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De
ompositions of saturated models of stable theoriesbyM. C. Laskowski (College Park, MD) andS. Shelah (Jerusalem and New Brunswi
k, NJ)
Abstra
t. We 
hara
terize the stable theories T for whi
h the saturated models of

T admit de
ompositions. In parti
ular, we show that 
ountable, shallow, stable theorieswith NDOP have this property.In [7℄, prior to his work 
lassifying the un
ountable models of 
ertain the-ories, the se
ond author proved a stru
ture theorem for the 
lass of a-models(i.e., Fa
κr(T )-saturated models in the notation of [7℄) of a superstable theorywith NDOP. Spe
i�
ally, in Chapter X of [7℄ he proved that an a-model ofsu
h a theory is a-prime and a-minimal over a normal tree of models, whereea
h node is a-prime over its prede
essor and the realization of a regulartype. Thus, among superstable theories, the notion of NDOP provides a di-
hotomy: Either the number of nonisomorphi
 a-models in ea
h 
ardinality

≥ 2|T | is maximal, or every a-model is determined up to isomorphism by atree of invariants. It is natural to ask whether a similar di
hotomy 
an befound for the larger 
lass of stable theories. The main obstru
tion is that anarbitrary stable theory need not have many regular types. Be
ause of thiswe relax the regularity requirement in De�nition 1.7. Our main result, The-orem 1.8, 
hara
terizes the stable theories for whi
h large saturated modelsadmit de
ompositions in this weaker sense.The �rst se
tion of the paper states our �ndings. Se
tion 2 gives somepreparatory lemmas that hold for arbitrary stable theories. In Se
tion 3we work over a single independent tree and 
hara
terize when the a-primemodel is a-minimal. In Se
tion 4 we prove Theorem 1.8. Finally, in Se
tion 52000 Mathemati
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t of restri
ting to a 
ountable language. By usingmethods of des
riptive set theory we derive unexpe
ted (to us) 
onsequen
esof NDOP (Theorem 1.11 and Corollary 1.12).We assume some familiarity with the notions and notational 
onventionsof stability theory, spe
i�
ally the forking 
al
ulus and orthogonality. Knowl-edge of the material in any of the basi
 arti
les or texts in stability (e.g., [1℄,[5℄, or [6℄) should be su�
ient. Also, sin
e many of the arguments that ap-pear here are variants of what o

urs in the superstable, NDOP situation, itmight be helpful for the reader to skim Chapter X of [7℄. We assume that weare working in a large, saturated stru
ture C and that our language admitselimination of quanti�ers, so the notions of submodel and elementary sub-model are inter
hangeable. To ease notation we do not distinguish betweenelements of C and �nite tuples. We write S(A) to denote the union of theStone spa
es Sn(A) of 
omplete types over A in n free variables. For brevitywe sometimes write AB in pla
e of A ∪B.A
knowledgements. Both authors are extremely grateful to the anony-mous referee for spotting several errors and vastly improving the 
larity ofthe exposition.1. Statement of results
Hypothesis. Throughout this paper all theories T are stable and κ alwaysdenotes the 
ardinal κr(T ).We work in the 
ategory of a-models of T . That is, M is an a-model ifand only if every type that is almost over a subset of M of size less than κ isrealized in M . An a-model M is a-prime over a set X if M embeds over Xinto any a-model N that 
ontains X. We rely heavily on Theorems IV 3.12and 4.14 of [7℄, whi
h assert that a-prime models exist over any set X, andare unique up to isomorphism over X. An a-model M is a-minimal over Xif there is no proper a-submodel of M 
ontaining X.We �rst des
ribe two spe
ies of trees of a-models and 
hara
terize whenthe a-prime model over the union of su
h a tree is in fa
t a-minimal over theunion.Definition 1.1. A tree I is a nonempty, downward 
losed subset of <ωδfor some ordinal δ. For η, ν ∈ I, we write η E ν if η is an initial segmentof ν. For η 6= 〈〉, η− denotes the (unique) immediate prede
essor of η.Definition 1.2. An independent tree of sets is a set {Xη : η ∈I} indexedby a tree I su
h that Xη ⊆Xν whenever η E ν and Xη ⌣

X
η−

⋃
{Xν : η 5 ν}for all η 6= 〈〉. We set XJ =

⋃
{Xη : η ∈ J} for any subtree J ⊆ I.An independent tree is normal if, in addition, tp(Xν/Xη) ⊥ Xη− for all

η, ν ∈ I satisfying η 6= 〈〉 and η = ν−.
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ompositions of saturated models 97Theorem 1.3. Let {Mη : η ∈ I} be any independent tree of a-models andlet M∗
I be a-prime over MI . Then the following properties are equivalent :(i) M∗

I is a-minimal over MI ;(ii) M∗
I does not 
ontain any in�nite indis
ernible sequen
es over MI ;(iii) For all nonalgebrai
 p ∈ S(M∗

I ), p 6⊥Mη for some η ∈ I;(iv) For all types p, if p 6⊥M∗
I then p 6⊥Mη for some η ∈ I.Two 
orollaries follow easily from this theorem.Corollary 1.4. Let {Mη : η ∈ I} be any independent tree of a-modelsand let M∗

I be a-prime over MI . If M∗
I is a-minimal over MI then M∗

J isa-minimal over MJ for any subtree J ⊆ I.Corollary 1.5. Fix a 
ardinal λ ≥ κ. Let {Mη : η ∈ I} be any inde-pendent tree of λ-saturated models and let M∗
I be a-prime over MI . If M∗

I isa-minimal over MI then M∗
I is λ-saturated.Next we des
ribe 
lasses of theories T for whi
h a-prime models over
ertain spe
ies of trees are always a-minimal. The strongest su
h property isthe minimality property for independent trees, whi
h asserts that for a giventheory T , the a-prime model over any independent tree of a-models of T isa-minimal. We say that T has the minimality property for normal trees ifthis holds for all normal trees. We will see below that these notions 
oin
ide.The following de�nitions are weakenings of these global notions. Theyonly require that a-prime models be a-minimal for independent trees indexedby some very simple index sets.Definition 1.6. For α any ordinal, let Iα be the tree of height twowith a unique root and whose su

essors are indexed by α. In parti
ular, I2denotes the 3-element tree with two in
omparable elements. Let J denotethe linearly ordered tree of length ω.A theory T has NDOP if a-prime models over any independent tree ofa-models indexed by I2 are ne
essarily a-minimal. For µ any in�nite 
ardinal,

T has µ-NDOP if for all α < µ, every a-prime model over every independenttree of a-models indexed by Iα is a-minimal. T has NDIDIP if a-prime modelsover independent trees of a-models indexed by J are a-minimal. T has normalNDIDIP if a-prime models over a normal tree of a-models indexed by J area-minimal.The reader who is disgusted with the phrase �normal NDIDIP� 
anrelax�for stable theories with κ-NDOP, it is equivalent to NDIDIP.An easy indu
tive argument shows that if T has NDOP, then T has
ω-NDOP. Additionally, sin
e every type over an a-model is based and sta-tionary over a set of size < κ, it follows from Theorem 1.3 that if T has
κ-NDOP then T has µ-NDOP for all 
ardinals µ. In parti
ular, when T is



98 M. C. Laskowski and S. Shelahsuperstable the notions of NDOP and µ-NDOP 
oin
ide. However, when Tis stri
tly stable there may be a gap between NDOP and κ-NDOP. It was asurprise to us to dis
over (see Theorem 1.11) that in fa
t the gap does notexist when T is 
ountable.The following notions are 
entral to our attempts at �nding invariantsfor a-models of stable theories.Definition 1.7. A partial de
omposition of an a-model M is a normaltree of a-submodels {Mη : η ∈ J} of M , where M〈〉 is a-prime over ∅ andfor every η 6= 〈〉, Mη is a-prime over Mη− ∪ {aη} for some �nite tuple aη. Ade
omposition of M is a partial de
omposition of M su
h that M is a-primeand a-minimal over MJ . A partial de
omposition is small if |M∗
J | < |M |.We say that the partial de
omposition {Nη : η ∈ I} extends {Mη : η ∈ J}simply if J is a subtree of I and Nη = Mη for all η ∈ J .Theorem 1.8. The following are equivalent for a stable theory T :(i) T has the minimality property for independent trees;(ii) Every small partial de
omposition of every saturated N of size > 2|T |extends to a de
omposition of N ;(iii) T has κ-NDOP and NDIDIP ;(iv) T has κ-NDOP and normal NDIDIP ;(v) T has the minimality property for normal trees.Re
all that a tree I is well-founded if it does not have an in�nite bran
h.Proposition 1.9. Suppose that T has κ-NDOP and {Mη : η ∈ I} is anindependent tree of a-models where the index tree I is well-founded. Thenevery a-prime model over MI is a-minimal over MI .A (stable) theory T is shallow if there is no in
reasing sequen
e 〈Mn :

n ∈ ω〉 of a-models of T su
h that Mn+1 is a-prime over Mn ∪{an} for sometuple an for every n and tp(Mn+1/Mn) ⊥ Mn−1 for all n > 0. Clearly, if Tis shallow and {Mη : η ∈ I} is a de
omposition of an a-model M , then theindexing tree I is well-founded.Corollary 1.10. If T has κ-NDOP and is shallow , then T has the min-imality property for independent trees. In parti
ular , su
h a theory satis�esNDIDIP.Until this point, the 
ardinality of the language of T was not relevant. By
ontrast, the 
ountability of T plays a 
ru
ial role in the following theorem,as it allows us to employ methods of des
riptive set theory (spe
i�
ally thatevery analyti
 subset of a Borel set has the property of Baire).Theorem 1.11. If T is 
ountable, then NDOP implies ω1-NDOP (hen
e
µ-NDOP for all 
ardinals µ).
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orollary follows immediately from the two pre
eding results.Corollary 1.12. T 
ountable, NDOP , shallow implies NDIDIP.2. Lemmas about saturation, nonforking and orthogonality. Inthis se
tion we prove some assorted lemmas about stable theories that willbe used in the following se
tions. The �rst is an easy 
hara
terization of
λ-saturation of models when λ ≥ κ.Lemma 2.1. Suppose that λ ≥ κ and M is an a-model su
h that forevery subset A ⊆M with |A| < λ and every nonalgebrai
 p ∈ S(A), there isa forking extension q ∈ S(M). Then M is λ-saturated.Proof. The de�nition of an a-model implies that M is κ-saturated, soassume that λ > κ. Choose any A ⊆ M with |A| < λ and 
hoose anynonalgebrai
 p ∈ S(A). Clearly, if there is any set B with A ⊆ B ⊆ M andany type p′ ∈ S(B) extending p that is algebrai
, then p is realized inM . But,if we assume by way of 
ontradi
tion that this is not the 
ase, there wouldbe no di�
ulty in 
onstru
ting (by indu
tion on α) a 
ontinuous, in
reasingsequen
e 〈Aα : α < κ〉 of subsets ofM , together with a sequen
e 〈pα : α < κ〉of types, su
h that A0 = A, p0 = p, ea
h pα ∈ S(Aα), |Aα| ≤ |A| + κ, and
pβ is a forking extension of pα for all α < β < κ. As stability 
ontradi
ts theexisten
e of su
h a sequen
e, the lemma is proved.Definition 2.2. Let {Xη : η ∈ I} be an independent tree of sets. A set
B is self-based on {Xη : η ∈ I} if tp(B/XH) does not fork over B ∩XH forall subtrees H ⊆ I.The following lemma is straightforward.Lemma 2.3. If X and A are any sets and |A| < κ, then there is a set
B ⊇ A su
h that |B| < κ, B \ A ⊆ X, and tp(B/X) does not fork over
B ∩ X. Furthermore, if B′ ⊇ B and B′ \ B ⊆ X, then tp(B′/X) does notfork over B′ ∩X.Proof. Given A and X, let C ⊆ X be su
h that |C| < κ and tp(A/X) isbased on C. Let B = A ∪ C.The next lemma is more substantial.Lemma 2.4. For every �nite index tree I, for every independent tree
{Xη : η ∈ I} of models, and for every set A of size < κ, there is a set B ⊇ Asu
h that |B| < κ, B \A ⊆ XI , and B is self-based on {Xη : η ∈ I}.Proof. We argue by indu
tion on |I|. If |I| = 1, this is immediate byLemma 2.3. So assume that |I| ≥ 2 and I = J ∪ {η∗}, where η∗ is a leafof I. Let {Xη : η ∈ I} be any independent tree of sets. We assume that the
on
lusion of the lemma holds for {Xη : η ∈ J}. Fix any set A with |A| < κ.By Lemma 2.3 
hoose B0 ⊇ A su
h that |B0| < κ, B0 \ A ⊆ XI , and
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tp(B0/XI) does not fork over B0 ∩XI . Now apply the indu
tive hypothesisto B0 to get B ⊇ B0 su
h that |B| < κ, B \ B0 ⊆ XJ (hen
e B \ A ⊆ XI),and B is self-based on {Xη : η ∈ J}. Finally, by employing Lemma 2.3 lg(η∗)times, beginning at η∗ and working downward to 〈〉, 
hoose a set C su
h that
B ∩Xη∗ ⊆ C ⊆ Xη∗ , |C| < κ, and tp(C/Xν) does not fork over C ∩Xν forall ν E η∗.We argue that the set BC is self-based on {Xη : η ∈ I}. To see this we setsome notation. Let µ = (η∗)−. For H ⊆ J a subtree, let H ′ be the smallestsubtree of J 
ontaining H and µ, and let H∗ = H ∪ {η∗}. Note that for anysubtree H ⊆ J , X(H′)∗ = XH∗ and XH∗ = XHXη∗ = XH′Xη∗ . Furthermore,sin
e B ∩ Xη∗ ⊆ C, (B ∩ XH) ∪ C = (B ∩ XH′) ∪ C. We begin with thefollowing 
laim.
Claim. For all subtrees H ⊆ J , B ⌣

(B∩XH)C
XH∗.Proof. Fix a subtree H ⊆ J . From our observations above we 
an repla
e

H by H ′ without 
hanging XH∗ or (B ∩XH)C. Thus, we may assume that
µ ∈ H. Sin
e XI = XJXη∗ and sin
e tp(B/XI) does not fork over B ∩XI ,we have

B ⌣
(B∩XJ )(B∩Xη∗)

XJXη∗ .Let D = (B ∩XJ) \XH , so B ∩XJ = D ∪ (B ∩XH). Thus(1) Xη∗ ⌣
XHD(B∩Xη∗)

B.Sin
e the tree {Xη : η ∈ I} is independent, tp(XJ/Xη∗) does not forkover Xµ. Sin
e µ ∈ H, we have Xµ ⊆ XH , so XHD⌣
Xµ

Xη∗ , so tp(D/XHXη∗)does not fork over XH . Combining this with (1) and applying transitivity ofnonforking yields(2) Xη∗ ⌣
XH(B∩Xη∗)

B.Sin
e B is self-based on {Xη : η∈J}, tp(B/XH) does not fork over B∩XH , so
B ⌣

(B∩XH)(B∩Xη∗)
XH .Transitivity and (2) imply

B ⌣
(B∩XH)(B∩Xη∗)

XHXη∗ ,so the Claim follows sin
e B ∩Xη∗ ⊆ C ⊆ Xη∗ .Now �x an arbitrary subtreeH ⊆ J . We will show that tp(BC/XH∗) doesnot fork over (BC)∩XH∗ and tp(BC/XH) does not fork over (BC)∩XH . Theformer statement follows immediately from the Claim sin
e (BC) ∩XH∗ =
(B∩XH)C. For the latter, 
hoose the shortest ν E η∗ su
h that tp(XH/Xη∗)
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e tp(C/Xν) does not fork over C ∩Xν and sin
e
C ⊆ Xη∗ , tp(C/XH) does not fork over C ∩Xν , hen
e

XH ⌣
(B∩XH)(C∩Xν)

C.So the Claim and the transitivity of nonforking give
XH ⌣

(B∩XH)(C∩Xν)
BC,whi
h su�
es sin
e (BC) ∩XH = (B ∩XH) ∪ (C ∩Xν).Proposition 2.5. Suppose that {Xη : η ∈ I} is an independent tree ofsets with |I| < κ and suppose that |A| < κ. Then there is a set B ⊇ A su
hthat |B| < κ, B \ A ⊆ XI , and B is self-based on {Xη : η ∈ I}.Proof. When κ = ℵ0 this is pre
isely Lemma 2.4, so assume κ > ℵ0. Webegin by indu
tively 
onstru
ting an in
reasing sequen
e 〈Bn : n ∈ ω〉 ofsets, ea
h of size < κ, su
h that B0 = A, Bn \A ⊆ XI , and tp(Bn/XJ) doesnot fork over Bn+1 ∩ XJ for all �nite subtrees J ⊆ I. This is possible byrepeated use of Lemma 2.4, sin
e there are fewer than κ �nite subtrees of I.Let B∗ =

⋃
{Bn : n ∈ ω}. Sin
e κ is regular and un
ountable, |B∗| < κ.We argue that B∗ is self-based on {Xη : η ∈ I}. Choose an arbitrary subtree

H ⊆ I and a �nite tuple b from B∗. To show that tp(b/XH) does not forkover B∗ ∩XH , 
hoose a �nite tuple c from XH and a formula ϕ(x, y) over
B∗ ∩ XH su
h that ϕ(b, c) holds. In order to show that ϕ(x, c) does notfork over B∗ ∩XH we show that ϕ(x, c) does not k-divide over B∗ ∩XH forany k ∈ ω. If, by way of 
ontradi
tion, ϕ(x, c) did k-divide over B∗ ∩ XH ,then 
hoose n ∈ ω and a �nite subtree J ⊆ H su
h that b ∈ Bn, c ∈ XJ ,and ϕ(x, y) is over Bn+1 ∩ XH . If 〈cn : n ∈ ω〉 were a witness to ϕ(x, c)
k-dividing over B∗ ∩ XH (i.e., tp(cn/B

∗ ∩ XH) = tp(c/B∗ ∩ XH) for all
n ∈ ω and {ϕ(x, cn) : n ∈ ω} is k-in
onsistent) then the same sequen
ewould witness ϕ(x, c) k-dividing (hen
e forking) over Bn+1 ∩ XJ . But thiswould imply tp(Bn/XJ) forks over Bn+1 ∩ XJ , whi
h is 
ontrary to our
onstru
tion of Bn+1.Our third group of results uses the ideas in [8℄ (whi
h in turn were moti-vated by ideas in [2℄) to prove a te
hni
al fa
t (Proposition 2.11) for arbitrarystable theories. Note that there is a mu
h shorter proof of this when T issuperstable, whi
h is due to the ubiquity of regular types over a-models.Definition 2.6. Let P ⊆ S(M) be a set of types over a model M . A set
B is weakly dominated by P over M if there is an independent set I over M
onsisting of realizations of P su
h that B is dominated by I over M . (It ispossible that I 
ontains many realizations of the same type in P.)Definition 2.7. Let M be any a-model. A 
omplete type p is an a-typeabove M if the domain of p is an a-model 
ontaining M . A 
lass P of a-types



102 M. C. Laskowski and S. Shelahabove M is M -determined if for every p ∈ P, either p does not fork over Mor p ⊥M . A 
lass P of a-types aboveM is dense above M if, for all a-models
N ⊇ M , every nonalgebrai
 type over N is nonorthogonal to some elementof P ∩ S(N).Definition 2.8. Let P be a 
lass of a-types aboveM . A P-sequen
e over
M is a sequen
e 〈Mi, aj : i ≤ α, j < α〉, where 〈Mi : i ≤ α〉 is an in
reasingsequen
e of a-models, M0 = M , for all i < α, tp(ai/Mi) ∈ P and Mi+1 isa-prime over Mi∪{ai}, and Mi is a-prime over ⋃

j<iMj for all limit ordinals
i ≤ α.Lemma 2.9. If P is an M -determined 
lass of a-types above M and
〈Mi, aj : i ≤ α, j < α〉 is a P-sequen
e overM , thenMα is weakly dominatedover M by {tp(aj/Mj)|M : j < α, tp(aj/Mj) does not fork over M}.Proof. Fix an M -determined 
lass P of a-types above M . We will prove(by simultaneous indu
tion on α) that if 〈Mi, aj : i ≤ α, j < α〉 isa P-sequen
e over M , I = {aj : tp(aj/Mj) does not fork over M} and
J = {aj : tp(aj/Mj) ⊥M}, then(i) I is independent over M ;(ii) Mα is dominated by I over M .The 
on
lusions are va
uous when α = 0 and are trivially veri�ed when α isa limit ordinal. So assume that the two 
onditions hold for the P-sequen
e
〈Mi, aj : i ≤ α, j < α〉. Choose any a∗ su
h that tp(a∗/Mα) ∈ P and let M∗be a-prime over Mαa

∗. We argue that the two 
onditions also hold for the
on
atenation of the original P-sequen
e with 〈M∗, a∗〉. Let p = tp(a∗/Mα).We �rst 
he
k that (i) 
ontinues to hold: If p ⊥M , then there is nothingto 
he
k. On the other hand, if p does not fork overM , then tp(a∗/MI) doesnot fork over M , hen
e I ∪ {a∗} is independent over M .We now 
he
k that (ii) 
ontinues to hold in both 
ases. First, assumethat p ⊥M . Then if any set X does not fork with I over M , then it followsfrom our indu
tive assumption that X does not fork with Mα over M . Sin
e
p ⊥M , tp(a∗/MαX) does not fork overMα. Sin
eM∗ is a-prime overMαa

∗,this implies that X does not fork with M∗ over Mα. Hen
e X does not forkwithM∗ over M by transitivity. On the other hand, suppose that p does notfork over M . In this 
ase, assume that X does not fork with Ia∗ over M .Then, sin
e I∪{a∗} is independent overM , a∗X does not fork with I overM .By our indu
tive hypothesis this implies that a∗X does not fork with Mαover M . In parti
ular, X does not fork with Mαa
∗ over M . So, X does notfork with M∗ over M , sin
e a∗ dominates M∗ over Mα.Lemma 2.10. Suppose that a 
lass P of a-types above M is dense above

M . Then for every b ∈ C, there is a P-sequen
e over M of length α < κ su
hthat b ∈Mα.
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t a P-sequen
e 〈Mi, aj : i ≤ α, j < α〉 over M of maxi-mal length su
h that tp(aj/Mjb) forks overMj for every j < α. For any su
hsequen
e tp(b/Mj+1) forks over Mj for all j < α, hen
e α < κ. But, sin
e Pis dense above M , the only way the pro
ess 
an terminate is if tp(b/Mα) isalgebrai
, so b ∈Mα.Proposition 2.11. Suppose that {Xj : j ∈ λ} is any 
olle
tion of subsetsof an a-model N . If a type p is not orthogonal to N but p ⊥ Xj for all j < λ,then there is a type q ∈ S(N) su
h that q 6⊥ p, but q ⊥ Xj for all j.Proof. Choose an a-model N0 ⊇ N with dom(p) ⊆ N0 and let p0 be thenonforking extension of p to N0. Choose A0 ⊆ N0 of size < κ su
h that
p0 is de�nable over A0. Choose C ⊆ N of size < κ su
h that tp(A0/N) isde�nable over C. Choose a set {Ni : i < κ} of a-models to be independentover N with tp(Ni/N) = tp(N0/N) for all i < κ. For ea
h 0 < i < κ 
hoosean automorphism σi of C �xing N pointwise and sending N0 onto Ni. Let
Ai = σi(A0) and pi = σi(p0). Sin
e p0 6⊥ N it follows that pi 6⊥ pj forall i < j < κ (see, e.g., 1.4.3.3 of [6℄). Let N∗ be an a-model 
ontaining⋃
{Ni : i < κ} and let

P0 = {r : r an a-type above N and {i < κ : r 6⊥ pi} has size < κ}.
Claim. Some nonalgebrai
 q ∈ S(N) is orthogonal to every r ∈ P0.Proof. We �rst argue that P0 is not dense above N∗. Suppose it were. Let

p+
0 denote the nonforking extension of p0 to N∗ and let b be any realizationof p+

0 . By Lemma 2.10 there would be a P0-sequen
e 〈Mi, aj : i ≤ α, j < α〉over N∗ of length α < κ su
h that b ∈ Mα. For ea
h j < α let rj =
tp(aj/Mj). Sin
e α < κ and ea
h rj ∈ P0 we 
ould �nd m < κ su
h that
rj ⊥ pm for every j < α. But now, if e is any realization of p+

m (the nonforkingextension of pm to N∗) then we argue by indu
tion on i ≤ α that tp(e/Mi)does not fork over N∗. In parti
ular, tp(e/Mα) does not fork over N∗, hen
e
p+

m and p+
0 would be almost orthogonal over N∗. But this would 
ontradi
t

p0 6⊥ pm sin
e N∗ is an a-model.So P0 is not dense above N∗. Fix an a-model N ′ ⊇ N∗ and a nonalgebrai
type q′ ∈ S(N ′) su
h that q′ is orthogonal to every r ∈ P0 ∩ S(N ′). Choose
D′ of size < κ satisfying C ⊆ D′ ⊆ N ′ over whi
h q′ is de�nable and 
hoose
D ⊆ N su
h that there is an automorphism f of C �xing C pointwise with
D = f(D′). Let q be the nonforking extension of f(q′|D′) to S(N).To see that q satis�es the Claim, 
hoose any r ∈ P0. Say r ∈ S(N ′′).Choose any E ⊆ N ′′ of size < κ on whi
h r is de�ned, and 
hoose anautomorphism τ of C su
h that τ |D = f−1|D (so τ �xes C pointwise and
τ(q) is parallel to q′) and τ(E) ⊆ N ′. Let r′ ∈ S(N ′) be parallel to τ(r).Sin
e E ∪ τ(E) is independent of Ai over C for almost all i < κ (i.e., fewerthan κ ex
eptions) and sin
e r ∈ P0, it follows that {i < κ : τ(r) 6⊥ pi}
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ontradi
tion, q 6⊥ r, thensin
e nonorthogonality is parallelism invariant, it would follow that q′ 6⊥ r′,
ontradi
ting our 
hoi
e of q′. Thus q ⊥ r for all r ∈ P0.We argue that any su
h q ∈ S(N) satis�es the 
on
lusions of the propo-sition. Fix su
h a q and 
hoose any j < λ. Let r ∈ S(N) be the nonforkingextension of any strong type over Xj . Sin
e p ⊥ Xj and sin
e {pi : i ∈ κ}are 
onjugate over N , r ⊥ pi for all i, hen
e r ∈ P0. Thus q ⊥ r. That is,
q ⊥ Xj for all j < λ.It remains to show that q 6⊥ p. Let q+ and p+

i (i < κ) denote thenonforking extensions of q and pi (respe
tively) to N∗. Let P+ = {p+
i :

i < κ}, let
P⊥⊥

0 = {p ∈ S(N∗) : p is orthogonal to every type s that isorthogonal to every type in P0}and let
P1 = {s : s is an a-type above N∗ su
h that either s ⊥ N∗ or

s is a nonforking extension of an element of P+ ∪ P⊥⊥
0 }.In a moment we will show that P1 is dense above N∗, but we �rst showthat this su�
es. On
e it is, then sin
e P1 is N∗-determined, it follows fromLemmas 2.9 and 2.10 that q+ is weakly dominated over N∗ by P+ ∪ P⊥⊥

0 .Sin
e q+ is nonalgebrai
, q+ (and hen
e q) is nonorthogonal to at least oneelement of P+ ∪ P⊥⊥
0 . Sin
e q is orthogonal to every element of P0, q is alsoorthogonal to every element of P⊥⊥

0 , so q 6⊥ pi for some i < κ. But, sin
e the
pi's are all 
onjugate over N and sin
e q ∈ S(N), it follows that q 6⊥ p0, so
q 6⊥ p.Thus, it su�
es to show that P1 is dense above N∗. Choose any a-model
M ′ ⊇ N∗ and any nonalgebrai
 r ∈ S(M ′). We argue that r is nonorthogonalto some element of P1 ∩S(M ′). We may assume that r 6⊥ N∗ and r ⊥ pi forall i < κ, otherwise r itself would be a witness. We 
omplete the proof by
onstru
ting a 
onjugate type r∗ ∈ P⊥⊥

0 su
h that r 6⊥ r∗. To a

omplish this,�rst note that r ∈ P0, hen
e r is orthogonal to every type that is orthogonalto every type in P0. Sin
e r 6⊥ N∗, we 
an 
hoose a type t ∈ S(N∗) su
hthat r 6⊥ t. Next, 
hoose sets D ⊆ M ′ and E ⊆ N∗ su
h that |D| < κ,
E = D∩N∗, C ⊆ E, t is de�nable over E, and r is de�nable over D. Finally,
hoose D′ ⊆ N∗ su
h that D and D′ realize the same strong type over E andare independent over E and let r∗ ∈ S(N∗) be de�nable over D′ in the samemanner that r is over D. Sin
e r 6⊥ E, r 6⊥ r∗. Also, sin
e D and D′ realizethe same type over C, r∗ is also orthogonal to every type that is orthogonalto every element of P0. Thus, r∗ ∈ P⊥⊥

0 , so s, the nonforking extension of r∗to S(M ′), is nonorthogonal to r and is in P1 ∩ S(M ′).
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h is avariant on the more familiar fa
t that if {Bi : i ∈ κ} are independent over aset A and a stationary type p is nonorthogonal to every Bi, then p 6⊥ A. Thebuildup to the proof of this proposition develops the notion of nonforking inan ultrapower of the monster model. For the rest of this se
tionFix a nonprin
ipal ultra�lter D on ω and let C
∗ =

∏
C/D.We abuse notation slightly and 
onsider C

∗ to be an elementary extensionof C. Spe
i�
ally, we identify an element a ∈ C with the diagonal element
〈a : i ∈ ω〉/D ∈ C

∗. For a subset X ⊆ C we let X∗ denote ∏
X/D. By ournotational 
onvention X ⊆ X∗ ⊆ C

∗.Lemma 2.12. For any a ∈ C and B ⊆ C, tp(a/B∗) does not fork over B.Proof. Choose any model M su
h that B ⊆ M ⊆ C and tp(a/M) doesnot fork over B. It 
learly su�
es to show that tp(a/M∗) does not forkover M . So suppose that θ(a, b∗) holds (in C
∗, where a is identi�ed with itsdiagonal element) for some formula θ(x, y) with no hidden parameters. By�nite satis�ability, it su�
es to �nd some b ∈ M su
h that θ(a, b) holds.Choose a representation b∗ = 〈bi : i ∈ ω〉/D with ea
h bi ∈M . Sin
e θ(a, b∗)holds, {i ∈ ω : θ(a, bi)} ∈ D, so is nonempty.Lemma 2.13. Suppose that A ⊆ Bi ⊆ C for all i ∈ ω, and {Bi : i ∈ ω}is independent over A. Then C⌣

A
B, where B =

∏
i∈ω Bi/D.Proof. Choose any d ∈ C and a model M satisfying A ⊆ M ⊆ C and

M⌣
A

⋃
{Bi : i ∈ ω}d. Then {Bi : i ∈ ω} is independent over M and bytransitivity it su�
es to prove that tp(d/MB) does not fork over M . Let

θ(x, y) be an L(M)-formula su
h that θ(d, b∗) holds for some b∗ ∈ B. By�nite satis�ability it su�
es to �nd some m ∈M su
h that θ(d,m) holds.Let E = M ∪ {Bi : i ∈ ω}. Sin
e tpθ(d/E) is de�nable, there is an
L-formula ψ(y, z) and an e ∈ E su
h that(3) θ(d, c) ↔ ψ(c, e)for all c ∈ E. Choose a representation 〈bi : i ∈ ω〉/D for b∗ with bi ∈ Bi forall i ∈ ω. Sin
e θ(d, b∗) holds, {i ∈ ω : θ(d, bi)} ∈ D. Sin
e D is nonprin
ipaland e is �nite, and {Bi : i ∈ ω} is independent overM , there is an i ∈ ω su
hthat both θ(d, bi) holds and e⌣

M
bi. Sin
e bi ∈ E, (3) implies that ψ(bi, e)holds. Thus, by symmetry and �nite satis�ability there is m ∈M su
h that

ψ(m, e) holds. By (3) again, θ(d,m) holds and we �nish.Lemma 2.14. Suppose that {ai : i ∈ ω} ⊆ C, N ⊆ C is a model , andfor ea
h i ∈ ω, Mi ⊆ N is a model su
h that tp(ai/N) does not fork over
Mi. Then tp(a∗/N∗) does not fork over M , where a∗ = 〈ai : i ∈ ω〉/D and
M =

∏
i∈ω Mi/D.



106 M. C. Laskowski and S. ShelahProof. First, note that M is itself a submodel of C
∗. Let θ(x, y) be any

L-formula and let c∗ ∈ N∗ be any element su
h that θ(a∗, c∗) holds. By�nite satis�ability it su�
es to �nd b∗ ∈ M su
h that θ(a∗, b∗). Choose arepresentation 〈ci : i ∈ ω〉/D for c∗ with ea
h ci ∈ N . Let R = {i ∈ ω :
θ(ai, ci)}. Sin
e θ(a∗, c∗) holds, R ∈ D. We 
onstru
t a sequen
e 〈bi : i ∈ ω〉as follows: For ea
h i ∈ R, 
hoose bi ∈Mi su
h that θ(ai, bi). (This is possiblesin
e tp(ai/N) does not fork over Mi.) For any i 6∈ R, let bi be an arbitraryelement of Mi. Let b∗ = 〈bi : i ∈ ω〉/D. Then b∗ ∈M and θ(a∗, b∗) holds.We apply these three lemmas in the proof of Proposition 2.16 below.Definition 2.15. Let ∆ be a �nite set of (partitioned) L-formulas andlet B be any set. A stationary type p is ∆-nonorthogonal to B, written
p 6⊥∆ B, if there is a set D ⊇ dom(p) ∪ B, ϕ(x, yz) ∈ ∆, and elements arealizing p|D, b ∈ D, and c ∈ C su
h that tp(c/D) does not fork over B,
ϕ(a, bc) holds, and R∆(p|D ∪ {ϕ(x, bc)}) < R∆(p).Clearly, p 6⊥ B if and only if p 6⊥∆ B for some �nite ∆. Also, if B ⊆ B′and p 6⊥∆ B then p 6⊥∆ B′.Proposition 2.16. Let ∆ be a �nite set of formulas and let p be anystationary type. If {Bi : i ∈ ω} are independent over A and p 6⊥∆ Bi forea
h i ∈ ω, then p 6⊥ A.Proof. To begin we indu
tively �nd submodels {Mi : i ∈ ω} of C su
hthat Bi ⊆Mi (hen
e p 6⊥∆ Mi) for ea
h i, yet {Mi : i ∈ ω} are independentover A. For ea
h i, 
hooseDi 
ontaining dom(p)∪Mi as in the de�nition of∆-nonorthogonality and let N be a substru
ture of C 
ontaining ⋃

{Di : i ∈ ω}.By repla
ing p by its nonforking extension to N , we may assume that p ∈
S(N). Let D be any nonprin
ipal ultra�lter on ω, let M =

∏
i∈ω Mi/D andlet N∗ =

∏
N/D. It follows immediately from Lemma 2.13 that N ⌣

A
M .So, in light of X 1.1 of [7℄, in order to 
on
lude that p 6⊥ A it su�
es toshow that p 6⊥ M . In fa
t we will show that p is ∆-nonorthogonal to M bydemonstrating that N∗ is a suitable 
hoi
e of D in De�nition 2.15.Let a be any realization of p. It follows from Lemma 2.12 that a realizesthe nonforking extension p∗ of p to N∗. Let k = R∆(p) = R∆(p∗). Forea
h i ∈ ω, sin
e Di ⊆ N we 
an �nd ϕi ∈ ∆, bi ∈ N , and ci ∈ C su
h that

ϕi(a, bici) holds, tp(ci/N) does not fork overMi and R∆(p∪{ϕi(x, bici)})<k.Sin
e ∆ is �nite we may assume that ϕi is identi
ally ϕ for all i. Let b∗ = 〈bi :
i ∈ ω〉/D and c∗ = 〈ci : i ∈ ω〉/D. Then b∗ ∈ N∗ and ϕ(a, b∗c∗) holds. Sin
e
p is stationary, its ∆-multipli
ity is 1, hen
e {yz : R∆(p ∪ {ϕ(x, yz)}) < k}is de�nable. So the �o± theorem yields

R∆(p∗ ∪ {ϕ(x, b∗c∗)}) < k = R∆(p∗).
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e tp(ci/N) does not fork over Mi for ea
h i, tp(c∗/N∗) does notfork over M by Lemma 2.14. So N∗ witnesses p 6⊥∆ M and we �nish.3. Lo
al minimality: Proofs of 1.3�1.5. In this se
tion we work overa spe
i�
 independent tree and investigate the 
onsequen
es of the a-primemodel over it being a-minimal. In parti
ular, we prove Theorem 1.3 and two
orollaries that follow from it.Lemma 3.1. Let {Mη : η ∈ I} be any independent tree of a-models,let J ⊆ I be any subtree, and let a = 〈aα : α < β〉 be any a-
onstru
tionsequen
e over MJ . Then a is an a-
onstru
tion sequen
e over MI and
tp(a/MI) does not fork over MJ . In parti
ular , if M∗

J is a-prime over MJ ,then M∗
J is the universe of an a-
onstru
tion sequen
e over MI and

tp(M∗
J/MI) does not fork over MJ .Proof. Let K be a maximal subtree su
h that J ⊆ K and stp(a/MJ) ⊢

stp(a/MK). It follows that a is an a-
onstru
tion sequen
e over MK . Byway of 
ontradi
tion assume that K 6= I. Choose ν ∈ K and an immediatesu

essor η ∈ I \K. Now MK ⌣
Mν

Mη and Mν is an a-model, so, using eitherV 3.2 of [7℄ or I 4.3.4 of [6℄, an easy indu
tion on β shows that K ∪ {η}
ontradi
ts the maximality of K. The �nal senten
e follows immediately.Proof of Theorem 1.3. The equivalen
es (i)⇔(ii) and (iii)⇔(iv) havenothing to do with trees. (i)⇔(ii) is the 
ontent of IV 4.21 of [7℄, (iv)⇒(iii)is trivial, and (iii)⇒(iv) follows immediately from Proposition 2.11 (takethe sets Xi to be the submodels Mη of M). The other two impli
ations aregeneralizations of arguments that appear in the proof of X 2.2 of [7℄.(ii)⇒(iii). Let r ∈ S(M∗
I ) be nonalgebrai
 and assume that r ⊥ Mηfor all η ∈ I. Choose A ⊆ M∗

I of size less than κ over whi
h r is basedand stationary. Fix a subtree J ⊆ I of size < κ and an a-prime submodel
M∗

J ⊆M∗
I that 
ontains A. Call a subset B ⊆M∗

J suitable if A ⊆ B, |B| < κ,and B is self-based on {Mη : η ∈ J}. It follows from Proposition 2.5 thatfor every set C ⊆M∗
J of size < κ, there is a suitable B 
ontaining C. Thus,by iterating the Claim below ω times we 
an 
onstru
t an in�nite Morleysequen
e J in r over A insideM∗

I , su
h that tp(J/AMI) does not fork over A.In parti
ular, su
h a J is indis
ernible over MI . So, it su�
es to prove thefollowing:
Claim. If B is suitable and c realizes r|B, then tp(c/B) ⊢ tp(c/BMI).Proof. Fix a suitable B and let c denote any realization of r|B. We write

Bη for B ∩Mη and BJ ′ = B ∩MJ ′ for subtrees J ′ of J .We �rst argue that tp(c/B) ⊢ tp(c/BM〈〉). Choose any �nite tuple afromM〈〉. Sin
e B is suitable, tp(a/B) does not fork over B〈〉. But tp(a/B〈〉)is parallel to a type over M〈〉, hen
e r is orthogonal to tp(a/B). This implies
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B
c. Sin
e c was an arbitrary realization of r|B, this implies tp(c/B) ⊢

tp(c/Ba), hen
e tp(c/B) ⊢ tp(c/BM〈〉).Now let J ′ be a maximal subtree of J su
h that tp(c/B) ⊢ tp(c/BMJ ′).We demonstrate that J ′ = J . From the previous paragraph J ′ is nonempty. If
J ′ 6= J then there is ν ∈ J \J ′ su
h that its immediate prede
essor, denotedby η, is in J ′. As above, 
hoose a ∈ Mν . Sin
e we know that tp(c/B) ⊢
tp(c/BMJ ′), it su�
es to show that tp(c/BMJ ′) ⊢ tp(c/BMJ ′a).
Subclaim. a ⌣

MηBν

MJ ′B.Proof. Sin
e the original tree is independent, Mν ⌣
Mη

MJ ′ . Sin
e aBν ⊆

Mν this implies(4) a ⌣
MηBν

MJ ′Bν .However, sin
e B is suitable, tp(B/MJ ′Mν) does not fork over BJ ′Bν . Thus,
B ⌣

MJ′Bν

Mν . Sin
e a ∈ Mν , symmetry provides a ⌣
MJ′Bν

B, so the Sub
laimfollows from (4) and transitivity.Now let p = tp(a/MJ ′B). The type p does not fork over MηBν ⊆Mν , so
p ⊥ r. Thus, tp(c/BMJ ′) ⊢ tp(c/BMJ ′a). Hen
e J ′ = J .We have now established that tp(c/B) ⊢ tp(c/BMJ). We argue thatin fa
t tp(c/B) ⊢ tp(c/BMI). To see this, let I ′ be a maximal subtree that
ontainsMJ su
h that tp(c/B) ⊢ tp(c/BMI′). As above, if I ′ 6= I, then therewould be ν ∈ I \ I ′ whose immediate prede
essor η is in I ′. Sin
e the treeis independent, Mν ⌣

Mη

MI′ . Sin
e B ⊆ M∗
J and J ⊆ I ′, Lemma 3.1 impliesthat B is a-
onstru
tible, hen
e a-atomi
 over MI′ . Sin
e Mη is a-saturated,

BMI′ is dominated by MI′ over Mη. Thus, Mν ⌣
Mη

MI′B. Also, for any �nitetuple a from Mν , tp(a/Mη) ⊥ r. Thus, a ⌣
MI′B

c for any su
h a. It followsthat tp(c/B) ⊢ tp(c/BMI′Mν), 
ontradi
ting the maximality of I ′. Hen
e
I ′ = I and the proof of (ii)⇒(iii) is 
omplete.(iv)⇒(ii). Let J ⊆ M∗

I be a 
ountably in�nite, indis
ernible sequen
eover MI . By stability, J is an indis
ernible set over MI . Partition J into twoin�nite sets J0 and J1. Then, by taking B =
⋃

J0 when κ ≥ ω1 or to bea su�
iently large �nite subset of J0 when κ = ω, |B| < κ and J1 is anin�nite, independent sequen
e over B su
h that J1⌣
B
MI . Let a ∈ J1 andlet p = tp(a/B). Without loss, we may assume that p is stationary.

Claim. p ⊥Mη for all η ∈ I.Proof. By way of 
ontradi
tion, 
hoose η su
h that p 6⊥ r for some r ∈
S(Mη). Sin
e p(n) is not almost orthogonal to r(n) over BMI , we 
an in
rease
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B by �nitely many elements of J1 and repla
e r by r(n) and thereby assumethat

p ⊥/a

BMI

r.Choose A ⊆ Mη of size less than κ su
h that r is based and stationaryover A. Sin
e M∗
I is a-prime over MI , we 
an 
hoose C ⊆ MI , also of sizeless than κ, su
h that A ⊆ C and stp(aB/C) ⊢ stp(aB/MI). Note that this
ondition implies that(5) a∗B⌣

C
MIfor any a∗ su
h that tp(a∗/BC) = tp(a/BC). Sin
e forking is witnessed bya single formula, there is D with C ⊆ D ⊆ MI su
h that D \ C is �niteand tp(a/B) ⊥/a

BD
r. Sin
e Mη is a-saturated and r is based and stationaryon A, there is e ∈Mη su
h that tp(e/A) is parallel to r and tp(e/BD) doesnot fork over A. So, by the non-almost orthogonality 
ondition, there is a∗realizing tp(a/B) su
h that a∗⌣

B
D and a∗ ⌣/

BD
e.But, sin
e tp(a/MI) does not fork and is stationary over B, this impliesthat a and a∗ have the same type over BD, hen
e over BC. So (5) impliesthat tp(a∗B/MI) does not fork over C. Sin
e De ⊆ MI this would implythat tp(a∗/BDe) does not fork over BD, whi
h is a 
ontradi
tion.Proof of Corollary 1.4. This is straightforward. Fix an independent tree

{Mη : η ∈ I} of a-models su
h that the a-prime model M∗
I is a-minimaland �x a subtree J ⊆ I. To show that M∗

J is a-minimal over MJ it su�
esto show that every nonalgebrai
 type p ∈ S(M∗
J ) is nonorthogonal to some

Mη with η ∈ J . So �x su
h a type p. Sin
e p has a nonforking extension to
S(M∗

I ) and sin
e M∗
I is a-minimal, p 6⊥ Mη for some η ∈ I. Choose su
han η of least length and assume by way of 
ontradi
tion that η 6∈ J . Then

lg(η) 6= 0 and there is ν E η of maximal length su
h that ν ∈ J . Sin
ethe tree is independent, tp(Mη/MJ) does not fork over Mν . Sin
e Mν is ana-model, this implies that tp(Mη/M
∗
J ) does not fork overMν . But then, sin
e

p ⊥ Mν , forking symmetry and X 1.1 of [7℄ imply that p ⊥ Mη, whi
h is a
ontradi
tion.Proof of Corollary 1.5. If λ = κ there is nothing to prove sin
e a-modelsare κ-saturated. So �x λ > κ and an independent tree {Mη : η ∈ I} of
λ-saturated a-models. Suppose that the a-prime model M∗

I over MI is a-minimal over MI . Choose A ⊆ M with |A| < λ and 
hoose a nonalgebrai

q ∈ S(A). Be
ause of Lemma 2.1 it su�
es to show that q has a forkingextension in S(M∗

I ). Choose a subset A0 ⊆ A of size less than κ over whi
h
q is based and let q0 denote the restri
tion of q to A0. By appending a
ountable Morley sequen
e in q0 to A0, we may additionally assume that
q0 is stationary. Sin
e M∗

I is a-minimal over MI , q0 6⊥ Mη for some η ∈ I.
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h that p 6⊥ q0 and 
hoose B ⊆ Mη of size less than κover whi
h p is based and stationary. Let p0 denote the restri
tion of p to B.Sin
e p0 6⊥ q0, there is an n ∈ ω su
h that p(n+1)
0 is not almost orthogonalto q(n+1)

0 over BA0. Sin
e M∗
I is an a-model, there are �nite sequen
es Cand D in M∗

I realizing p(n)
0 and q(n)

0 respe
tively. Thus,
p0 ⊥/a

A0BCD
q0.Sin
e Mη is λ-saturated there is a Morley sequen
e 〈ei : i ∈ λ〉 in M∗

I of(independent) realizations of p0 over B of length λ. Sin
e |ABCD| < λ thisimplies that tp(ei/ABCD) does not fork over B for some i. But then q hasa forking extension to S(ABCDei) and we �nish.4. Global minimality: Proofs of 1.8�1.10. We begin with a de�ni-tion and a series of lemmas.Definition 4.1. A partial de
omposition {Mη : η ∈ J} is λ-full if forevery η ∈ J and every nonalgebrai
 p ∈ S(Mη) satisfying p ⊥ Mη− (when
η 6= 〈〉) there is a set Hη ⊆ J of λ immediate su

essors of η su
h that Mνrealizes p for every ν ∈ Hη.The proof of the following lemma is a routine exer
ise in bookkeeping.(Note that if {Mη : η ∈ J} is a partial de
omposition of C, then for ea
h η,
|Mη| ≤ 2|T |, so |S(Mη)| ≤ 2|T |.)Lemma 4.2. If {Mη : η ∈ J} is a partial de
omposition of C and λ ≥
2|T | + |J |, then there is a tree I of size λ and a λ-full partial de
omposition
{Mη : η ∈ I} of C extending it.Lemma 4.3. If |I| = λ > 2|T |, {Mη : η ∈ I} is a λ-full partial de
omposi-tion of C, and M∗

I is a-minimal over MI , then M∗
I is λ-saturated. Moreover ,if λ<κ = λ, then M∗

I is saturated of power λ.Proof. Fix A ⊆ M∗
I of size < λ and a nonalgebrai
, stationary type

p ∈ S(A). We argue that p has a forking extension in S(M∗
I ).Let µ = |A| + 2|T |. Choose a subtree J ⊆ I with |J | ≤ µ and an a-primesubmodel M∗

J � M∗
I su
h that A ⊆ M∗

J . Sin
e M∗
I is a-minimal, M∗

J isa-minimal by Corollary 1.4. Thus by Theorem 1.3(iv) we 
an 
hoose η ∈ Jof minimal length su
h that p 6⊥Mη. By Proposition 2.11, there is q ∈ S(Mη)su
h that p 6⊥ q and q ⊥Mη− when η 6= 〈〉.Let p′, q′ denote the respe
tive nonforking extensions of p, q to S(M∗
I ).Sin
e M∗

I is an a-model, p′ ⊥/a

M∗
I

q′. Choose a subset D su
h that AMη ⊆

D ⊆M∗
I su
h that |D| ≤ µ and p′′ ⊥/a

D
q′′, where p′′, q′′ denote the respe
tiverestri
tions of p, q to D. Sin
e {Mη : η ∈ I} is λ-full and |D| < λ, there is
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b ∈ M∗

I realizing q′′. Thus, p has a forking extension to M∗
I , whi
h impliesthat M∗

I is λ-saturated by Lemma 2.1.Finally, sin
e {Mη : η ∈ I} is λ-full, |MI | = λ. Sin
e λ ≥ 2|T |, the size ofan a-prime model over a set of size λ has size at most λ<κ. So, if λ<κ = λ,then |M∗
I | = λ, hen
e is saturated.Lemma 4.4. Fix an independent tree {Mη : η ∈ I} of a-models. Supposethat 〈Jα : α ≤ δ〉 is a 
ontinuous, in
reasing sequen
e of subtrees of I and

〈Eα : α < δ〉 is a sequen
e of sequen
es su
h that Eα is an a-
onstru
tionsequen
e over MJα and Eα is an initial segment of Eβ whenever α < β < δ.Then any a-prime model over ⋃
E∗ is a-prime over MJδ

, where E∗ is theshortest sequen
e su
h that ea
h Eα is an initial segment.Proof. It follows from Lemma 3.1 that ea
h Eα is a-
onstru
tible over
MJδ

, so E∗ is a-
onstru
tible over MJδ
as well. Thus, if N is a-prime(hen
e a-
onstru
tible) over ⋃

E∗, then N is a-
onstru
tible (hen
e a-prime)over MJδ
.Proof of Theorem 1.8. The impli
ations (i)⇒(iii)⇒(iv) as well as(v)⇒(iv) are trivial.We begin by showing (iii)⇒(i). Suppose (iii) holds and �x an independenttree of a-models {Mη : η ∈ I}. Let M∗

I be any a-prime model over MI . Forman in
reasing sequen
e 〈Nn : n ∈ ω〉 of a-submodels of M∗
I as follows: Forea
h n ∈ ω, let In = {η ∈ I : lg(η) ≤ n}. Let N0 = M〈〉. We indu
tivelyde�ne Nn+1 as any a-prime submodel of M∗

I over Nn ∪MIn+1
. Let N∗ beany a-prime submodel ofM∗

I over ⋃
{Nn : n ∈ ω}. By Lemma 3.1, N∗ is alsoa-prime over MI , hen
e N∗ and M∗

I are isomorphi
 over MI . So it su�
es toshow that N∗ is a-minimal over MI . By Theorem 1.3(iii) it su�
es to showthat every nonalgebrai
 p ∈ S(N∗) is nonorthogonal to someMη. So �x su
ha nonalgebrai
 type p. By NDIDIP and Theorem 1.3(iii) there is a smallest
n ∈ ω su
h that p 6⊥ Nn. If n = 0 then we �nish sin
e N0 = M〈〉. So assume
n > 0. Let Jn = {η ∈ I : lg(η) = n}. By Lemma 3.1, {Mη : η ∈ Jn} areindependent over Nn−1. Thus, we 
an �nd a set {M ′

η : η ∈ Jn} of submodelsof Nn su
h that ea
h M ′
η is a-prime over Mη ∪Nn−1 and Nn is a-prime over⋃

{M ′
η : η ∈ Jn}. Sin
e κ-NDOP implies µ-NDOP for any 
ardinal µ andsin
e p 6⊥ Nn, it follows from Theorem 1.3(iv) that p 6⊥M ′

η for some η ∈ Jn.But now, sin
e Mη and Nn−1 are independent over Mη− , it follows fromanother instan
e of NDOP that p 6⊥Mη.The veri�
ation of (iv)⇒(v) is identi
al on
e one 
he
ks that if the orig-inal tree MI was normal, then the sequen
e 〈Nn : n ∈ ω〉 de�ned above isnormal as well.(v)⇒(ii). Fix a 
ardinal λ > 2|T |, a saturated model N of size λ, and asmall partial de
omposition {Mη : η ∈ J} of N . The existen
e of a saturatedmodel of size λ ≥ 2|T | implies that λ<κ = λ (see VIII 4.7 of [7℄). Now
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{Mη : η ∈ J} is also a partial de
omposition of C, so by Lemma 4.2 thereis a tree I of size λ and a λ-full partial de
omposition {Mη : η ∈ I} of Cextending it. By (v),M∗

I is a-minimal overMI , so Lemma 4.3 asserts thatM∗
Iis saturated of power λ. Thus, there is an isomorphism h : M∗

I → N overMJ .Then {h(Mη) : η ∈ I} is a de
omposition of N extending {Mη : η ∈ J}.(ii)⇒(iii). Assume that (ii) holds. The heart of the argument is 
ontainedin the proof of the following 
laim.
Claim. If {Mη : η ∈ H} is any partial de
omposition of C, then anya-prime model M∗

H over MH is a-minimal over MH .Proof. Fix µ > |M∗
H | + 2|T | su
h that µ<κ = µ and 
hoose a saturatedmodel N of size µ 
ontaining M∗

H . By (ii) there is a de
omposition {Mη :
η ∈ H ′} of N extending {Mη : η ∈ H}. Sin
e N is a-minimal over MH′ , M∗

His a-minimal over MH by Corollary 1.4.We �rst verify that NDIDIP holds. Choose an in
reasing sequen
e 〈Mn :
n ∈ ω〉 of a-models. Let Mω =

⋃
{Mn : n ∈ ω} and let M∗

ω be a-primeover Mω =
⋃
{Mn : n ∈ ω}. We will show that every nonalgebrai
 type over

M∗
ω is nonorthogonal to some Mn. Fix a regular 
ardinal λ > |M∗

ω| + 2|T |satisfying λ<κ = λ. Note that (λ+n)<κ = λ+n for ea
h n ∈ ω. Indu
tively
onstru
t an in
reasing sequen
e 〈Nn : n ∈ ω〉 of models su
h that ea
h Nnis saturated of size λ+n, 
ontainsMn, tp(N0/M
∗
ω) does not fork overM0, and

tp(Nn+1/M
∗
ωNn) does not fork over Mn+1Nn for ea
h n ∈ ω. It is an easyexer
ise in nonforking (using X 1.1 of [7℄) to see that if a nonalgebrai
 typein S(M∗

ω) were nonorthogonal to some Nn, then it would be nonorthogonalto Mn. So let Nω =
⋃
{Nn : n ∈ ω}, let N∗

ω be a-prime over Nω and let
p ∈ S(N∗

ω) be nonalgebrai
. It su�
es to show that p 6⊥ Nn for some n ∈ ω.Let M〈〉 ⊆ N0 be any a-prime submodel over ∅. Sin
e {M〈〉} is a small,partial de
omposition of N0, (ii) implies there is an extension {Mη : η ∈ J0}that is a de
omposition of N0. Continuing indu
tively, sin
e a de
omposition
{Mη : η ∈ Jn} of Nn is a small, partial de
omposition of the saturatedmodel Nn+1, (ii) implies that there is an extension {Mη : η ∈ Jn+1} that isa de
omposition of Nn+1.Let Jω =

⋃
{Jn : n ∈ ω}. Let E0 be an a-
onstru
tion sequen
e for N0overMJ0

. By Lemma 3.1, E0 is an a-
onstru
tion sequen
e overMJ1
, so asN1is both a-prime and a-minimal overMJ1

, there is an a-
onstru
tion sequen
e
E1 end extending E0 for N1 over MJ1

. Continuing indu
tively, we 
onstru
ta sequen
e 〈En : n ∈ ω〉 of sequen
es su
h that En is an a-
onstru
tionsequen
e over MJn and En is an initial segment of En+1 for all n ∈ ω. ByLemma 4.4, N∗
ω, whi
h was 
hosen to be a-prime over Nω =

⋃
E∗, is alsoa-prime over MJω . The Claim above implies that N∗

ω is a-minimal over MJω ,so p 6⊥Mη for some η ∈ Jω. Thus p 6⊥ Nn for some n ∈ ω.
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ompositions of saturated models 113Next we argue that T has κ-NDOP. Fix any a-model M and any set
{Mi : i < α < κ} of a-models that ea
h 
ontain M and 
olle
tively areindependent over M . Let M∗ be a-prime over ⋃

{Mi : i < α} and 
hoose
λ > |M∗|+2|T | su
h that λ<κ = λ. Arguing as above, �rst 
hoose a saturatedmodel N 
ontaining M of size λ su
h that tp(N/M∗) does not fork over M(so {Mi : i < α} are independent over N) and then indu
tively 
hoose a set
{Ni : i < α} of saturated models, ea
h of size λ+ su
h that ea
h Ni 
ontains
Mi ∪N and tp(Ni/M

∗ ∪N ∪ {Nj : j < i}) does not fork over Mi ∪N . Thus
{Ni : i < α} are independent over N . As in the 
ase above, if a type in
S(M∗) is nonorthogonal to some Ni, then it is nonorthogonal to Mi. So let
N∗ be a-prime over ⋃

{Ni : i < α} and �x a nonalgebrai
 type p ∈ S(N∗).It is 
ertainly su�
ient to show that p 6⊥ Ni for some i < α.As before, use (ii) to 
hoose a de
omposition {Mη : η ∈ H} ofN . Then forea
h i < α use (ii) to get an extension {Mη : η ∈ Ji} that is a de
ompositionof Ni. Without loss assume that Ji∩Jj = H for all i 6= j. Let Ii = H∪
⋃
{Jj :

j < i} for ea
h i < α and let I =
⋃
{Ii : i < α}. Sin
e {Ni : i < α} areindependent over N , {Mη : η ∈ I} is a partial de
omposition of C. As in theNDIDIP 
ase above, Lemmas 3.1 and 4.4 imply thatN∗ is a-prime overMI =⋃

{Mη : η ∈ I}. By the Claim, N∗ is a-minimal over MI . Thus p 6⊥ Mη forsome η ∈ I by Theorem 1.3(iii), whi
h implies that p 6⊥ Ni for some i < α.Proof of Proposition 1.9. Fix a theory T with κ-NDOP. We re
all theusual de�nition of the depth dpI of a node η of a well-founded tree I, namely
dpI(η) = sup{dpI(ν) + 1 : ν an immediate su

essor of η},and we de�ne the depth of I to be dpI(〈〉). We prove Proposition 1.9 byindu
tion on the depth of I. Fix an ordinal α and assume that every a-primemodel over a well-founded, independent tree of a-models of depth less than

α is a-minimal over the tree of a-models.Suppose that I is well-founded of depth α and that {Mη : η ∈ I} is anindependent tree of a-models indexed by I. Let M∗
I be any a-prime modelover MI and 
hoose any type p 6⊥ M∗

I . We will show that p 6⊥ Mη forsome η ∈ I, when
e M∗
I is a-minimal over MI by Theorem 1.3. If I = {〈〉}then there is nothing to prove. Otherwise, let A = {β : 〈β〉 ∈ I}. For ea
h

β ∈ A, let I(β) = {ν : 〈β〉ˆν ∈ I} and let Mβ
ν = M〈β〉ˆν for ea
h ν ∈ I(β).Choose {Nβ : β ∈ A} su
h that ea
h Nβ is an a-prime submodel of M∗

I over⋃
{Mβ

ν : ν ∈ I(β)} andM∗
I is a-prime over ⋃

{Nβ : β ∈ A}. Sin
e the originaltree of a-models was independent, {Nβ : β ∈ A} is independent overM〈〉. So,sin
e κ-NDOP implies µ-NDOP for any 
ardinal µ, we 
an 
hoose β∗ ∈ A sothat p 6⊥ Nβ∗ . By our de�nition of depth, dp(I(β∗)) < dp(I) = α, so Nβ isa-minimal over ⋃
{Mβ∗

ν : ν ∈ I(β∗)}. So, by Theorem 1.3, p 6⊥ Mη for some
η ∈ I.



114 M. C. Laskowski and S. ShelahProof of Corollary 1.10. Suppose that T has κ-NDOP and is shallow. Fixany saturated model N with |N | > 2|T | and any small partial de
omposition
{Mη : η ∈ J} of N . We will show that this partial de
omposition 
an beextended to a de
omposition of N , whi
h su�
es by Theorem 1.8. Let λ =
|N |. By VIII 4.7 of [7℄ the existen
e of a saturated model of size λ > 2|T |implies that λ<κ = λ. Let {Mη : η ∈ I} be a λ-full partial de
omposition of Cextending {Mη : η ∈ J}, whi
h exists by Lemma 4.2. Sin
e T is shallow, theindex tree I is well-founded. Sin
e T has κ-NDOP as well, Proposition 1.9implies that M∗

I is a-minimal over MI , hen
e M∗
I is saturated of power λby Lemma 4.3. So M∗

I and N are both saturated of size λ and 
ontain MJ .Choose an isomorphism h : M∗
I → N over MJ . Then {h(Mη) : η ∈ I} is ourdesired de
omposition of N .5. Countable theories and the proof of Theorem 1.11. Until now,the 
ardinality of the language was irrelevant. In this se
tion we restri
tourselves to 
ountable languages and prove Theorem 1.11. The assumptionof 
ountability allows us to bring in some results from 
lassi
al des
riptiveset theory. In parti
ular, the proof given here relies on the fa
t that analyti
subsets of Polish spa
es have the property of Baire, i.e., for every analyti
 Athere is an open U su
h that A△ U is meagre (see, e.g., [3℄). At its heart,the proof presented here is similar to the argument that every Σ

1
1-de�nableultra�lter on ω is prin
ipal. The similarity between these two arguments isexpounded upon in [4℄.Theorem 5.1. If T is 
ountable and has NDOP , then T has µ-NDOPfor all in�nite 
ardinals µ.Proof. As noted in the remarks following De�nition 1.6, the theoremfollows immediately if T is superstable. Consequently, we assume for thewhole of this se
tion that

T is 
ountable, stable, but not superstable, with NDOP.In parti
ular, κ(T ) = ℵ1 and the 
lass of a-models of T is pre
isely the 
lassof ℵ1-saturated models of T . The �rst three subse
tions provide the requisiteba
kground and Theorem 5.1 is proved in Subse
tion 5.4.5.1. On stable systems. In this subse
tion we set notation and prove anextension theorem for stable systems and an embedding theorem for pairs ofstable systems.Definition 5.2. A good index set I is a nonempty, 
ountable set of �nitesets that is 
losed under subsets, i.e., u ∈ I and v ⊆ u implies v ∈ I. An
I-system X = {Xu : u ∈ I} is a family of sets indexed by I su
h that



De
ompositions of saturated models 115
Xu ⊆ Xv whenever u ⊆ v. For any I-system X and any u ∈ I, set

X(u =
⋃

{Xv : v ( u} and X 6⊇u =
⋃

{Xv : v 6⊇ u}Throughout this se
tion J denotes the set of �nite subsets of ω and K =
{u ∈ J : |u| ≤ 1}.The following notion is the major theme of Se
tion XII.2 of [7℄.Definition 5.3. A stable system M of models indexed by I is an I-system M = {Mu : u ∈ I} of models su
h that Mu ⌣

M(u

M6⊇u for all u ∈ I.As a simple spe
ial 
ase, note that {Mu : u ∈ K} is a stable system ofmodels if and only if M∅ ⊆ M{i} for ea
h i ∈ ω and {M{i} : i ∈ ω} areindependent over M∅.The following lemma is our primary tool for 
onstru
ting stable systems.Lemma 5.4. Suppose that I is a good index set , u �nite, u 6∈ I, but everyproper subset of u is an element of I. If {Mv : v ∈ I} is a stable system ofa-saturated models and Mu is a-prime over M(u, then {Mv : v ∈ I ∪ {u}}is a stable system of a-saturated models. Moreover , if Mu is the union ofan a-
onstru
tion sequen
e a = 〈aα : α < β〉 over M(u, then a is also ana-
onstru
tion sequen
e over ⋃
{Mv : v ∈ I}.Proof. Let Iu = {v ∈ I : v ⊆ u}. Then Iu is a �nite, good index set,so by XII, Con
lusion 2.11 of [7℄, Mu is ℓ-isolated over M(u. Also, by XII,Lemma 2.3(2) of [7℄, the pair (M(u,

⋃
{Mv : v ∈ I}) satis�es the Tarski�Vaught property, hen
e tp(Mu/M(u) has a unique (nonforking) extensionto a type in S(

⋃
{Mv : v ∈ I}) (see, e.g., XII, Lemma 1.12(2) of [7℄). Inparti
ular, Mu ⌣

M(u

M6⊇u and the �moreover� 
lause follows immediately. Inorder to 
omplete the proof that {Mv : v ∈ I ∪ {u}} is a stable system itsu�
es to show that
Mv ⌣

M(v

M6⊇vMu,where M6⊇v =
⋃
{Mr : r ∈ I, v 6⊆ r} for every v ∈ I satisfying v 6⊆ u (for

v ⊆ u the appropriate requirement is satis�ed sin
e {Mv : v ∈ I} is a stablesystem). So �x v 6⊆ u, hen
e M(u ⊆M6⊇v. From above,
Mu ⌣

M(u

MvM(vM6⊇vso Mv ⌣
M(uM(vM 6⊇v

Mu. Thus Mv ⌣
M(vM 6⊇v

Mu and the result follows by thetransitivity of nonforking.Proposition 5.5. Suppose MK = {Mu : u ∈ K} is a stable system ofa-saturated models indexed by K and M is a-prime over ⋃
MK . Then thereis a stable system MJ = {Mu : u ∈ J} indexed by J su
h that :
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h Mu ⊆M and the uth entry of MJ = the uth entry of MK forea
h u ∈ K;(ii) M is a-prime over ⋃
MJ ;(iii) For ea
h u ∈ J \K, Mu is a-prime over ⋃

{Mv : v ( u};(iv) For all pairs of good index sets I ⊆ I∗ ⊆ J , ⋃
{Mu : u ∈ I∗} is theunion of an a-
onstru
tion sequen
e over ⋃

{Mu : u ∈ I}.Proof. Let 〈uj : j ∈ ω〉 be an enumeration of J \K su
h that for every
j ∈ ω, if v ⊆ uj , then v ∈ K ∪ {uℓ : ℓ < j}. De�ne Jj = K ∪ {uℓ : ℓ < j} forea
h j ∈ ω. Note that ea
h Jj is a good index set. We 
onstru
t NJ = {Nu :
u ∈ J} as follows. First, let Nu = Mu for ea
h u ∈ K. Then for ea
h j ∈ ωindu
tively 
hoose Nuj

to be any a-prime model over ⋃
{Nv : v ( u}. Let

N∗ be any a-prime model over ⋃
NJ . By su

essively applying Lemma 5.4 toea
h of the good index sets Jj we �nd that {Nu : u ∈ Jj} is a stable systemindexed by Jj su
h that Nuj

is a-
onstru
tible over ⋃
{Nv : v ∈ Jj} for every

j ∈ ω. It follows that ⋃
{Nu : u ∈ J} is a-
onstru
tible over ⋃

{Nu : u ∈ K}.Sin
e Nu = Mu for all u ∈ K, this implies that N∗ is a-
onstru
tible (hen
ea-prime) over ⋃
{Mu : u ∈ K}. By the uniqueness of a-prime models thereis an isomorphism h : N∗ → M �xing ⋃

{Mu : u ∈ K} pointwise. De�ne
Mu = h(Nu) for ea
h u ∈ J . It is easy to see that MJ = {Mu : u ∈ J}satis�es 
lauses (i)�(iii).As for (iv), �x good index sets I ⊆ I∗ ⊆ J . Let 〈uj : j < α ≤ ω〉be an enumeration of I∗ \ I su
h that for every j < α, if v ⊆ uj , then
v ∈ I ∪ {uℓ : ℓ < j}. Write I∗j = I ∪ {uℓ : ℓ < j} for ea
h j < α. Ea
h I∗j isa good index set, so it follows from Lemma 5.4 and indu
tion on j < α that
Nuj

is a-
onstru
tible over ⋃
{Nv : v ∈ I∗j } for ea
h j. Clause (iv) followsfrom this by the transitivity of a-
onstru
tibility.The next de�nition is not given expli
itly in [7℄, but the notion is inherentin the proof of Lemma XII 2.3 there.Definition 5.6. Given a good index set I and ∗ 6∈

⋃
I, let I∗ = I ∪

{u ∪ {∗} : u ∈ I}. A linked pair of stable systems (A,B) is a stable system
C indexed by I∗ where for ea
h v ∈ I∗, Cv = Av when ∗ 6∈ v and Cv = Buwhen v = u ∪ {∗}.By unraveling the de�nitions, if (A,B) is a linked pair of stable sys-tems then both A and B are stable systems indexed by I, Au � Bu and
Au ⌣

A(u

B6⊇u for all u ∈ I. Moreover, within the proof of Lemma 2.3 of Chap-ter XII of [7℄, the se
ond author shows that these 
onsequen
es 
hara
terizethis notion. More pre
isely, if A,B are stable systems indexed by I and forea
h u ∈ I, Au � Bu and Au ⌣
A(u

B 6⊇u, then (A,B) are a linked pair of stablesystems.
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hara
terization, the proof of the following lemma is justlike the proof of the downward Löwenheim�Skolem theorem and is left tothe reader.Lemma 5.7. Let M be any stable system of models indexed by I and let
X be any I-system of sets in whi
h ea
h Xu is a 
ountable subset of Mu.Then there is a stable system A su
h that for ea
h u ∈ I, Au is 
ountable,
Xu ⊆ Au �Mu, and (A,M) is a linked pair of stable systems.More interesting is Proposition 5.9 below. Its proof uses the followingvery general lemma, whi
h is also left to the reader.Lemma 5.8. Suppose M is a-saturated , A,C are 
ountable, A ⊆M , and
q is a type in 
ountably many variables over AC that does not fork over A.Then q is realized in M .Proposition 5.9. Suppose that (A,B) and (A,M) are both linked pairsof stable systems su
h that ea
h Bu is 
ountable and ea
h Mu is a-saturated.Then there is an elementary map f :

⋃
B →

⋃
M su
h that f |⋃A = id and

f(Bu) �Mu for ea
h u ∈ I.Proof. Fix an enumeration {uj : j < j∗ ≤ ω} of I su
h that ui ⊆ ujimplies i ≤ j. To ease notation, write Bj in pla
e of Buj
, B(j in pla
e of

B(uj
and B 6⊇j in pla
e of B 6⊇uj

. Note that the 
ondition on our enumerationensures that ⋃
{Bk : k < j} ⊆ B 6⊇j. We 
onstru
t f as the union of a 
hainof in
reasing elementary maps

fj :
⋃
A ∪

⋃
{Bk : k < j} →

⋃
A ∪

⋃
{Mk : k < j}that satisfy fj |

⋃
A = id and fj(Bk) �Mk for all k < j.To begin, let f0 be the identity map on ⋃

A. Now assume that 0< j < j∗and that fj−1 has been de�ned. Sin
e (A,B) is a linked pair of stable systems,
Bj ⌣

AjB(j

⋃
AB 6⊇j .Also, AjB(j ⊆ dom(fj−1), so fj−1(AjB(j) ⊆ Mj . Sin
e Mj is a-saturated,Lemma 5.8 ensures the existen
e of an elementary map fj ⊇ fj−1 with

fj(Bj) �Mj , and our proof is 
omplete.5.2. Pseudo ℓ-isolation. If the index set I is �nite andM = {Mu : u ∈ I}is a stable system of a-saturated models, then a type p ∈ S(
⋃
{Mu : u ∈ I})is a-isolated if and only if it is ℓ-isolated (see XII 2.11 of [7℄). When one isanalyzing a type over the union of a stable system of models of a superstabletheory, the restri
tion that I be �nite is in
onsequential sin
e the type isbased on the union of a �nite subsystem. However, here our theory is stri
tlystable, so we need an analogue of this result that holds for stable systemsover in�nite index sets as well. The notion of pseudo ℓ-isolation satis�es ourneeds.



118 M. C. Laskowski and S. ShelahDefinition 5.10. A formula ψ(x) (possibly with hidden parameters)de
ides the formula ϕ(x, e) if either ψ(x) ⊢ ϕ(x, e) or ψ(x) ⊢ ¬ϕ(x, e). Forany model M , ψ(x) de
ides ϕ(x,M) if ψ(x) de
ides ϕ(x, e) for all e ∈M .Lemma 5.11. SupposeM ⊆ A,M is an a-saturated model , and p ∈ S(A)is an a-isolated type. Then for any L-formula ϕ(x, y) there is ψ(x) ∈ p thatde
ides ϕ(x,M).Proof. Fix an L-formula ϕ(x, y). Sin
e p is a-isolated, we 
an 
hoose
q = {ψn(x) : n < n∗ ≤ ω} ⊆ p su
h that q ⊢ p and ψn ⊢ ψn−1 for all
0 < n < n∗. For ea
h n < n∗ let

Zn = {e ∈M : ψn de
ides ϕ(x, e)}.Sin
e T is stable, ea
h Zn is M -de�nable. Furthermore, sin
e q ⊢ p and
p ∈ S(A) is a 
omplete type, ⋃

n∈ω Zn = M . Sin
e M is a-saturated, thisimplies M = Zm for some m < n∗. That is, ψm de
ides ϕ(x,M).Definition 5.12. Suppose that M is an I-system of models. A type
p ∈ S(

⋃
M) is pseudo ℓ-isolated over M (not over ⋃

M !) if for every u ∈ Iand every L-formula ϕ(x, y), there is ψ(x) ∈ p de
iding ϕ(x,Mu).A set D is pseudo ℓ-atomi
 over M if tp(d/
⋃
M) is pseudo ℓ-isolatedover M for all �nite tuples d from D.The following lemma 
onne
ts these notions with a-atomi
ity.Lemma 5.13. Let M be an I-system of a-saturated models. For any set

D, D is a-atomi
 over ⋃
M if and only if D is pseudo ℓ-atomi
 over M .Proof. Left to right is immediate by Lemma 5.11. For the 
onverse let

p ∈ S(
⋃
M) be pseudo ℓ-isolated over M . For ea
h L-formula ϕ(x, y) andea
h u ∈ I, 
hoose ψϕ,u(x) ∈ p that de
ides ϕ(x,Mu). Then q = {ψϕ,u(x) :

ϕ, u} witnesses that p is a-atomi
 over ⋃
M .Lemma 5.14. Suppose that I is a good index set that is 
losed underunions, i.e., u, v ∈ I implies u ∪ v ∈ I. Let M and M ′ be I-systems su
hthat Mu ⊆ M ′

u and tp(M ′
u/

⋃
M) is �nitely satis�able in Mu for all u ∈ I.If p ∈ S(

⋃
M) is pseudo ℓ-isolated over M then p has a unique extension to

p′ ∈ S(
⋃
M ′) (whi
h is pseudo ℓ-isolated over M ′).Proof. For ea
h ϕ(x, y) and u ∈ I 
hoose ψ(x) ∈ p that de
ides ϕ(x,Mu).We argue that ψ(x) de
ides ϕ(x,M ′

u) as well. To see this, 
hoose v ∈ I su
hthat ψ(x) is over Mv. By our 
onstraint on I we may assume that u ⊆ v.If ψ(x, av) did not de
ide ϕ(x,M ′
u) then for some b ∈ M ′

u, θ(av, b) wouldhold, where θ(y, z) is ∃x1∃x2[ψ(x1, y) ∧ ψ(x2, y) ∧ (ϕ(x1, z) 6↔ ϕ(x2, z))].But then �nite satis�ability would imply that θ(av, au) would hold for some
au ∈Mu, whi
h would 
ontradi
t the fa
t that ψ(x) de
ides ϕ(x,Mu). Thus
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{ψϕ,u(x) : ϕ, u} has a unique extension to p′ ∈ S(

⋃
M ′) and the sameformulas witness the pseudo ℓ-isolation of p′.If M = {Mu : u ∈ J} is a stable system of models indexed by J and

X ⊆ ω, let MX be the stable system (also indexed by J) {Mu∩X : u ∈ J},while MX denotes the model with universe ⋃
{Mu : u ∈ J ∩ P(X)}. Thefa
t that MX is a model follows from the fa
t that the index set J is 
losedunder �nite unions. It is readily 
he
ked that MX =

⋃
MX . In parti
ular,

Mω =
⋃
M . The following lemma is a stable system analogue of Lemma 3.1.Lemma 5.15. Let M be any stable system of a-saturated models indexedby J , let X ⊆ ω and let Y = ω \X.(i) If D is pseudo ℓ-atomi
 over MX then tp(D/MX) has a uniqueextension to a type over Mω, and D is also pseudo ℓ-atomi
 over M .(ii) Every a-
onstru
tion sequen
e a = 〈aα : α < β〉 over MX is an a-
onstru
tion sequen
e overMω and tp(a/Mω) does not fork overMX.(iii) If NX , NY are a-prime over MX ,MY respe
tively , then(a) tp(NX/MX) ⊢ tp(NX/MωNY ),(b) tp(Mω/MXMY ) ⊢ tp(Mω/NXNY ).Proof. (i) Sin
e M is a stable system, tp(Mu/MX) is �nitely satis�ableover Mu∩X , so we 
an apply Lemma 5.14 to the stable systems MX and M .Using (i) and Lemma 5.13, (ii) follows by indu
tion on β.For both parts of (iii) 
hoose ϕ(x, y, z) and tuples c1 fromNX , c2 fromNY ,and d from Mω su
h that ϕ(c1, c2, d) holds.We �rst show that there is ψ(x, e) ∈ tp(c1/MX) su
h that ψ(x, e) ⊢

ϕ(x, c2, d). Choose a �nite u su
h that d is from Mu. Sin
e MX is a stablesystem and NX/MX is a-atomi
, tp(c1/MX) is pseudo ℓ-isolated over MX .So there is ψ(x, e) ∈ tp(c1/MX) su
h that ψ(x, e) ⊢ tpϕ(c1/Mu∩X). Weargue that this ψ(x, e) ⊢ ϕ(x, c2, d).Let Z = Y ∪ u. Sin
e X ∩ Z = u ∩ X and sin
e M is a stable system,
tp(MZ/MX) does not fork over Mu∩X . As well, tp(c2/MY ) is a-isolated,hen
e tp(c2/MZ) is a-isolated as in (ii). Sin
e Mu∩X is an a-model, c2MZis dominated by MZ over Mu∩X , hen
e MX ⌣

Mu∩X

MZc2 follows by symme-try. Sin
e Mu∩X is a model, the pair (Mu∩X ,MZc2) has the Tarski�Vaughtproperty, hen
e tpϕ(c1/Mu∩X) has a unique extension qϕ ∈ Sϕ(MZc2) and
ψ(x, e) ⊢ qϕ. In parti
ular, ψ(x, e) de
ides ϕ(x, c2, d). But sin
e ϕ(c1, c2, d)holds, it de
ides it positively, i.e., ψ(x, e) ⊢ ϕ(x, c2, d). Thus, (iii)(a) holds.To establish (iii)(b) 
hoose d′ su
h that tp(d′/MXMY ) = tp(d/MXMY ).It su�
es to show that ϕ(c1, c2, d) holds. So 
hoose ψ(x, e) as above and let

θ(y, d, e) := ∀x[ψ(x, e) → ϕ(x, y, d)]
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hoi
e of ψ(x, e), θ(y, d, e) ∈ tp(c2/Mω). By (i), tp(c2/MY ) ⊢
tp(c2/Mω), so there is δ(y, e′) ∈ tp(c2/MY ) su
h that δ(y, e′) ⊢ θ(y, d, e).Sin
e e, e′ ∈MX ∪MY , it follows that δ(y, e′) ⊢ θ(y, d′, e), hen
e θ(c2, d′, e).Thus, ϕ(c1, c2, d

′) holds as required.5.3. The standard topology on P(ω). The standard topology on P(ω) isobtained by positing that the sets
UF,G = {X ∈ P(ω) : F,G are �nite subsets of ω, F ⊆ X, X ∩G = ∅}form a basis of open sets. Topologized in this way, the natural mapping be-tween subsets of ω and 
hara
teristi
 fun
tions is a homeomorphism between

P(ω) and the Cantor set ω2.Note that UF,G = ∅ if and only if F ∩ G 6= ∅. Let D = {(F,G) : F,Gare �nite subsets of ω and F ∩ G = ∅}. For (F,G), (F ′, G′) ∈ D we write
(F,G) ≤ (F ′, G′) if and only if F ⊆ F ′ and G ⊆ G′.It is easily 
he
ked that a set R ⊆ P(ω) is nowhere dense if and only iffor every (F,G) ∈ D there is (F ′, G′) ∈ D su
h that (F ′, G′) ≥ (F,G) and
UF ′,G′ ∩ R = ∅. Re
all that a set Z ⊆ P(ω) is meagre if it is a 
ountableunion of nowhere dense subsets.The following lemma is routine, but is in
luded for 
ompleteness.Lemma 5.16. Let Z be any meagre subset of P(ω). Then:(i) There is X ∈ P(ω) su
h that X,ω \X 6∈ Z.(ii) There are {Xi : i ∈ ω} ⊆ P(ω) \Z with Xi ∩Xj = ∅ when i < j < ω.Proof. Suppose that Z =

⋃
n∈ω Rn, where ea
h Rn is nowhere dense.(i) Using the 
hara
terization of nowhere denseness given above, in-du
tively 
onstru
t a sequen
e 〈(Fn, Gn) : n ∈ ω〉 from D that satis�es

(Fn, Gn) ≤ (Fn+1, Gn+1), UF2n,G2n ∩ Rn = ∅, and UG2n+1,F2n+1
∩ Rn = ∅.Take X =

⋃
n∈ω Fn. Then X ∈ UFn,Gn for all n, so X 6∈ Z. Furthermore,

ω \X ∈ UGn,Fn for all n, so ω \X 6∈ Z as well.(ii) Fix a bije
tion Φ : ω → ω×ω. Call an ω-sequen
e F = 〈Fi : i ∈ ω〉 of(�nite) subsets of ω an approximating sequen
e if {Fi : i ∈ ω} are pairwisedisjoint and ⋃
{Fi : i ∈ ω} is �nite. We say that an approximating sequen
e

F = 〈Fi : i ∈ ω〉 satis�es Condition k if, writing Φ(k) = (i, j), we have
UFi,Gi

∩Rj = ∅ where Gi =
⋃

{Fl : l 6= i}.We indu
tively 
onstru
t approximating sequen
es Fn = 〈Fn
i : i ∈ ω〉 forea
h n ∈ ω su
h that Fn

i ⊆ Fm
i for all i and all n < m < ω and Fn satis�esCondition k for all k < n.To start, de�ne F0 = 〈F 0

i : i ∈ ω〉, where ea
h F 0
i = ∅. Now assume that

Fn has been de�ned and let Φ(n) = (i∗, j∗). Let G =
⋃
{Fn

l : l 6= i∗}. Sin
e
Rj∗ is nowhere dense, there is (F ′, G′) ≥ (Fn

i∗ , G) su
h that UF ′,G′ ∩Rj∗ = ∅.Let m be any integer 6= i∗ su
h that Fn
m = ∅. Let Fn+1

i∗ = F ′, Fn+1
m = G′ \G,
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l = Fn

l for all l 6= i∗,m. Then Fn+1 = 〈Fn+1
i : i ∈ ω〉 satis�esCondition k for all k ≤ n.Finally, for ea
h i ∈ ω take Xi =

⋃
{Fn

i : n ∈ ω}.5.4. Proof of Theorem 5.1. By the remarks following De�nition 1.6, itsu�
es to show that T has ω1-NDOP. Choose a family {Mi : i < ω} ofa-saturated models that 
ontain and are independent over a 
ommon a-saturated model M∅, and let M be a-prime over ⋃
{Mi : i < ω}. Fix anonalgebrai
 type p ∈ S(M). We will eventually show that p is nonorthogonalto some Mi, whi
h su�
es by Theorem 1.3.Let MK denote the stable system indexed by K, where M{i} = Mi forea
h i ∈ ω. Choose a stable system MJ = {Mu : u ∈ J} extending MKsatisfying 
lauses (i)�(iv) of Proposition 5.5.We adopt the notation prior to Lemma 5.15 for the whole of this se
tion,not only for the stable system M in the 
laim below, but also for the relatedsystems A and B that follow. For ea
h X ⊆ ω let

NX = {N �M : N is a-prime over MX and M is a-prime over N ∪Mω}.For ea
h �nite ∆ ⊆ L, let W∆ = {X ⊆ ω : p 6⊥∆ N for some N ∈ NX} andlet W =
⋃
{W∆ : ∆ ⊆ L �nite}.Claim 5.17. For all X ⊆ ω, at least one of X,ω −X is in W .Proof. Fix X ⊆ ω and let Y = ω \ X. Let NX , NY be a-prime modelsoverMX ,MY respe
tively. LetM∗ be a-prime over NX ∪NY ∪Mω. We arguethat M∗ is also a-prime over ea
h of the four sets Mω, NX ∪Mω, NY ∪Mω,and NX ∪NY .To see this, �rst note that by applying Proposition 5.5(iv) with I =

(P(X) ∪ P(Y )) ∩ J and I∗ = J , Mω is a-
onstru
tible over MX ∪ MY .By Lemma 5.15(iii)(b), Mω is a-
onstru
tible over NX ∪ NY . Thus, M∗ isa-
onstru
tible (hen
e a-prime) over NX ∪NY . As well, by Lemma 5.15(ii),
NX is a-
onstru
tible overMω. By Lemma 5.15(iii)(a), NY is a-
onstru
tibleover Mω ∪NX . Hen
e M∗ is a-prime over Mω as well as over Mω ∪NX . That
M∗ is a-prime over Mω ∪NY is symmetri
.But now, re
all that M is also a-prime over Mω. So there is an iso-morphism h : M∗ → M �xing Mω pointwise. Sin
e M is a stable system,
MX ⌣

M∅

MY . Also, h(NX) is a-prime over MX , hen
e dominated by MX over
M∅ and dually, h(NY ) is dominated byMY overM∅. Thus h(NX)⌣

M∅

h(NY ).But p ∈ S(M) and M is a-prime over h(NX) ∪ h(NY ). By NDOP, either
p 6⊥ h(NX) or p 6⊥ h(NY ). As the 
ases are symmetri
, assume p 6⊥ h(NX),Finally, sin
e M is a-prime over h(NX) ∪Mω, h(NX) ∈ NX , so X ∈W .Claim 5.18. Ea
h W∆ is a Σ

1
1-subset of P(ω).
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ountable su
h that p is basedand stationary over C. Sin
e M is a-atomi
 overMω, we 
an 
hoose a 
ount-able set Z ⊆ Mω su
h that tp(C/Z) ⊢ tp(C/Mω). Using Lemma 5.7 �nd astable system A indexed by J in whi
h every Au is 
ountable, Z ⊆ Aω, and
(A,M) is a linked pair of stable systems. Note that tp(C/Mω) does not forkover Aω by transitivity.Sub
laim 5.19. X ∈ W∆ if and only if there exist a 
ountable B su
hthat (A,B) is a linked pair of stable systems and tp(C/Bω) does not fork over
Aω, a 
ountable model N ′ that is pseudo ℓ-atomi
 over BX , a 
ountable set
D ⊇ N ′C, a tuple d from D, a formula ϕ(x, yz) ∈ ∆, and a type q ∈ S(D)that does not fork over N ′ su
h that R∆((p|D) ∪ {ϕ(x, db)}) < R∆(p) forsome (every) b realizing q.It is easily veri�ed that

{(N ′, B,X) : N ′ is pseudo ℓ-atomi
 over BX}is a Borel subset of a produ
t of Polish spa
es proje
ting onto P(ω) so the
Σ

1
1-ness of W∆ is an immediate 
onsequen
e of the sub
laim.To establish the sub
laim (and hen
e the 
laim) �rst suppose that X ∈

W∆. Choose N ∈ NX su
h that p 6⊥∆ N . Choose D0, d, ϕ, and q0 ∈ S(D0)from De�nition 2.15 witnessing this. Choose a 
ountable N ′ � N su
h that
q0 is based on N ′. Sin
e N ′, C and the language L are 
ountable, we 
an�nd a 
ountable subset D ⊆ D0 
ontaining N ′Cd and q ∈ S(D) parallel to
q0 su
h that R∆((p|D)∪ {ϕ(x, db)}) < R∆(p) for any b realizing q. Sin
e N ′is a-atomi
 over MX , it is also pseudo ℓ-atomi
 over MX by Lemma 5.13.Choose E ⊆MX 
ountable so that for all �nite tuples e from N ′, all ϕ(x, y)and all u ∈ J∩P(X) there is an L(E)-formula ψ(x) ∈ tp(e/MX) that de
ides
ϕ(x,Mu).Now arguing as in Lemma 5.7 there is a stable system B indexed by Jsu
h that ea
h Bu is 
ountable, E ⊆ BX , Au � Bu � Mu, and (A,B) is alinked pair of stable systems. Sin
e C ⌣

Aω

Mω, we have C ⌣
Aω

Bω. By our 
hoi
eof E, N ′ is pseudo ℓ-atomi
 over BX .Conversely, �x X ∈ P(ω) and assume B, N ′, D, d, ϕ, and q are as inthe sub
laim. It follows immediately from De�nition 2.15 that p 6⊥∆ N ′. ByProposition 5.9 there is an elementary map f : B →M su
h that f |Aω = idand f(Bu) ⊆ Mu for ea
h u ∈ J . Sin
e tp(C/Mω) does not fork over Aωand sin
e Aω is a model, tp(Bω/CAω) = tp(f(Bω)/CAω). Let σ be anautomorphism of C extending f that �xes CAω pointwise. Sin
e p is basedand stationary over C, its parallelism 
lass is invariant under the a
tion of σ.Thus, by repla
ing the given B by f(B), p by σ(p), and N ′ by σ(N ′), wemay assume that Bu ⊆Mu for all u ∈ J while preserving p 6⊥∆ N ′.
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e both N ′ and BXare 
ountable and sin
e M realizes every a-isolated type over MX , the ex-isten
e theorem for a-isolated types allows us to �nd N ′′ = 〈a′′n : n ∈ ω〉from M su
h that 〈a′′n : n ∈ ω〉 is an a-
onstru
tion sequen
e over MXwith tp(N ′/BX) = tp(N ′′/BX). Sin
e both N ′ and N ′′ are pseudo ℓ-atomi
over BX , Lemma 5.15(i) implies that tp(N ′/Bω) = tp(N ′′/Bω). Sin
e M is
ℵ1-homogeneous, there is C ′′ ⊆M su
h that tp(N ′C/Bω) = tp(N ′′C ′′/Bω).Thus p′′ 6⊥∆ N ′′, where p′′ ∈ S(C ′′) is 
onjugate to p over Bω. Note that
tp(C ′′/Mω) = tp(C/Mω) sin
e tp(C/Bω) ⊢ tp(C/Mω). Sin
e M is ℵ1-homogeneous over Mω, there is N0 = 〈an : n ∈ ω〉 from M su
h that

C ′′〈a′′n : n ∈ ω〉 ≡Mω C〈an : n ∈ ω〉Summarizing all of this, N0 is a 
ountable subset of M , p 6⊥∆ N0, and N0 isa-
onstru
tible over MX .Next, let N̂ = 〈an : n < β〉 be an a-
onstru
tible model over MX , whose
onstru
tion sequen
e end extends N0 = 〈an : n ∈ ω〉. By Lemma 5.15(ii), N̂is an a-
onstru
tion sequen
e over Mω. Let M̂ be a-prime over N̂Mω. Notethat M̂ is also a-prime over N0Mω. But re
all that M is a-prime over Mωand N0 is a 
ountable subset of M . Thus M is also a-prime over N0Mω. So,by the uniqueness of a-prime models, there is an isomorphism h : M̂ → Mover N0Mω. Finally, take N = h(N̂). Sin
e N0 ⊆ N , p 6⊥∆ N and M isa-prime over NMω. Thus, N witnesses that X ∈ W∆, whi
h 
ompletes theproof of Claim 5.18.Claim 5.20. p 6⊥MF for some �nite F ⊆ ω.Proof. We �rst argue that W is not meagre. If it were, then by Lem-ma 5.16(i) there would be X ⊆ ω su
h that X and ω \X 6∈W , whi
h would
ontradi
t Claim 5.17.Sin
e W is not meagre, some W∆ is not meagre. Fix su
h a ∆. Sin
e
Σ

1
1-subsets of a Polish spa
e have the property of Baire (see, e.g., Theorem 7of XII.8 of [3℄), it follows from Claim 5.18 that there is a nonempty opensubset UF,G of P(ω) su
h that UF,G \W∆ is meagre. But UF,G is naturallyhomeomorphi
 to P(ω), so the translation of Lemma 5.16(ii) is that thereare sets {Xi : i ∈ ω} ⊆ W∆ su
h that Xi ∩ Xj = F for all i < j < ω. Forea
h i ∈ ω 
hoose Ni ∈ NXi

su
h that p 6⊥∆ Ni. Sin
e M is a stable system,
{MXi

: i ∈ ω} is independent over MF . Sin
e ea
h Ni is a-prime over MXiand sin
e MF is a-saturated, it follows that {Ni : i ∈ ω} is independent over
MF . Sin
e p 6⊥∆ Ni for ea
h i, Proposition 2.16 entails that p 6⊥MF .To 
omplete the proof of the theorem, �x a �nite F ⊆ ω su
h that
p 6⊥ MF . Taking I = {∅} ∪ {{i} : i ∈ F} and I∗ = P(F ) in 
lause (iv) ofProposition 5.5, we see that MF is a-prime over ⋃

{Mi : i ∈ F}. As F is�nite, it follows from NDOP that p 6⊥Mi for some i ∈ F and we �nish.
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