)− (1Ψ1(C) · 1Ψ2(D) · fE,ε)(xn)

]∣∣∣∣
+

∣∣∣∣ 1N ∑
n≤N

[
(1Ψ1(C) ·1Ψ2(D) ·fE,ε)(xn)− (1Ψ1(C) ·fD,ε ◦ Ψ−12 ·fE,ε)(xn)

]∣∣∣∣
+

∣∣∣∣ 1N ∑
n≤N

[
(1Ψ1(C) · fD,ε ◦ Ψ−12 · fE,ε)(xn)

− (fC,ε ◦ Ψ−11 · fD,ε ◦ Ψ−12 · fE,ε)(xn)
]∣∣∣∣

≤ 1

N

∑
n≤N

1Eε(xn) +
1

N

∑
n≤N

1Ψ2(Dε)(xn) +
1

N

∑
n≤N

1Ψ1(Cε)(xn)

=
1

N

∑
n≤N

1Eε(xn) +
1

N

∑
n≤N

1Dε(Ψ
−1
2 (xn)) +

1

N

∑
n≤N

1Cε(Ψ
−1
1 (xn)).

Since each of the sets Eε, Dε, Cε is a difference of two cubes, the above ex-
pression converges to λ(Eε)+λ(Dε)+λ(Cε) ≤ 6dε. Moreover, by Lemma A.7,
the convergence is uniform with respect to C,D,E ∈ Cd and Ψ1, Ψ2 ∈ F .

I3 also converges to zero and again, by Theorem A.3, the convergence is
uniform with respect to C,D,E ∈ Cd and Ψ1, Ψ2 ∈ F .

Let d be a right-invariant metric on G. Let U = {Ui : 1 ≤ i ≤ M} be a
finite cover of SU(2) by open sets such that λSU(2)(∂Ui) = 0 for 1 ≤ i ≤M .
Then

(A.3) V :=
⋃
l∈Z

M⋃
i=1

(l − 1, l + 2)× Ui

is an open cover of G such that λG(∂((l − 1, l + 2)× Ui)) = 0.

Lemma A.9. The cover (A.3) has a positive Lebesgue number.

Proof. Suppose that there is no δ > 0 such that for each (t,M) ∈ G we
have B((t,M), δ) ⊂ (l − 1, l + 2) × Ui for some l ∈ Z and 1 ≤ i ≤ M . We
claim that

(A.4) B(x, ε) ⊂ (l − 1, l + 2)× Ui ⇔ B(x(−l, I), ε) ⊂ (−1, 2)× Ui.

Indeed, assume that B((t,M), ε) ⊂ (l − 1, l + 2) × Ui and take y in
B((t,M)(−l, I), ε). Then d(y(l, I), (t,M)) = d(y, (t,M)(−l, I))<ε, whence

y ∈ [(l − 1, l + 2)× Ui](−l, I) = (−1, 2)× Ui,

and (A.4) follows.
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According to our assumption there exists xn = (tn,Mn) such that

(A.5) none of the balls B(xn, 1/n) is a subset of an element of our cover.

In view of (A.4), we may assume that xn ∈ (−1, 2) × Ui for some i, and
also that xn → x for some x = (t,M) ∈ (l − 1, l + 2) × Uj , where
l ∈ Z, 1 ≤ j ≤ M . Then for N large enough we have B(x, 1/N) ⊂
(l − 1, l + 2) × Uj . Let n ≥ 2N be large enough that xn ∈ B(x, 1/(2N)).
Then B(xn, 1/n) ⊂ B(xn, 1/(2N)) ⊂ B(x, 1/N) ⊂ (l − 1, l + 2)× Uj , which
contradicts with (A.5).

For 1 ≤ i ≤ M let ψi : U i → [0, 1]3 be a homeomorphism which carries
λU i to the Lebesgue measure λ[0,1]3 on [0, 1]3 (23). For 1 ≤ i ≤M and l ∈ Z
let ψl,i : [l − 1, l + 2]× U i → [−1, 2]× [0, 1]3 be

ψl,i(x,M) = (x− l, ψi(M))

and let ψ : [−1, 2]× [0, 1]3 → [0, 1]4 be defined by

ψ(x1, x2, x3, x4) = ((x1 + 1)/3, x2, x3, x4).

For a ∈ G define ga, g : G→ G be given by

ga(b) = ba and g(b) = b−1 for b ∈ G.

Lemma A.10. The family of functions

{ga ◦ g ◦ ψ−1l,i ◦ ψ
−1 : a ∈ G, l ∈ Z, 1 ≤ i ≤M}

is uniformly bi-equicontinuous.

Proof. It suffices to show that the following families of functions are
uniformly bi-equicontinuous:

(i) F1 = {ψ−1l,i : l ∈ Z, 1 ≤ i ≤M},
(ii) F2 = {g|[l−1,l+2]×SU(2) : l ∈ Z},
(iii) F3 = {ga : a ∈ G}.

Notice that F1 is a finite family of homeomorphisms of compact spaces,
and elements of F3 are isometries, so both F1,F3 are uniformly bi-equi-
continuous. We now consider F2. For l ∈ Z let gl = g|[l−1,l+2]×SU(2). For
(t,M), (s,N) ∈ [l − 1, l + 2]× SU(2) we have

d((t− l,M), (s− l, N))

= d((t,M)(−l, I), (s,N)(−l, I)) = d((t,M), (s,N))

(23) Such a homeomorphism exists in view of Theorem A.5.
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and

d(gl(t,M), gl(s,N)) = d
(
(−t, ϕ−t(M−1)), (−s, ϕ−s(N−1))

)
= d
(
(−t, ϕ−t(M−1))(l, I), (−s, ϕ−s(N−1))(l, I)

)
= d
(
(l − t, ϕ−t(M−1)), (l − s, ϕ−s(N−1))

)
= d
(
(l − t, ϕl−t(M−1)), (l − s, ϕl−s(N−1))

)
= d(g0(t− l,M), g0(s− l, N)).

Moreover, g−1l = g−1−l.

Let {ρi}1≤i≤M and {ηl}l∈Z be smooth partitions of unity, subordinate to
cover U and

⋃
l∈Z(l − 1, l + 2) = R respectively. Clearly, {ηl ⊗ ρi}1≤i≤M, l∈Z

is then a smooth partition of unity subordinate to cover V.
Let Ã be a family of “cubes” in [0, 1]4 sufficiently small so that, for

a1, a2, a3 ∈ G, l1, l2, l3 ∈ Z, 1 ≤ i1, i2, i3 ≤ M , C1, C2, D1, D2, D3 ∈ Ã
whenever the sets

2⋃
j=1

gaj ◦ g ◦ ψ−1lj ,ij ◦ ψ
−1(Cj) and

3⋃
j=1

gaj ◦ ψ−1lj ,ij ◦ ψ
−1(Dj)

are connected then
2⋃
j=1

gaj ◦ g ◦ ψ−1lj ,ij ◦ ψ
−1(Cj) ⊂ (lC − 1, lC + 2)× UiC

and

(A.6)
3⋃
j=1

gaj ◦ ψ−1lj ,ij ◦ ψ
−1(Dj) ⊂ (lD − 1, lD + 2)× UiD

for some lC , lD ∈ Z, 1 ≤ iC , iD ≤ M . This can be done in view of Lem-
mas A.9 and A.10.

Remark A.11. We may assume that in fact a stronger condition than
(A.6) holds:

(A.7)
( 3⋃
j=1

gaj ◦ ψ−1lj ,ij ◦ ψ
−1(Dj)

)
δ0
∪
( 3⋃
j=1

gaj ◦ ψ−1lj ,ij ◦ ψ
−1(Dj)

)
⊂ (lD − 1, lD + 2)× UiD ,

where δ0 > 0 is a sufficiently small number, independent of the choice of
Dj , aj , 1 ≤ j ≤ 3. This can be done for example by adding one more step
before fixing the open cover of SU(2). Namely, given {Ui}1≤i≤M , we need to
find δ0 > 0 such that {(Ui)δ0 ∪Ui}1≤i≤M still consists of sets homeomorphic
to (0, 1)4 and work with both covers simultaneously.
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Let
A = {ψ−1l,i ◦ ψ

−1(C) : C ∈ Ã, l ∈ Z, 1 ≤ i ≤M}.

Let (xn)n∈N ⊂ [0, 1]× SU(2) be uniformly distributed in [0, 1]× SU(2) (24).
For l ∈ Z we denote by (xn,l)n∈N the sequence in [l, l + 1]× SU(2) given by
xn,l = xn + (l, 0) (the addition is understood coordinatewise).

Proof of Proposition A.6(i). Fix n ∈ N. The set Ŝn we are looking for
will consist of elements of sequences (xn,l)n∈N; more precisely, we will have

Ŝn = {xn,l : 1 ≤ n ≤ n0, l ∈ Z} ∩ Sn,

with some n0 ∈ N sufficiently large (depending on εn). Take A,B ∈ A and
all a, b ∈ G. Then

A = ψ−1lA,iA ◦ ψ
−1(CA), B = ψ−1lB ,iB ◦ ψ

−1(CB)

for some CA, CB ∈ Ã and lA, lB ∈ Z, 1 ≤ iA, iB ≤M .
If A−1a ∩B−1b ∩ Sn = ∅ then clearly

λSn(A
−1a ∩B−1b) = λ

Ŝn
(A−1a ∩B−1b) = 0,

no matter which finite subset Ŝn ⊂ Sn we choose. Suppose now that A−1a∩
B−1b ∩ Sn 6= ∅ and consider the following cases:

(a) A−1a ∪B−1b ⊂ Sn, (b) A−1a ∪B−1b 6⊂ Sn.

We will show how to proceed in case (b) (case (a) can be treated in a
very similar way). Recall that Sn = IR[(2n− 1)ãn−1]× SU(2), so in view of
the definition of A one of the following holds:

(b1) A−1a ∪B−1b ⊂ (l − 2, l + 1)× Ui,
(b2) A−1a ∪B−1b ⊂ (l − 1, l + 2)× Ui,
(b3) A−1a ∪B−1b ⊂ (−l − 2,−l + 1)× Ui,
(b4) A−1a ∪B−1b ⊂ (−l − 1,−l + 2)× Ui,

where 1 ≤ i ≤ M and l = −(2n − 1)ãn−1. We will handle case (b1) (the

(24) The existence of such a sequence can be shown e.g. in the following way. Choose
a finite open cover of T × SU(2) consisting of continuity sets (i.e. sets whose boundaries
are of zero measure) which are simply connected. It yields a partition of T× SU(2) into a
finite number of open sets, up to a set of measure zero. Using Theorem A.5, for each set
of this partition, we can find a homeomorphism to (0, 1)4 carrying the conditional Haar
measure to the Lebesgue measure. Any sequence which is uniformly distributed in [0, 1)4

yields sequences uniformly distributed in the closure of the elements of the partition. The
desired sequence can now be constructed by taking elements from these sequences with
frequencies approximating the measures of the sets from the cover.
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other cases can be treated in the same way). We have

(A.8) λSn(A
−1a ∩B−1b) = λ((l − 1, l + 2)× SU(2))

λ(Sn)

· λ(l−1,l+2)×SU(2)

(
A−1a ∩B−1b ∩ ((l, l + 2)× SU(2))

)
=

3

2|l|
· λ(l−1,l+2)×SU(2)

(
A−1a ∩B−1b ∩ ((l, l + 2)× SU(2))

)
=

3

2|l|
· λ
(
ψ ◦ ψl,i ◦ ga ◦ g ◦ ψ−1lA,iA ◦ ψ

−1(CA)

∩ ψ ◦ ψl,i ◦ gb ◦ g ◦ ψ−1lB ,iB ◦ ψ
−1(CB) ∩ ((1/3, 1)× (0, 1)3)

)
=

3

2|l|
· λ(ΨA(CA) ∩ ΨB(CB) ∩ C),

where
ΨA = ψ ◦ ψl,i ◦ ga ◦ g ◦ ψ−1lA,iA ◦ ψ

−1,

ΨB = ψ ◦ ψl,i ◦ gb ◦ g ◦ ψ−1lB ,iB ◦ ψ
−1,

C = (1/3, 1)× (0, 1)3.

Define (yn)n∈N ⊂ [0, 1]4 by

yn =


ψ ◦ ψl,i(x(n+2)/3,l−1) if n ≡ 0 mod 3,
ψ ◦ ψl,i(x(n+1)/3,l) if n ≡ 1 mod 3,
ψ ◦ ψl,i(xn/3,l+1) if n ≡ 2 mod 3.

Notice that (yn)n∈N is uniformly distributed in [0, 1]4 and its discrepancy
does not depend on l ∈ Z. We have

(A.9)
1

N

∑
n≤N

1A−1a∩B−1b∩((l,l+2)×SU(2))(xn,l−1)

+
1

N

∑
n≤N

1A−1a∩B−1b∩((l,l+2)×SU(2))(xn,l)

+
1

N

∑
n≤N

1A−1a∩B−1b∩((l,l+2)×SU(2))(xn,l+1)

= 3 · 1

3N

3N∑
n=1

1ΨA(CA)∩ΨB(CB)∩C(yn)→ 3λ(ΨA(CA) ∩ ΨB(CB) ∩ C).

In view of Lemma A.10 the above convergence is uniform with respect to
A,B and a, b. It follows from (A.8) and (A.9) that Ŝn defined by

Ŝn = Sn ∩
⋃
l∈Z

n0⋃
n=1

xn,l

satisfies (i) provided that n0 is large enough.
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Proof of Proposition A.6(ii). We claim that the family

{f : G×G→ R : f(v, w) = λFn(Aav ∩Bbw)}(A.10)

is uniformly equicontinuous. Fix ε > 0. Let δ ∈ (0, δ0) be so small that for
C ∈ A and c ∈ G such that λ(Cc) = λ(C) > ε/2 we can find a ball of
radius δ contained in Cc. Such a choice is possible in view of Lemma A.10.
Take A,B ∈ A, a, b ∈ G, n ∈ N and let f(v, w) = λFn(Aav ∩ Bbw). Take
v1, v2, w ∈ G with d(v1, v2) < δ. We have

(A.11) |f(v1, w)− f(v2, w)| ≤ λ((Aav1 4Aav2) ∩Bbw).
We will consider the following cases:

(i) (Aav1 ∪Aav2) ∩Bbw = ∅,
(iia) (Aav1 ∪Aav2) ∩Bbw 6= ∅, λ(A) ≤ ε/2,
(iib) (Aav1 ∪Aav2) ∩Bbw 6= ∅, λ(A) > ε/2.

Using (A.11), in case (i) we obtain |f(v1, w) − f(v2, w)| = 0, and in case
(iia), |f(v1, w) − f(v2, w)| ≤ ε. In case (iib), by the choice of δ, it is clear
that Aav1 ∩ Aav2 6= ∅. Therefore (see the definition of Ã) there exist l ∈ Z
and 1 ≤ i ≤M such that

(Aav1 ∪Aav2 ∪Bbw)δ0 ∪ (Aav1 ∪Aav2 ∪Bbw) ⊂ (l − 1, l + 2)× Ui.
Now we can use the homeomorphism ψ−1l,i ◦ ψ to “transport” the above set
to [0, 1]4. Using Lemma A.10 and adjusting δ if necessary we arrive at (A.10).

Let K = (2n − 1)ãn−1 and for k ∈ [−K,K − 1] let ym,k = xm + (k, I).
Moreover, for 1 ≤ i ≤ M let (yim,k)m∈N be a subsequence of elements of
(ym,k)m∈N which are in [k, k+1]×Ui and letNi = #{xm,k ∈ Ui : 1 ≤ m ≤ N}
(notice that this quantity is independent of k). Then for a fixed w we have

(A.12)
1

2KN

K−1∑
k=−K

N∑
m=1

f(ym,k, w)

=
1

2KN

∑
k

∑
m

∑
l

∑
i

ηl × ρi(ym,k)f(ym,k, w)

=
1

2KN

∑
i

∑
l

l+1∑
k=l−1

∑
m

ηl × ρi(ym,k)f(ym,k, w)

=
1

2KN

∑
i

Ni

N

∑
l

1

Ni

l+1∑
k=l−1

Ni∑
m=1

ηl ⊗ ρi(yim,k)f(ym,k, w)︸ ︷︷ ︸
fl,i,m,k

.

We deduce that

1

3Ni

l+1∑
k=l−1

Ni∑
m=1

fl,i,m,k(y
i
m,k)→

�
fl,i,m,k dλ(l−1,l+2)×SU(2)
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and
Ni

N
→ λSU(2)(Ui),

and the above convergences are uniform in view of Theorem A.3 and Lem-
ma A.10. Hence the expression in (A.12) converges to

1

2K

M∑
i=1

∑
l

λSU(2)(Ui) · 3 ·
�
fl,i,m,k dλ(l−1,l+2)×Ui

=
1

2K

�∑
l

M∑
i=1

3λSU(2)(Ui)ηl ⊗ ρi · f(·, w) dλ(l−1,l+2)×Ui =
�
f(·, w) dλSn .

To end the proof it suffices to use Fubini’s theorem and take Ŝn := Sn ∩⋃
k∈Z

⋃n0
n=1 xn,k for n0 large enough. Notice that this is consistent with the

final choice of Ŝn in the proof of Proposition A.6(i).

Remark A.12. Without loss of generality, in Proposition A.6 we may
assume that Fn ∈ A for n ∈ N.

Remark A.13. The assertion of Proposition A.6 remains true if instead
of A,B ∈ A we consider sets A′, B′ which are finite unions of translations
of elements from A, provided that the number of elements in the union is
bounded for each n.
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