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Quasi-bounded trees and analytic inductions
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Abstract. A tree T on ω is said to be cofinal if for every α ∈ ωω there is some
branch β of T such that α ≤ β, and quasi-bounded otherwise. We prove that the set of
quasi-bounded trees is a complete Σ11-inductive set. In particular, it is neither analytic
nor co-analytic.

In a recent joint work with G. Debs, we were led to study the complexity
of the set of cofinal trees as a subset of the compact set of all trees on ω, in
fact to show that this set is not Π11. The aim of this paper is to compute the
exact complexity of this set, which appears to be beyond the σ-algebra gen-
erated by the analytic sets. We also prove similar results concerning the set
of cofinal or quasi-bounded closed subsets of the Baire space with respect to
the Effros Borel structure on the set F(ωω) of closed nonempty subsets of ωω.
Most of the definitions and results we recall here can be found in [4],

which we refer to for all undefined notions and basic properties of classical
descriptive classes.

Sequences and trees. For any set E we denote by Seq(E) the set
of finite sequences of elements of E. If s = 〈e0, e1, . . . , ek−1〉 ∈ Seq(E) we
denote by |s| its length k. As usual, for any two s = 〈e0, e1, . . . , ek−1〉 and
t = 〈a0, a1, . . . , al−1〉 in Seq(E) we say that t extends s or that s is a beginning
of t, and write s ≺ t if |s| < |t| and ei = ai for i < |s|. And we write s � t iff
s ≺ t or s = t. When s ∈ Seq(E) and k ≤ |s|, we denote by s|k the sequence
s′ of length k such that s′ � s. Also we denote by s⌢t the concatenation of s
and t, that is, the sequence 〈e0, e1, . . . , ek−1, a0, a1, . . . , al−1〉 whose length
is |s|+ |t|.
For s and t in Seq(ω) we write s ≤ t if s and t have the same length and

moreover s(i) ≤ t(i) for every i < |s|.
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We extend these notations to infinite sequences: for α = (an) ∈ E
ω we

denote by α|k the sequence t = 〈a0, a1, . . . , ak−1〉, and write t ≺ α. For
s ∈ Seq(E) of length k and α ∈ Eω the concatenation s⌢α is the infinite
sequence β such that s ≺ β and β(k + i) = α(i) for all i ∈ ω. It will also be
convenient for s ∈ Seq(ω), α ∈ ωω and β ∈ ωω to write α ≤ β iff α(i) ≤ β(i)
for all i, and s ≤ α iff s ≤ α|k where k = |s|.
For any countable set I we identify the set P(I) of subsets of I with

the compact space 2I = {0, 1}I by associating to each subset J of I its
characteristic function χJ : I → {0, 1}. In particular, if a and b are two
members of 2ω, we will write a ≤ b as well as a ⊂ b.
By a tree T on E we mean a nonempty subset of Seq(E) which is left

hereditary with respect to �, that is, (s � t and t ∈ T ) ⇒ s ∈ T . So the
empty sequence ∅ belongs to any tree. An infinite branch (or a branch for
short) of T is an infinite sequence α ∈ Eω such that α|k ∈ T for all k (or
equivalently for infinitely many k’s). We denote by ⌈T ⌉ the set of branches
of T , which is a closed subset of Eω equipped with the product topology
when E itself has the discrete topology. Conversely, for any closed subset F
of Eω there are trees T such that ⌈T ⌉ = F .
A tree T is said to be well-founded if it has no infinite branch, and

ill-founded otherwise.
A tree T on ω is said to be monotone if whenever s ≤ t and s ∈ T

then t ∈ T . It is clear that if T is monotone and α is any branch of T then
β ∈ ⌈T ⌉ whenever β ∈ ωω and α ≤ β.
We denote by T the set of all trees on ω and by T + the set of all

monotone trees on ω, which are both closed subsets of P(Seq(ω)), hence
compact metrizable spaces. It is a well known and fundamental fact that
the set WF of well-founded trees on ω is a complete Π11-subset of T .
If E and F are two sets, a finite sequence s of length n of elements

of E × F can be canonically identified with a pair (t, u) with t ∈ Seq(E),
u ∈ Seq(F ) and |t| = |u| = n. Then a tree T on E × F can be viewed as
a set of pairs (t, u) in Seq(E) × Seq(F ) satisfying |t| = |u|. So we will say
that t ∈ Seq(E) and u ∈ Seq(F ) are T -compatible if (t|k, u|k) ∈ T , where
k = min(|t| , |u|). In the same way, for t ∈ Seq(E) and β ∈ Fω, we say that
t and β are T -compatible if (t, β|k) ∈ T , where k = |t|.
It is easy to check that, for β ∈ Fω, the set

T (β) := {t ∈ Seq(E) : t is T -compatible with β}

is a tree on E and that α ∈ ⌈T (β)⌉ if and only if (α, β) ∈ ⌈T ⌉.

Inductions. Let I and P be sets, with I countable. A mapping Φ :
P(I)×P → P(I) is called an induction if it is monotone with respect to the
first variable for every x ∈ P , i.e., a ⊂ b ⊂ I ⇒ Φ(a, x) ⊂ Φ(b, x).
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For such a mapping, one can define inductively on ξ ∈ ω1 subsets Φ
ξ(x)

of I, for fixed x ∈ P , by

Φ0(x) = ∅, Φξ+1(x) := Φ(Φξ(x), x) Φλ(x) =
⋃

ξ<λ

Φξ(x) for limit λ.

It is easily shown that Φξ(x) ⊂ Φξ+1(x) for all ξ, and Φη(x) ⊂ Φξ(x) for
η ≤ ξ. Since I is countable, there is for each x ∈ P a countable ordinal ζ
such that Φζ+1(x) = Φζ(x), thus Φξ(x) = Φζ(x) for all ξ ≥ ζ. We set
Φ∞(x) := Φζ(x) =

⋃
ξ∈ω1

Φξ(x). Thus a := Φ∞(x) is a fixed point for
Φ(·, x), i.e. Φ(a, x) = a. Conversely, if a is any fixed point for Φ(·, x), it is
immediate by induction on ξ that Φξ(x) ⊂ a for all x, hence Φ∞(x) ⊂ a.
This implies that Φ∞(x) is the least fixed point for Φ(·, x).
If i∗ is a fixed element of I, the inductive set Ind(Φ, i∗) is defined as

Ind(Φ, i∗) := {x ∈ P : i∗ ∈ Φ∞(x)}

and it follows easily from what precedes that x 6∈ Ind(Φ, i∗) is equivalent to

(∗) ∃a ∈ P(I) i∗ 6∈ a and (∀i ∈ I i ∈ a or i 6∈ Φ(a, x)).

If P is a Polish space and Γ is a class, the induction Φ is said to be
a Γ -induction if for every i ∈ I the set Ei := {(a, x) : i ∈ Φ(a, x)} is a
Γ -subset of P(I)×P , identified with the Polish space 2I ×P . In particular,
if Φ is a ∆11-induction, or even a Π

1
1-induction, it follows immediately from

(∗) that Ind(Φ, i∗) is Π11.
A subset X of the Polish space P is said to be Σ11-inductive if there is

a countable set I, a Σ11-induction Φ on P(I) × P and an i
∗ ∈ I such that

X = Ind(Φ, i∗). We shall denote by Σ11-IND the class of Σ
1
1-inductive sets.

The game quantifier. Let P be a Polish space and A a Borel subset
of ωω × P . For each fixed x ∈ P the set Ax := {α ∈ ωω : (α, x) ∈ A}
can be viewed as the payoff of a Borel game on ω. So by Martin’s Borel
Determinacy Theorem this game Ax is determined: if we denote by aA the
set

{x ∈ P : Player I has a winning strategy in Ax},

the complement of aA in P is the set

{x ∈ P : Player II has a winning strategy in Ax},

whence we deduce that both aA and P \ aA are Σ12.
If Γ is a class of Borel sets, we denote by aΓ the class {aA : A ⊂

ωω × ωω, A ∈ Γ}. It is well known that aΣ01 = Π
1
1.

For Γ = Σ02, it follows from Wolfe’s proof of Σ
0
2 determinacy (see for

example [4, 6A.3]) that if A ⊂ ωω × P is Σ02 one can define an analytic
induction Φ : P(I)× P → P(I) (where I is the countable set {s ∈ Seq(ω) :
|s| even}) such that Player I has a winning strategy in the game Ax if and
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only if the empty sequence ∅ belongs to Φ∞(x). This shows that aΣ02 ⊂
Σ11-IND. Conversely, it was shown by R. Solovay (see [4, 7C.10]) that any
Σ11-inductive set is aΣ02, that is, aΣ

0
2 = Σ

1
1-IND.

Cofinal and quasi-bounded trees. As we said in the abstract, a tree
T on ω is said to be cofinal if for every α ∈ ωω there is an infinite branch β
of T such that α ≤ β. We will say that such a branch β is above α.
If a tree T is not cofinal there is an α ∈ ωω such that no branch of T

(if any) is above α. Such an α need not be a bound for the branches of T ,
which would mean that “for all β ∈ ⌈T ⌉, β ≤ α”, and we shall say that α is
a quasi-bound for T , and that T is quasi-bounded.
It is well known that trees on ω and closed subsets of ωω are closely

related. As above a subset A of ωω is said to be cofinal (sometimes also
dominating) if for every α ∈ ωω there is some β ≥ α in A. The subsets of
ωω which are not cofinal will also be called quasi-bounded. The structure of
cofinal subsets of ωω was already studied by several people (see [5], [1] or [2]).
The aim of this paper is to prove that the set QB of quasi-bounded trees

on ω is a aΣ02-complete subset of T . First we will prove that QB is aΣ02,
hence Σ11-inductive. Then we will show that every Σ

1
1-inductive subset of

ωω is continuously reducible to QB. This will complete the proof that QB
is Σ11-IND-complete. In fact this will also prove that any Σ

1
1-inductive set is

aΣ02, hence will yield a new (but more complicated) proof of Solovay’s result.
We will also consider the set QBC of closed quasi-bounded subsets of the

Baire space, equipped with the Effros Borel structure. This set was already
studied by S. Solecki ([5]), in connection with Haar null sets of a non-locally
compact Polish group. He showed this set is ∆12 but not Σ

1
1. We shall prove

here that it is Σ11-IND-complete.
There are only very few examples in the literature of true aΣ02 sets. The

most important one is given by Kechris in [3], where he shows that Σ11-IND
is the exact maximum complexity of σ-ideals of compact sets with Σ11 bases.
The main interest of our result is to yield a “natural” and combinatorially

simple example of a aΠ02 set. It could be used to prove that a set X is not
aΠ02 by reducing continuously QB to it, in the same way as one can prove
that a set is not Σ11 by constructing a continuous reduction of WF to it.

Definition 1. For any tree T on ω, we denote by T ◦ the tree defined by

s ∈ T ◦ ⇔ (s = ∅ or |s| ≤ s(0) or s = 〈k〉⌢t with t|k 6∈ T ).

It is clear from the definition that if 〈k〉⌢t belongs to T ◦ and k ≤ l then
〈l〉⌢t also belongs to T ◦.

Lemma 2. Let T be a monotone tree on ω. Then the tree T ◦ is quasi-
bounded if and only if T is ill-founded. Moreover , for any branch α of T ,
〈0〉⌢α is a quasi-bound for T ◦.
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Proof. Assume first T is ill-founded and denote by α any branch of T .
Then we claim that 〈0〉⌢α is a quasi-bound for T ◦.

Indeed, assume by contradiction that 〈k〉⌢β is a branch of T ◦ above
〈0〉⌢α; then t := β|k /∈ T . But since α ≤ β we have s := α|k ≤ β|k = t. So
s ∈ T since α ∈ ⌈T ⌉, t /∈ T and s ≤ t, in contradiction with T ∈ T +.

Assume now T is well-founded and 〈m〉⌢α ∈ ωω. We claim that T ◦

possesses a branch above 〈m〉⌢α.

Indeed, α /∈ ⌈T ⌉ = ∅. Hence there is some integer k such that α|k 6∈ T .
Replacing k by max(k,m) if necessary, we can assume m ≤ k. Then 〈k〉⌢α
is a branch of T ◦, and 〈m〉⌢α ≤ 〈k〉⌢α.

Theorem 3. The set QB is aΣ02.

Proof. Define the mapping ψ : Seq(2)→ Seq(ω) by counting the blocks
of contiguous 0’s inside s: if ψ(s) = 〈n0, n1, . . . , nk−1〉 for some s ∈ Seq(2),
then the sequence s contains k terms equal to 1, with n0 zeros before the
first 1, n1 zeros between the first and the second 1, . . . , nk−1 zeros between
the last two 1’s.

So ψ is defined inductively by letting




ψ(∅) = ∅,

ψ(〈1〉) = 〈0〉,

ψ(s⌢〈0〉) = ψ(s),

ψ(s⌢〈1, 1〉) = ψ(s⌢〈1〉)⌢〈0〉,

ψ(s⌢〈1〉) = u⌢〈p〉 ⇒ ψ(s⌢〈0, 1〉) = u⌢〈p+ 1〉.

Then it is clear that |ψ(s)| ≤ |s| and that for any two sequences s and s′

such that s ≺ s′ we have ψ(s) � ψ(s′).

Denote by P∞ the set of those γ’s in 2
ω which have infinitely many

coordinates equal to 1. For γ ∈ P∞ there is a unique β ∈ ωω which we
denote by ψ̂(γ) such that s ≺ γ ⇒ ψ(s) ≺ β. It is easily checked and well

known that 2ω \ P∞ is countable and that ψ̂ is a homeomorphism from P∞
onto ωω.

For T a given tree we define the game Gqb(T ) where Player I plays
integers n0, n1, . . . , and Player II plays c0, c1, . . . in {0, 1} with the following
two rules:

R1: for every k, ψ(〈c0, c1, . . . , ck−1〉) ∈ T .

R2: for every k, 〈n0, n1, . . . , np−1〉 ≤ ψ(〈c0, c1, . . . , ck−1〉), where p is the
length of ψ(〈c0, c1, . . . , ck−1〉).

The run where Player I plays (nk) and Player II plays (ck) is won by Player II
iff (ck) ∈ P∞.
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Clearly the set

A := {((nk), (ck), T ) : Player II respects the rules and (ck) /∈ P∞}

is Σ02 in ω
ω × 2ω ×T . Hence the set aA is aΣ02. Theorem 3 will then follow

from the next two lemmas.

Lemma 4. If Player II has a winning strategy in the game Gqb(T ), then
the tree T is continuously cofinal , i.e. there is a continuous function f :
ωω → ⌈T ⌉ such that f(α) ≥ α for every α ∈ ωω. In particular , T is cofinal.

If τ is a winning strategy for Player II, it defines a continuous function
g : ωω → 2ω such that for every α in ωω and every s = 〈n0, n1, . . . , nk−1〉 ≺ α
played by Player I the answer 〈c0, c1, . . . , ck−1〉 of Player II under τ satisfies
〈c0, c1, . . . , ck−1〉 ≺ g(α). It then follows from the rule R1 that we have
ψ(〈c0, c1, . . . , ck−1〉) ∈ T . Moreover, since Player II wins, the run g(α) is in

P∞. Hence ψ̂(g(α)) ∈ ω
ω and ψ̂(g(α))|p ∈ T for arbitrarily large p, whence

we conclude that f(α) := ψ̂(g(α)) ∈ ⌈T ⌉. Since ψ is continuous on P∞,

f = ψ̂ ◦ g itself is continuous. Finally, it follows from the rule R2 that
f(α)|k ≥ α|k for arbitrarily large k, hence f(α) ≥ α.

Lemma 5. If Player I has a winning strategy in Gqb(T ), then T is quasi-
bounded.

If σ is a winning strategy for Player I, it induces as above a continuous
function h : 2ω → ωω. Then the range K := h(2ω) is a compact subset of
ωω, and one can define for all n the integer α(n) = supx∈K x(n). We claim
that this α is a quasi-bound for T .

Indeed, if β were a branch of T such that α ≤ β, then Player II could
play the following infinite run γ: β(0) times 0, then 1, then β(1) times 0,
then 1, . . . . This would respect the rule R1 since ψ(γ|k) ≺ β for all k. And

since γ ∈ P∞, we would have β = ψ̂(γ). Moreover, since h(γ) ∈ K, we

would have h(γ) ≤ α ≤ β = ψ̂(γ); this shows that the rule R2 would also be
respected. Finally, since γ ∈ P∞, Player II would win the run against the
strategy σ. This contradiction completes the proof of the lemma.

Thus the proof of Theorem 3 is complete. One can notice that a similar
game was used in [2] in order to prove that any cofinal Σ11 subset of ω

ω is
continuously cofinal.

Remark. It follows from the previous proof that a quasi-bound for
T can be computed continuously from a winning strategy for Player I in
Gqb(T ). Conversely, a quasi-bound α for T yields a simple strategy σ for
Player I: he plays α whatever Player II is answering. This strategy is clearly
winning: in any run compatible with σ a position (α|k, 〈c0, c1, . . . , ck−1〉) is
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reached for which no extension of ψ(〈c0, c1, . . . , ck−1〉) can be found in T
above α; and beyond this position Player II must always play 0.

We now intend to show that QB has complexity at least Σ11-IND.

Theorem 6. If X is a Σ11-IND subset of ω
ω, there exists a continuous

mapping x 7→ S(x) from ωω to T such that S(x) ∈ QB if and only if x ∈ X.

Proof. Without loss of generality we assume that Φ : 2ω × ωω → 2ω is a
Σ11-induction on ω and that

x ∈ X ⇔ 0 ∈ Φ∞(x).

Then for each n the set En := {(a, x) ∈ 2
ω × ωω : n ∈ Φ(a, x)} is Σ11 and

there is some tree Tn on 2× ω × ω such that

(a, x) ∈ En ⇔ ∃β ∈ ω
ω (a, β, x) ∈ ⌈Tn⌉

where we identify the subset ⌈Tn⌉ of (2×ω×ω)
ω with a subset of 2ω×ωω×ωω.

Identifying Seq(2× ω × ω) with the set

{(s, t, u) ∈ Seq(2)× Seq(ω)× Seq(ω) : |s| = |t| = |u|}

we now define trees T̂n and Un on 2× ω × ω by

(s, t, u) ∈ T̂n ⇔ ∃s
′ ∃t′ s′ ≤ s, t′ ≤ t, (s′, t′, u) ∈ Tn,

(s, t, u) ∈ Un ⇔





(s, t, u) = (∅, ∅, ∅)

or |s| = |t| = |u| ≤ t(0)

or else t = 〈k〉⌢t∗ with (s|k, t
∗
|k, u|k) /∈ T̂n.

Fix a bijection (n, p) 7→ n ∗ p from ω × ω onto ω which is separately
increasing with respect to each variable and satisfies n ∗ 0 ≤ 0 ∗ n. Then we
necessarily have 0 ∗ 0 = 0. For example we can put

n ∗ p =
(n+ p)(n+ p+ 1)

2
+ p.

Then, for each s ∈ Seq(ω) and each n ∈ ω, we define the sequence
θn(s) ∈ Seq(ω) by

θn(s) = 〈s(n∗0), s(n∗1), . . . s(n∗ (k−1))〉 where n∗ (k−1) < |s| ≤ n∗k.

In particular we get θn(s) = ∅ if |s| ≤ n ∗ 0. Define also θ
∗(s) ∈ Seq(2) by

θ∗(s) = 〈c0, c1, . . . , cp−1〉 where

{
(p− 1) ∗ 0 < |s| ≤ p ∗ 0

and ci = 1 ⇔ s(i ∗ 0) is odd

Observe that for any s ∈ Seq(ω) and any n, if k = |θn(s)| and p = |θ
∗(s)|,

we have

0 ∗ (k − 1) ≤ n ∗ (k − 1) < |s| ≤ p ∗ 0 ≤ 0 ∗ p,
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hence k − 1 < p, thus |θn(s)| ≤ |θ
∗(s)|. Moreover it is clear that if s ≺ s′

we have θn(s) � θn(s
′) for all integers n, and θ∗(s) � θ∗(s′). We extend θn

and θ∗ to ωω by letting

θ̂n(α)(k) = α(n ∗ k),

θ̂∗(α)(i) =

{
1 if s(i ∗ 0) is odd,

0 otherwise.

We now define, for x ∈ ωω, a tree S(x) by

s ∈ S(x) ⇔

{
s = ∅ or (s(0) = 0 and ∀n < |θ∗(s)|

(θ∗(s)(n) = 1 or (θ∗(s)|k, θn(s), x|k) ∈ Un)),

where k = |θn(s)|.

The theorem will follow from the next four lemmas.

Lemma 7. The mapping x 7→ S(x) is continuous from ωω to T .

Proof. For any s ∈ Seq(ω) define k := |θ∗(s)|. Then “s ∈ S(x)” depends
only on x|k. Hence {x ∈ ω

ω : s ∈ S(x)} is open and closed. This shows that
the mapping x 7→ S(x) is continuous from ωω to T .

Lemma 8. For a ∈ 2ω and x ∈ ωω one has

n ∈ Φ(a, x) ⇔ ∃β ∈ ωω (a, β, x) ∈ ⌈T̂n⌉ ⇔ Un(a, x) ∈ QB.

Moreover , if β is any branch of T̂n(a, x), then 〈0〉
⌢β is a quasi-bound for

Un(a, x).

Proof. Notice that Tn ⊂ T̂n. Thus if n ∈ Φ(a, x), then (a, x) ∈ En, hence

there exists a β such that (a, β, x) ∈ ⌈Tn⌉ ⊂ ⌈T̂n⌉.

Conversely, if (a, β, x) ∈ ⌈T̂n⌉ then for every integer k, (a|k, β|k, x|k)

belongs to T̂n. Hence there are s ∈ 2
k and t ∈ ωk such that (s, t, x|k) ∈ Tn,

s ≤ a|k and t ≤ β|k. It follows that the set

V := {(s, t, u) ∈ Tn : |s| = |t| = |u| , s ≤ a, t ≤ β, u ≺ x}

is an infinite and finitely branching tree. By König’s Lemma the tree V is
ill-founded. If (a′, β′, x′) is a branch of V , one necessarily has a′ ≤ a and
x′ = x. Thus (a′, x) ∈ En, hence n ∈ Φ(a

′, x) ⊂ Φ(a, x).

Notice that for any a ∈ 2ω and any x ∈ ωω, Un(a, x) = T̂n(a, x)
◦

and T̂n(a, x) is monotone. Then it follows from Lemma 2 that Un(a, x) =

T̂n(a, x)
◦ is quasi-bounded if and only if T̂n(a, x) is ill-founded, that is, if

and only if n ∈ Φ(a, x).

Lemma 9. If x /∈ X then S(x) is cofinal.
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Proof. Assume x /∈ X and let a = Φ∞(x). Then 0 /∈ a and for all n /∈ a

we have n /∈ Φ(a, x). Let α ∈ ωω and define αn = θ̂n(α) for all n. We will
produce a branch β of S(x) such that β ≥ α.
For n ∈ a we define βn = αn. For n /∈ a, since Un(a, x) is cofinal, by

Lemma 8 we can find βn ∈ ⌈Un(a, x)⌉ such that αn ≤ βn. Replacing if
necessary βn(0) by βn(0) + 1, we can assume that βn(0) is odd for n ∈ a
and even for n /∈ a. Then defining β by

∀n ∀p β(n ∗ p) = βn(p)

we get θ̂n(β) = βn ≥ αn = θ̂n(α), β(0) = β0(0) is even and θ̂
∗(β) = a.

It follows easily that β ≥ α and that for each l, β|l ∈ S(x), hence
β ∈ ⌈S(x)⌉.

Lemma 10. If x ∈ X then S(x) is quasi-bounded.

Proof. If x ∈ X, then 0 ∈ Φ∞(x), and we can define for every n ∈ Φ∞(x)
the rank ̺n := min{ξ : n ∈ Φ

(ξ)(x)} ∈ ω1 and then an := {p ∈ ω : ̺p < ̺n}.

Thus, for n ∈ Φ∞(x), we have n ∈ Φ(an, x). It follows that T̂n(an, x) is ill-

founded. Then we can choose a branch α∗n of T̂n(an, x) and let αn := 〈0〉
⌢α∗n.

For n /∈ Φ∞(x) we choose αn equal to the null sequence 0. Finally,
defining α by

∀n ∀p α(n ∗ p) = αn(p)

we get θ̂n(α) = αn for all n.

We claim that α is a quasi-bound for S(x). Indeed, assuming by contra-

diction that β is a branch of S(x) above α, we should have βn := θ̂n(β) ≥

θ̂n(α) = αn. Then put a := θ̂∗(β) ∈ 2ω. Since β ∈ ⌈S(x)⌉, we should have
β(0) even, hence 0 ∈ Φ∞(x) \ a. It follows that {̺n : n ∈ Φ

∞(x) \ a} should
be nonempty. Thus there would be an integer m ∈ Φ∞(x) \ a such that
̺m = min{̺n : n ∈ Φ

∞(x)\a}. In particular m /∈ a, hence βm ∈ ⌈Um(a, x)⌉.
By minimality of ̺m we would have am = {p : ̺p < ̺m} ⊂ a, hence

m ∈ Φ(a, x). Since α∗m ∈ ⌈T̂m(am, x)⌉, this would also imply that α
∗
m ∈

⌈T̂m(a, x)⌉, hence αm would be a quasi-bound for Um(a, x) by Lemma 8, in
contradiction with αm ≤ βm and βm ∈ ⌈Um(a, x)⌉.

This completes the proof of Theorem 6.

Quasi-bounded closed subsets of the Baire space. Now we are
interested in closed subsets of ωω and will denote by F(ωω) the set of
nonempty closed subsets of ωω which we equip with the Effros Borel struc-
ture. As for trees on ω, we shall say that a closed subset F of ωω is cofinal
if for every α ∈ ωω there is some β ≥ α in F , and that F is quasi-bounded
otherwise. We shall say that α is a quasi-bound for F if F ∩{β : β ≥ α} = ∅.
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We will denote by QBC the subset of F(ωω) consisting of the quasi-bounded
closed subsets of ωω.

We shall show in the following theorem that QBC behaves with respect
to Borel reducibility in the same way as QB does with respect to continuous
reducibility.

Theorem 11. QBC is Σ11-IND-complete.

This follows immediately from the next two lemmas.

Lemma 12. If P is a Polish space and F : P → F(ωω) a Borel mapping
then F−1(QBC) is Σ11-inductive.

Proof. For each s ∈ Seq(ω) we denote by Ns the basic open set {α ∈
ωω : s ≺ α}. For x ∈ P define

T (x) := {s ∈ Seq(ω) : Ns ∩ F (x) 6= ∅},

which is clearly a tree on ω such that ⌈T (x)⌉ = F (x). By definition of the
Effros Borel structure, {H : Ns ∩H 6= ∅} is Borel in F(ω

ω), thus {x ∈ P :
s ∈ T (x)} is Borel for all s. Hence the mapping f : x 7→ T (x) is Borel from P
to T . It is immediate from the definitions that f(x) ∈ QB ⇔ F (x) ∈ QBC.
So F−1(QBC) = f−1(QB).

As QB is Σ11-inductive in T , there is an analytic induction Φ : P(ω)×T
→ P(ω) such that T ∈ QB⇔ 0 ∈ Φ∞(T ). For a ∈ P(ω) and x ∈ P define

Ψ(a, x) := Φ(a, f(x)).

Then Ψ is an induction and clearly Ψξ(x) = Φξ(f(x)) for each ξ, hence
Ψ∞(x) = Φ∞(f(x)) and

F (x) ∈ QBC ⇔ f(x) ∈ QB ⇔ 0 ∈ Φ∞(f(x))

⇔ 0 ∈ Ψ∞(x) ⇔ x ∈ Ind(Ψ, 0).

Then n ∈ Ψ(a, x) ⇔ ∃T ∈ T (T = f(x) and n ∈ Φ(a, T )), whence we
conclude that Ψ is Σ11 and finally that F

−1(QBC) is Σ11-inductive.

Lemma 13. If X is a Σ11-IND subset of ω
ω, then there exists a Borel

reduction of X to QBC.

Proof. By Theorem 6 there is a continuous function S from ωω to T
such that S(x) ∈ QB ⇔ x ∈ X. Denote for n ∈ ω by zn the null sequence
of length n, and

S̃(x) := {s⌢zn : s ∈ S(x), n ∈ ω}.

Clearly if α ∈ ωω is any sequence such that α(n) > 0 for all n, then for all
β ∈ ωω we have

β ≥ α and β ∈ ⌈S(x)⌉ ⇔ β ≥ α and β ∈ ⌈S̃(x)⌉,
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hence S(x) ∈ QB⇔ S̃(x) ∈ QB. Since

s ∈ S̃(x) ⇔ (∃k, l ≤ |s| s|k ∈ S(x) and s = s|k
⌢zl),

one sees that S̃ is continuous and that X = S̃−1(QB). Then define F (x) :=

⌈S̃(x)⌉. It is immediate that F (x) is a quasi-bounded closed subset of ωω

iff S̃(x) ∈ QB, i.e. iff x ∈ X. Finally, it is enough to notice that for each
s ∈ Seq(ω) and each x ∈ ωω,

F (x) ∩Ns 6= ∅ ⇒ s ∈ S̃(x) ⇒ ∀n s⌢zn ∈ S̃(x)

⇒ s⌢0 ∈ ⌈S̃(x)⌉ ⇒ F (x) ∩Ns 6= ∅,

so that {x : Ns ∩ F (x) 6= ∅} is clopen, and hence F is Borel.
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