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Group-theoretic conditions under which
closed aspherical manifolds are covered by Euclidean space

by

Hanspeter Fischer (Muncie, IN) and David G. Wright (Provo, UT)

Abstract. Hass, Rubinstein, and Scott showed that every closed aspherical (irre-
ducible) 3-manifold whose fundamental group contains the fundamental group of a closed
aspherical surface, is covered by Euclidean space. This theorem does not generalize to
higher dimensions. However, we provide geometric tools with which variations of this
theorem can be proved in all dimensions.

1. Introduction and statement of results. Given a closed aspherical
manifold M , one is interested in conditions on its fundamental group which
ensure that M is covered by Euclidean space.

Employing least area techniques, Hass, Rubinstein, and Scott [9] showed
that this is the case when M is a P 2-irreducible 3-manifold whose funda-
mental group contains a subgroup isomorphic to the fundamental group of
a closed surface other than S2 or P 2. It is a long-standing conjecture that
all irreducible closed aspherical 3-manifolds are covered by Euclidean space.

Davis [3] constructed examples that answered the higher-dimensional
conjecture in the negative. In fact, Davis’s exotic manifolds illustrate that
the Hass–Rubinstein–Scott Theorem does not generalize to higher dimen-
sions. His open contractible manifolds (of any given dimension greater than
three) are not homeomorphic to Euclidean space, although each of them
covers a closed manifold M whose fundamental group contains a subgroup
isomorphic to the fundamental group of a closed codimension-one mani-
fold N which is covered by Euclidean space.

Independently, Houghton [10] and Jackson [11] proved the following the-
orem (see Sections 2 and 3 for definitions):

Theorem 1. Let
1→ H → G→ Q→ 1
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be a short exact sequence of finitely presented infinite groups. If either H
or Q is one-ended , then G is simply connected at infinity.

The universal covering space of a closed aspherical manifold M is hom-
eomorphic to Euclidean space if it is simply connected at infinity (provided
we assume irreducibility if the manifold is 3-dimensional). Since this is the
case precisely if its fundamental group G = π1(M) is simply connected at
infinity, Theorem 1 implies that M will be covered by Euclidean space if one
can exhibit a finitely presented infinite normal subgroup H of G of infinite
index such that either H or G/H is one-ended. (Note that the fundamental
group of a compact manifold is always finitely presented.)

In this article, we will develop tools that yield a geometric proof of the
Houghton–Jackson Theorem. We will also show how one can use these same
tools to prove related results. Some of the theorems, for which we provide
alternative proofs, are known. However, our techniques allow us to establish
results that were not previously known.

One of the theorems we shall prove in this way is

Theorem 2. Let M be a closed aspherical n-manifold (irreducible if
n = 3). Suppose the fundamental group of M contains a non-trivial cyclic
normal subgroup. Then M is covered by Euclidean space.

Remark. We note that such a subgroup must, in fact, be infinite cyclic.

In dimensions n ≥ 5, Theorem 2 has been proved by Lee and Raymond
[12], using algebraic techniques. In dimension n = 3, Theorem 2 can also be
deduced from the Seifert fiber space conjecture, whose proof was completed
only recently by Gabai [8], and, independently, by Casson and Jungries [2].

Combining Theorems 1 and 2 (see Section 6), one obtains a Hass–
Rubinstein–Scott-like result:

Corollary A. Let N and M be closed aspherical manifolds of dimen-
sion k and n, respectively , with k < n (and M irreducible if n = 3). If
π1(N) is isomorphic to a normal subgroup of π1(M), then M is covered by
Euclidean space.

We will then relax the normality condition and establish

Theorem 3. Let H be a finitely presented subgroup of a finitely pre-
sented group G. Suppose that the index of H in its normalizer NG(H) in G
is infinite. If both H and G are one-ended and the pair (G,H) is two-ended ,
then G is simply connected at infinity.

Applied to the setting of aspherical manifolds, Theorem 3 implies the
following alternative to Corollary A.

Corollary B. Let N and M be closed orientable aspherical manifolds
of dimension n − 1 and n, respectively (with M irreducible if n = 3). If
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π1(N) is isomorphic to a subgroup of π1(M) which has infinite index in its
normalizer in π1(M), then M is covered by Euclidean space.

The fact that the above assumptions ensure the two-endedness of the
pair (π1(M), π1(N)) follows from a theorem by Swarup [17].

In the last section of this article, we will analyze Davis’s examples from
the viewpoint of Corollary B. We will show that the situation is prototypical
of the obstruction which one encounters, by verifying that π1(N) equals its
normalizer in π1(M) in these examples.

2. Definitions. We begin by reviewing some basic definitions. Recall
that if p : X → X is a covering map (of connected, locally path connected
topological spaces), then the group Aut(X→X) of covering transformations
is isomorphic to NG(H)/H, where H=p#(π1(X)), G = π1(X), and NG(H)
denotes the normalizer of H in G. We will always suppress base points. The
action of Aut(X → X) on X is properly discontinuous and fixed-point free.
(Since all our spaces will be locally compact and Hausdorff, we will call
the action of a group Q on a topological space Y properly discontinuous if
{g ∈ Q | g(C) ∩C 6= ∅} is finite for every compact subset C ⊆ Y .) If X has
a universal covering space, we will denote it by X̃.

Conversely, if a group G acts on a connected, locally path connected
topological space Y properly discontinuously and fixed-point free, then the
quotient map Y → Y/G is a regular covering projection with automorphism
group isomorphic to G.

We will call the action of a group H on a topological space X cocompact
if there is a compact subset C ⊆ X such that H(C) = X. Here, and later,
H(E) is defined to be

⋃{h(E) | h ∈ H} for subsets E ⊆ X.
A non-compact topological space Y is called one-ended if for every com-

pact set A ⊆ Y there is a compact set B ⊆ Y such that A ⊆ B and every
pair of points in Y \B is joined by a path in Y \A. A one-ended space Y is
called simply connected at infinity if for every compact set A ⊆ Y there is a
compact set B ⊆ Y such that A ⊆ B and loops in Y \B contract in Y \A. In
the next section, we will extend these definitions to groups. Two-endedness
of pairs of groups will be defined in Section 7.

A topological space Y is called locally simply connected if for every y ∈ Y
and every neighborhood U of y in Y there is a neighborhood V of y in Y
such that V ⊆ U and loops in V contract in U .

A manifold is called aspherical if its universal covering space is con-
tractible. We note that all open contractible manifolds of dimension at least
two are one-ended. Moreover, if an open contractible n-manifold is simply
connected at infinity, then it is homeomorphic to Euclidean space, provided
we assume that the manifold is irreducible in case n = 3. (For n = 3, see
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Wall [19] and Brown [1]; for n = 4, this is due to Freedman [7]; for n ≥ 5 we
have the result of Stallings [16] and its strengthening by Siebenmann [15].)
Clearly, all one-dimensional and two-dimensional closed aspherical manifolds
are covered by Euclidean space.

We add to this list of definitions some relative notions of connectivity.
Let a triple C ⊆ D ⊆ Y of topological spaces be given. We will from now
on say that C is path connected in D if every pair of points in C is joined
by a path in D. Similarly, if all loops in C contract in D, we will call C
simply connected in D. We will say that C is one-ended in D with respect
to Y if C is not contained in a compact subset of Y and for every compact
set A ⊆ Y there is a compact set B ⊆ Y such that A ⊆ B and every pair of
points in C \B is joined by a path in D \A. Similarly, C is simply connected
at infinity in D with respect to Y if C is not contained in a compact subset
of Y and for every compact set A ⊆ Y there is a compact set B ⊆ Y such
that A ⊆ B and loops in C \ B contract in D \ A. Whenever the ambient
space Y is understood, we drop the reference to it.

3. Some tools. For this section, we fix two topological spaces X and
Y which are connected, locally path connected (and hence path connected),
locally compact, and Hausdorff. Suppose H is a subgroup of a group G and
assume that H and G act properly discontinuously on the spaces X and Y ,
respectively. Suppose, further, that the action of H on X is cocompact.
We will also assume that Y is locally simply connected (although this is
irrelevant for Lemmas 1, 3, and 4).

Remark. The existence of an action of H on a space X which satisfies
the above hypotheses is equivalent to the fact that H is finitely generated.

We state the following lemma for the record, its proof is immediate.

Lemma 1. For every compact set C ⊆ Y there is a compact set D ⊆ Y
such that C ⊆ D and C is path connected in D.

Lemma 2. Suppose Y is simply connected. Then for every compact set
C ⊆ Y there is a compact set D ⊆ Y such that C ⊆ D and C is simply
connected in D.

Proof. Choose open subsets U0, U1, . . . , Uk, V0, V1, . . . , Vk of Y such that
C ⊆ ⋃{Ui | i = 0, 1, . . . , k} and, for each i, Ui is simply connected in Vi, and
Vi has compact closure. One can then find a finite collectionW of open path
connected subsets of Y such that C ⊆ ⋃W and with the property that for
each pair W1,W2 ∈ W with W1 ∩W2 6= ∅, there is a Ui with W1 ∪W2 ⊆ Ui.

For example, one could use the following partition of unity to find W:
choose a compact set E ⊆ Y with C ⊆ intE ⊆ E ⊆ ⋃{Ui | i = 0, 1, . . . , k}
and continuous functions φi : E → [0, 1] such that φ−1

i ((0, 1]) ⊆ Ui for all
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i = 0, 1, . . . , k and
∑k

i=0 φ(x) = 1 for each x ∈ E. Define a map f from E to
a k-simplex σk = 〈v0, v1, . . . , vk〉 by defining f(x) =

∑k
i=0 φi(x)vi for x ∈ E.

Let W ′ be a covering of σk by finitely many open sets so that for each pair
W ′1,W

′
2 ∈ W ′ with W ′1∩W ′2 6= ∅, W ′1∪W ′2 lies in the open star Si of vi in σk

for some i. Since f−1(Si) ⊆ Ui, one can now select the desired collection W
from the path components of the sets f−1(W ′) ∩ intE, W ′ ∈ W ′.

Define a finite graph Γ as follows. For each W ∈ W take a vertex v(W ).
Join two distinct vertices v(W ) and v(W ′) by an edge e(W,W ′) whenever
W ∩ W ′ 6= ∅. Choose a map µ : Γ → Y such that µ(v(W )) ∈ W and
µ(e(W,W ′)) ⊆ W ∪W ′ for all W,W ′ ∈ W. Since Y is simply connected,
there is a homotopy from µ to a constant map. Choose a compact set D
such that it contains the closure of each Vi and the image of this homotopy.
A loop α in C can now be subdivided into paths αi so that each αi lies in
an element Wi ∈ W. If we connect the endpoints of each αi to µ(v(Wi))
with a path in Wi, we produce a bootstrap pattern between α and Γ whose
loops lie alternately in a member of W and in the union of two intersecting
members of W. This allows us to homotope α into µ(Γ ) within D. From
there we can contract it to a point within D.

Lemma 3. For every compact set C ⊆ Y there is a compact set D ⊆ Y
such that C ⊆ D and H(C) is path connected in H(D).

The proof is similar to but simpler than the proof of

Lemma 4. If X is one-ended , then for every compact set C ⊆ Y there
is a compact set D ⊆ Y such that C ⊆ D and H(C) is one-ended in H(D).

Proof. Let a compact set C ⊆ Y be given. Choose a compact set E ⊆ X
so that H(intE) = X. Choose a compact set D′ ⊆ Y such that C ⊆ D′ and
g1(D′) ∩ g2(D′) 6= ∅ whenever g1, g2 ∈ H and g1(E) ∩ g2(E) 6= ∅. (This is
possible since the set {g ∈ H | E ∩ g(E) 6= ∅} is finite.) Choose a compact
set D ⊆ Y such that D′ ⊆ D and D′ is path connected in D.

Now, let A ⊆ Y be compact. Choose a compact set L ⊆ X such that
X \ L is path connected in X \⋃{g(E) | g ∈ H, g(D) ∩ A 6= ∅}. Define the
compact set B =

⋃{g(D) | g ∈ H and either g(E)∩L 6= ∅ or g(D)∩A 6= ∅}.
If a, b ∈ H(C) \ B, then there are ga, gb ∈ H such that a ∈ ga(D′) and

b ∈ gb(D′). Hence, ga(D) ∩ A = ∅, ga(E) ∩ L = ∅, gb(D) ∩ A = ∅, and
gb(E) ∩ L = ∅. Pick a point a′ ∈ ga(E), a point b′ ∈ gb(E), and choose a
path γ′ : [0, 1] → X \ ⋃{g(E) | g ∈ H, g(D) ∩ A 6= ∅} with γ ′(0) = a′ and
γ′(1) = b′. Choose n ∈ N such that for each i ∈ {0, 1, . . . , n − 1} there is a
gi ∈ H such that γ′

([
i
n ,

i+1
n

])
⊆ gi(intE). Then we have ga(D′)∩g0(D′) 6= ∅,

gb(D′)∩gn−1(D′) 6= ∅, and gi(D′)∩gi+1(D′) 6= ∅ for all i ∈ {0, 1, . . . , n−2},
but gi(D) ∩ A = ∅ for all i ∈ {0, 1, . . . , n − 1}. Since D′ is path connected
in D, there is a path γ : [0, 1]→ H(D) \A with γ(0) = a and γ(1) = b.
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Lemma 5. Suppose both X and Y are simply connected. Then for every
compact set C ⊆ Y there is a compact set D ⊆ Y such that C ⊆ D and
H(C) is simply connected in H(D).

Remark. The existence of an action ofH on a simply connected spaceX
which satisfies the additional hypotheses stated at the beginning of this
section is equivalent to the fact that H is finitely presented.

Proof. Let C ⊆ Y be compact. Choose a compact set C ′ ⊆ Y such that
C ⊆ intC ′. Choose a compact set E ⊆ X such that H(intE) = X and
g1(E) ∩ g2(E) 6= ∅ whenever g1, g2 ∈ H and g1(C ′) ∩ g2(C ′) 6= ∅. Choose
a compact set E′ ⊆ X such that E ⊆ E′ and E is path connected in E ′.
Choose a compact set F ⊆ Y such that C ′ ⊆ F and

⋂{g(F ) | g ∈ S} 6= ∅
whenever S ⊆ H and

⋂{g(E′) | g ∈ S} 6= ∅. Choose a compact set F ′ ⊆ Y
such that F ⊆ F ′ and F is path connected in F ′. Put F ′′ =

⋃{g(F ′) | g ∈ H,
F ′ ∩ h(F ′) 6= ∅, and h(F ′) ∩ g(F ′) 6= ∅ for some h ∈ H}.

By Lemma 2, there is a compact subset D ⊆ Y such that F ′′ ⊆ D and
F ′′ is simply connected in D. For n ∈ N and x ∈ [0, 1]2 define the sets

G(n) =
{{

i

n

}
×
[
j

n
,
j + 1
n

] ∣∣∣∣ i ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , n− 1}
}

∪
{[

i

n
,
i+ 1
n

]
×
{
j

n

} ∣∣∣∣ i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1, . . . , n}
}
,

B(n) = {P ∈ G(n) | P ⊆ ∂[0, 1]2}, I(n) = G(n) \ B(n),

N (x, n) = {P ∈ G(n) | x ∈ P},

D(n) =
{

1
n
,

2
n
, . . . ,

n− 1
n

}
×
{

1
n
,

2
n
, . . . ,

n− 1
n

}
.

Let γ : ∂[0, 1]2 → H(C) be a loop. Since γ(∂[0, 1]2) ⊆ H(intC ′), there
is an n ∈ N such that for all P ∈ B(n) there is a gP ∈ H with γ(P ) ⊆
gP (intC ′). Choose γ′ : ∂[0, 1]2 → X such that γ′(P ) ⊆ gP (E′) for all P ∈
B(n). Since X is simply connected, we can extend γ ′ to f ′ : [0, 1]2 → X.
Since H(intE′) = X, there is an m ∈ N (m ≥ 2) such that for all P ∈ G(nm)
there is a gP ∈ H with f ′(P ) ⊆ gP (intE′).

Extend γ to a map f : ∂[0, 1]2 ∪ D(nm) → H(F ) such that f(x) ∈⋂{gP (F ) | P ∈ N (x, nm)} for all x ∈ D(nm). Next, extend f to a map⋃G(nm) → H(F ′) such that for all P ∈ I(nm) with P ⊆ int[0, 1]2 we
have f(P ) ⊆ gP (F ′), and for all P ∈ I(nm) with P 6⊆ int[0, 1]2 we have
f(P ) ⊆ gP (F ′) ∪ gQ(F ′) for some Q ∈ B(n) with P ∩ Q 6= ∅. Finally, since
for all i, j ∈ {0, 1, . . . , nm− 1} there is a g ∈ H such that f

(
∂
([

i
nm ,

i+1
nm

]
×[ j

nm ,
j+1
nm

]))
⊆ g(F ′′), we can, by choice of D, extend f to a map [0, 1]2 →

H(D). Hence, γ contracts in H(D).

Similarly, we have



Closed aspherical manifolds 273

Lemma 6. Suppose X is simply connected at infinity and Y is simply
connected. Then for every compact set C ⊆ Y there is a compact set D ⊆ Y
such that C ⊆ D and H(C) is simply connected at infinity in H(D).

Proof. We have to change the proof of Lemma 5 only slightly. Using the
same setup, let A ⊆ Y be compact. Choose a compact set L ⊆ X so that
X \ L is simply connected in X \ ⋃{g(E′) | g ∈ H, g(D) ∩ A 6= ∅}. Set
B = A ∪⋃{g(C ′) | g ∈ H, g(E′) ∩ L 6= ∅}. Now, if γ : ∂[0, 1]2 → H(C) \ B
is a loop, then γ′(∂[0, 1]2) ⊆ X \L (where γ′ is as before) and γ′ extends to
a map f ′ : [0, 1]2 → X \ ⋃{g(E′) | g ∈ H, g(D) ∩ A 6= ∅}. This yields an
extension f : [0, 1]2 → H(D) \A of γ.

Let us recall the following standard terminology. The group H is called
one-ended if X is one-ended, and simply connected at infinity if X is locally
simply connected, simply connected and simply connected at infinity. It is
well known that these definitions do not depend on the choice of X, but
rather are invariants of the group H. Note that admissible choices for X in-
clude (appropriate) locally finite CW-complexes and topological manifolds.

Remark. Lemmas 4 and 6 also provide an alternative to the standard
proofs of the fact that the above definitions are independent of the choice
of X. For if we further assume the action of H on Y to be cocompact, the
conclusions of Lemmas 4 and 6 are equivalent to Y being one-ended and
simply connected at infinity, respectively.

Lemma 7. Suppose both X and Y are simply connected , that the action
of G on Y is also cocompact , and that H is a normal subgroup of G. Then
for every compact set A ⊆ Y there is a compact set B ⊆ Y with A ⊆ B such
that if γ is a loop in Y \H(B) and h ∈ H, we can homotope γ to h ◦ γ by
a homotopy missing H(A).

Proof. Let the compact setA ⊆ Y be given. Choose a compact set C ⊆ Y
such that G(intC) = Y . By Lemma 3, there is a compact set D ⊆ Y such
that C ⊆ D and H(C) is path connected in H(D). Define E =

⋃{g(D) |
g ∈ G, D∩g(D) 6= ∅}. Then E is a compact subset of Y containing D. Using
Lemma 5, we may choose a compact set F ⊆ Y such that E ⊆ F and H(E)
is simply connected in H(F ). Put B =

⋃{g(F ) | g ∈ G, A ∩ g(F ) 6= ∅}.
Now, let γ : [0, 1] → Y \ H(B) be a map with γ(0) = γ(1) and let

h ∈ H. Choose n ∈ N such that for all i ∈ {0, 1, . . . , n− 1} there is a gi ∈ G
with γ

([
i
n ,

i+1
n

])
⊆ gi(intC). Then both γ

([
i
n ,

i+1
n

])
and h ◦γ

([
i
n ,

i+1
n

])
are

contained in giH(C) for all i ∈ {0, 1, . . . , n−1}. For each i ∈ {0, 1, . . . , n−1}
we connect γ

(
i
n

)
to h◦γ

(
i
n

)
with a path in giH(D). For i ∈ {0, 1, . . . , n−1}

and j = i+1, we have gi(D)∩gj(D) 6= ∅, where we put gn = g0. Therefore, for
all h′ ∈ H there is an h′′ ∈ H such that gih′′(D)∩gjh′(D) 6= ∅, because H is
normal in G, so that gjh′(D) ⊆ gih′′(E) by definition of E. We conclude that
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gjH(D) ⊆ giH(E). Consequently, the two paths joining γ
(
i
n

)
to h ◦ γ

(
i
n

)

and γ
( j
n

)
to h◦γ

( j
n

)
, respectively, both lie in giH(E), as do the paths γ|[ i

n
, j
n

]

and h ◦ γ|[ i
n
, j
n

]. By choice of F , these loops can be contracted in giH(F ).

This fills in a homotopy from γ to h ◦ γ missing H(A). For if giH(F ) ∩
H(A) 6= ∅ for some i ∈ {0, 1, . . . , n− 1}, we would have gih′(F ) ∩A 6= ∅ for
some h′ ∈ H, so that gih′(F ) ⊆ B, by the definition of B, implying that
γ
([

i
n ,

i+1
n

])
⊆ gi(C) ⊆ gi(F ) ⊆ H(B), contrary to our assumption on γ.

Later, we will also need

Lemma 8. Let L be a locally finite simplicial complex , r : L̃ → L the
universal covering , U a connected subcomplex of L such that the inclusion
induced homomorphism π1(U)→ π1(L) is surjective, and P a finite subcom-
plex of L. Then for every compact set A ⊆ L̃ there is a compact set B ⊆ L̃
with A ⊆ B and such that loops in r−1(U ∪ P ) \ B can be homotoped into
r−1(U) with a homotopy in L̃ missing A.

Proof. Since π1(U)→ π1(L) is surjective and U is connected, there is a
homotopy H that takes the 1-skeleton of L into U leaving the 1-simplices
of U fixed. For each 1-simplex σ of the finitely many 1-simplices of P which
do not lie in U , choose a compact subset Eσ of L̃ which contains a lift of
the given homotopy that takes σ into U . Put E =

⋃
Eσ. Let a compact

set A ⊆ L̃ be given. Choose a compact set B′ ⊆ L̃ with A ⊆ B′ such that
every translate of E (under a covering translation) which intersects A, lies
in B′. Choose a compact set B ⊆ L̃ with B′ ⊆ B such that every simplex
of L̃ which meets B′, lies in B. Let α be a loop in r−1(U ∪ P ) \B. We can
homotope r ◦ α to a loop that lies in the union of U and the 1-skeleton of
P such that during the homotopy points do not leave the top-dimensional
simplex containing them. The lift of this homotopy lies in L̃ \ B′; call its
end α′. Now, r ◦α′ can be homotoped into U using the homotopy H. We lift
this homotopy to a homotopy of α′ and call its end α′′. If a point is moved
during this final homotopy, then it must lie in a translate of E. Hence, the
track of such a point must miss A.

4. Proof of Theorem 2. From [20] we quote

Lemma 9 (The Orbit Lemma I). Suppose W is an open contractible n-
manifold , n ≥ 3. Let h be a non-trivial homeomorphism of W onto itself
so that the group H of homeomorphisms generated by h acts without fixed
points and properly discontinuously on W . If C is a compact subset of W ,
then loops of W can be homotoped off H(C). Furthermore, given a compact
set A there is a compact set B which contains A so that loops in W \B can
be homotoped off H(C) by a homotopy that lies in W \A.
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Proof of Theorem 2. LetH = 〈h〉 be a non-trivial cyclic normal subgroup
of π1(M). Note that h must have infinite order. (Otherwise s = |〈h〉| < ∞
and M̃/〈h〉 is a finite-dimensional K(Zs, 1), which contradicts the fact that
Zs has infinite cohomological dimension.) We assume that n ≥ 3 and wish
to show that M̃ is simply connected at infinity.

Let C ⊆ M̃ be compact. Use Lemma 7 to choose a compact set E ⊆ M̃
such that C ⊆ E and loops in M̃ \ H(E) can be homotoped to any H-
translate via a homotopy missing H(C). By Lemma 9, there is a compact
set D ⊆ M̃ such that E ⊆ D and loops in M̃ \ D can be homotoped into
M̃ \H(E) by a homotopy missing E (and hence C). Now, let γ be a loop
in M̃ \D. By choice of D we may already assume that γ lies in M̃ \H(E).
Since M̃ is simply connected, γ can be contracted to a point in M̃ . Let η
be the image of this contraction. Choose n ∈ N such that hn(η) ∩ C = ∅.
We then homotope γ to hn ◦ γ with a homotopy missing H(C), where it
contracts missing C.

5. A geometric proof of Theorem 1. We now want to use our tools
of Section 3 to give a geometric proof of the Houghton–Jackson Theorem.

To this end, let K be a finite connected simplicial complex with funda-
mental group G. We identify H with a subgroup of G and Q with G/H.
Let p : K̃ → K be the universal covering and identify G ≡ Aut(K̃ → K).
Put K = K̃/H with quotient (and covering) map q : K̃ → K, so that
H ≡ Aut(K̃ → K). We also identify Q = G/H with Aut(K → K). Note
that H is isomorphic to the fundamental group of a finite simplicial complex,
because it is finitely presented. Since H acts properly discontinuously and
cocompactly on the universal cover of this complex, we are in the setting of
Section 3 with two simply connected spaces.

Choose a finite connected subcomplex C of K̃ such that G(intC) = K̃,
H(C) is path connected, and the inclusion induced homomorphism π1(q(C))
→ π1(K) ' H is surjective.

We inductively define the following subsets of G/H. Put B0 = {H} and
Bn = {gH ∈ G/H | gH(C) ∩ g′H(C) 6= ∅ for some g′H ∈ Bn−1}. Then
each Bn is finite and G/H =

⋃
Bn. Finally, put Tn =

⋃{gH(C) | gH ∈
Bn \Bn−1}.

Lemma 10. G is one-ended.

Proof. Let D ⊆ K̃ be a compact set. Choose n ∈ N such that D ⊆⋃
j<n Tj and D ∩ Tn = ∅.

We claim that we may choose a compact set E ⊆ K̃ withD ⊆ E and such
that for any g1H, g2H ∈ Bn, every point of g1H(C)\E can be joined to some
point of g2H(C) by a path missing D. To see how, for each of the finitely
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many pairs g1H, g2H ∈ Bn, connect C to g−1
1 g2(C) by some path α in K̃.

Then for every h ∈ H, g1h ◦ α connects g1h(C) to g1hg
−1
1 g2(C) ⊆ g2H(C).

Hence, for any g1H, g2H ∈ Bn, every point of g1H(C) can be connected to
some point of g2H(C) by a concatenation of a translate of a path β in C and
a translate of some finite collection of paths (αi). Since only finitely many
translates of C and only finitely many translates of each αi intersect D, we
can choose E as claimed.

Now, let a, b ∈ K̃ \ E. These points may or may not lie in
⋃
j≤n Tj .

Without loss of generality, say a 6∈ ⋃j≤n Tj and b ∈ g1H(C) for some g1H

∈Bn. Connect a to a point p1 ∈ g2H(C) for some g2H ∈ Bn \ Bn−1 with
a path in K̃ \⋃j<n Tj . Connect b to a point p2 ∈ g2H(C) by a path miss-
ing D. Finally, connect p1 and p2 in g2H(C). This yields a path from a to
b missing D.

Lemma 11. Suppose Q is one-ended and a compact set E ⊆ K̃ is given.
Then for every compact set A ⊆ K̃ there is a compact set B ⊆ K̃ such that
A ⊆ B and loops in K̃ \ B can be homotoped off H(E) by a homotopy that
lies in K̃ \A.

Proof. Since K is one-ended, there is a finite subcomplex P of K and a
connected subcomplex U of K such that U∩q(E)=∅ and K=U∪P . Now, Q
is infinite so that v(q(C))∩P = ∅ for some v ∈ Q. Hence, v(q(C)) ⊆ U . Since
π1(q(C))→ π1(K) is surjective, so is π1(v(q(C)))→ π1(K). Hence π1(U)→
π1(K) is surjective. The result now follows at once from Lemma 8.

Lemma 12. If Q is one-ended , then G is simply connected at infinity.

Proof. Since H is infinite, we can repeat the argument used in the last
paragraph of the proof of Theorem 2, substituting Lemma 11 for Lemma 9
and an appropriate element of H for hn.

Lemma 13. If a, b ∈ Tn lie in the same component of K̃ \⋃j<n Tj , then
a and b can be joined by a path in Tn.

Proof. Join a to b via two paths, one lying in K̃ \⋃j<n Tj and the other

in
⋃
j≤n Tj . Since K̃ is simply connected this loop contracts. The result now

follows from the fact that Tn separates
⋃
j>n Tj from

⋃
j<n Tj .

If H is one-ended we can choose a finite subcomplex D of K̃ such that
C ⊆ D and H(C) is one-ended in H(D), by Lemma 4. Let us also arrange for
H(D) to be path connected. We then put T ′n =

⋃{gH(D) | gH ∈ Bn\Bn−1}.
Lemma 14. Suppose H is one-ended. Then for every compact set A ⊆ K̃

there is a compact subset B ⊆ K̃ with A ⊆ B such that if a, b ∈ Tn \B lie in
the same component of Tn, then a and b can be joined by a path in T ′n \A.
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Proof. By Lemma 4, there is a compact set B′ ⊆ K̃ with A ⊆ B′ such
that for all the finitely many gH ∈ Bn \Bn−1, gH(C)\B′ is path connected
in gH(D) \A. Choose a compact set B ⊆ K̃ with B′ ⊆ B such that for any
g1H, g2H ∈ Bn \Bn−1 with g1H(C) and g2H(C) in the same component of
Tn, every point of g1H(C) \B can be joined to some point of g2H(C) by a
path in Tn \B′.

Now suppose that a, b ∈ Tn \ B lie in the same component of Tn. Say
b ∈ gH(C) with gH ∈ Bn \ Bn−1. Join a to a point p0 ∈ gH(C) by a path
in Tn \ B′. Then join p0 to b by a path in gH(D) \ A. This yields a path
from a to b in T ′n \A.

Lemma 15. If H is one-ended , then G is simply connected at infinity.

Proof. Let a compact set A ⊆ K̃ be given. By Lemma 7, there is a
compact set E ⊆ K̃ with A ⊆ E so that loops in K̃ \ H(E) can be ho-
motoped to any H-translate via a homotopy missing H(A). Choose n ∈ N
such that E ⊆ ⋃j<n T

′
j and E ∩ T ′n = ∅. Pick any sH ∈ Bn \ Bn−1. Since

π1((sH)(q(C)))→ π1(K) is surjective, we can use Lemma 8 to find a com-
pact set F ⊆ K̃ with E ⊆ F such that loops in

⋃
j≤n T

′
j\F can be homotoped

into sH(D) by a homotopy missing E (and hence missing A). By Lemma 14,
there is a compact set B ⊆ K̃ with F ⊆ B such that points in Tn \ B that
are in the same component of Tn can be joined by paths in T ′n \ F .

Now, let γ be a loop in K̃ \ B. We wish to show that γ contracts in
K̃ \A. We may assume that γ is an edge path in the 1-skeleton of K̃. First
we argue that we may assume, without loss of generality, that γ lies either
in
⋃
j≤n T

′
j \ F or in K̃ \ H(E). For if γ intersects

⋃
j<n Tj and intersects⋃

j>n Tj we can cut it into finitely many subpaths that lie either in
⋃
j≤n Tj \

B or in
⋃
j≥n Tj \ B and whose endpoints are in Tn \ B. The latter kind

has its endpoints in the same component of Tn, by Lemma 13. We join
these endpoints by paths in T ′n \ F . This leaves us with the problem of
contracting finitely many loops that lie either in

⋃
j≤n T

′
j \F or in K̃ \H(E)

with homotopies that miss A. Since the first kind can be homotoped into
sH(D) ⊆ K̃ \ H(E) with a homotopy that misses A, we are actually left
with only loops of the second kind.

So, we now assume that γ is a loop in K̃ \H(E) to be contracted miss-
ing A. We do this as before. Since K̃ is simply connected, we can contract γ
to a point in K̃. Let η be the image of that contraction. Since H is infinite,
there is an h ∈ H with h(η)∩A = ∅. By choice of E we can homotope γ to
h ◦ γ by a homotopy missing H(A), where it contracts missing A.

6. Proof of Corollary A. Since we may assume by Theorem 2 that
N is at least 2-dimensional, we see that Ñ is one-ended. Then H = π1(N)
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is one-ended and infinite. Finally, both M̃/H and N are K(H, 1)’s and are
thus homotopy equivalent. Then Hn(M̃/H;Z2) = Hn(N ;Z2) = 0. Therefore
M̃/H is not compact. If we denote π1(M) by G, this implies that G/H,
whose cardinality equals the number of sheets of the covering M̃/H → M ,
is infinite. Now apply Theorem 1 to complete the proof.

7. Proof of Theorem 3. Let H be a subgroup of a group G. Suppose L
is a finite simplicial complex with regular covering L̂ → L whose automor-
phism group is isomorphic to G. Denote the quotient L̂/H by L. We say
that the pair (G,H) is two-ended if for every compact set A ⊆ L there is a
compact set B ⊆ L with A ⊆ B such that L \B has two components both
of which are unbounded. It can be shown that this notion is independent of
the choice of L̂→ L. (See [13] and [14] for a more general discussion of ends
of pairs of groups.)

Proof of Theorem 3. Let K̃,K,K, p, q be as in Section 5. Let A ⊆ K̃
be a compact set. We will find a compact set B ⊆ K̃ such that A ⊆ B
and K̃ \ B is simply connected in K̃ \ A. Since (G,H) is two-ended, we
may choose a finite subcomplex C1 ⊆ K̃ such that A ⊆ C1 and K \ q(C1)
has two components both of which are unbounded. We also arrange for the
inclusion induced map π1(q(C1)) → π1(K) to be surjective and for H(C1)
to be path connected. (Note that π1(K) ' H is finitely generated.) Use
Lemmas 4 and 5 to choose a finite subcomplex C2 ⊆ K̃ such that C1 ⊆ C2,
H(C1) is one-ended in H(C2), and H(C1) is simply connected in H(C2).
Again, we may assume that K \ q(C2) has two components both of which
are unbounded. Since the infinite group NG(H)/H ' Aut(K → K) acts
properly discontinuously on K and (gH)(q(T )) = q(g(T )) for all g ∈ NG(H)
and T ⊆ K̃, there are elements g1, . . . , g5 ∈ NG(H) such that the collection
{q(gi(C2)) | i = 1, . . . , 5} is pairwise disjoint and such that q(gi(C2)) lies in
the bounded component of K \ (q(gi−1(C2)) ∪ q(gi+1(C2))) for i = 2, 3, 4.
We take g3 = 1.

Let D be a finite subcomplex of K̃ such that q(D) equals the comple-
ment of the two unbounded components of K \ (q(g1(C2)) ∪ q(g5(C2))). By
Lemma 8, there is a compact set C3 ⊆ K̃ with A ⊆ C3 and such that loops
in q−1(q(D)) \ C3 = H(D) \ C3 can be homotoped into q−1(q(g2(C1))) =
g2H(C1) missing A. Finally, we choose a compact set B ⊆ K̃ with C3 ⊆ B
such that g1H(C1)\B and g5H(C1)\B are path connected in g1H(C2)\C3
and g5H(C2) \ C3, respectively.

Now, let γ be a loop in K̃ \ B. We may assume that γ is an edge path
in the 1-skeleton of K̃. If γ lies outside of H(D), we first contract it in K̃.
Since giH(C1) is simply connected in giH(C2), we can cut off this singular



Closed aspherical manifolds 279

disk at g2H(C1) ∪ g4H(C1) and cap it off at g2H(C2) ∪ g4H(C2). Hence, in
this case, γ contracts missing A.

If γ has subpaths which lie outside of H(D) and whose endpoints are in
g1H(C1) or g5H(C1), we connect the endpoints of each such subpath by a
path in g1H(C2) \C3 or g5H(C2) \C3, respectively. Since we can deal with
these newly formed loops as in the previous case, we may now assume that γ
lies entirely in H(D) \ C3.

If γ lies in H(D)\C3, we can homotope it into g2H(C1) missing A, where
it contracts within g2H(C2), still missing A.

8. Davis’s examples. In this section we will analyze the examples of
Davis mentioned in the introduction, and discover that π1(N) equals its
normalizer in π1(M) in these examples.

A Coxeter system Γ = 〈V | v2 = 1, (uv)m(u,v) = 1 for all u, v ∈ V 〉
(a group defined in terms of finitely many generators and specific relations) is
called right-angled if m(u, v) ∈ {∞, 2} for all u 6= v. Its nerve is defined to be
the abstract simplicial complex N(Γ, V ) consisting of all non-empty subsets
of V which generate a finite subgroup of Γ , where incidence is by inclusion.

Let P be the first barycentric subdivision of a non-simply connected
PL-homology (n − 1)-sphere. (Such examples exist in all dimensions 3 and
higher.) Then there is exactly one right-angled Coxeter system (Γ, V ) whose
nerve N(Γ, V ) is isomorphic to P , namely, the Coxeter group Γ which is
generated by the vertex set V of P and whose only relations are of the form
(uv)2 = 1 whenever {u, v} ∈ P (cf. [4]). Let C be the unique compact con-
tractible n-manifold with boundary N(Γ, V ); it will serve as a basic chamber.
Denote the dual cell of a vertex v in N(Γ, V ) by Cv (i.e. Cv is the star of
v in a further barycentric subdivision of N(Γ, V ).) Put M(Γ ) = Γ × C/∼
where (g, x) ∼ (h, y) ⇔ x = y and g−1h ∈ 〈v | x ∈ Cv〉. Then Γ acts
properly discontinuously and cocompactly on M(Γ ) by left multiplication
on the first coordinate.

In [3], Davis shows thatM(Γ ) is an open contractible manifold which is
not homeomorphic to Euclidean space. It is well known that the commutator
subgroup [Γ, Γ ] of Γ is torsion free and of finite index in Γ . (To see this,
consider the canonical epimorphism φ : Γ → Z|V |2 . Clearly, [Γ, Γ ] ⊆ kerφ.
Conversely, if g ∈ kerφ, then g is the product of generators each appearing an
even number of times. Hence, g[Γ, Γ ] = [Γ, Γ ] in the abelian group Γ/[Γ, Γ ]
so that g ∈ [Γ, Γ ]. The index is consequently given by [Γ : [Γ, Γ ]] = [Γ :
kerφ] = |Z|V |2 | = 2|V |. The fact that [Γ, Γ ] is torsion free can be proved
using the right-angled reduction scheme below, as is done for example in
Lemma 1.5 of [5].) Therefore [Γ, Γ ] acts fixed-point free and cocompactly on
M(Γ ). The quotient M(Γ )/[Γ, Γ ] is our manifold M .
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Fix an element v ∈ V . Then v acts as a reflection onM(Γ ) through the
fixed-point set Fix(v) = {p ∈ M(Γ ) | v(p) = p}. Put Ṽ = V ∩ lk(v,N(Γ, V ))
and let (Γ̃ , Ṽ ) be the induced right-angled Coxeter system. Then the nerve of
(Γ̃ , Ṽ ) is the PL-sphere lk(v,N(Γ, V )) and Fix(v) = {gCv | g ∈ Γ̃}. In fact,
we can identify Fix(v) with M(Γ̃ ), where Cv takes on the role of the basic
chamber. (See, for example, [6].) Now, Cv is a ball, so that Fix(v) =M(Γ̃ )
is homeomorphic to (n − 1)-dimensional Euclidean space. Since the com-
mutator subgroups, being the kernels of the respective abelianization ho-
momorphisms, satisfy [Γ̃ , Γ̃ ] = [Γ, Γ ] ∩ Γ̃ , the covering map p : M(Γ ) →
M(Γ )/[Γ, Γ ] = M restricts to p|Fix(v) : Fix(v) → Fix(v)/[Γ̃ , Γ̃ ]. The quo-
tient M(Γ̃ )/[Γ̃ , Γ̃ ] is our manifold N . Clearly π1(N) = [Γ̃ , Γ̃ ] ≤ [Γ, Γ ] =
π1(M). We will now verify that in these examples N[Γ,Γ ]([Γ̃ , Γ̃ ]) = [Γ̃ , Γ̃ ].

Recall that Coxeter groups have a very simple solution to the word
problem [18]: a word (finite sequence of generators) is reduced (minimal
in length) if and only if it cannot be shortened by a combination of the fol-
lowing two operations: (i) the obvious cancellation of a subword of the form
uu, and (ii) replacement of a subword of the form uwuwuw . . . (of length m)
by wuwuwu . . . (of length m), where m is the order of the element uw in
the group. This becomes especially easy to check in a right-angled Cox-
eter group. Specifically, if an element g of a right-angled Coxeter group
is expressed as a product of generators, say g = u1 . . . uq, then it can be
brought into reduced form by repeated application of the following opera-
tion: deletion of some ui = uj (1 ≤ i < j ≤ q) which commute with all of
ui+1, . . . , uj−1 in between, so that g = u1u2 . . . ûi . . . ûj . . . uq, where the hat
denotes omission.

Let g ∈ [Γ, Γ ] with g[Γ̃ , Γ̃ ]g−1 = [Γ̃ , Γ̃ ]. Express g = u1 . . . uq reduced
with all ui ∈ V . We will show that ui ∈ Ṽ for all i, so that g ∈ [Γ̃ , Γ̃ ]. Choose
the maximal index i0 with ui0 6∈ Ṽ (if there is such an index). Since [Γ̃ , Γ̃ ]
is a normal subgroup of Γ̃ , we have u1u2 . . . ui0 [Γ̃ , Γ̃ ]ui0 . . . u2u1 = [Γ̃ , Γ̃ ].
We now show that ui0x = xui0 for all x ∈ Ṽ . Let x ∈ Ṽ . Choose y ∈ Ṽ with
xyxy 6= 1. (The easiest way of seeing that such a y always exists is to take v
to be a barycenter of a top-dimensional simplex in the original triangulation
of the homology sphere.) Then

u1 . . . ui0xyxyui0 . . . u1s1 . . . sp = 1

for some si ∈ Ṽ , where we may assume s1 . . . sp to be reduced. Applying
the above right-angled reduction scheme to this equation, we conclude that
ui0x = xui0 , because otherwise only five types of deletions would be possible:

(i) u1 . . . ui0xyxŷui0 . . . ûj . . . u1s1 . . . sp with i0 > j ≥ 1;
(ii) u1 . . . ui0xyxŷui0 . . . u1s1 . . . ŝj . . . sp with 1 ≤ j ≤ p;
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(iii) u1 . . . ûi . . . ui0xyx(y)ui0 . . . ûj . . . u1s1 . . . sp with 1≤ i<i0, i0>j≥1;
(iv) u1 . . . ûi . . . ui0xyx(y)ui0 . . . u1s1 . . . ŝj . . . sp with 1≤ i<i0, 1≤j≤p;
(v) u1 . . . ui0xyx(y)ui0 . . . ûi . . . u1s1 . . . ŝj . . . sp with i0>i ≥ 1, 1≤j≤p.

(The parentheses around y in (iii)–(v) denote the possibility of y no longer
occurring in this position, due to a previous deletion of type (i) or (ii).)
However, no finite combination of these five reductions would ever cancel
the word. (Notice that repeated application of any of these five types of dele-
tions across the individually reduced expressions u1 . . . ui0 , xyxy, ui0 . . . u1,
and s1 . . . sp will leave each expression individually reduced, because any re-
duction of the thus shortened expression could have been carried out in the
original expression, where all relevant, but now missing, generators would
have commuted with the would-be deletion pair.)

Since ui0x = xui0 for all x ∈ Ṽ , we must have ui0 = v, because v is the
only vertex of N(Γ, V ) which is joined to all vertices of its link. Inductively,
we conclude that all ui ∈ {v} ∪ Ṽ . Since the word u1 . . . uq is reduced and
contains every generator an even number of times, we have in fact ui ∈ Ṽ
for all i.
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