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Real Ck Koebe principle
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Weixiao Shen (Hefei) and Michael Todd (Surrey)

Abstract. We prove a Ck version of the real Koebe principle for interval (or circle)
maps with non-flat critical points.

1. Introduction. The real Koebe principle, providing estimates of the
first derivative of iterates of a smooth interval map, plays a very important
role in recent research of one-dimensional dynamics. See [MS]. Considering
its complex counterpart, the (complex) Koebe distortion theorem, it is nat-
ural to look for a Ck, k ≥ 2, version of this principle. This is the goal of this
paper.

More precisely, let f be a Ck endomorphism of the compact interval
I = [0, 1] (or the circle R/Z). We assume that f has only non-flat critical
points, that is, for each critical point c, there exists α > 1 such that near c,

(1) f = ψQφ,

where φ (resp. ψ) is a Ck diffeomorphism from a neighbourhood of c (resp.
f(c)) onto a neighbourhood of 0, and |Q(x)| = |x|α. We use NFk to denote
the class of such maps.

As usual, we say that an interval T is a κ-scaled neighbourhood of an
interval J if J is compactly contained in T , and both components of T \ J
have length at least κ|J |.

Theorem 1. Let f be in the class NFn, n ≥ 2. Let T be an interval
such that f s : T → f s(T ) is a diffeomorphism. For each S, κ > 0 and each
1 ≤ k ≤ n there exist δ = δ(S, κ, f) > 0 and Kk = Kk(κ) > 0 satisfying the

following. If
∑s−1

j=0 |f j(T )| ≤ S and J is a subinterval of T such that

• f s(T ) is a κ-scaled neighbourhood of f s(J);
• |f j(J)| < δ for 0 ≤ j < s,
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then, letting ψ0 : J → I and ψs : f s(J) → I be affine diffeomorphisms, for
each x ∈ I, we have

|Dk(ψsf
sψ−1

0 )(x)| < Kk.

Furthermore, K1 → 1 as κ→∞ and for each k > 1, Kk → 0 as κ→∞.

The well known real Koebe principle claims the existence of K1. Our
proof will show that Kk(κ) is of order κ−k when κ→ 0, and of order κ−(k−1)

when κ→∞, for each 2 ≤ k ≤ n.

1.1. Proof of Theorem 1. To prove this theorem, we shall approximate
the map ψsf

sψ−1
0 by maps in the Epstein class, and then apply the (complex)

Koebe distortion theorem. The main step is to prove the following theorem.

Theorem 2. Let f be a map in the class NFn, n = 2, 3, . . . . Let T
be an interval such that f s : T → f s(T ) is a diffeomorphism. For any
S, κ, ε > 0, there exists δ = δ(S, κ, ε) > 0 satisfying the following. Suppose

that
∑s−1

j=0 |f j(T )| ≤ S and J is a subinterval of T such that

• f s(T ) is a κ-scaled neighbourhood of f s(J);
• |f j(J)| < δ for 0 ≤ j < s.

Then, letting ψ0 : J → I and ψs : f s(J) → I be affine diffeomorphisms,
there exists a map G : I → I in the Epstein class Eκ/2 such that

‖ψsf sψ−1
0 −G‖Cn < ε.

Here, we say that a diffeomorphism G : I → I is in the Epstein class
Eβ if G−1 extends to a (holomorphic) univalent map from C(−β,1+β) :=
C \ ((−∞,−β] ∪ [1 + β,∞)) into C.

This result, for n = 2, appears as part of the proof of the Yoccoz Lemma
in [T].

Proof of Theorem 1 assuming Theorem 2. By the complex Koebe distor-
tion theorem, the fact that G ∈ Eκ/2 implies that the Cn distance between
G|[0, 1] and the identity map is bounded by a constant ε(κ), and ε(κ)→ 0
as κ → ∞. Taking ε = ε(κ) in Theorem 2, we see that the Cn distance
between ψsf

sψ−1
0 |[0, 1] and the identity map is at most 2ε(κ).

Outline of proof of Theorem 2. By rescaling the map f : f j(J) →
f j+1(J), we obtain a diffeomorphism fj : I → I. For each j, one can find a
map gj : I → I in the Epstein class such that the Cn distance between fj
and gj is of order o(|f j(J)|). Using the classical real Koebe principle (the
C1 version of Theorem 1), we shall prove that G = gs−1 · · · g0 is in the Ep-
stein class Eκ/2 (Proposition 6). Finally, using a proposition concerning the
composition operator (Proposition 8), we show that fs−1 · · · f1 is Cn close
to the map G.
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It should be mentioned that similar ideas have appeared in the proofs
of Theorem A.6 of [FM] and Lemma 3 of [AMM], but our result applies in
more general situations.

Remark 3. For maps in the class NF3, the C1 version of Theorem 1 still
holds if we replace the assumption

∑s−1
j=0 |f j(T )| ≤ S by “f s(T ) is contained

in a small neighbourhood of critical points which are not in the basin of
periodic attractors”. See [K, SV]. It would be interesting to know if the Ck

versions of Theorems 1 and 2 remain true under this alternative assumption.
See also the recent work [KS].

Remark 4. In fact, the whole argument applies to more general maps.
It is sufficient to assume that the function Q appearing in (1) is in the
Epstein class on each side of 0.

2. Proof of Theorem 2. By means of a Cn coordinate change, we
may assume that for each critical point ci, there is a neighbourhood Ui of
ci such that |f(x) − f(c)| = |x − ci|αi for x ∈ Ui. Let us also fix an open

interval U ′i 3 ci such that U ′i ⊂ Ui. Define U :=
⋃
i Ui and U ′ :=

⋃
i U
′
i . Let

η = d(∂U, ∂U ′). Then any interval of length less than η is either contained
in U or disjoint from U ′.

We fix T, J, κ, S as in Theorem 2. Let J0 = J and Ji = f i(J). For every
0 ≤ i < s we have a diffeomorphism f s−i : f i(T )→ f s(T ), where f s(T ) is a
κ-scaled neighbourhood of f s(J).

We will rescale our maps as follows. Let ψi : Ji → I be the affine homeo-
morphisms such that each fi = ψi+1fψ

−1
i is increasing. Then the following

diagram commutes:

J0
f−−−−→ J1

f−−−−→ · · · f−−−−→ Js−1
f−−−−→ Js

ψ0

y
yψ1

y
yψs−1

yψs

[0, 1]
f0−−−−→ [0, 1]

f1−−−−→ · · · fs−2−−−−→ [0, 1]
fs−1−−−−→ [0, 1]

We then approximate fi as follows. For 0 ≤ i ≤ s− 1, let

ξi =

1�

0

D2fi(t) dt, gi(x) =

{
fi(x) if Ji ⊂ U ,

(1− ξi/2)x+ (ξi/2)x2 otherwise.

We use Cn(I) to denote the Banach space of Cn maps φ : I → R with
the Cn-norm

‖h‖n = max{|Dkφ(x)| : 0 ≤ k ≤ n, x ∈ I}.
Let Cn(I; I) denote the closed subset of Cn(I) consisting of all maps such
that φ(I) ⊂ I. Let Diff n

+(I) denote the set of all orientation-preserving Cn

automorphisms of I.
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Lemma 5. There exists a continuous increasing function w : (0,∞) →
(0,∞) (depending on f) such that limt→0+w(t) = 0 and such that for all
0 ≤ i ≤ s− 1,

‖gi − fi‖n ≤ w(|Ji|)|Ji|.
Proof. Assume Ji is not in U , otherwise gi = fi. We will first estimate

|D2gi(x)−D2fi(x)| for x ∈ [0, 1]. Observe that

D2gi(x) = ξi =

1�

0

D2fi(t) dt, D2fi(x) =
|Ji|2
|Ji+1|

D2f(ψ−1
i (x)).

There is some x0 ∈ [0, 1] such that � 1
0D

2fi(t) dt = D2fi(x0), so D2gi(x) =

D2fi(x0) and

|D2gi(x)−D2fi(x)| = |D2fi(x0)−D2fi(x)|

=
|Ji|2
|Ji+1|

|D2f(ψ−1
i (x0))−D2f(ψ−1

i (x))|

≤ |Ji|
2

|Ji+1|
w1(|Ji|) ≤ C|Ji|w1(|Ji|),

where w1(ε) = sup|x−y|<ε |D2f(x)−D2f(y)| is the modulus of continuity of

D2f , and C = supx6∈U ′ |Df(x)|−1.
Note that there exists some x1 ∈ [0, 1] such that Dfi(x1) = Dgi(x1). So

for x ∈ [0, 1],

|Dgi(x)−Dfi(x)| ≤
x�

x1

|D2gi(t)−D2fi(t)| dt ≤ C|Ji|w1(|Ji|).

Similarly,

|gi(x)− fi(x)| ≤
x�

0

|Dgi(t)−Dfi(t)| dt ≤ C|Ji|w1(|Ji|).

For any 2 < k ≤ n, Dkgi = 0. Hence, for x ∈ I,

|Dk(gi − fi)(x)| = |Dkfi(x)| = |Ji|k
|Ji+1|

|Dkf(ψ−1
i (x))| ≤ C|Ji|k−1.

Setting w(t) = C max(w1(t), t) completes the proof.

The map gs−1 · · · g0 is our candidate for G. Let us first apply the classical
real Koebe principle to prove that G is in the Epstein class.

Proposition 6. Assume that sups−1
j=0 |f j(J)| is sufficiently small. Then

for each 0 ≤ j ≤ s − 1, gs−1 · · · gj belongs to the Epstein class Eβ, where
β = κ/2.

Proof. Let 1/2 < λ1 < λ2 < 1 be arbitrarily chosen constants. Let
T ′ be the open interval with J ⊂ T ′ ⊂ T such that both components of
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f s(T ′)\f s(J) have length κλ2|f s(J)|. Let T̂ ′j = ψj(f
s(T ′)) for all 0 ≤ j ≤ s.

Clearly fj extends to a diffeomorphism from T̂ ′j onto T̂ ′j+1. By the classical

real Koebe principle, for all x, y ∈ T ′, we have |Df s(x)|/|Df s(y)| ≤ C,
where C = C(S, κ) > 1 is a constant. Therefore, for each 0 ≤ j ≤ s − 1,

fs−1 · · · fj is a well defined diffeomorphism from T̂ ′j onto T̂ ′s with derivative

between 1/C and C. Clearly, for γ = λ2κC, we have T̂ ′j ⊂ [−γ, 1 + γ] for
all j.

Note that for each 0 ≤ j ≤ s − 1, g−1
j extends to a univalent map from

C
T̂ ′j+1

into C
T̂ ′j

. Moreover, for a given γ, arguing as in the previous lemma,

we see that for all 0 ≤ j ≤ s− 1,

sup
y∈T̂ ′j
|fj(y)− gj(y)| = o(|Jj |).

Claim. There exists δ > 0 such that if sups−1
j=0 |f j(J)| < δ then for any

x ∈ T̂ ′0 and any 0 ≤ r ≤ s − 1, if gj · · · g0(x) ∈ T̂ ′j+1 for all 0 ≤ j ≤ r − 1,
then

|fr−1 · · · f0(x)− gr−1 · · · g0(x)| < min

(
(λ2 − λ1)κ

C
,

(
λ1 −

1

2

)
κ

)
.

To prove this claim, let Ar = B−1 = id and for all 0 ≤ i ≤ r − 1 let
Ai = fr−1 · · · fi and Bi = gi · · · g0. Then

|fr−1 · · · f0(x)− gr−1 · · · g0(x)| = |A0B−1(x)−ArBr−1(x)|

≤
r−1∑

i=0

|AiBi−1(x)− Ai+1Bi(x)| =
r−1∑

i=0

|Ai+1fiBi−1(x)− Ai+1giBi−1(x)|

≤
r−1∑

i=0

sup
z∈T̂ ′i+1

|Ai+1(z)| sup
y∈T̂ ′i
|fi(y)− gi(y)| ≤ C

r−1∑

i=0

o(1)|Ji|,

which is arbitrarily small provided that sups−1
j=0 |f j(J)| is small enough. This

proves the claim.

Now let T̂ ′′0 be the subinterval of T̂ ′0 such that

fs−1 · · · f0(T̂ ′′0 ) = [−λ1κ, 1 + λ1κ].

Then for any x ∈ T̂ ′′0 and 0 ≤ r ≤ s− 1 we have

d(fr−1 · · · f0(x), ∂T̂ ′r) ≥ κ(λ2 − λ1)/C.

Together with the claim, this implies (by induction on r) that for all 0 ≤ r ≤
s− 1, gr−1 · · · g0 is well defined on T̂ ′′0 and maps T̂ ′′0 diffeomorphically onto

a subinterval of T̂ ′r. Moreover, the claim also gives us G(T̂ ′′0 ) ⊃ [−β, 1 + β]
for β = κ/2. This proves that for any 0 ≤ j ≤ s− 1, g−1

j · · · g−1
s−1 extends to

a univalent map from C(−β,1+β), so gs−1 · · · gj is in the Epstein class Eβ.
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Together with the complex Koebe distortion theorem, this implies the
following.

Corollary 7. There exists a constant C = C(κ) > 0 such that for any
0 ≤ j ≤ s− 1, we have

‖logD(gs−1 · · · gj)‖n ≤ C.

The proof of Theorem 2 is then completed by the following proposition
and lemma.

Proposition 8. Let n ∈ N ∪ {0}, and let gj ∈ Diff n+1
+ (I) and fj ∈

Diff n
+(I) for 0 ≤ j ≤ s − 1. For any C > 1 there exists E = E(C, n) > 0

such that if the following hold :

(1) for each 0 ≤ j < s, ‖logD(gs−1 · · · gj)‖n ≤ C;
(2) if n ≥ 1, ‖logDgj − logDfj‖n−1 ≤ C for all 0 ≤ j ≤ s− 1;

(3)
∑s−1

j=0 ‖gj − fj‖n ≤ C,

then

‖gs−1 · · · g0 − fs−1 · · · f0‖n ≤ E
s−1∑

j=0

‖fj − gj‖n.

The proof of this proposition will be given in the next section.

Lemma 9. For any C > 1 and k ∈ N, there exists C ′ = C ′(C, k) > 1 with

the following property. Let φ, φ̃ be maps in Ck(I) such that ‖φ‖k, ‖φ̃‖k ≤ C.
Then

(1) ‖eφ‖k ≤ C ′;
(2) 1

C′ ‖φ− φ̃‖k ≤ ‖eφ − eφ̃‖k ≤ C ′‖φ− φ̃‖k.

Proof. Let ψ = eφ and ψ̃ = eφ̃. By induction it is easy to compute that
for all k ≥ 1, there exist polynomials Pk and Qk such that

• Dk(eφ) = eφ · Pk(φ,Dφ, . . . ,Dkφ);
• Dk(φ) = Qk(ψ,Dψ, . . . ,D

kψ)/ψk.

From these the lemma follows easily.

Proof of Theorem 2 assuming Proposition 8. It suffices to check that
the conditions in Proposition 8 are satisfied. The first condition was verified
in Corollary 7. By Lemma 5, ‖fj − gj‖n ≤ |Jj|w(|Jj|). Furthermore, from
the proof of that lemma, we can show that ‖logDfj‖n−1, ‖logDgj‖n−1 are

bounded above. Hence by Lemma 9, provided that sups−1
j=0 |f j(J)| is small

enough, the second condition is verified. For the third one, we use the as-
sumption

∑s−1
j=0 |f j(J)| ≤ ∑s−1

j=0 |f j(T )| ≤ S and the fact that w(|Jj|) is

small when |Jj| is small.
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3. Proof of Proposition 8. The goal of this section is to prove Propo-
sition 8. Let us begin with a small lemma.

Lemma 10. For any k ∈ N ∪ {0} and C > 0 there exists K = K(C, k)
with the following property. Let u, v,B ∈ Ck(I; I), and let A ∈ Ck+1(I).
Assume that ‖A‖k+1 ≤ C and ‖B‖k ≤ C. Then

‖AuB − AvB‖k ≤ K‖u− v‖k.
Proof. This lemma is a straightforward consequence of the chain rule.

Proof of Proposition 8. We first introduce some notation for our calcu-
lations. Let As = B−1 = id and for 0 ≤ j ≤ s − 1, let Aj = gs−1 · · · gj and
Bj = fj · · · f0. Then

gs−1 · · · g0 − fs−1 · · · f0 = A0B−1 − AsBs−1

=
s−1∑

j=0

(AjBj−1 − Aj+1Bj) =
s−1∑

j=0

(Aj+1gjBj−1 −Aj+1fjBj−1).

Writing Sj := AjBj−1 = Aj+1gjBj−1 = gs−1 · · · gjfj−1 · · · f0, we have

gs−1 · · · g0 − fs−1 · · · f0 =
s−1∑

j=0

(Sj − Sj+1).

The proof of the proposition will proceed by induction on n. First, by Lem-
mas 9 and 10, ‖Sj − Sj+1‖0 ≤ K(C, 0)‖fj − gj‖0. Thus,

‖gs−1 · · · g0 − fs−1 · · · f0‖0 ≤
s−1∑

i=0

‖fj − gj‖0.

This proves the lemma for the case n = 0.
Now let m ≥ 1 and assume that the proposition holds for n = m − 1.

Let us prove it for n = m.
First, for each 0 ≤ r ≤ s − 1, applying the induction hypothesis to the

mappings fj , gj , 0 ≤ j ≤ r, we have

(2) ‖fr · · · f0 − gr · · · g0‖m−1 ≤ E1

j−1∑

i=0

‖fi − gi‖m−1,

where E1 is a constant (depending only on C and m). Also, it is easy to show
that the first assumption of the proposition implies ‖logD(gr · · · g0)‖n < 2C.
Therefore, by the first part of Lemma 9 we have ‖D(gr · · · g0)‖n < C ′. Hence,

‖gr · · · g0‖m = max(1, ‖D(gr · · · g0)‖m−1) ≤ C ′.
Applying this to (2), we have

(3) ‖Br‖m−1 ≤ C1.
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To complete the induction it suffices to prove that there exists a constant
E2 such that

(4) ‖Dm(Sj − Sj+1)‖0 ≤ E2‖fj − gj‖m.
To this end let us first prove the following.

Claim. There exists a constant C2 depending only on C such that for
all 0 ≤ j ≤ s− 1, ‖logDSj − logDSj+1‖m−1 ≤ C2‖fj − gj‖m.

In fact, for each 0 ≤ j ≤ s− 1, by the chain rule,

logDSj − logDSj+1

= [log(DAj+1gjBj−1) + log(DgjBj−1) + logDBj−1]

− [log(DAj+1fjBj−1) + log(DfjBj−1) + logDBj−1]

= [log(DAj+1gjBj−1)− log(DAj+1fjBj−1)]

+ [log(DgjBj−1)− log(DfjBj−1)]

=: Pj +Qj .

From the assumption ‖ logDAj+1‖m ≤ C and from (3), by Lemma 10, we
obtain

‖Pj‖m−1 ≤ K(C1,m− 1)‖fj − gj‖m−1,

and
‖Qj‖m−1 ≤ K(C1,m− 1)‖ logDgj − logDfj‖m−1.

Since ‖logDgj‖m−1 and ‖logDfj‖m−1 are bounded from above, the second
statement of Lemma 9 implies the claim.

Finally, let us deduce (4) from the claim. By the second part of Lemma 9,
it suffices to show that ‖logDSj‖m−1 is bounded from above by a constant.
Since ‖logDS0‖m−1 = ‖logDA0‖m−1 ≤ C, this follows from the third as-
sumption by applying the claim. This completes the proof.
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