Large superdecomposable $E(R)$-algebras

by

Laszlo Fuchs (New Orleans) and Rüdiger Göbel (Essen)

In honour of Claus Michael Ringel on the occasion of his 60th birthday

Abstract. For many domains R (including all Dedekind domains of characteristic 0 that are not fields or complete discrete valuation domains) we construct arbitrarily large superdecomposable R-algebras A that are at the same time $E(R)$-algebras. Here “superdecomposable” means that A admits no (directly) indecomposable R-algebra summands $\neq 0$ and “$E(R)$-algebra” refers to the property that every R-endomorphism of the R-module A is multiplication by an element of A.

1. Introduction. Schultz [15] introduced the notion of an E-ring as a ring R such that the endomorphism ring of its additive group is isomorphic to R under the natural map $\eta \mapsto \eta(1)$, i.e. each endomorphism acts as multiplication by an element of R. E-rings have been investigated in several papers: see e.g. Dugas–Mader–Vinsonhaler [5], Dugas–Gobel [4], Göbel–Strüngmann [11], proving the existence of arbitrarily large E-rings, E-rings whose additive groups are \aleph_1-free abelian groups, etc.

Göbel–Strüngmann [11] discusses $E(R)$-algebras, i.e. algebras A over a domain R such that every endomorphism of A as an R-module is multiplication by an element of A. The existence of large $E(R)$-algebras over many domains R is established. Fuchs–Lee [7] constructs $E(R)$-algebras over certain domains R that are superdecomposable as R-algebras in the sense that they do not admit any algebra summand that is not a direct product of two non-zero subalgebras. In Theorem 5.3 we give a common generalization of these two results by proving the existence of arbitrarily large superdecomposable $E(R)$-algebras that are, in addition, \aleph_1-free in the sense that every countable subset is contained in a free R-submodule.
Our proof is based on a version of Shelah’s Black Box (see Theorem 3.1 below) which we borrow from Corner–Göbel [3]. (We emphasize that this principle is provable in ZFC.) Alternatively we could have used the “Strong Black Box” (see [13]) which has the advantage that some of the algebraic proofs are simpler, but has the drawback that the possible sizes of $E(R)$-algebras are more restricted. We work in an R-algebra \hat{F} that is a completion of a semigroup algebra $F = R[T]$ where the monoid T is appropriately chosen: T is a direct product of two monoids, one of which serves to guarantee that the R-algebra A to be constructed is superdecomposable, while the other will be responsible for the E-ring property of A. Our method follows closely the pattern of Corner–Göbel [3], which allows us to skip those details of the proofs that are obvious modifications of arguments in [3].

In Theorem 5.4 we prove the abundance of arbitrarily large superdecomposable $E(R)$-algebras. This, along with the similar result on indecomposable $E(R)$-algebras (cf. Dugas–Mader–Vinsonhaler [5]), shows that—as far as merely direct decompositions are concerned—$E(R)$-algebras do not display any particular behavior.

2. Superdecomposable algebras. Let R denote a commutative domain that contains a countable subsemigroup $S = \{s_0 = 1, s_1, \ldots, s_n, \ldots\}$ (not containing 0) such that R is Hausdorff in the S-topology (where the ideals Rq_n $(n \in \omega)$ form a base of neighborhoods of 0 in R), i.e. $\bigcap_{n \in \omega} Rq_n = 0$; here we have used the notation $q_n = s_0s_1 \cdots s_n \in S$. (Note that the Hausdorff property of the S-topology is equivalent to the fact that the localization R_S of R at S is not a fractional ideal of R.) The symbol \hat{R} will denote the completion of R in its S-topology. R is then a dense subalgebra of \hat{R}.

Let μ denote an infinite cardinal; it is viewed as an initial ordinal, so we can talk about its subsets. We define a monoid T_1 whose elements are the finite subsets of μ and multiplication is defined via

$$\sigma \cdot \tau = \sigma \cup \tau$$

for all $\sigma, \tau \in T_1$. The empty set serves as the identity of T_1. (This monoid was inspired by Corner [1].)

Let F denote the semigroup algebra of T_1 over R, i.e.

$$F = R[T_1] = \bigoplus_{\tau \in T_1} R\tau;$$

this is an R-algebra with identity $\{0\}$. The S-topology on F is Hausdorff. The S-completion \hat{F} of F is an \hat{R}-algebra containing F as a dense R-subalgebra whose elements $x \neq 0$ may be viewed as countable sums $x = \sum_{i \in \omega} r_i \tau_i$ with $r_i \in \hat{R}$, $\tau_i \in T_1$, where for every $k \in \omega$ almost all (i.e. all but finitely many) coefficients r_i are divisible by q_k.
By the support $[x]$ of x is meant the set $\{\tau_i \mid r_i \neq 0\} \subseteq T_1$; this is always a countable subset, since S was assumed to be countable.

Lemma 2.1. Every R-algebra A that lies between the R-algebras $F = R[T_1]$ and \hat{F} constructed above for the infinite cardinal μ is superdecomposable as an R-algebra.

Proof. Consider a non-zero algebra summand C of A; $A = C \oplus C'$. The C-coordinate of the identity of A is an idempotent element $0 \neq e \in A$.

Case 1. If there is an ordinal $\alpha \in \mu$ not contained in any set in the support $[e]$, then $\{\alpha\} \subseteq F$ is an idempotent which evidently satisfies $e\{\alpha\} \neq 0$. It also satisfies $e\{\alpha\} \neq e$, since for any $\tau \in [e]$ we have $\tau \cup \alpha \in [e\{\alpha\}] \setminus [e]$. The elements $e\{\alpha\}$ and $e - e\{\alpha\}$ are non-zero orthogonal idempotents in A with sum e, establishing the decomposability of C into the direct sum of two R-subalgebras.

Case 2. If there is no ordinal α as in Case 1, then $\mu = \aleph_0$ and $\mu = \bigcup[e]$. Write $e = \sum_{\tau \in [e]} r_{\tau \tau} \ (r_{\tau \tau} \in \hat{R})$ or $e = \sum_{\tau \in T_1} r_{\tau \tau} \in \hat{F}$ with $r_{\tau \tau} = 0$ for all $\tau \in T_1 \setminus [e]$. Pick any $\tau_0 \in [e]$ with $r_{\tau_0} \neq 0$. If $e\{\alpha\} = e$, then

$$\sum_{\tau \in T_1} r_{\tau \tau}\{\alpha\} = \sum_{\tau \in T_1} r_{\tau \tau}.$$

If $\alpha \notin \tau_0$, then the comparison of the coefficients of $\{\alpha\} \cup \tau_0 \in T_1$ on both sides yields

$$r_{\tau_0} + r_{\{\alpha\} \cup \tau_0} = r_{\{\alpha\} \cup \tau_0}.$$

Hence $r_{\tau_0} = 0$, contradicting the choice of τ_0. Hence $e\{\alpha\} \neq e$ for all $\alpha \in \mu$.

Suppose, by way of contradiction, that $e\{\alpha\} = 0$ for all $\alpha \in \mu \setminus [\tau_0]$. Then

$$\sum_{\tau \in T_1} r_{\tau} \{\alpha\} \cup \tau = 0,$$

where the coefficient of $\{\alpha\} \cup \tau_0$ is $r_{\tau_0} + r_{\{\alpha\} \cup \tau_0} = 0$.

Thus $r_{\{\alpha\} \cup \tau_0} = -r_{\tau_0}$ for all $\alpha \in \mu \setminus [\tau_0]$, which is obviously impossible. Consequently, there is always an $\alpha \in \mu$ such that $e\{\alpha\} \neq 0$ (in addition to $e\{\alpha\} \neq e$), completing the proof. ■

We now construct another superdecomposable R-algebra as follows; we utilize an idea due to Corner [2].

Let μ be an infinite cardinal and T_2 the monoid with elements (α, p) where $\alpha \in \mu, 0 \leq p \in \mathbb{Q}$, and multiplication is defined via

$$(\alpha, p)(\beta, q) = (\max\{\alpha, \beta\}, \max\{p, q\}) \quad ((\alpha, p), (\beta, q) \in T_2).$$

Let F denote the semigroup algebra $R[T_2]$ and \hat{F} its S-completion. Now the element $(0, 0) \in \mu \times \mathbb{Q}$ is the identity of F. We have again:

Lemma 2.2. Every R-algebra A between the R-algebras $F = R[T_2]$ and \hat{F} just constructed for the infinite cardinal μ is a superdecomposable R-algebra.
Proof. It suffices to verify that for every non-zero idempotent $e = \sum_{i \in I} r_i(\alpha_i, p_i) \in \widehat{F}$ ($0 \neq r_i \in \widehat{R}$, $(\alpha_i, p_i) \in T_2$) (I is some index set) we can find an idempotent $e' = (\alpha, p) \in F$ such that $0 \neq e(\alpha, p) \neq e$. If not all the p_i are equal, then choose any $p \in \mathbb{Q}$ such that $p_i < p < p_j$ for some $i, j \in I$. In this case, $e' = (\alpha, p)$ is as desired for any choice of $\alpha \in \mu$. On the other hand, if all the p_i ($i \in I$) are equal and if we can choose an ordinal α with $\alpha_i < \alpha < \alpha_j$ for some $i, j \in I$, then $e' = (\alpha, p_i) \in F$ is a good choice. In the remaining case, the idempotent e must be of the form $e = (\beta, q) \in T_2$ or $e = (\beta, q) - (\beta + 1, q)$. Then we can choose $e' = (\beta, p)$ for any $q < p \in \mathbb{Q}$. Consequently, we can always find an idempotent e' that establishes superdecomposability. \hfill \qed

It is straightforward to check:

Remark 2.3. If we replace the monoid T_j ($j = 1$ or 2) by a monoid $T = T_j \times T'$, where T' is any monoid, then the preceding lemmas are still valid.

3. The Black Box. We turn our attention to the construction of a superdecomposable $E(R)$-algebra between F and \widehat{F}. For the construction we shall need a version of Shelah’s Black Box principle. (For a general discussion of this principle, we refer to Göbel–Trlifaj [12]; for the strong black box see Eklof–Mekler [6, Chapter XIII].)

Let R, S have the same meaning as in the preceding section. Furthermore, let κ be a cardinal such that $|R| \leq \kappa$, and assume in addition that λ is a cardinal satisfying

$$\lambda^\kappa = \lambda.$$

Then we have cf $\lambda > \kappa \geq \aleph_0$; see e.g. Jech [14, p. 28].

The set $L = \omega^\kappa \geq \lambda$ of all finite sequences $\varrho = (\alpha_0, \ldots, \alpha_{n-1})$ (of length n) with $\alpha_i \in \lambda$ (the empty sequence is included) is a tree of length ω under the natural ordering: $\varrho_1 \leq \varrho_2$ in L if and only if ϱ_1 is an initial segment of ϱ_2. Maximal linearly ordered subsets $b = \{\varrho_0 < \varrho_1 < \cdots < \varrho_n < \cdots\}$ of L are called branches; here the length of ϱ_n is n. The set of branches of L will be denoted by $\text{Br}(L)$. Clearly, $|\text{Br}(L)| = \lambda^{\aleph_0} = \lambda$.

Let T_0 be the free commutative monoid generated by the symbols u_ϱ for all $\varrho \in L$. Define the monoid T as

$$T = M \times T_0,$$

where $M = T_1$ or $M = T_2$ as constructed above in Section 2 with the choice $\mu = \aleph_0$. Thus the elements of T are of the form $\theta = (\tau, u)$, where $\tau \in M$ and $u \in T_0$. The semigroup algebra $F = R[T] = \bigoplus_{\theta \in T} R\theta$, its S-completion \widehat{F} and any R-algebra A in between are superdecomposable by Remark 2.3.

We will distinguish three natural kinds of supports depending on T_0, L and λ respectively.
Each element $0 \neq x \in \hat{F}$ can be expressed uniquely as a sum $x = \sum_{i \in I} r_i (\tau_i, u_i)$ (where I is an indexing set with $1 \leq |I| \leq \aleph_0$) such that $0 \neq r_i \in \hat{R}$ and $(\tau_i, u_i) \in T$ for all $i \in I$. Then $[x] = \{ u_i \mid i \in I \} \subseteq T_0$ denotes the support of x. (If we want to emphasize this is a subset of T_0, we will say that $[x]$ is the T_0-support of x.) Every element $u_i \in [x]$ is the unique product of certain generators $u_{\phi ij}$ ($i \in I$, $j \leq n_i$). The collection of all these ϕij constitutes the L-support $[x]_L \subseteq L$ of x. Finally, the λ-support is meant the set $[x]_\lambda \subseteq \lambda$ of all ordinals used in $[x]_L$. The norm of x is defined as $\|x\| = \sup [x]_\lambda$.

These notions extend naturally to subsets. If $X \subseteq \hat{F}$ is a set of cardinality $\leq \kappa$, then $[X] = \bigcup_{x \in X} [x]$ is the support of X and $[X]_L, [X]_\lambda$ are defined similarly. Observe that the norm of X is a well defined ordinal $\|X\| = \sup [X]_\lambda \in \lambda$, because $\text{cf} \lambda > \kappa$.

For a subset I of λ of size $\leq \kappa$, we define

$$P_I = \bigoplus_{\theta \in M \times I'} R \theta$$

as a canonical R-subalgebra, where I' denotes the submonoid of T_0 generated by the u_{θ} with finite sequences $\theta = (\alpha_0, \ldots, \alpha_n) \in \omega > I$. Evidently, P_I is a subalgebra of F with support I' (and L-support $\omega > I$) that is an R-free summand of size $\leq \kappa$ of F with free complement. (We often write simply P rather than P_I if there is no need for specifying the index set.) There are λ canonical R-subalgebras of F.

We also consider order-preserving embeddings

$$f : \omega > \kappa \rightarrow L.$$

By a trap is meant a triple (f, P, ϕ), where f is such an embedding, P is a canonical R-subalgebra, and ϕ is an R-homomorphism $P \rightarrow \hat{P}$ subject to the following conditions:

(a) $[P]_L$ is a subtree of L; thus $\sigma \in [P]_L$ implies $\sigma \subseteq [P]_L$ for all $\sigma \leq \varrho$;
(b) $\text{cf} \|P\| = \omega$;
(c) $\text{Im} f \subseteq [P]_L$;
(d) $\|b\| = \|P\|$ for all $b \in \text{Br(Im} f)$.

In the following theorem we assume that R is a domain such that

(i) R admits a countable semigroup S such that R is Hausdorff in the S-topology;
(ii) R is torsion-free as an abelian group;
(iii) R is S-cotorsion-free, where by the S-cotorsion-freeness of an R-module N is meant the property that $\text{Hom}_R(\hat{R}, N) = 0$ (as above \hat{R} stands for the S-completion of R).
Observe that from property (ii) it follows that all the \(R \)-subalgebras of the \(R \)-algebra \(\hat{F} \) are torsion-free as abelian groups.

We can now state:

Theorem 3.1 (Black Box). Let \(R \) be as stated. Given \(\kappa \) and \(\lambda \) as above, there exist a limit ordinal \(\lambda^* \) of cardinality \(\lambda \) and a sequence of traps \(t_\alpha = (f_\alpha, P_\alpha, \phi_\alpha) \ (\alpha \in \lambda^*) \) such that for all \(\alpha, \beta \in \lambda^* \) we have:

(a) \(\beta < \alpha \) implies \(\|P_\beta\| \leq \|P_\alpha\| \);

(b) \(\text{Br}(\text{Im} f_\alpha) \cap \text{Br}(\text{Im} f_\beta) = \emptyset \) whenever \(\alpha \neq \beta \);

(c) if \(\beta + \kappa^{\aleph_0} \leq \alpha \), then \(\text{Br}(\text{Im} f_\alpha) \cap \text{Br}([P_\beta]_L) = \emptyset \);

(d) if \(X \) is a subset of \(\hat{F} \) of cardinality \(\leq \kappa \) and \(\phi \in \text{End}(\hat{F}) \), then there is an ordinal \(\alpha \in \lambda^* \) such that

\[
X \subseteq \hat{P}_\alpha, \quad \|X\| < \|P_\alpha\|, \quad \phi|P_\alpha = \phi_\alpha.
\]

4. The construction. The method of constructing an \(E(R) \)-algebra \(A \) such that \(F \subseteq A \subseteq \hat{F} \) as the union of a continuous ascending chain of subalgebras \(A_\alpha \) is described in the next theorem.

Let \(b \in \text{Br}(L) \) be a branch in \(L \) and \(F = R[T] \) the \(R \)-algebra as in Section 3. We associate with the branch \(b = (\varrho_0 < \cdots < \varrho_n < \cdots) \) the branch element

\[
\hat{b} = \sum_{n \in \omega} q_n(1, u_{\varrho_n}) \in \hat{F},
\]

where the coefficients \(q_n \) are elements of \(S \) chosen in Section 2.

For an \(R \)-subalgebra \(M \subseteq \hat{F} \) and an element \(x \in \hat{F} \), the symbol \(M[x] \) will denote the \(R \)-subalgebra of \(\hat{F} \) generated by \(M \) and \(x \), while stars in subscripts designate the relatively divisible hull in \(\hat{F} \), i.e. \(M[x]_*/M[x] \) is the torsion part of \(\hat{F}/M[x] \). For simplicity we write \(A[g]_* \) for \((A[g])_* \).

Theorem 4.1. For a sequence of traps \(t_\alpha = (f_\alpha, P_\alpha, \phi_\alpha) \ (\alpha \in \lambda^*) \) as in Theorem 3.1, there exist \(R \)-subalgebras \(A_\alpha \) of \(\hat{F} \), branches \(a_\alpha \in \text{Br}(\text{Im} f_\alpha) \), and elements \(g_\alpha \in \hat{F}(\alpha \in \lambda^*) \) such that

(i) for all \(\beta \in \lambda^* \), \(g_\beta = b_\beta \pi_\beta + \tilde{a}_\beta \) for some \(b_\beta \in \hat{P}_\beta \) and \(\pi_\beta \in \hat{R} \);

(ii) \(g_\beta \in \hat{P}_\beta \) for each \(\beta \in \lambda^* \);

(iii) for all \(\beta < \alpha < \lambda^* \), \(g_\beta \phi_\beta \notin A_\beta \) implies \(g_\beta \phi_\beta \notin A_\alpha \);

(iv) \(\{A_\alpha \mid \alpha \in \lambda^*\} \) is a continuous properly ascending chain of relatively divisible \(R \)-subalgebras of \(\hat{F} \), with \(A_0 = F \);

(v) \(A_{\beta+1} = A_\beta[g_\beta]_* \) for all \(\beta \in \lambda^* \).
Proof. In the proof we will make use of the following result proved in Corner–Göbel [3, p. 457, Lemma 3.6] and Dugas–Mader–Vinsonhaler [5, pp. 95–96].

Proposition 4.2. Assume that, for some ordinal \(\alpha \), \(A_\alpha \) is an \(R \)-subalgebra of \(\widehat{F} \) satisfying conditions (i)–(v) in Theorem 4.1 for all \(\beta < \alpha \). Then there is a branch \(\mathbf{a} \in \text{Br}(\text{Im} f_\alpha) \) such that for any \(g = c + \tilde{a} \) with \(c \in \widehat{P}_\alpha \) satisfying \(\|c\| < \|\mathbf{a}\| \) and for any \(\beta < \alpha \), \(g\beta \phi_\beta \notin A_\beta \) implies \(g\beta \phi_\beta \notin A_\alpha[g]* \).

In order to verify the theorem, in view of the continuity of the chain of the \(A_\alpha \), it suffices to describe the step from \(\alpha \) to \(\alpha + 1 \). Suppose that the subalgebras \(A_\beta \) for all \(\beta \leq \alpha \) and the elements \(g_\beta \) for all \(\beta < \alpha \) have already been constructed as required. To choose \(g_\alpha \) and \(A_{\alpha + 1} \), we argue as follows.

Proposition 4.2 ensures that we can always find a branch \(\mathbf{a}_\alpha \in \text{Br}(\text{Im} f_\alpha) \) and elements \(b_\alpha \in P_\alpha \), \(\pi_\alpha \in \widehat{R} \) such that \(g = b_\alpha \pi_\alpha + \tilde{a}_\alpha \in \widehat{P}_\alpha \) satisfies the condition that (iii) holds for this \(\alpha \). Then we set \(g_\alpha = g \) with the proviso that—if possible—\(g \) should definitely be selected so as to satisfy \(g\phi_\alpha \notin A_\alpha[g]* \) as well. Once \(g_\alpha \) has been chosen, it only remains to set \(A_{\alpha + 1} = A_\alpha[g_*] \) to complete the proof. \(\blacksquare \)

We also observe the following important fact about the \(R \)-algebras \(A_\alpha \) just constructed.

Lemma 4.3. The \(R \)-algebras \(A_\alpha \) constructed in the preceding theorem with the aid of the Black Box are \(\aleph_1 \)-free, and thus also \(S \)-cotorsion-free. The same holds for their union \(A = \bigcup_{\alpha < \lambda^*} A_\alpha \).

Proof. See Dugas–Mader–Vinsonhaler [5] or Göbel–Wallutis [13], where it is shown that the \(R \)-algebras \(A_\alpha \) are \(S \)-cotorsion-free. The same argument verifies their \(\aleph_1 \)-freeness. Cf. also Göbel–Trlifaj [12]. (The \(\aleph_1 \)-freeness is due to the freeness of \(F \) and the linear independence of different branch elements.) \(\blacksquare \)

Let us point out that Göbel–Shelah–Strüngmann [10] proves the existence of \(\aleph_1 \)-free \(E(R) \)-rings of cardinality \(\aleph_1 \).

5. **Proof of the main theorem.** The \(R \)-algebras \(A \) constructed above need not be \(E(R) \)-algebras. In order to obtain an \(E(R) \)-algebra \(A \), we have to ensure that there are no unwanted endomorphisms. To this end we have to show that we can always find an element \(g_\alpha = g \) with the required properties that also satisfies \(g\phi_\alpha \notin A_\alpha[g]* \) provided that \(\phi_\alpha \) is not multiplication by an algebra element. This can be accomplished by the Step Lemma below.

Before stating the crucial Step Lemma, we prove a technical result.

Lemma 5.1. Assume the hypotheses of Proposition 4.2, and write the \(\alpha \)th branch (defined in Proposition 4.2) as \(\mathbf{a}_\alpha = (\varrho_0 < \cdots < \varrho_n < \cdots) \). Let
k be a natural number and $0 \neq x \in A_\alpha$. Then there exists an element $\theta \in T$ such that for almost all $n \in \omega$ we have

$$\theta(1, u^k_{\tilde{a}_n}) \in [x\tilde{a}^k_\alpha].$$

Proof. Let $x = \sum_{\theta \in [x]} r_\theta \theta$ with $r_\theta \in \hat{R}$. If $x \not\in F$, then there exist an element $y \in F$ and an ordinal $\beta < \alpha$ such that $x - y \in A_\beta[g_\beta] \setminus A_\beta$ and $\|x - y\| \leq \|P_\beta\|$. Let the βth branch be $a_\beta = (\sigma_0 < \cdots < \sigma_n < \cdots)$. We conclude that we can choose a $u^j_{\sigma_n}$ for some integer $j \geq 1$ and for large enough $n \in \omega$ such that $\theta = (\tau, u^j_{\sigma_n}) \in [x]$ for some $\tau \in M$. It follows that $(\tau, u^j_{\sigma_n})(1, u^k) = (\tau, u^j_{\sigma_n}u^k) \in [x\tilde{a}^k_\alpha]$ for all large enough integers l.

If $0 \neq x \in F$, then $[x]$ is a non-empty finite subset of T. As above, we can choose $(\tau, u) \in [x]$ $(\tau \in M, u \in T_0)$ such that $(\tau, u)(1, u^k) = (\tau, uu^k) \in [x\tilde{a}^k_\alpha]$. Thus either $\theta = (\tau, u^j_{\sigma_n})$ or $\theta = (\tau, u)$ satisfies the requirements, and the lemma follows. ■

Lemma 5.2 (Step Lemma). For an $\alpha \in \lambda^*$, let the trap $t_\alpha = (f_\alpha, P_\alpha, \phi_\alpha)$ be given by the Black Box 3.1, and let $A_\alpha \subseteq \hat{F}$ and $a_\alpha \in \text{Br}(\text{Im} f_\alpha)$ be as in Theorem 4.1. If $\phi_\alpha : P_\alpha \to A_\alpha$ is not multiplication by an element of A_α, then there exist elements $b \in P_\alpha$ and $\pi \in \hat{R}$ such that the following holds either for $y = \tilde{a}_\alpha$ or for $y = b + \tilde{a}_\alpha$.

(i) $A'_{\alpha+1} = A_\alpha[y]_*$ is an S-relatively divisible R-subalgebra of \hat{F} that is \aleph_1-free as an R-module;

(ii) $y\phi_\alpha \not\in A'_{\alpha+1}$.

Proof. Before entering into the proof, we observe that $A'_{\alpha+1}$ will be S-cotorsion-free in view of (i) and the S-cotorsion-freeness of R.

(i) is an immediate consequence of Lemma 4.3.

The branch element \tilde{a}_α related to a_α belongs to \hat{P}_α. Suppose that $y = \tilde{a}_\alpha$ is not a good choice, that is, $\tilde{a}_\alpha \phi_\alpha \not\in A_\alpha[\tilde{a}_\alpha]_*$. This means that there are $k, n \in \omega$ and $r_i \in A_\alpha$ ($i \leq n$) such that

$$q_k\tilde{a}_\alpha \phi_\alpha = \sum_{i \leq n} r_i \tilde{a}^i_\alpha.$$

First let $n \leq 1$. Since ϕ_α was assumed not to be multiplication by any element of A_α, neither is $q_k \phi_\alpha$, thus $q_k \phi_\alpha \not\in A_\alpha$. Consequently, we have $P_\alpha(q_k \phi_\alpha - r_1) \neq 0$, and so there exists an element b of P such that

$$0 \neq b(q_k \phi_\alpha - r_1) = q_k b \phi_\alpha - br_1 \in A_\alpha.$$

From Lemma 4.3 it follows that A_α is S-cotorsion-free, therefore for some $\pi \in \hat{R}$ we have

$$\pi(q_k b \phi_\alpha - br_1) \not\in A_\alpha.$$
Suppose that $y = \tilde{a}_\alpha + \pi b$ also satisfies $y \phi \in A_\alpha[y]_*$. Then
\[q_k y \phi_\alpha = q_k \tilde{a}_\alpha \phi_\alpha + q_k \pi b \phi_\alpha = r_0 + r_1 \tilde{a}_\alpha + q_k \pi b \phi_\alpha = r_0 + r_1 y + (q_k \pi b \phi_\alpha - r_1 \pi b), \]
whence
\[\pi(q_k b \phi_\alpha - r_1 b) \in A_\alpha[y]_* \]
There are $n' \in \omega$, $k \leq l < \omega$, and $t_i \in A_\alpha$ ($i \leq n'$) such that
\[q_i y \phi_\alpha = \sum_{i \leq n'} t_i y^i. \]
Using (1) we obtain
\[q_i \pi b \phi_\alpha = q_i y \phi_\alpha - q_i \tilde{a}_\alpha \phi_\alpha = \sum_{i \leq n'} t_i (\tilde{a}_\alpha + \pi b)^i - \frac{q_i}{q_k} (r_0 + r_1 \tilde{a}_\alpha). \]
Since $[\pi b] \subseteq [b]$, $[q_i \pi b \phi_\alpha] \subseteq [b \phi_\alpha]$ and $\{(1, u_n^i) | n \in \omega\} \subseteq [\tilde{a}^i]$, from Lemma 5.1 we deduce that $n' = 1$ and $t_1 = (q_i/q_k)r_1$. Therefore,
\[q_i \pi b \phi_\alpha = t_0 - \frac{q_i}{q_k} r_0 + \frac{q_i}{q_k} r_1 \pi b, \]
and so
\[\frac{q_i}{q_k} \pi(q_k b \phi_\alpha - r_1 b) = t_0 - \frac{q_i}{q_k} r_0 \in A_\alpha, \]
where $q_i/q_k \in S$. Hence $\pi(q_k b \phi_\alpha - r_1 b) \in A_\alpha$, contradicting (2). This means that $y = \pi b + \tilde{a}_\alpha$ satisfies (i) and (ii).

Now suppose $n > 1$ in (1). We may assume that $r_n \neq 0$, and therefore $0 \neq nr_n \in A_\alpha$ by the torsion-freeness of A_α. There is $\pi \in \widehat{R}$ satisfying
\[\pi \cdot nr_n \not\in A_\alpha. \]
Set $y = \tilde{a}_\alpha + \pi$ (i.e. $b = 1 \in R \subseteq P \subseteq A_\alpha$), and suppose that $y \phi_\alpha \in A_\alpha[y]_*$. Thus $q_i y \phi_\alpha = \sum_{i \leq n'} t_i y^i$ for some $n' \in \omega$, $k \leq l < \omega$, and $t_i \in A_\alpha$ ($i \leq n'$). Using (1) we obtain
\[q_i \pi \phi_\alpha = q_i y \phi_\alpha - q_i \tilde{a}_\alpha \phi_\alpha = \sum_{i \leq n'} t_i y^i - \frac{q_i}{q_k} \sum_{i \leq n} r_i \tilde{a}_\alpha^i. \]
Comparing the supports again, we deduce $n' = n$, $t_n = (q_i/q_k)r_n$, $t_{n-1} + t_n \pi n = (q_i/q_k)r_{n-1}$, and so
\[\frac{q_i}{q_k} r_n \pi n = \frac{q_i}{q_k} r_{n-1} - t_{n-1} \in A_\alpha. \]
We conclude that $r_n \pi n \in A_\alpha$, in contradiction to (3). Consequently, either $y = \tilde{a}_\alpha$ or $y = \tilde{a}_\alpha + \pi$ satisfies $y \phi_\alpha \not\in A_\alpha[y]_*$. ■

We are now ready to prove our main result:

Theorem 5.3. Assume R is a domain satisfying conditions (i)–(iii) of Section 3, and κ, λ are cardinals such that $|R| \leq \kappa$ and $\lambda^\kappa = \lambda$. Then there exists a superdecomposable \aleph_1-free $E(R)$-algebra A of cardinality λ.
Proof. Define A as the union of the well-ordered ascending chain of algebras A_α as stated in Theorem 4.1. Then A is evidently of cardinality λ, is superdecomposable by Lemma 2.2 and Remark 2.3, and is \aleph_1-free by Lemma 4.3. It only remains to show that A is an $E(R)$-algebra.

Multiplications by elements of A are evidently R-endomorphisms, so A may be viewed as a subring of its endomorphism ring. Suppose that ϕ is an R-endomorphism of A that is not multiplication by an element of A. It is clear that there must exist a canonical submodule $P = bP$ such that P is not multiplication by an element in A. We appeal to the Black Box to argue that there is a trap $t = (f, P, \phi, \xi)$ such that P is not multiplication by any element of A. By virtue of the Step Lemma, there exists an element $\tilde{g}_\alpha = b'\pi + \tilde{\alpha} (b' \in P_\alpha, \pi' \in \hat{R})$ that satisfies $\tilde{g}_\alpha \phi \notin A[g_\alpha]$. Because of the existence of such a \tilde{g}_α, the proof of Theorem 4.1 indicates that g_α had to be chosen so as to satisfy $g_\alpha \phi \notin A[g_\alpha] = A_{\alpha+1}$. But then from condition (iii) in the same theorem we conclude that $g_\alpha \phi = g_\alpha \phi \notin A$ as well. Thus ϕ cannot be an endomorphism of A, and as a consequence, A is indeed an $E(R)$-algebra.

Moreover, we can establish the existence of a fully rigid family of 2^λ superdecomposable \aleph_1-free $E(R)$-algebras of size λ.

Theorem 5.4. The algebra A constructed in Theorem 5.3 contains superdecomposable \aleph_1-free $E(R)$-subalgebras A_X for every $X \subseteq \lambda$ such that for all $X, Y \subseteq \lambda$ we have

(i) $X \subseteq Y$ implies $A_X \subseteq A_Y$;
(ii) $\text{Hom}_R(A_X, A_Y) = A_Y$ if $X \subseteq Y$ and 0 otherwise.

Proof. In order to find a family of $E(R)$-algebras satisfying conditions (i) and (ii), we change the definition of a trap and replace t_α in Theorem 3.1 by $t_\alpha = (f_\alpha, P_\alpha, \phi_\alpha, \xi_\alpha)$, where $\xi_\alpha \in \lambda$. Condition (d) of Theorem 3.1 now reads:

(d*) If X is a subset of \hat{F} of cardinality $\leq \kappa$, $\xi \in \lambda$ and $\phi \in \text{End}(\hat{F})$, then there is an ordinal $\alpha \in \lambda^*$ such that $X \subseteq \hat{P}_\alpha$, $\|X\| < \|P_\alpha\|$, $\phi|P_\alpha = \phi_\alpha$, $\xi = \xi_\alpha$.

Recall from Theorem 5.3 that $A = F[g_\alpha : \alpha \in \lambda]^*$. If $X \subseteq \lambda$, then set $X^* = \{\alpha \in \lambda^* \mid \xi_\alpha \in X\} \subseteq \lambda^*$, and define $A_X = F[g_\alpha : \alpha \in X^*]^* \subseteq A$.

The same proof as above shows that A_X is a superdecomposable \aleph_1-free $E(R)$-algebra. It is evident that $A_X \subseteq A_Y$ whenever $X \subseteq Y$. If $X, Y \subseteq \lambda$ are arbitrary subsets, then the argument in Corner–Göbel [3, p. 462, (4)]
shows that $\text{Hom}_R(A_X, A_Y) \neq 0$ implies $X \subseteq Y$, and in this case, (ii) holds true.

6. Remarks. It is easy to characterize all Dedekind domains R that satisfy conditions (i)–(iii) of Section 3.

Evidently, R has to be of characteristic 0 and not a field. One can choose the monoid S generated by the (finite number of) generators of a maximal ideal of R. In order to exclude the case when R is not S-cotorsion-free, it suffices to assume that R is not a complete discrete valuation domain. Thus,

Corollary 6.1. There exist arbitrarily large \aleph_1-free superdecomposable $E(R)$-algebras over a Dedekind domain R that is not a field or a complete discrete valuation domain, and has characteristic 0.

The choice of $R = \mathbb{Z}$ leads us to the existence of large superdecomposable \aleph_1-free E-rings.

Next assume that R is a Matlis domain (i.e. its field of quotients, Q, as an R-module, is of projective dimension 1). If $R \neq Q$, then R contains a countable multiplicative monoid S such that R is Hausdorff in the S-topology (cf. Fuchs–Salce [8, Lemma 4.3, p. 139]). Consequently,

Corollary 6.2. There exist arbitrarily large superdecomposable $E(R)$-algebras over a Matlis domain R of characteristic 0 that is not a field and is not complete in any metrizable linear topology.

Observe that every domain S of characteristic 0 embeds in a ring R satisfying conditions (i)–(iii) mentioned above. In fact, we can choose the polynomial ring $R = S[x]$ with an indeterminate x and $S = \{1, x, \ldots, x^n, \ldots\}$.

It is worth pointing out that if the ring R is of cardinality $< 2^{\aleph_0}$, then for its cotorsion-freeness it suffices to check that it is reduced (see Göbel–May [9]).

References

Department of Mathematics
Tulane University
New Orleans, LA 70118, U.S.A.
E-mail: fuchs@tulane.edu

Fachbereich 6, Mathematik
Universität Duisburg Essen
D-45117 Essen, Germany
E-mail: r.goebel@uni-essen.de

Received 18 October 2004;
in revised form 24 January 2005