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From Newton’s method to exotic basins
Part II: Bifurcation of the Mandelbrot-like sets

by

Krzysztof Barariski (Warszawa)

Abstract. This is a continuation of the work [Ba] dealing with the family of all
cubic rational maps with two supersinks. We prove the existence of the following parabolic
bifurcation of Mandelbrot-like sets in the parameter space of this family. Starting from a
Mandelbrot-like set in cubic Newton maps and changing parameters in a continuous way,
we construct a path of Mandelbrot-like sets ending in the family of parabolic maps with
a fixed point of multiplier 1. Then it bifurcates into two paths of Mandelbrot-like sets,
contained respectively in the set of maps with exotic or non-exotic basins. The non-exotic
path ends at a Mandelbrot-like set in cubic polynomials.

1. Introduction. This paper extends the work started in [Ba]. We
study the family F = {fa 5}, where
bz+1—-2b

1 ap(2) = a2 —————
1) foale) =0 G

This family consists of cubic rational maps with two supersinks: 0 and oo
and a critical point at 1. As one can easily check,

ae€C\{0}, beC\{0,1}.

2b—1
the critical points of f,; are 0,00,1,u = uqp = m;
2) a(2b —1)3
fap(0) =0, fap(o0) =00, fap(l)=a, fap(u)= m

The paper [Ba] contains a general description of F and its moduli space
together with a detailed study of the subfamily Fy C F consisting of maps
for which the critical point 1 is periodic of period 2. In particular, a parabolic
bifurcation in F5 from a Newton map to maps with exotic and non-exotic
basins is described ([Ba], Theorem 4.20). This theorem says that there exists
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2 K. Baranski

a curve in the parameter plane of F> joining a Newton map N € F, via
maps with an attracting fixed point to a parabolic map P € F, with a
fixed point of multiplier 1. Then this curve bifurcates to two curves starting
at P, contained respectively in the set of maps with exotic or non-exotic
basins. Recall that an exotic basin (a notion introduced by F. Przytycki
[P1]) is a non-simply connected completely invariant basin of an attracting
fixed point, containing k critical points counted with multiplicity, with &
less than the degree of the map. (For more information we refer to [Bal.)

This paper generalizes this result, proving the existence of a parabolic
bifurcation of Mandelbrot-like sets in F (Theorem 4.1). It is known (see
[CGS], [DH2]) that in the parameter plane of cubic Newton maps { N, }scc
there exist Mandelbrot-like sets quasiconformally homeomorphic to the stan-
dard Mandelbrot set. These sets correspond to some regions of parameters
o for which N* is quadratic-like on some topological disc U,. Given such
a Mandelbrot-like set My, we prove the existence of a continuous path of
Mandelbrot-like sets joining My via My, t € (0, 1), contained in the family
of maps with an attracting fixed point of multiplier ¢ to a parabolic M;
contained in the family of maps with a fixed point of multiplier 1. Then this
path bifurcates into two paths of Mandelbrot-like sets, contained in the set
of maps with exotic or non-exotic basins (see Figs. 1 and 2-5). Moreover,
the non-exotic path can be extended in such a way that it terminates with
a Mandelbrot-like set in the family of maps conformally conjugate to cu-
bic polynomials with a supersink. Theorem 4.1 answers a question asked by
F. Przytycki [P1] (see [Ba], Section 1).

The plan of the paper is as follows. In Section 2 we prove some technical
lemmas which are used in the proof of the main theorem. They concern
the limit behaviour of some invariant curves under the action of Riemann
mappings. Section 3 contains definitions and properties of Mandelbrot-like
families taken from [DH2]. The formulation and the proof of the main the-
orem (Theorem 4.1) are contained in Section 4. The proof, quite long and
technical, is divided into several parts. In Subsection 4.1 we modify the ini-
tial Mandelbrot-like family in Newton maps to an equivalent family which
has a nice combinatorial description. Then in Subsection 4.2 we construct
the sets M; for t € (0,1) using quasiconformal surgery. The most delicate
part is to prove that M; tends to a parabolic M; for ¢ — 17. This is done
in Subsection 4.3. (The problem of obtaining a parabolic map as a limit
of hyperbolic maps was studied in [Ma]. However, his theory is not ap-
plicable to our case.) In Subsection 4.4 we describe the bifurcation of M;
into two paths by the use of the “tour de valse” method from [DH1]. In
Subsection 4.5 we determine which path is exotic and in Subsection 4.6 we
extend the non-exotic path in such a way that it ends in maps with a double
supersink (i.e. conformally conjugate to cubic polynomials).
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NoTATION. The symbols cl, d and int denote respectively the closure,
boundary and interior of a set, C = CU{oo} is the Riemann sphere, D is the
open unit disc in C, D, is the open disc centred at 0 of radius 7 and D,.(x) is
the open disc centred at x of radius 7. Define also D™ = {z € D : Im(2) > 0},
D~ ={z € D:Im(z) < 0}. By a simple arc we mean a curve homeomorphic
to a line segment, and a topological disc is a set homeomorphic to D. If
v :]0,00) — C is a curve such that v(s) — z as s — oo, then we say that
begins at v(0) and lands at z. If ¢ is an attracting (resp. parabolic) point for
a map f, then B(() denotes the immediate basin of attraction to { (resp.
invariant parabolic basin of ().

REMARK. We often refer to the notions and results from [Bal, so it is
advisable to read the two papers together. We also adopt some notational
conventions from the first part of the work. Referring to [Ba], we write
Theorem I.N.M for Theorem N.M of [Ba] etc.

Acknowledgements. The author would like to thank Prof. F. Przyty-
cki for suggesting the problem and many fruitful discussions on the subject.
He is grateful to the referee for carefully reading the manuscript, pointing
out mistakes and proposing many improvements. He also thanks the Centre
de Recerca Matematica in Bellaterra for support and hospitality.

2. Convergence of Riemann mappings and invariant curves

DEFINITION 2.1. Denote by Sing the set of singular parameters (a, b) €
C x C for the family F, i.e.

Sing = {(a,b) € C x C:a € {0,00} or b € {0,1,00}}.

For ¢ € C let Fix(p) be the set of parameters (a,b) € (@ X @) \ Sing for
which f, 3, € F has a fixed point £ # 0, co of multiplier p.

REMARK. There are four fixed points of f,; (counted with multiplicity):
0, oo and two others; denote them by &1, 2. Let 0; = f; ,(&). By the
holomorphic fixed point formula (see e.g. [Mi]), if o; # 1, then

(3) LRI S
l—o1 1—p2 ’

In other words, the value of one multiplier determines the other one and

1
Fi =Fix(24+ —— ).
ix(o) 1X< + Q_2>

In this section we prove two technical lemmas, which will be used in
the proof of the main theorem. The first one describes some standard facts
on convergence of maps from F and suitable Riemann mappings. Recall
first the definition of the convergence in the Carathéodory topology (see
e.g. [McM)]).
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DEFINITION 2.2. Let (Uy, 2y), 2, € U, C @, be a sequence of pointed
topological discs. We say that (U,, z,) tends to a pointed topological disc
(U,2),z€e U C ((A:, in the Carathéodory topology if z,, — z, for every compact
set K C U we have K C U, for sufficiently large n and for every open
connected set V' containing z, if V' C U, for infinitely many n, then V' C U.

LEMMA 2.3. Let f,, = fa, b, € F such that (an,b,) — (a,b) as n — oo
for some a,b € @, a # 0,00. Suppose that for every n the map f, has a
fized point &, # 0,00, either attracting with the immediate basin B(&,) or
parabolic with an invariant parabolic basin B(&,). Let ¢, be one of the points
0,00,&, (the same choice for all n) and let ¢, be an f,-critical point such
that ¢, € B((p), ¢n — C € C. Assume also that there exists r > 0 such that
for all n the basin B((,) contains a disc of spherical radius r centred at c,,
and C \ B((n) contains a non-empty open set independent of n.

Then B((y,) is simply connected for every n, the map f = fqp has a fived
point ¢ € @, either attracting with the immediate basin B(() or parabolic of
multiplier 1 with ezactly one invariant parabolic basin B(() such that in both
cases B(Q) is simply connected, ¢ € B(C) and (B((n), cn) tends to (B(C),c)
in the Carathéodory topology. The sequence (, does not always converge to
¢, but if ¢, /~ C, then C is parabolic and ¢, € {0,00} for infinitely many n.

Moreover, if 1, : D — B((,) is the unique Riemann mapping such that
Yn(0) = ¢, and ¢}, (0) > 0, then ¥, — v almost uniformly on D, where
Y : D — B(() is the Riemann mapping such that ¥(0) = ¢ and ¢'(0) > 0.
Furthermore, the Blaschke product h,, = 1, 1o f, 01, tends to h = =10 foi)

almost uniformly in the spherical metric on C outside at most one point
zo € ID.

REMARK. We allow here (a,b) to be a singular parameter, which means
that f, can be a map of degree two.

Proof. Observe first that by the Flower Theorem, if there exists an in-
variant parabolic basin, then the multiplier of the fixed point is equal to 1.
Moreover, if f, has an attracting fixed point, then by (3), the fourth fixed
point is repelling and if f,, has a parabolic fixed point of multiplier 1, then
there are only three fixed points. According to [Sh], if for a rational map
only one fixed point is repelling or parabolic of multiplier 1, then each Fatou
component is simply connected. Hence, B((,,) is simply connected.

By assumption, a ¢ {0,000}, so if b & {0,1,00}, then (a,b) ¢ Sing and
frn — f uniformly in the spherical metric on C. Moreover, by Lemma 1.2.2,
if b € {0,1,00}, then f,, — f almost uniformly in the spherical metric on
C\ {1/b} (with the convention 1/0 = 0o, 1/00 = 0). Hence, we get:

(4) If b¢{0,1,00} or z€ C\ {1/b}, then f, — f uniformly on V,
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for some neighbourhood V, C C of = Moreover, using Lemma 1.2.2, it is
easy to check that

(5) If be{0,1,00}, then dist(1/b,J(f,)) — O,

where J(f,,) is the Julia set of f,, and dist denotes the spherical distance.

By assumption, C \ B((,) contains a non-empty open set independent
of n, so the family {¢,},>0 is normal and v,, — ¥ as k — oo almost
uniformly on D for some holomorphic map ¢ : D — C. Moreover, v, (D)
contains the disc of spherical radius r/2 centred at ¢ for large k. Hence, 1
is univalent.

Note that h,, is a quadratic or cubic Blaschke product with an attracting
or parabolic fixed point and a critical point at 0. Passing to a subsequence,
we can assume that h,, — h almost uniformly on D for some holomorphic
map h, which is a Blaschke product of degree at most three or a constant.
By definition, for z € D we have

Fix z € D. Then thn, (hn, (2)) — ¢(h(z2)). Moreover, fn, (¢n, (2)) = f(1(2)),
provided f,, — f uniformly in a neighbourhood of #(z). By (4), this holds
if b {0,1,00} or ¢(z) = 1/b. Suppose now b € {0,1, 0}, ¥(z) = 1/b. Then
1/b € ¥(D), so by the almost uniform convergence 1, — 1, there exists
a neighbourhood of 1/b contained in B((,,) for sufficiently large k. This
contradicts (5), which shows that this case is impossible. We conclude that
we can pass to the limit in (6), obtaining

(7) fop=1von,

which means that f on (D) is conformally conjugate to h on D. Note that
since 9 is univalent, h is not constant and has a critical point at 0, so it is
a quadratic or cubic Blaschke product. Moreover, f(¢(D)) C ¥(ID), so (D)
is contained in an invariant Fatou component F'. It cannot be a rotation
domain, since it contains a critical point. Hence, either F' is the immediate
basin B(() of an attracting fixed point ¢ or F' is an invariant parabolic
basin B(({) for a parabolic fixed point ¢ (by the Flower Theorem, in this
case the multiplier must be equal to 1). To prove that in the latter case
B(() is the unique invariant parabolic basin of (, we show that for all maps
fap for a,b € @, if there exists a fixed point of multiplier 1, then it has
only one invariant basin. This is obvious for (a,b) € Sing. To check the case
(a,b) ¢ Sing, change conformally the coordinates fixing 0, oo and sending the
parabolic point to 1. It is easy to check that such a map in these coordinates

has the form

flo=2 2 pechy,
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and f(1) = f'(1) = 1, f”(1) = 2/(b— 1) # 0. By the Flower Theorem, the
fixed point of multiplier 1 has only one petal. Hence, B(() is unique.

Now we return to the general case. By (7) and the dynamics of f, it is
easy to check that no point z € 9y(D) can be in B((), so in fact we have
(D) = B(¢). Hence, B(() is simply connected and contains the critical
point ¢ = 9(0). It is clear that ¢ is the unique Riemann mapping from D
onto B(¢) such that ¥(0) = ¢ and ’'(0) > 0.

By normality, for any subsequence n; we can choose a subsubsequence
n;, and repeat the above arguments, showing that ¢, — v and hy; —h
as k — oo for the same 1, h. It follows that in fact v,, converges to v and h,,
converges to h almost uniformly on D. Then the sequence of pointed topo-
logical discs (¢n (D), ¥n(0)) = (B(Gn), cn) tends to ((D),4(0)) = (B((), ¢)
in the Carathéodory topology (see e.g. [McM]).

Now we check when (,, — (. Suppose first that ¢ is attracting. Then
by the Carathéodory convergence of (B((,),cn) to (B((),c) and by (5), we
have b ¢ {0,1,00} or ¢ # 1/b. Hence, by (4), f, — f uniformly in some
neighbourhood of ¢, which easily implies that for large n there exists an
attracting f,-fixed point ¢/ such that {/, — ¢. But by (3), there can be at
most one attracting fixed point for f,, so ¢, = ¢}, — .

Assume now that ( is parabolic. As previously, if b ¢ {0,1, 00} or ¢ # 1/b,
then f,, — f uniformly in a neighbourhood of (. Hence, in this case there
exist f,-fixed points ¢}, ()’ such that (/] — ¢ and ¢/, = ¢/ if and only if
they have multiplier 1. But since f,, has only four (resp. three) fixed points
in the attracting (resp. parabolic case), it follows that (, € {¢},,¢/,0,00}.
Hence, if (,, /~ ¢, then (,, = 0 or oo for infinitely many n. We are left with
the case b € {0,1,00}, ¢ = 1/b. Suppose (, # ¢ and take a convergent
subsequence (,; — Z # (. By (4), fn — f uniformly in some neighbourhood
of E . Therefore, E is an f-fixed point, so it must be 0 or co. Moreover, by the
uniform convergence f, — f near Z , we have (,; € B(Z) for the map f,,
with large j, so (n; = Efor large j. Hence, (,, = 0 or oo for infinitely many n.

It is clear that since h,, — h and hy, h are quadratic or cubic Blaschke
products, the convergence is uniform in the spherical metric on C unless
deg h,, = 3 and degh = 2. In the latter case,

Z— Qp 2 — B 2= Tn
-z 1-06,2 1=79,2

hn(2) = e¥n

with a,, — 29 € 0D, B, — z1 € D, v, — 29 € D and it is easy to check that
zZ— Qy

—— — —20
1—-—a,z

almost uniformly in the spherical metric on (@\ {20}. This easily implies that
hyn, — h almost uniformly in the spherical metric on C\ {z}. =
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The second lemma asserts that in the situation of Lemma 2.3, a suitable
converging sequence of f,-invariant curves converges in the Hausdorff metric
to a suitable f-invariant curve. We consider two cases. In the case (a) we
have a sequence of backward f,-invariant curves landing at a repelling or
parabolic point and in the case (b) we consider a sequence of forward f,-
invariant curves containing an attracting point, landing at a repelling point
and converging to a forward f-invariant curve landing at a parabolic point.
The advantage of the lemma is that we do not assume that the sequence f,
is uniformly convergent in a neighbourhood of the fixed point of f.

LEMMA 2.4. Under the assumptions of the previous lemma, assume ad-
ditionally that for every n the basin B(&,) contains a disc centred at an
fn-critical point of radius independent of n. Let v,y be simple arcs in D
parameterized by s € [0,00) such that v,(s) — v(s) as n — oo almost uni-
formly on [0,00). Suppose one of the following two possibilities is satisfied:

() hpn(Vn(8)) = (s —1) for s > 1 and ~y, (resp. ) is disjoint from the
closure of the postcritical set for h, (resp. h).

(b) hn(1n(5)) = Yn(s+ (n=8)/n) forn > 1, § > 0, ya((n, 00)) is disjoint
from the closure of the hy,-posteritical set and diam -y, ([n,c0)) — 0.

Then 7y, (resp. 7y) lands at some hy,-fized point q, (resp. h-fized point q)
in 0D and ¥y, 0y, (resp. o) lands at some f,-fixed point p,, (resp. f-fixed
point p) in C. In the case (a) the points qn, pn, q, p are either repelling or
parabolic of multiplier 1 and in the case (b) the points q,, pn are repelling
and q, p are parabolic of multiplier 1.

Moreover, in both cases, for any sequences n, sg,

if ng,sk — 00, then n,(sk) — q¢ and VY, (Vn,(SK)) — Pp.
k—oo k—oo k—oo

This implies that g, — q, pn — P and ¥, U{qn} (resp. ¥n(vn) U{pn}) tends
to yU{q} (resp. ¥(v) U{p}) in the Hausdorff metric as compact subsets of
the Riemann sphere.

Proof. The case (a). It is a general fact (the Landing Theorem) that
under the assumptions of the lemma, =, (resp. ¥, o ~,) lands at an h,-
fixed point ¢, € OD (resp. f,-fixed point p, € @), repelling or parabolic
of multiplier 1 (see [TY]). Since 7,(s) — 7(s) almost uniformly on [0, c0),
passing to the limit we obtain

h(y(s)) =~v(s = 1), f(b(v(s))) = ¥(h(1(s))) = P(v(s = 1)),
so the Landing Theorem implies that + lands at an h-fixed point ¢ € D
and ¥(v) lands at an f-fixed point p € C.

Proof of n, (sk) — q. Let ng, s — oo and suppose vy, (si) 7 q. Pass-
ing to a subsequence, we can assume 7y, (sg) ¢ D, where D = D.(q) for
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a small € > 0. By Lemma 2.3, h, — h almost uniformly in the spherical
metric on C outside at most one point in JD. Hence, changing ¢ if neces-
sary, we can assume h, — h uniformly on dD. Since v lands at ¢, we have
7(s) € D, /2(q) for large s, so by the almost uniform convergence vy, — 7,
we can find so > 1 such that for sufficiently large k,

(8) Y ([80 — 1, 50]) C D.

Let

9) sj, = inf{s € (sq, sk) : Yn, (s) € OD}.
Then (8) and (9) give

(10) hony, (Y (5%)) = i (s}, — 1) € D.

If ¢ is repelling for h, then h(OD)Necl D = () (if we take ¢ small enough),
so by the uniform convergence h,, — h on 0D, we have hy,, (0D)NclD =0
for large k, which contradicts (10).

We are left with the case when ¢ is parabolic for h of multiplier 1. Then
by the local study of a holomorphic map near such a point, the uniform
convergence h,, — h on 0D and (10) we obtain

(11) Yoy (54) € K C D,

where K is a compact set independent of k. Note that in the case when ¢ is
parabolic we have (,, = ,,, because if (,, € {0,000}, then h,, (and hence h)
would have a supersink at 0, which is impossible, because h is a Blaschke
product and D C B(q).

By (11), vn,(s},) € Dy, for some ro < 1 independent of k. Since the
segment [0, g] forms the attracting axis of the parabolic point ¢, by the
almost uniform convergence h,, — h on D we can find a positive integer j
and a small €; > 0 such that for s} = s} —j > 1 we have

(12) |y, (sx) —al <er and  dist(yn, (s5), [0,4]) < |ym, (s5) — ql /10

for large k.
Now we prove

(13) ¢;1(§n) —q.

To do it, suppose (13) does not hold and (passing to a subsequence) assume
¥1(€,) — ¢ # q. Recall that h,, — h almost uniformly in the spherical
metric outside at most one point zg € ID. If ¢ # 2y, then by the uniform
convergence in a neighbourhood of ¢, the map h has two fixed non-repelling
points ¢ # ¢ in clD, which is clearly impossible for a quadratic or cubic
Blaschke product. If ¢ = zg, then by the uniform convergence in a neigh-
bourhood of ¢, it is easy to check that for large n we have two repelling
hn-fixed points ¢’,¢"” € 0D in a small neighbourhood of ¢. But by uniform
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convergence, the small arc (¢, ¢"”) in 9D is h,-invariant, so there exists an-
other h,-fixed point in this arc, which is impossible. This proves (13).
Due to (13), we can assume

(14) [ (&) — q < €1/10.

Let Dy C D be the open hyperbolic disc (i.e. the disc with respect to the
hyperbolic metric in D) centred at ¢, ! (&, ) such that v, (s}) € dDy, (in the
case when ¢, (&, ) is attracting) or the horodisc tangent to 9D at 1, ! (&n,,)
such that vy, (s}) € Dy, (in the case when ¢ 1(&y,) is parabolic). Then in
both cases we have

Vi (SE —1) € D and  hy,, (Dy) C Dy

(see e.g. [St]), so Dy, contains a point from v, ([0, 1]). By the almost uniform
convergence ¥, — -y, this point lies in some fixed compact set in . On the
other hand, it is easy to check by elementary geometry that (12) and (14)
imply the Euclidean diameter of Dy, is less than 2eq, so Dy C D3, (q). For
sufficiently small €; we get a contradiction.

Proof of ¢n, (Yn, (sk)) — p. Define e, D, sy, s, s}, as previously, replac-
ing Ay, , h, q, Yn, respectively by fr,, f, D, ¥n, © Vn,- If p is repelling, then
the proof is the same. Consider the case when p is parabolic. Then repeating
the proof, instead of (11) we obtain

(15) Ui (i (57,)) € K,

where K is a compact set independent of k£ contained in the unique f-
invariant parabolic basin B(p) of p (recall that by Lemma 2.3, p has only
one invariant basin). By assumption, B(&,) contains a disc of a fixed radius
centred at some f,-critical point ¢,. It is easy to see that B(0) U B(c0)
also contains a disc of a spherical radius independent of n. Hence, the as-
sumptions of Lemma 2.3 are fulfilled for B(,,), so (B(£),¢n) tends in the
Carathéodory topology to (E (¢),lim,, ¢,) for an f-invariant parabolic basin
E(C) of ¢. It is clear that { = p and E(C) = B(p). By the Carathéodory
convergence, K C B(¢,, ) for large k. Hence, (,, = &,, and ¥(D) = B(p),
SO

K Cc ¢(D).
Thus, ¥~ *(K) C D, for some r; < 1. By the uniform convergence v, — 1

on D,,, we have K C 9y, (D) for large k. But by (15), ¢, (K) C Dy,
contains 7y, (s},), which contradicts v, (s},) — ¢ € ID.

The case (b). Note first that the point v,(n) is an attracting h,,-fixed
point for every n. Hence, 1, (v,(n)) = &, = (, is an attracting f,-fixed
point. Moreover, the curve ")/n’[n+l7oo) fulfills (after rescaling) the conditions
of the case (a). Therefore, 7, lands at an h,,-fixed point ¢, € 0D and ¥, ()
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lands at an f,-fixed point p, € C. The points ¢, p, are repelling, since h,,
and f, have an attracting fixed point. By the almost uniform convergence
Yn(s) — 7(s), after passing to the limit we get

h(v(s)) =~v(s+1),  f((v(s))) = ¥(v(s + 1)).

By assumption, diamy,([n,o0)) — 0, so v,(n) — 0D, which implies that
h (and hence f) must be parabolic. Thus, v(n) = h™(y(0)) converges to
a parabolic h-fixed point ¢ € 9D of multiplier 1 and (y(n)) converges
to a parabolic f-fixed point p € C of multiplier 1. Since the hyperbolic
distance between any point from v and the set {vy(n)},>0 (resp. ¥(y) and
{¥»(v(n))}n>0) is bounded by a fixed constant, we conclude that v lands at
q and () lands at p.

Proof of ~n, (sx) — ¢. Note that since ¢ is parabolic, by (13) we have
Yoy, (1) =, 1 (&n, ) — q- Hence, using the assumption diam ~y([n, c0)) — 0,
we can assume s < ny. Take a small 5 > 0. As [0, ¢] forms the attracting
axis of the parabolic point g, by the almost uniform convergence h,, — h we
can find s such that for every s € [sg, s + 1],

[, (8) —ql < ez and  dist(vyn,(s),[0,4]) < |vn,(s) —¢|/10

for k larger than some k(s) (cf. (12)). As in the proof of the case (a),
we find an open disc D) of Euclidean diameter less than 25 such that
hin, (Ds k) C Dg i and &y, , Yn,. (S) € Dy for k > k(s). By the compactness
of [so, so + 1], there exists ko such that for every k > ko and every s > s we
have &, ,Yn, () € Ds k. Hence, |y, (s) — &ni| < 2€2, 50 |yn, (8) — ¢] < 3e2
for every s > sg. This proves vy, (sx) — q.

Proof of 1, (Yn, (sk)) — p. Suppose this is not true and define £ and
D as in the proof of the case (a). Note that ¥, (y.(n)) = & — p. (To
see this, it is sufficient to notice that by Lemma 1.2.2, f, — f almost
uniformly on C\ {p} and use similar arguments to those for (13).) Hence,
Un,, (Yny, () € D for large k. Let

;[ sup{s € (s, 1K) : Yn, (Vn, (s)) € OD} if s < ny,
k= inf{s € (g, sk) : Yn, (Yn, () € D} if s > ny.

Then fpn, (¥n, (Yn,(5%))) € D. In the same way as in the case (a) we show
that there exists a compact set K and r; < 1 such that

Ui (Vi (5%)) € K C b, (D))
for sufficiently large k. This contradicts ~,,(s,) — ¢ € 0JD. Hence,

Ui (Y (sk)) = -
Note that the facts proven above easily imply ¢, — ¢, p, — p. More-
over, it is easy to see that they show (together with the almost uniform
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convergence Y, — ¥, ¥n 0 v, — ¥ 0) that v, U {g,} tends to v U {q} and
U () U {pn} tends to ¥(v) U {p} in the Hausdorff metric. m

3. Mandelbrot-like families. It is known (see [CGS], [DH2]) that
in the parameter plane of cubic Newton maps N there exist Mandelbrot-
like sets (quasiconformally homeomorphic to the standard Mandelbrot set)
corresponding to certain sets of parameters for which N*|; is quadratic-
like on some topological disc U with some k > 2. More precisely, consider
the family J\/'(()’u,oo) C F of Newton maps with supersinks 0, u,occ. This

. . . 9 \2 . .
family consists of maps f,; with a = (2”17—_21) (see Section 1.3). To avoid
confusion in notation, we parameterize these maps by a new parameter

o€ X =C\{0,1/2,1,2} setting

oc—2\2
Ny = fap for a= , b=o.

20—1

Take o¢ such that for N,, the critical point 1 is periodic with some period
k > 2. According to Lemma 1.4.19, N, fjo is quadratic-like on some topological
disc U,, containing the critical point 1. Perturbing o within some open set
U C X we obtain a family {N, },cs of maps such that N¥ is quadratic-like
on some topological disc U, (see Subsection 4.1).

The general theory of such analytic families of polynomial-like maps was
developed in [DH2]. For convenience, we recall here the definitions and some
results from this work, which will be used in what follows.

DEFINITION 3.1. A polynomial-like map of degree d is a proper holomor-
phic mapping of degree d from a topological disc U C C onto a topological
disc V' C C such that clU C V. The filled-in Julia set Ky of f is the set of
points z € U such that the entire forward trajectory of z is contained in U.
A polynomial-like map of degree two is called a quadratic-like map.

DEFINITION 3.2. Let {f,}secu for some complex manifold ¢ be a family
of quadratic-like maps f, : U, — f,(Uy). Let V = {(0,2) : z € U,},
W = {(0,2) : z € fo(Uy)}, flo,2) = (0, fs(2)). Then this family is an
analytic family of quadratic-like maps if:

(i) V and W are homeomorphic over U to U x D,
(ii) the projection clyy V — U is a proper map,
(iii) f : ¥V — W is a proper holomorphic map.

REMARK. The condition (ii) of the above definition is fulfilled if cl U,
depends continuously on o in the Hausdorff metric. Indeed, in this case for
every o, €U and z, € clU,, ,if 2, - 2€ Cand 0, — 0 €U, then z € Uy,
which easily implies the condition (ii).
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The Straightening Theorem says that every quadratic-like map f is hy-
brid equivalent to some polynomial 22 + ¢, i.e. f is conjugate to 22 + ¢ by
a quasiconformal homeomorphism h which is conformal almost everywhere
on the filled-in Julia set K; of f. Moreover, if K is connected, then c is
uniquely determined. Hence, for a family {f,},cyy we can define a function
X setting x (o) = ¢ for o such that Ky is connected. Let M be the stan-
dard Mandelbrot set for the family 22 + ¢. The following facts were proved
in [DH2]:

THEOREM 3.3. For any analytic family {fs}scu of quadratic-like map-
pings, if U is a contractible complex manifold, then the mapping x can be
extended continuously to U and x is holomorphic on int x ~*(M). Moreover,
for every ¢ € M the set x~'(c) is analytic. However, x need not to be
holomorphic at the boundary of x *(M). =

THEOREM 3.4. For any analytic family f = {fs}secu of quadratic-like
mappings with U connected of complex dimension one, if x is not constant,
then it is topologically holomorphic over M, i.e. for all o € x~ (M), o is
isolated in its fibre and the index of x at o is strictly positive. m

PROPOSITION 3.5. Suppose that, in addition, U is a topological disc and
X 1(M) is compact. Let w, be the critical point of f, and let A be a closed
topological disc in U such that x~ (M) € int A. Then x has degree d on
X (M), where d is the number of times f,(wy) — wy turns around 0 as
o describes OA. In particular, if d = 1, then x is a homeomorphism on
X (M) and we call the family {f,}ocu a Mandelbrot-like family and Mg =
X (M) a Mandelbrot-like set. m

DEFINITION 3.6. Let &/ be a Riemann surface homeomorphic to a disc
and let

f = {fa,t : Ua,t - fa,t(Ua,t)}(a,t)eux[o,l]

be a family of quadratic-like maps. Suppose that the conditions (i) and
(ii) from Definition 3.2 hold for U replaced by U x [0,1] and the mapping
(0,t,2) — (0,1, fot(2)) is continuous and proper in (o, ¢, z) and holomorphic
in (o, z). Assume also that for every ¢ € [0,1] the family £, = {fy.:}ocu is
Mandelbrot-like and all sets My, are contained in a common compact set
A C U. Then we say that fy and f; can be connected by a continuous path
of Mandelbrot-like families.

REMARK. As previously, the condition (ii) is satisfied if clU,; depends
continuously on o, t in the Hausdorff metric.

Let U and U, for ¢ € [0, 1] be disc-equivalent Riemann surfaces such that
there exists a homeomorphism H : U x [0,1] — [, ¢(9,1) U+ which maps holo-
morphically U x {t} onto U; for every t. If { fi(o,4) } (o,t)ctix [0,1] IS & continuous
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path of Mandelbrot-like families, we will also say that {f:}-cu,,tef0,1] IS a
continuous path of Mandelbrot-like families.

PROPOSITION 3.7. Let f={fs}oecuu and g={go }ocu be two Mandelbrot-
like families parameterized by the same Riemann surface U. If £ and g can
be connected by a continuous path of Mandelbrot-like families, then the hom-
eomorphism Xgl oxf : Mg — Mg is quasiconformal. m

Moreover, [DH2| gives examples of topological discs U in the parameter
plane of cubic Newton maps such that (in our parameterization) U C X,
the family {N¥|y, },cu is Mandelbrot-like for some topological discs U,
containing the critical point 1 and y is quasiconformal on y =1 (M).

DEFINITION 3.8. We will say that two Mandelbrot-like families
f={foc:Us— fo(Us)}oery and g={go:V,— QU(VG)}aeug

with U, Uy C U for some Riemann surface U are equivalent if

(i) Mg = Mg C Ur NUg,
(ii) Ky, = Ky, C U,NV, and fo|u,nv, = golu,nv, for every o € UsNly.

4. The bifurcation theorem. In this section we formulate and prove
the main theorem.

THEOREM 4.1 (The bifurcation theorem). Let N = {NF|y. Y,cu for a
topological disc U C X be a Mandelbrot-like family in N(o,u,oo) and let
My = x" Y (M) be the Mandelbrot-like set inU. Set oo = x~1(0) and assume
that for N,,, Head’s angle o is periodic mod 1 with period k. Then there
exist continuous paths of Mandelbrot-like families {f;}ic(01], {f{]}te[171+6],
{£°}iep,14e) for some 0 < e < 1, with Mandelbrot-like sets My, M}, M®
respectively, such that:

ofy = {]\C’f]y;r Yocur for some topological disc U' C X and fy is equivalent
to N, in particular My = My .

e For everyt € (0,1) we have f, = {f¥ v, , }(a.p)eu, for some topological
disc Uy C Fix(t) and for every (a,b) € U; the fqp-critical point wu,yp is in
the immediate basin of an attracting fq-fized point of multiplier t.

o fy =) = f° = {fF,lv.,} e, for some topological disc Uy C
Fix(1) and for every (a,b) € Uy the fqp-critical point ugp is in the unique
invariant parabolic basin of an fq -fized point of multiplier 1.

o For ¢ € {0,00} and every t € (1,1+¢] we have f* = {ftf,b|Ua,b}(a,b)euf

for some topological disc U C CxC \ Sing such that usp € B(() for every
(a,b) € U and @gb(fa,b(umb)) = 2 —t for every (a,b) € MF, where @g b
denotes the Béttcher coordinates defined on the mazimal subset of B(() f(;r
the map fap.
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e For ( € {0,00}, if the set 0B(u) N 0B(C) for the map Ny, in the
initial family is infinite, then for t € (1,14 €| the basin B(() is not simply
connected for every (a,b) € Uf and is exotic for every (a,b) € Mf; otherwise
B(() is simply connected for every (a,b) € Mf and is not exotic for every
(a,b) € Uf .

e For ¢ € {0,00}, if B(C) is not exotic for (a,b) € UL, t € (1,1+¢], then
the path {ff}te[l,lﬁ] can be extended to a continuous path {ff}te[m] for
£ = {fclf,b|Ua,b}(a,b)€Z/{f such that for every (a,b) € UF we have uqp € B(C)
fort e (1,2] and uqp = ¢ fort = 2. In particular, if B(oco) is not exotic for
(a,b) € U®, then the maps fqp for (a,b) € US® are cubic polynomials with
a supersink at 0.

Moreover, if x : My — M is quasiconformal, then all the Mandelbrot-
like sets My, M?, M are quasiconformally homeomorphic to M.

1

0)
y
. mﬂps S

\
\
\

|

Fig. 1. Bifurcation of the Mandelbrot-like sets

REMARK. It is not possible to extend the exotic path {f* Yeem 14 to

{ff}te[lyg] as in the non-exotic case, because for ¢ = 2 the map f,; can
degenerate (see Section 1.2).

The parabolic bifurcation is demonstrated in Fig. 1, and Figs. 2-5 present
computer pictures of the Mandelbrot-like sets. In all of them white (resp.
dark grey) colour corresponds to parameters for which the critical point 1
is in the basin of co (resp. 0). Note the remarkable similarity between the
parameter space and the dynamical space in Fig. 1.7.
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Fig. 2. A fragment of the parameter space of Newton maps with supersinks 0, oo, u. Light
grey colour corresponds to parameters for which the critical point 1 is in the basin of wu.
The enlargement shows the Mandelbrot-like set M.

. e

Fig. 3. A fragment of the parameter space of parabolic maps with supersinks 0, oo, and
a fixed point of multiplier 1. Light grey colour corresponds to parameters for which the
critical point 1 is in the parabolic basin. The enlargement shows the Mandelbrot-like
set M.

Let us remark that compared to the general case, it is much easier to
prove the existence of the above bifurcation for the “centre” of the main
cardioid in the Mandelbrot-like sets, i.e. the bifurcation on the surface

Per(k) = {(a,b) € C x C \ Sing : 1 is periodic with period k for fap}-

(For k = 2, this was done in Theorem 1.4.20.) One can show that for
some open set ¥V C C x C containing {J,cpy 1y Fix(0), the set Per(k) NV
is a one-dimensional complex manifold, transversal to the set of Newton
maps with supersinks 0,u,00. (The proof is similar to the proof of The-
orem 1.4.14.) Moreover, one can show there are no singular parameters
in clPer(k) N'V. Let &, # 0,00 be the f,p-attracting fixed point for
(a,b) € Per(k) N U,ep Fix(e). Then the function (a,b) — & is holomor-
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Fig. 4. A fragment of the parameter space of maps with supersinks 0, oo such that u is in
the exotic basin of co. The enlargement shows the Mandelbrot-like set M.

Fig. 5. A fragment of the parameter space of maps with supersinks 0, oo such that u is in
the non-exotic basin of 0. The enlargement shows the Mandelbrot-like set Mto .

phic and the boundary of Per(k) NV N U,¢p Fix(o) is a piecewise analytic
curve in {J,¢op Fix(e). Hence, one can connect the map Ny, to a parabolic
map in Per(k) N Fix(1) by a suitable curve v in Per(k) N U ,¢p Fix(o). Then
using the Douady—Sentenac theorem on the parabolic bifurcation (Theo-
rem 1.4.21) one can show the existence of two curves 7, Yo leading to maps
for which the critical point u is respectively in the (exotic or not) basin of
0 or oo.

The proof of Theorem 4.1 in the general case is longer and consists
of several parts. First, in Subsection 4.1 we show that we can modify the
initial Mandelbrot-like family N to an equivalent family fy = {N, 5|U{, Yocur
such that the topological discs U/ have a nice combinatorial description. In
Subsection 4.2 we construct the family f; for ¢ € (0, 1) using quasiconformal
surgery. In Subsection 4.3 we define the family f; and prove that {f;};c[o,1)
is a continuous path of Mandelbrot-like families. This is the most technical
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part of the proof, which makes use of Lemmas 2.3 and 2.4. Subsection 4.4
contains the proof of the existence of the families f? and £2°, similar to the
proof of Theorem 1.4.20. In Subsection 4.5 we determine which path is exotic.
Finally, in Subsection 4.6 we extend the non-exotic path so that it ends in the
family of maps with a double critical point (conformally conjugate to cubic
polynomials with a supersink), using quasiconformal surgery once more.

Consider the initial family N and the map N,,. Then the boundaries
of two of the three immediate basins B(0), B(u), B(co) have an infinite in-
tersection and the boundary of the third one has a one-point intersection
with the others (see Subsection 1.4.4). Hence, we have three possibilities:
0B(u) N 0B(0) is infinite, 0B(u) N dB(0) is infinite or IB(0) N IB(o0) is
infinite. We will consider only the first case (then, according to Theorem 4.1,
the path {f?°} is exotic and {f{} is non-exotic). The second case is symmet-
ric to the first (it differs only by the exchange of 0 and oco) and the third
can be proved in the same way (in fact, it is technically much easier).

4.1. Modifying the sets U,. Recall that for ¢ € U the set U, is a topo-
logical disc and N¥ is quadratic-like on U,. It is obvious that U, contains
the critical point 1. Let K, be the filled-in Julia set of N¥|;; . We con-
struct a topological disc Y’ C U containing My and topological discs U,
for o € U’ such that U/ contains the critical point 1, K, C U, and N%|y,
is quadratic-like. The boundary of the sets U will consist of suitable parts
of some equipotential curves and preperiodic internal rays in the basins of
0, u, 0o.

Recall that for any Newton map N, the three immediate basins B, ({) =
B(¢) for ¢ € {0,u, 00} are simply connected and N, has a unique repelling
fixed point p, = 9B,(0) N 0B, (u) N IB,(o0) (see [P2]).

DEFINITION 4.2. For ( € {0,u,0} and o € X let ¥$ be the unique
Riemann mapping from D onto B, (¢) such that ¢5(0) = ¢ and (¥$)'(0) > 0.

It is clear that 1S conjugates N, to
(2t 2 if 1 ¢ Bo(C),
A _ 3¢
6271’19522% ifle BU(C)v
1- 052

(16) nS(z) =

for some 05 € R/Z, 0$ € D.

Note that by [Ro], the boundaries of the immediate basins are locally
connected. Hence, 1§ extends continuously to clD. Moreover, by [Tal, if
1¢ B,(C), then 0B, (() is a Jordan curve, so by the Carathéodory theorem,
the extension is a homeomorphism. If 1 € B, (), then there are two hS-fixed
points in 9D and only one N,-fixed point p, € 0B, ((), so the extension is
not a homeomorphism.
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It is easy to see that for ( € {0,u,o0} and every sequence o, — o,
On,0 € X the maps N, satisfy the assumptions of Lemma 2.3 with ¢,, = (.
Hence, the maps ¥$ and 71(4; depend continuously on ¢ € X in the almost
uniform convergence topology, so 65, g5 are continuous functions of o € X.

DEFINITION 4.3. For ¢ € {0,u,00} and o € X let ¢S be a Riemann
mapping from D onto B, (¢) such that ¢ (0) = ¢ and ¢ (1) = p,.

The map ¢$ is a composition of 15 with a suitable rotation in D. If
1 € B,(¢), then ¢S is uniquely determined and coincides with the inverse of
the Bottcher coordinates (for the definition of the Bottcher coordinates see
Subsection 1.4.3). If 1 € B, (), then there are two h§-fixed points in dD,
so there are two maps ¢$ satisfying Definition 4.3. Note that S conjugates
N, to

22 if 1 ¢ B,(C),

(17) hS(2) =3 1-of 27205

=2 if 1 € B,((),
1—Qo l—ng

for some o € D.

DEFINITION 4.4. For ¢ € {0,u,00} and o € X such that 1 ¢ B,(() let
Re(0) = ¢5({re®™ : r € [0,1)}) be the internal ray in B, (¢) of angle 6 €
R/Z and let I () be its landing point. Set also B,(¢) = N, (B4 (¢))\ B (¢),

o

Re(0) = N7 (Re(0)) N Bo(¢) and let I¢(A) be the landing point of R¢(6)
(cf. Subsection 1.4.4).

The case o € My. Consider first the map N,,. Then 1 ¢ B,,(0) U
B, (u) U Boo( ), so for ¢ € {0,u, 0} the map ¢S conjugates N, on B, ()
to z — 22. As was remarked, we assume that the set 9By, (u) N 9By, (c0)
is infinite. The positions of the three basins are presented in Fig. 1.6 and
Fig. 7.

By assumption, Head’s angle « (see Subsection 1.4.4 for the definition)
is periodic with period k¥ mod 1, so @ = m/(2¥ — 1) for some m. The
angle 3 defined in Subsection 1.4.4 is equal to m/2*. Define also another
angle § = m/2% +1/281. Since a < 1/2, we have 3 < a < 6. Using the
definitions of «,3,d and the combinatorics of Newton maps described in
Subsection I.4.4, it is easy to show that 1,(28) = l(1 — 203), 2F713 =
1/2mod 1, 1,(6) = loo(1 — &) and 2¥§ = 1/2 mod 1. This implies that if we
set 7(z) = 2z mod 1, then

(18) 7*([8,4]) = 0,1/2] > (0,1/2) > [8,0]

and 7% is injective on [3, d].
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DEFINITION 4.5. For o € My let
Ly = cl(Ry(8) U Roo(1 — 8) U R (1 — B) U Ry(28)
U Ry (20) U Rao (1 — 26) U Roo (1 — 28) U Ry (B)).

(See Fig. 6, where L, is the dashed line.) The definitions of 5 and
easily imply that L., is a Jordan curve.

LEMMA 4.6. The set L, is a Jordan curve for every o € My.

Proof. For o € My the critical point 1 is contained in the filled-in Julia
set K,, so it cannot be in the basin of a supersink. Hence, the rays in
B, (u), By(0), By(u) and B, (c0) are defined (and have well defined landing
points). We need to prove that for ¢ € My we have [,(§) = l(1 — 9),
loo(1 = B) = 1,(28), 14(26) = loo(1 — 20) and loo(1 — 28) = 1,(B). First
we show that for every o € My the forward orbit of 1 does not hit the
landing points of any of these rays. Since all these points are preimages of
po = 1p(0) =1,(0) = 1(0) and 1 € K,, it is sufficient to prove that

(19) pe & K, foralloel.

To show (19), suppose that p, is a fixed point of the quadratic-like map
NE|. for some o € U. Such a point moves continuously when we perturb o
and for o = x~!(1/4) becomes a parabolic point. This is not possible, since
P is a repelling fixed point for all Newton maps. In this way we have shown
(19), which implies that the forward orbit of 1 is disjoint from the landing
points of the above rays.

Now we can prove the four equalities. We consider only the first one—
others can be shown in the same way. Let

M ={o € My :1,(6) =loo(1 —9) for N, }.

We will show that M’ is open and closed in My. As 0g € M’ and My is
connected, this will imply M’ = My.
Take o € M’. We have shown that the forward orbit of 1 is disjoint

from 1,,(1/2). Hence, there exists a branch v, of N;* defined in some open
neighbourhood of R, (1/2) Ul,(1/2) U Rs(1/2) such that

(20) VU(Ru(l/Q) U lu(1/2) U Roo(l/2)) = Ru(é) U lu((s) U Roo(l - 5)

As we perturb o within My, these rays are defined and move in a continuous
way (this follows e.g. from Lemma 2.4). Therefore, for a small perturbation
of o within My, the branch v, exists and (20) holds. This shows that M’
is open in M.

To see that M’ is closed in My, suppose that we have a sequence o,, € M’
such that o, —» 0 € My and o ¢ M’. Then [,,(6) for N, is in the boundary of
some preimage of B, (00) different from B, (00). Hence, there exists 0<j <k
such that 1,(278) € B, (00), s0 1,(298) = loo(1 — 29715). Therefore, there
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exists a branch 7, of Ny *™7) defined in some neighbourhood of R, (1/2)U
1.(1/2) U R (1/2) such that

U (Ru(1/2) Uly(1/2) U Roo (1/2)) = Ru(276) U1,(276) U Roo (1 — 27115).

For a small perturbation of ¢ in My such a branch still exists. Thus, if we
take sufficiently large n, then for the map N, we have

1,(278) = Ioo(1 — 27115).
But o, € M’, so for N,, we must have [,(2/5) = loo(1 — 2/6). This is a
contradiction. Therefore o € M’, so M’ is closed in My. We conclude that
M/ = MN. |
By Lemma 4.6, we can state the following definition.

DEFINITION 4.7. For 0 € My let E, be the component of C \ L, con-
taining the critical point 1 and let

U, = By \ e N; (g2 (Dakon) U g (Dyaoinr)
for a fixed 7 < 1 close to 1.

By the definitions of 3, § and by (18), U, is a topological disc containing
1 and N, 5|Ué is quadratic-like. Moreover,

ON,(UL) = i({re®™ :r e P27 1]}
U {72 el L g ¢ [2,26]}

_g—k+1

U {T627r225 = [7’ 71]})
0 e ({remi0-20) L g P27 1))
U {?2—k+162ﬂ—i9 -0 c [1 —26,1— Zﬂ]}

_g—k+1

U {re?™1=28) .y e [7 1]},
ON; (Uy) = @y ([F, 1] U {7e®™ 10 € [0,1/2]} U [-1, 7))
U ([F, 1)U {Fe®™® .0 € [1/2,1]} U [~1, 7).

See Figs. 6 and 7.

Now we show
(21) K, cU. foralloe My.
The boundary of U/, consists of points from the basins of attraction to u and
oo and the landing points of some rays. It is obvious that K, cannot contain
points from the basins of u and oco. Since 1 € K, and K, is connected for
o € My, either K, C U or K, contains the landing point of some ray from
OU! . But the second case is impossible by (19). Hence, (21) holds.

We have constructed a family {U] },ea, of topological discs such that
NF|y: is quadratic-like and K, C UZ. This implies (see e.g. [McM]) that for
o € My the filled-in Julia sets K, of N[y, and K/, of N¥|y, coincide.
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B

Fig. 6. The set U}

Fig. 7. The set U, in the dynamical plane

The case 0 ¢ My. Now we extend the definition of U/ for ¢ in some
topological disc U’ such that My C U’ C U. First we show that for
¢ € {u,00} and o in some neighbourhood of My, if 1 € B,((), then we
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can choose one of two Riemann maps ¢$ from Definition 4.3 such that ¢$
depends continuously on ¢. To do it, we prove the following technical lemma:

LEMMA 4.8. There exist g > 0 and an open set Ucx containing My
such that for every o € U and ¢ € {u,o0} there exists an hS-fized point
¢S € 0D such that

if 1€ By(C), then |05 —q5| > eo,

where ﬁg is the map from (16) and 05 = (¢$)~1(1) is the unique non-zero

(o2

h§ -critical point in D.

Proof. To simplify notation, consider only the case ( = u. Suppose the
lemma is not true. Then there exists a sequence o, € X such that o, —
o € My, for every n we have 1 € B, (u) and

05

—u -
n_qgn|7|van_qo'n — 0 asn— oo,

where ¢, ,q,, are E“n—ﬁxed points in JD. For simplicity, set h, = Egn,
Uy = van, Gn = 45, and ¢, = ¢,,. By Lemma 2.3, h,, tends to Eg(z) =
e?™0s 22 and Yy tends to ¥y, Changlng WYY ¥ by the rotation by 6,,
assume Y = p¥ so that hy,(z) — h(z) = By Lemma 2.3, h,, — h almost
uniformly in the spherical metric on C \ {zo} for some zp € OD. As 1 is the
only h-fixed point in 9D, this easily implies that ¢,,¢, — 1 and 2y = 1.
Thus, we have

(22) vn — 1.

Let V' be a small neighbourhood of the repelling N,-fixed point p = p,.
Then there exists a branch v of N1 defined on V such that v(p) = p and
clv(V) C V. Moreover, since N,, — N, uniformly in the spherical metric
on @, for sufficiently large n there exists a branch v, of N, ! defined on V
such that v, (p,,) = ps, and clv, (V) C V.

Let &,, be the Bottcher coordinates for h,, on . Note that for sufficiently
large n the map @, ! is defined on cl D_.-» for 7 from Definition 4.7 and
®,, — id uniformly on this set. Let

I, = o, ([F?,7]).

By Lemma 2.3, we can assume 1y (I,) C V for large n provided 7 is fixed
sufficiently close to 1. Define a curve Yo ¢ [0,00) — D setting y,(s) =

2 (1=8)7+57) for's € 0. 1] and ya(s+1) = (15,)7 (4 (05, (30()) for
s > 1. Define also a curve 7 : [O 00) — D parameterizing the segment [72, 1)
such that v(0) = 72, y(1) = 7, ~ is affine on [0,1] and (s + 1) = 'y(s).
Since 1¢ V we have v, = (% )71(1) & n, so there exist two branches

On

v!" of h;;1 defined in a neighbourhood of 7, such that v/, (v, (0)) = @, (7)

TL’ n
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and v/ (7,(0)) = &, 1(—7). Let

%/1 = Vflz('yn)a 77’1/ = V;L/('Yn)
and define
Iy =7, U, (DN DY) Uy,
' =[r1)u@D;NDT)u(-1,-7],
r~=[r1)u@b;NnD7)U(-1,-7].

Note that since 1 ¢ By, (00), B5(00), the maps ¢5°,¢5° are uniquely
determined and coincide with the inverse of the Bottcher coordinates. Now
we show that for sufficiently large n,

(23)  cl(¥¥ (I¥) U (I'™)) is a Jordan curve converging to INX(U2) in
the Hausdorff metric.

Note that the curves 2 (v,) and ¢3° ([, 1)) land at the same point p,,
and p3° ((—1,—7]) lands at I (1/2) for the map N, . Hence, to prove that
cl(y () U g (I'™°)) is a Jordan curve, we only need to show that for
sufficiently large n the curve ¥} (v;,) lands at [o(1/2) for the map N, .

By Lemma 2.3, 7,,(s) tends to vy(s) almost uniformly on [0, c0) and v,y
satisfy the assumptions of the case (a) of Lemma 2.4. By this lemma, for ar-
bitrarily small € > 0 there exists so > 0 such that 92 (v, ([s0,00))) C D<(p)
for large n. By (19), N, maps biholomorphically a small neighbourhood
of x = 1,(1/2) = lx(1/2) onto a small neighbourhood of p. Moreover,
there exists a small ¢/ > 0 such that N, for large n maps biholomor-
phically D./(x) onto a set containing D.(p). Since z is the landing point
of Y¥((—1,—7]) and ¢°((—1, —7]), by almost uniform convergence, D./(x)
contains points from Y (v;,) and ¢g° ((—1,—7]) for large n. Therefore,

o (1) and ©3° ((—1,—7]) must land at the same point near x. In this
way we have proved that cl(yg (1)U (I')) is a Jordan curve for large n.
Moreover, Lemma 2.4 implies that cl+, tends to cly and clyg (v,) tends to
cly¥ () in the Hausdorff metric. Since ¢,, — id uniformly on clD, h,, — h
uniformly on clD\ {1} and 92 — ¢¢ almost uniformly on D, we conclude
that cl I tends to cl I'* in the Hausdorff metric.

It is easy to check that the case (a) of Lemma 2.4 holds for v5° = > =
[7,1) with a suitable parameterization and p3°,p5° instead of y,1). Re-
peating the above arguments we show that cl g (I'°°) tends to clpg° (1)
in the Hausdorff metric. Hence, cl(¢y (1)U (I'*°)) tends to cl(yy (1)U
@2 (') = ONEF(UL) in the Hausdorff metric, which gives (23).

By (23), we can define A, for large n to be the component of C \
cl(y (I'W) U ¢ (I'™)) containing N% (1) and U, to be the component
of Nofnk(An) containing 1. Then U, is a topological disc and clU,, tends to
clU., in the Hausdorff metric. Moreover, I'* = (% )"Y(ON} (U,)NB,, (u)).
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It is obvious that h (0) & I'* for j = 0,..., k. Moreover, for large n we
have N7 (1) € U, for j = 0,...,k, so hl(v,) & I'*. Hence, there exists a
branch 7, of ¥ defined in a neighbourhood of I'* such that

T (@71(0DF NDY)) = &L ({72 "2 1 9 € (8,0)}).

Then v, (") is a simple arc in D with endpoints landing at two points in
OD. Let Y, be the component of D\ 77, (I"}) which does not contain 0. Then

Yy D (¢g,) " (Un N B, (u)).
Let
Y = {re¥™ .y e 2" ,1),0 € (8,0)}.
By Definition 4.7,
Y = ()" YU, N By (u), h*OY ND) =TI

Recall that clIY tends to clI™ in the Hausdorff metric, ¢,, — id uni-
formly on clD_,-+ and h,, — h uniformly on clD\ {1}. This easily implies
that 0Y;, tends to 0Y in the Hausdorff metric. Hence, dist(clY,,,1) > ¢ for
a constant ¢ > 0 independent of n. But since 1 € U, N B, (u), we have
vy = (Y2 )71 (1) € Yy, so v, — 1| > ¢, which contradicts (22). =

REMARK. In fact, one can show in the same way that if ¢ € {u, o0} and
on — 0 € My with 1 € B, (¢), then 05, — 2™i(@=93) for Head’s angle o
and 6$ from (16).

Lemma 4.8 implies that for every o € U and ¢ € {u, 00} there exists an
h§-fixed point ¢5 € D depending continuously on o, such that if 1 € B,(¢),

then for the other hS-fixed point g5 € D we have |¢$ — 5| > 0. This easily
gives

COROLLARY 4.9. There ewists a topological disc U' C U containing My
such that for each o € U' and ¢ € {u, 00}, if 1 € B,((), then we can choose
a Riemann map ¢S from Definition 4.3 such that ©$ depends continuously
on o € U in the almost uniform convergence topology. In particular, Lem-
mas 2.3 and 2.4 hold for N,, o0 € U’ and ¢S, instead of 1. Moreover, there
exists €9 > 0 such that if 1 € B,(C), then

”Ug — 1| > €o,
where v§ is the unique non-zero hS-critical point in D for S from (17). =

From now on, by ¢$ we will always understand the map from the above
corollary.

Let U’ be the topological disc from Corollary 4.9. Now we define U/ for
o €U'. For ¢ € {u,00} let @5 be the Bottcher coordinates for A on D. If
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we take U’ sufficiently close to My, then (#5)~! is defined on clD7 for 7
from Definition 4.7. Let

Ig = (#5)~1([7*,7)).

By Lemma 2.3 and Corollary 4.9, if we take U’ sufficiently close to My
and choose 7 sufficiently close to 1, then for every o € U’ there exist two
branches 1/, /!¢ of (hC)_1 defined in a neighbourhood V' of 1 such that
Iz CV, 01V’O—C(V) CV, vy (@5)71(F?) = (85)71(7), ”C(@C) Hr?) =
(@5)~1(—7). Connect IC fo1 by the curve v$ = [Jo—,(v$)"(IS) and let

V= V() AL =V (RE).

Then ~; ¢ begins at (@$)~ (’\) and ’y”q begins at (@)1 (—7). Define
(24) I§ =,y U (%) (0D N D*) U,

where we take Dt for ( = u and D~ for ¢ = co. Then I'$ is a simple arc in
D connecting 1 to some point of (hS)~1(1) (see Fig. 8).

Fig. 8. The curves v, v2" and I'*

Now we show that if we take U/’ sufficiently close to My, then
(25)  for every o € U, cl(pi(L¥)UpX(I2°)) is a Jordan curve depending

g
continuously on ¢ in the Hausdorff metric.

The proof of (25) is the same as for (23) and we leave it to the reader (by
Corollary 4.9, we can use Lemmas 2.3 and 2.4 for ¢§ instead of ¥$). Note
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that for ¢ € My we have ¢S (IS) = ONF(UL) N B,(¢) and cl(¢¥(I*) U
©X(I'>°)) = ONF(U!). By (25), we can make the following definition.

DEFINITION 4.10. For o € U’ let A, be the component of @\cl(npg (r#u
0 (I'>°)) containing N*(1) and let U’ be the component of N;*(4,) con-
taining 1.

Then (provided U’ is sufficiently close to My ) the set U, is a topological
disc and N’ is quadratic-like on U’. Moreover, clU! is continuous with
respect to o € U’ in the Hausdorfl metric and for ¢ € My the definition of
U! coincides with the previous one.

For o € U’ let K, be the filled-in Julia set of N¥|y,. Since diam K,
and diam K are continuous functions of o (see [McM]), we can assume that
K, Cc U, for all 0 € U’'. As previously, this gives K/ = K.

The above properties imply that {N|y: }oeur is a Mandelbrot-like fam-
ily equivalent to N (see Section 3).

4.2. The construction of f;. In this subsection we define the families
f; for 0 < t < 1 using quasiconformal surgery. Consider first a quadratic
Blaschke product h; defined by

(t+2)22 +t
26 he(z) = ~——2——
(26) )=

Then 0 is a hy-critical point and h:(0) = ¢/(t + 2). Moreover, for ¢ € [0, 1)

the point
we=(1—+1—-12)/t

is an attracting h-fixed point of multiplier ¢. Note that if ¢ — 17, then
hy — hp uniformly in the spherical metric on C.

For t € [0,1) let D; C D be the open hyperbolic disc centred at w;
such that —7 € 9D, for 7 from Definition 4.7. Note that D; is a Euclidean
disc symmetric with respect to the real axis, containing the entire forward
trajectory of the hs-critical point 0. Let

W, = h; 1(D;) N D.

t €10,1].

By definition, W; is a topological disc, OW; is a Jordan curve and W; D
cl hy(Wy) = cl D;. Moreover, h; has degree two on Wy, is a degree two cov-
ering on the annulus W; \ ¢l D; and maps the segment (0, 1) into itself. See
Fig. 9.

Consider now the map N, for o € U’. Recall that the Riemann map ¥
from Corollary 4.9 conjugates N, on B, (u) to the Blaschke product h{ from
(17) and P¢ are the Bottcher coordinates for h% on D (see Subsection 4.1).
Let

Dy = (25)7 (D7),  Wo = (25)7 (D).
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Fig. 9. The construction of fs

Then W, is a component of (h%)~!(D,) such that W, is a topological disc,
0W, is a Jordan curve, W, D clD,, h% has degree two on W, and is a
degree two covering on the annulus W, \ cl D,. Moreover, if o € My, then
D, =Dz and WU:ID)\/;.

Let

= (@0) ([P, 00 = (@5) (V7 7))

(see Fig. 9). Note that ¢/ =~ NclW, and ¢ = 47" Nl W, for v /"
from (24).

Now for 0 € U’ and t € [0,1) we define a C'!-diffeomorphism

onto

FoypiclWy — clW,
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such that:

(a) hg o) Fo’,t == Fo’,t o ht on aWt,

(b) F,+ maps biholomorphically D; onto D, with F,.(0) =0,

() Fou((clWi\ Dy) N (0,1)) =45, Fou((cI Wy \ Dy) N (=1,0)) = £7,
(d) Fy; depends continuously on o, t,

(e) Fy0 is holomorphic for o € Y’ and F, o = id for o € My.

We define F, ; as follows: on cl D; let F,,; be the Mobius map sending 0 and
the two points from 0D;N(—1, 1) to 0, —7 and 7 respectively, composed with
(@4)~1. Then the condition (b) is obviously satisfied. On each of the two
segments of (clW; \ D) N (—1,1) let Fi,; be the composition of a suitable
affine map with (@Z‘_)_l. Since both h; on OW, and h¥ on OW, are degree
two coverings, the conditions (a) and (c) define Fy,; uniquely on 0W;. Then
it is easy to extend F,; C'-diffeomorphically to both components of cl W \
(D; U (—1,1)) so that the conditions (d)—(e) are satisfied.
Let

— Na on((A:\gog(Wa),
97t =\ g0 Fyyohyo Fybo(92)™ on l(W,).

By definition, g, is a C' cubic branched cover of @, holomorphic on
C\ clp¥(W,) and ¢+ (¢%(W,)). Moreover, cl gy (0%(Ws)) C ¢%(W,), the
function (o,t) — g, is continuous, and by the condition (e) and the unique-
ness of the Bottcher coordinates, we have g, 0 = N, .

Now we define a continuous family of g, ;-invariant conformal structures
fo,t ON C setting

Ko on go,t (05 (Ws)),
ot =4 (95.4)" (o) on g5 (9ot (05 (Ws))),
140 else,

where 19 is the standard structure. Note that u,, € L°°, because for every
z € C its forward trajectory under g, hits at most twice the closed an-
nulus cl p%(Wy) \ 9ot (p%(W,)), where the map is not holomorphic. By the
measurable Riemann theorem (see [DH2]), there exists a continuous family
of quasiconformal homeomorphisms H,; of C such that H,:(() = ¢ for
¢ € {0,1,00}, Hyt © got © H;tl is rational and H, o = id. Moreover, H, ;
is holomorphic on C \clUnZg 9ot (04(W5)) and go,¢ (9% (Ws)). It is easy to
check that H,; 0 gyt © Ha_g = fa(o,t),b(o,t) for some continuous functions
a(o,t),b(o,t). For simplicity, write fo; for fu(o.t)p(0)- Then foo = Ny
because H,o = id. Moreover, since g,; has an attracting fixed point of
multiplier ¢t in g, :(¢%(Ws)), we have (a(o,t),b(o,t)) € Fix(t). Let

UU,t - Ho-,t(U(;)-
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Note that by the definitions of U}, and g,¢, we have g¥ , = N¥ on U] Hence,
Us,: is a topological disc containing 1 and the map fﬁ,t|U<,7 , 1s quadratic-like
and hybrid equivalent to N, f]U;. Moreover,

(27) 0154 (Uot) = cl(Hot (05 (I73)) U Hot (057 (175°)))

for I'* I'>° from (24).

Let &, + be the attracting f, ¢-fixed point. Denote by B(&,,) its immedi-
ate basin of attraction and let p,; be the unique repelling f, ;-fixed point.
By construction, u € B(&,,¢). Note that the boundary of f¥ (Us.;) in B(&s.¢)
near p,; forms a curve ending at p, ;. Let

90157,75 :D— B(fa,t)

be the unique Riemann mapping such that @Svt (0) = w and (cp‘g’t)_l maps

this curve to a curve ending at 1. This map extends to JD, because 0B(&,.+)
=H, +(0B,(u)) is locally connected. In particular, this implies gogvt(l) =Dot-

The map gog’t conjugates f,+ on B({,:) to some quadratic or cubic
Blaschke product hfm with an attracting fixed point of multiplier ¢, a critical
point at 0 and a fixed point at 1. If 1 & B(&,+), then deg hit = 2 and it
is easy to check that in this case hgyt = hy for hy from (26). If 1 € B(&s4),
then deg hgyt =3.

Let

Sog?t = Hot0p, -
Since H,; is holomorphic on B(oco) for N,, the map ¢3% is a Riemann
mapping from D onto B(oo) for f,; such that p3%(0) = co and ¢3%(1) =
Po,t- Moreover, ©3°, conjugates fo; on B(oo) to hy° from (17).

By Lemma 2.3 and Corollary 4.9, it is easy to see that for ¢ € {¢, oo} the
map gog,t depends continuously on o,t¢ in the almost uniform convergence
topology.

Let

(28) Go‘,t = (gpg,t)il © Ha',t © @g o Fo‘,t-

Then G, is a quasiconformal homeomorphism on W; and conjugates h; to
hg,t (see Fig. 9). By definition, G, is holomorphic on D, and since it conju-
gates two holomorphic maps, it is easy to see that in fact it is holomorphic
on W;.

Now we show that if (a(o1,t1),b(01,t1)) = (a(o2,t2),b(o2,t2)), then
Us,t1 = Usyt,- It is obvious that we must have ¢t; = to = t. Hence,
G;lt o Gy, conjugates holomorphically h; to h; on W;. Since W; con-

1,
tains the infinite forward orbit of the h;-critical point 0, it follows that
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G;llvt 0 Gy, + = id on W;. This together with the definition of U, ; easily
implies Uy, + = Uq, t-

Note that if 1 ¢ B(&,,) (which is equivalent to 1 ¢ B,(u)), then G,
conjugates h; to hy, 50 G, ¢ = id. Moreover, N¥(U.)NB, (u) = ¢%(D*\cl D7)
in this case. Hence, by the definition of F, .,

(29) If 1€B(y), then [fr (Usi) N B(&or) = @5, (DT \ clDy).
Let
Q:(0) = (a(o,t),b(o,t)), ocel, te]0,1).
LEMMA 4.11. For every t € [0,1) and (ag,by) € Qi(U’') there exists an

[
open neighbourhood V of (ag,by) in C x C such that Fix(t) NV is a one-
dimensional complex manifold.

Proof. Note that for (a,b) near (ag,bg) all the critical and fixed points
for the map f, ; are simple. By the implicit function theorem, for (a, b) close
to (ao, bo) there exists a holomorphic map (a, b) — £(a,b) # 0, co such that
&(a,b) is an attracting f, p-fixed point and &(ag,bp) has multiplier ¢. Then
the map z — f,5(&(a,b)z)/&(a,b) has supersinks at 0, co and a fixed point
at 1. It is easy to check that such a map has the form
2+ A+B—1

Az+B
for (A, B) depending holomorphically on (a,b). Since fA, B has only simple
critical points, in the similar way we can define locally a holomorphic map-
ping (A, B) — (a,b), which is the inverse of (a,b) — (A, B). It follows that
in fact the map (a,b) — (A, B) is biholomorphic in a small neighbourhood
V C C x C of (ap,by). But f} 5(1) = (A+ 2B +1)/(A + B), so in the
parameterization (A, B) the set Fix(t) is a surface described by
At—A-1

2—t
Hence, Fix(t) NV is a one-dimensional complex manifold. m

fap(z) =z A+#1, B#0, A+ B#0,

B =

REMARK. Actually, one can prove that for every ¢ € C the entire set
Fix(p) is a manifold.

Define
M = Qi(My).
Note that Qo = id, so My = My. Moreover, @Q; : U" — Fix(t) is continuous
and fgt(a) lu,..=fE|u,., is hybrid equivalent to N%|y, . By the uniqueness of
hybrid equivalence and the compactness of My, the map Q¢|ary : My — M,
is a homeomorphism and Q¢(My) N Q(U' \ My) = 0.

LEMMA 4.12. M; C intpix) Q:(U') for every t € [0,1).
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Proof. Choose a point og € intyr My and Jordan curves ~g,7y; such
that o C intyr My \ {00}, 1 C U’ \ Mn, v and 71 are homotopic in
U\ {00} and the index of v; with respect to o is equal to 1 for i = 0,1. By
Lemma 4.11 and the fact that Q¢| s, is @ homeomorphism, using topological
properties of surfaces we can find a topological disc W C Fix(t) containing
M;. The index of Q; oy with respect to Q¢(0g) is equal to 1, because Q) is
a holomorphic bijection on intys My (see Theorem 3.3). Moreover, since Q)
is continuous, Q| is @ homeomorphism and Q(My) N Q(U'\ My) = 0,
if we take ~y; sufficiently close to My, then Qo9 and Qo7 are homotopic
in W\ Q+(00). Hence, the index of Q; o y; with respect to Q:(op) is equal
to 1.

Let C; be the component of W\ Q¢(1) containing Q¢(op). Then C; is a
topological disc in W and M; C C;. We show that Cy C Q+(U’). Suppose the
converse and take a point (a,b) € C¢\ Q¢ (U’). Then the index of Q4 oy with
respect to (a,b) is equal to 0 and the curves Q; o g, Q¢ o1 are homotopic
in W\ (a,b), so the index of Q; o~y; with respect to (a,b) is equal to 0. But
on the other hand, both points Q¢(co) and (a,b) are in C}, which implies
that the indices of @ o y; with respect to (a,b) and Q¢(og) must be equal.
This is a contradiction. Therefore, Cy C Q¢(U’), so M; C intpix) Q¢ (U'). m

Using Lemmas 4.11 and 4.12 and the fact that @; is continuous and
depends continuously on ¢ € [0,1) we can find topological discs U; C Fix(t),
t €[0,1), such that My C Uy CU', My CU; C intpiyy Qe(U’) for t € (0,1)
and cli; depends continuously on ¢t € [0,1) in the Hausdorff metric. Then
there exists a homeomorphism from D x [0, 1) onto Ute[o,l) U; mapping holo-
morphically D x {t} onto U, for each ¢. Note that clU,, depends continu-
ously ono € U', t € [0, 1) in the Hausdorff metric. These facts together with
Theorem 3.3 and Proposition 3.5 give

COROLLARY 4.13. Define Uyp = Uyt for (a,b) = (a(o,t),b(0,t)), 0 €
U, tel0,1). Then {ff,b|Ua,b}(a,b)eut is a Mandelbrot-like family with the
Mandelbrot-like set My and {{f},|v, , }(ap)eu, Jtefoo] 5 @ continuous path
of Mandelbrot-like families for every tg € [0,1). m

4.3. The construction of ;. Consider a sequence (a(o,,,tyn), b(0n, trn))n>0
for o, € U" and t,, € [0,1) such that ¢,, — 17. Passing to a subsequence we
can assume it converges to some (a,b) € C x C. It is easy to see that (a,b)

is either in Fix(1) or in Sing. Now we show that if o,, € My, then the case
(a,b) € Sing is not possible. In other words, we prove

PROPOSITION 4.14. For every (a,b) € CxC,if (a(on,tn),blopn, tn)) —
(a,b) as n — oo for o, € My, t, — 17, then (a,b) & Sing.

Proof. Recall that by the definition of U, ¢, if 0, € My, then for the
map fo, +, we have u € B(&,, +,) and 1 is not in the basins of 0,00, &, +, -
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We consider several cases. Suppose first a = 0, b # oco. By (1), there
exists 7 > 0 such that for sufficiently large n we have cl f,_ ¢ (D,) C D,, so
D, C B(0) for f,, +,. But fo, .. (1) = a(on,t,) € D, for large n. This is a
contradiction.

Suppose now a = 0, b = oo. Let b, = b(o,,, t,,). If |z| < 1/|2b,|, then for
large n we have [(2 — by,)z — 1| > const > 0, so by (1), cl fo, ¢, (D1/2,,]) C
D128, and Dy |23, € B(0) for fs, +,. On the other hand, by (2), fo, ¢, (u)
€ Dy/2p,| for large n. Hence, u is in the basin of 0 for f, ., , which is
impossible.

We have proved the case a = 0. Since fi/4,1/p is conjugate to fqp by
z +— 1/z, this covers also the case a = oc.

Suppose a # 0,1,00, b = 1. By Lemma 1.2.2, f, ; (z) tends to az
uniformly in the spherical metric outside a small neighbourhood of 1. The
map az? has a fixed point 1/a # 1 of multiplier 2. Hence, the map f,, ,
for large n has a fixed point of multiplier close to 2. By (3), the other fixed
point cannot be attracting, which is a contradiction.

Suppose now @ = b = 1. By Lemma 1.2.2, f, ; tends to the polynomial

n?

2

2 — 2% almost uniformly in the spherical metric on C\ {1}. Let ¢ = gogmtn
for ¢ € {0, 00}. It is clear that the map f,, +, on B(() satisfies the conditions
of Lemma 2.3 with ¢, instead of 9, (cf. Corollary 4.9). By this lemma,
©V(2) — z and p°(2) — 1/z almost uniformly on D. (Note that in this case
we have h,(z) = h(z) = 22 for every n.) Let v : [0,00) — D be the curve
parameterizing the segment [1/2,1) such that v(0) = 1/2, y(1) = 1/1/2, v
is affine on [0,1] and (y(s))? = v(s — 1) for s > 1. Then the assumptions
of the case (a) of Lemma 2.4 are fulfilled for v,, = v and ¢, instead of v,.
Using this lemma, in the same way as in the proof of (23) we show that
WV ((=1,—+/1/2]) and ©°((—1,—+/1/2]) land at the same point near —1
(we use the fact that z — 22 sends —1 to 1 and f,, +, (2) — 22 uniformly
near —1). In the language of internal rays this means ly(1/2) = l5(1/2)
for fs, +,. Hence, by the definition of f,;, we have ly(1/2) = lo(1/2) for
N, . But this is impossible by the combinatorics of N, for o € My (see e.g.
Lemma 4.6 and Subsection 1.4.4). In this way we have shown that the case
a = b =1 does not hold.

We are left with the case a # 0,00, b = 0, 00. If b = o0, then f,, ;, tends
to g(z) = az(2 — z) uniformly outside a small neighbourhood of 0. The
polynomial g has a fixed point 2—1/a of multiplier 2 — 2a. Suppose a # 1/2.
Then 2 — 1/a # 0, so by the uniform convergence near 2 — 1/a, we have
$opitn — 2—1/aand 2—2a = ¢'(2—1/a) = lim,, f, , (&, .+,) = 1. This leads
to a contradiction. Hence, if b = oo, then a = 1/2. Similarly, if b = 0, then
a = 2. We conclude that the only possibilities are: (a,b) = (1/2,00), (2,0).

Suppose (a,b) = (1/2,00). To make use of Lemma 2.4, we change the
coordinates in C by a suitable Mobius map. More precisely, let f,, = H o
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fon 1, o H™! where H exchanges 0 and co and maps 1 to u (this is the map
ho from Lemma 1.3.2). Note that the f,-critical point 1 is in the immediate
basin of an attracting f,-fixed point &, of multiplier ¢,, and the fourth f,,-
critical point w,, is in the filled-in Julia set of f* as a quadratic-like map
on some topological disc. Moreover, by Lemmas 1.2.2 and 1.3.2, f, tends to
the quadratic polynomial g(z) = z — 22/2 almost uniformly in the spherical
metric on C \ {0}. Note that g is a quadratic polynomial with a parabolic
fixed point at 0 of multiplier 1, a critical point at 1 and is conformally
conjugate to z — 22 + 1/4.

Let ¢S = H o gogmtn for ¢ € {o0,&}. Note that ¢o° conjugates f, to
z — 22 and @8 conjugates f, to hy, from (26). It is easy to see that f,, on
B(o0) (resp. B(&,)) satisfies the assumptions of Lemma 2.3 with ¢0° (resp.
©%) instead of 1,,. Using this lemma, we obtain ¢° — > and @5 — ¢°
almost uniformly on D for suitable Riemann maps ¢° onto B(0) and >
onto B(oo) for the polynomial g. Moreover, hy, — hy for hy from (26).

Let v*° be the curve v defined in the proof of the case a = b = 1.
Then the conditions of the case (a) of Lemma 2.4 are satisfied for v, =
4%, hn(z) = 2% and ¢%° instead of 9,,. Note that the segment [1/2,1) is
ht, -invariant, contains the attracting h; -fixed point s;, and lands at the
repelling h; -fixed point 1. It is easy to see that we can define a curve ~*»
parameterizing [1/2,1) in such a way that the conditions of the case (b) of
this lemma are satisfied for v,, = 4%, h,, = hy, and 5 instead of 1,,. In
the same way as in the case a = b = 1 we show that ¢2°((—1,—+/1/2]) and
©5((—1,—/1/2]) land at the same point near 2. Recall that defining f,, we
changed the coordinates exchanging 0, oo and 1, u. Hence, for the map f5, ¢,
we obtain lp(1/2) € cl B(&, ). This is again impossible by the definition of
fo,+ and the combinatorics of N, for o € My.

We are left with the case (a,b) = (2,0). As previously, we change the
coordinates in C setting f, = Ho f,, 4, o H! for the Mébius map H fixing
0 and oo and sending 1 to u (then H = hy o hy for hy, hy from Lemma 1.3.2).
Again, the f,-critical point 1 is in the immediate basin B(§,,) of an invariant
fn-fixed point &, and the fourth f,-critical point u,, is in the suitable filled-in
Julia set of a quadratic-like map. Moreover, f, tends to g almost uniformly
in the spherical metric on C \ {0} for g as in the case (a,b) = (1/2,00).

Define ¢2°, 5, v*°, 4% for f, as in the case (a,b) = (1/2,00). In
the same way as in the proof of (25) we find small £,¢" > 0 and sy > 0
such that for large n we have ©2° (7> ([sq, 0))), ¥ (7% ([s0,00))) C D, and
fE=1(D. (2)), f¥ (D (y)) D D., where z = Io(1 — 23) and y = loo(1 — 20)
for the polynomial g and the angles (3,0 from the definition of U.. Let U,
be the topological disc Uy, ¢, in the new coordinates. By the above facts
and the definition of U, ;, we have
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afn(Un) C Ds’ (:L’) U ]D)s’(y) U QOZO(]D)T) U gO%(D,«)

for some fixed r < 1. Since z,y # 0 and 0 ¢ B(0) U B(oco) for g, taking
sufficiently small ¢’ and using the uniform convergence of ©° and @5 on D,
we get | fn(u,)| > ¢ for some fixed constant ¢ > 0 and large n. But this is
a contradiction, because f, — g, so by (2), we have f,(u,) — 0. This ends
the proof. m

REMARK. Proposition 4.14 completes the proof of Theorem 1.4.20 show-
ing that the curve v from this theorem does not land at a singular parame-
ter A.

DEFINITION 4.15. Let M, be the set of all points (a, b) € Cx C such that
(@, b) is a limit point of a sequence (a(oy,, ty), b(on, tn))n>0, Where o,, € My,
tn, €10,1) and ¢, — 1.

By Proposition 4.14, M is a subset of Fix(1).

DEFINITION 4.16. Let 24 be the set of all points (a, b) € C x C such that
dist((a, b), M1) < €1 for a fixed small £; > 0 and (a,b) is a limit point of a
sequence (a(oy,ty),b(on, tn))n>0, where o, €U, t,, €[0,1) and ¢, — 1.

By (1), it is easy to check that Fix(1) is described by the equation
(30) (20— 1)%a® — 2(26° — 3b+ 2)a + (b — 2)2 = 0,

which for (a,b) ¢ Sing gives locally two surfaces a = a;(b) and a = az(b).
Hence, Fix(1) is a one-dimensional complex manifold. Moreover, M; is com-
pact by definition, so for sufficiently small €; we have

M, C Uy C Fix(1).
Thus, if (a(0n,tn),b(0n, tn)) — (a,b) € Uy, then font, — fap uniformly in

the spherical metric on C.
Before defining the family f; we prove the following technical lemma

similar to Lemma 4.8.

LEMMA 4.17. There exists eg > 0 such that for every o, €U, t, — 17,
if (a(on,tn),blon,tn)) — (a,b) €Uy and 1 € B(&,, +,), then

’/UO'Tth - 1| > €0,
where vy . 1S the unique non-zero h‘gn ¢, -critical point in D.
k) k)

Proof. Suppose the converse. For simplicity, set v,, = v, +, and G,, =

; 3
Go,.t, for Go, 1, from (28). Passing to a subsequence we can assume h;

— h, where h is a Blaschke product with a critical point at 0 and a parabolic
fixed point at 1 of multiplier 1. Since v, — 1 by assumption, we have
deg h = 2. This easily implies h = h; for h; from (26). Let

Vo = (95 00) " Hop i (08, (Ve ))s = (25 0,) " (Ho (01 (V50))
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for the curves 7", v2" from (24) and let

Tn = hgn,tn (’Y;z/)

Then ~// begins at G, (—7) and v/, begins at the image under G,, of the
unique point of 9D;, N (0,1). Moreover,

1
(31) Y = Gu([ht, (=7),1) N Dy,) Uy,

In particular, 7, begins at Gy, (h¢, (—7)), lands at the repelling hgmtn—ﬁxed

point 1, is hgmtn—invariant and contains the attracting hgmtn—ﬁxed point

Gy, t, (wy,) of multiplier ¢,. It is easy to see that we can parameterize v,
according to the conditions of the case (b) of Lemma 2.4 with f,, = f», ¢,

f = fap and gogmtn,wg’b instead of iy, 1.
Recall that G, conjugates holomorphically h;, on Wy, to RS . . Let

Onstn
Dy =D4r)2((1=7)/2), Wi =hy"(D:)ND.

Then cl D, tends to cl Dy and cl W, tends to cl Wj in the Hausdorff metric.
Repeating the proof of Lemma 2.3 we show that GG, — G almost uniformly
on W; for some holomorphic map G, in the sense that for any compact set
in Wy almost all G,, are defined on it and tend uniformly to G. Moreover,
G conjugates hy to hy, which easily gives G = id. Let

7,/ = (_17 _?]7 Y= hl(q/”) = [hl(_?)v 1)
Note that « is backward hi-invariant and lands at the parabolic hi-fixed
point 1. Since G,, — id and any compact subset of [h1(—7),1) is contained
in Dy, N [he, (—7),1) for large n, it follows from (31) that ~v,(s) — ~(s)
almost uniformly for a suitable parameterization of ~.
To use Lemma 2.4, we need to show

(32) diam v, ([n, 00)) — 0.
To prove (32), suppose it is not true. Then in the same way as in the proof
of Lemma 2.4 we can find small €1,e2 > 0 and s;,n; — oo such that s; > n;
and

€1 < |mm,(s;) =1 <&z and dist(yn,(s;), [0,1]) < |y, (s;) — 1|/10
for large j (cf. (12)). This together with the almost uniform convergence
G, — id on Wy implies vy, (s;) € Gp; (thj) and G;jl(’ynj(sj)) e Kcw
for some compact set K independent of j. Hence,

G (v (57)) € [, (=), 71]

for some fixed r1 < 1. This is impossible, because s; > n; and the param-

eterization of vy, is such that G;jl (Yn; ((nj,00)) C (wtnj ,1) and wy, — 1.
Hence, (32) holds.
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We have shown that ~,, v satisfy all assumptions of the case (b) of
Lemma 2.4 with ‘Pgn,tnv@z,b instead of v,,,1 (cf. Corollary 4.9). By this
lemma, clv, tends to cly = [h1(—7), 1] in the Hausdorff metric.

Let k,, (resp. k) be the upper half of the circle, which is symmetric with
respect to the real axis and contains —7, hy, (—7) (resp. —7, hy1(—7)). Note
that k, C Dy, , k C D;. Define

AnZVnUGn(ﬁn)UVZ, A:’)/UKLU")/”

and let X,, be the component of D\ A,, which does not contain 0. Note that
Yosvn C A, and G, (0D, NDT) C X,,, so by the definition of U,, ¢

Xn D (wﬁn,tn)*l( 5n,tn(Uan,tn NB(s,.,t0)))-
The definition of A,, implies that (himtn)j(O), (hgmtn)j (vp) & A, for
j=0,...,k, so all branches of (h)3

Onstn

n?

)~F are defined in a neighbourhood of

A,,. Similarly, all branches of hfk are defined in a neighbourhood of A. It is
easy to see that for large n we can extend G,, by dynamics to a holomorphic
map on h; k(Dtn) N D, conjugating h;, to hgmtn and converging almost
uniformly to id. Moreover, for t € [0,1] the map h¥ on d(h;"(D;) N D) is
conjugate to z — 22" on 0D and the conjugation depends continuously on
t € [0,1]. These facts together with the definition of U,, ., easily imply that
there exist a branch v, of (hgmtn)_k defined in a neighbourhood of A,, and
a branch v of h* defined in a neighbourhood of A, such that if Y, is the

component of D\ v,,(4,,) which does not contain 0 and Y is the component
of D\ v(A) which does not contain 0, then

Y. D (Sofrn,tn)_l(Uan,tn NB(s,.t,)) D Un,

1 € clY and v,(Gp(ky)) tends to v(k) in the Hausdorff metric. Since
hgmtn — hy almost uniformly on cID \ {1} and clv,, tends to clvy in the
Hausdorff metric, this easily implies that 9Y,, tends to 0Y in the Hausdorff
metric. As 1 ¢ clY, this gives dist(clY,,,1) > ¢ > 0, so |v, — 1| > ¢, which
contradicts v, — 1. =m

n 7tn

Let (a,b) € U; and take o, € U/, t,, — 17 such that (a(on, tn), b(on, tn))
— (a, b). By Proposition 4.14 and Lemma 2.3, f, ; has a parabolic fixed point
Pa,p of multiplier 1 with the unique invariant simply connected parabolic
basin B(p,p) such that u € B(pap), Po,.t, — Pap and (B(&s, .+, ), u) tends
to (B(pa),u) in the Carathéodory topology. Similarly, for ¢ € {0,000} the
immediate basin B(() for f, is simply connected and (B((), ¢) for the map
fon.t, tends to (B((), ) for the map f,; in the Carathéodory topology.

Note that f,, on B(pap) is conjugate by a Riemann map to a quadratic
or cubic Blaschke product hib with a (unique) fixed point of multiplier 1
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in OD. Let

QOZ,I) D — B(pa,b)
be the unique Riemann mapping such that wiyb(O) = u and the hgvb-ﬁxed
point of multiplier 1 is equal to 1. It is easy to check that 902,17 depends

continuously on (a,b) € Z]l in the uniform convergence topology.
Recall that f5, ;, on B(co) is conjugate by ¢5° , to h3® for hy° from

(17). By Corollary 4.9, it is easy to see that for (a,b) € Uy we can choose a
Riemann map
Pap D — B(co)

such that ¢5%(0) = oo, ¢3° , — ¢5% almost uniformly on D and ¢g%
depends continuously on (a,b) € U.

By Lemma 4.17 we easily obtain

COROLLARY 4.18. If (a,b) € L~{1 and o, € U', t, — 17 are such that
(a(on,tn),b(on,tn)) — (a,b), then for ¢ € {£, 00} Lemmas 2.3 and 2.4 hold
for fn = fo, tns [ = fap and gogmtn,gog,b instead of ¥p,. In particular,

hg b, hg,b and there ezists oq € clU’ such that h? — hgo = and g5
conjugates fap|B(oc) to hyS . Moreover, the convergence of hU +, and h3?

is almost uniform in the spherzcal metric on C\{z0}, where zo € OD\ {1}. m
REMARK. The parameter o, 5 is not uniquely defined, but hg® , is unique.

Note that this corollary implies that for (a,b) € M; we have degh, , =
deg ho, , = 2, which clearly gives h{ , = hy for hy from (26) and hg°  (2) =
2 in this case.
Now we show that

(33) 1€ f, (kﬂ)(pa,b) for every (a,b) € Uy.

By the compactness of My, if we take sufficiently small €1 in the definition
of Uy, then it is sufficient to check (33) for (a,b) € M;. Suppose that (33)
does not hold. Then fffzﬂ(l) = pqp. Take oy, t, as above. Note that if we
take U’ sufficiently close to My, then N2**1(1) € N, (U.) for o € U’, so
f%H( ) € fgmtn( Us, t, ). Moreover, since (a,b) € My, we have ho 4, —
and hy° (z) — 22, In the same way as in the proof of Lemma 4. 17 using
Lemma 2.4 we show that for large n,

Ofrnstn Uon ) C De(@) UDe(y) U5 (D) U, (D)

forz,y € f,p ¥ (Pab)\ {Pas}, some fixed r < 1 and a small € > 0. This implies

gffi( ) —DPa,p| > const > 0, which contradicts f2k+1( ) =

we have proved (33).

Pa.b- In this way
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Now for (a,b) € U, we define curves I’ 57,), I3 in D, similar to the curves
Iy, I3e from (24). To define the curve Iy ,, consider the map G, ¢, from
(28). Recall that G, ¢, is a biholomorphic map from Wy, into D conjugating
he, to hS , . Let

Onytn”
D1 =D(i7y2((1=7)/2), Wi=hi"(D1)ND.

Then D; is the horodisc tangent to 9D at 1 such that —7 € 9D;. It is easy
to check that

(34) Wi o (el Dy \ {1}) U (=1, 1).

Moreover, cl W, tends to clW; in the Hausdorff metric. In the same way
as in the proof of Lemma 2.3 we show that G, ¢, tends almost uniformly
on Wj to some holomorphic map G, conjugating hy to hg,b? in the sense
that for any compact set in W, almost all G, ;, are defined on it and tend
uniformly to G ;. Let

th,b = Gap((0D1NDT)U (=1, -7]).
By definition, F«f,b is a simple arc in D connecting 1 to —1 (see Fig. 10).

Note that if (a,b) € M;, then G, conjugates hy to hy, which easily
gives Gy = id. Hence, I'Y, = (0D; NDT) U (—1, 7] in this case.

fa,b
Fig. 10. The sets D1, W and the curve Ffb
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Recall that by Corollary 4.18, f,, on B(c0) is conjugate by ¢5% to hg?
for some o, € clU’. Let
b= 1oy,

for ;2 from (24). It is easy to see that I', , and ' do not depend on the
choice of the sequences o,,, t,.

PROPOSITION 4.19. For every (a,b) € Uy, and o, € U', t, — 1= such
that (a(opn,tn),b(on,tn)) — (a,b),

cl(eg s (Iay) Upan(Tan))
is a Jordan curve and Ofk o1, (Uo, t,) tends to it in the Hausdorff metric.
The proof is split into two lemmas. The first proves that the curves
o2 b(%’,’fi) and @7 ;(Gop((—1,~7])) have a common landing point and the

second shows the same for ¢2% (v, ) and ¢! (G, (0D N D)) (where
Vouys Vou o are the curves from (24)).

LEMMA 4.20. For (a,b),on,t, as in Proposition 4.19, gpab(%',’oi) and
@b y(Gap((—1,-71)) land at the same point and cl(H,, 1, (05 (75 )) U

Ho,1,(05,(75,))) tends to (935, (v5,) U ¢y ,(Gap((—1,=T]))) in the
Hausdorﬁ metric. Moreover, cl Hy,, 1 (52 (75, )) tends to cloio,(vo.,) in

the Hausdorff metric.
Proof. Define v/, v/ and ~, as in the proof of Lemma 4.17 and let

V' =Gap((=1,=71), v =hg,(v") = Gap([ha(=7),1)).
In the same way as in the proof of Lemma 4.17 we show that we can pa-
rameterize 7y,, v according to the conditions of the case (b) of Lemma 2.4
so that 7, (s) — v(s) almost uniformly.

To use Lemma 2.4, we need to show (32) in this case. Suppose it does not
hold. In the same way as in the proof of Lemma 2.4 we find s,, > n such that
(after passing to a subsequence) we have v, (s,,) € K for a fixed compact set
K C D. Since D is the invariant attracting basin for the parabolic hgvb—ﬁxed

point 1 of multiplier 1 and hg t, h? , almost uniformly on D, there exist
arbitrarily large 7, m > 0 such that

(35) 1(h5, 0,) (mlsn)) = (B, 0. )™ (O)] < [(h5, 0, )™ (0) = (hS, o) (0)]
for sufficiently large n. By the definition of G, +,, for every I > 0 we have

(h5,.4,)'(0) = G0, (B, (0)).

Moreover, for almost all n the map G, ;, is defined and has universally
bounded distortion on

(36) D™ =Dy (0)—w,, /2(hi" (0))
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and [h;" (0) — h?ZH(O)\/]h?Z(O) — wy, | is arbitrarily small provided m is
chosen sufficiently large. By this and (35), (h$ 2 ) (n(sn)) € Go, 1, (D)

for large n. But since s,, > n, we have (h‘gmtn Y (Yn(8n)) = Yn(sh,) for some s/,
>n. This is a contradiction, because the definition of v,, implies G, ;, (D™)
N ¥n((n,00)) = (0. This shows (32) in our case.

We have checked that ~,, 7 satisfy all assumptions of the case (b) of
Lemma 2.4 with h, = h h = h,, and gogmtn,goz,b instead of ,,, 1.

Note also that the curveg n&%,’yﬁjb with suitable parameterizations fulfill
the conditions of the case (a) of that lemma with h, = h3®, h = h3’  and
Do 1. Pap instead of ¢y, ¥. By Corollary 4.18 and Lemma 2.4, both curves
@ﬁ,b(V) and ¢7%, (757 ) land at pgp and for every € > 0 we can find s such
that

05 1. (Tn([50,00))), 02 4. (3 ([50,00))) C De(pa,p)

for large n. Note that the curves gogmtn (7n) and 3 (757 ) are contained in
Ofo, tn (Us, +,) and land at p,,, +, .
Since ¢? ,(Gap((—1,—7])) is a preimage under f,, of @b (1), it has

1100 )

a well-defined landing point z € fa_; (Pab) \ {Pap}- Similarly, ©5% (75,

lands at a point y € fa,_l} (Pa,b) \ {Pap}- By (33), fop maps biholomorphically
a small neighbourhood of x and y onto a neighbourhood of p, ;. Hence,
there exists &’ > 0, which is arbitrarily small if e is small enough, such that
fontnDer (), fon t,(Der(y)) D De(pa,p) for large n. Moreover, by the almost
uniform convergence of gogmtn, ©5° 4., the disc D/ () contains points from
Hg, 1, (¢t (v4")) and D (y) contains points from ¢3° , (7)) for large n.
Therefore, Hy, 1, (0% (va.)) lands at some point in D () and ¢3° ; (vo)
lands at some point in D./(y). But by the definition of U, ;, these curves
are contained in 0 é{n,tn(Uan,tn) and land at the same point. This implies
x =y, because otherwise we have a contradiction for ¢’ < |z — y|/2. In this

way we have shown that the curves ¢¥ ,(Gap((—1,—71])) and ¢35 (7. ,)

land at the same point. Moreover, by Lemma 2.4, cl gp‘gmtn (vn) tends to
cl g0§76(7) in the Hausdorff metric, so clH,, 1, (04, (’yf,’:)) =cl ¢§Mn (’yfj’:)
tends to clyy, ,(Gap((—=1, =7]))=clyy ,(v"). Similarly, clpg? , (75°) tends
to cl wgfb(fy;“;b), which implies that cl Hy, ¢, (052 (’yf:)) = cle ;. (’ygjj)
tends to cl wgfb(*yfjb)) and cl Hy, 1, (932 (777°)) = clo® , (727™) tends to

110

clos% (74, ,)- This ends the proof of the lemma. w

Note that by Lemma 2.4, ¢35 (v, ,) lands at p, . Now we show that
gogb(Ga,b(aDl ND™)) lands at pqp.

LEMMA 4.21. For (a,b), oy, t, as in Proposition 4.19, G, (0D; N D)
lands at 1 and gogb(Ga,b(@Dl ND1)) lands at pap. Moreover, if z, € Dy,



From Newton’s method to exotic basins 41

and z, — 1, then G, 4+, (2n,) — 1 and goimtn(Gamtn(zn)) — Pap. Fur-
thermore, cl Hy,, 1, (pis (gt \ i) tends to cloh (Gap(0D1 NDY)) in the
Hausdorff metric.

Proof. Let -
Iz = J o (@5,) 7 (VR et 7es2i%]))
j—O
for the inverse branch v of (h% )~! used in the definition of the curve "
and a small fixed 0y > O (by [z, y] we mean here the straight line segment
between = and y). Then J} are two backward hg -invariant curves in D
landing at 1 and

P ({7e? 1 0 € [200,2m — 200]}) U TS U T, U {1}

is a Jordan curve. Define P, to be the open domain in D such that 0 € P,
and 0P, is equal to this curve. It is easy to check that hY (clP,, ) C cl Py, .

Let ¢ .
P = ((po'n tn)i (Ha"rutn (szn (Po'n)))7
T = (0,) " (Hoy o, (05, (7).

Then P, are topological discs in D, 0P,,NOD = {1} and h(7 1, (clPy) CclP,
(see Fig. 11).

(0&,,)" Ho, 1,0 05,

B(&on.tn)

Fig. 11. The curves Jﬁt and the set P,
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Moreover, by the definitions of Fi,; and G, ., there exists a sequence
Yyn > 0 such that y, — yo > 0 and

OP, = Gy, 1,(0Dy, \ Dy, (1)) UJFUJ, U{l},
Pn > Ga'nytn (aDtn mDyn(]‘))

Parameterize the curves J:f according to the conditions of the case (a) of
Lemma 2.4. It is easy to check that JF tend to some backward h;-invariant
curves J* in D, which begin at two points of G, ;,(0D; N Dy, (1)). By
Lemma 2.4, J* lands at 1, so

Gap(0D1\ Dy, (1)) UJTUJ U{l}

is a Jordan curve. Let P be the topological disc in D such that 0 € P and 0P
is equal to this curve. Then 0PNID = {1}, G4 (0D:1N(Dy, (1)\{1})) C P and
h, ,(cl P) C cl P. These facts easily imply that G,;(9D1 NDT) lands at 1.

Let z, € 0Dy,, z, — 1 and suppose G, +,(2,) 7 1. Passing to a
subsequence assume |G, ¢, (2n) — 1] > € for a fixed ¢ > 0. By (37), we
have G, +, (zn) € P, for large n. Using Lemma 2.4 for the curves JE we
get Go, 1, (2n) € K for a fixed compact set K € D. Hence, (35) holds for
Gy, t,(2n) instead of v,(s,). Repeating the arguments from the proof of
Lemma 4.20 we show that for large n,

(h5,.4,) (Gt (20)) € Gy, (D)

Tnytn
for D™ from (36), which gives h{n (2,) € D™. But hy, — hy uniformly on
clD, so hzn (2,) — 1. This is a contradiction, since by the definition of D™,
we have dist(cl D™ 1) > const > 0. Hence, Gy, 4, (2,) — 1.

By Lemma 2.4, the curves ¢, ,(JF) land at pa s, so %  (OP\{1})U{pas}
is a Jordan curve. Let S C C be the component of the complement of
this Jordan curve containing u = ¢ ;(0). Then S D ¢} ,(P) and 0S C
B(pa,p) U {pap}- Moreover, we have co ¢ S by Lemma 4.20. Now we show
that the unique point from f,- 1 (00) \ {oo} is not in S. This is obvious if
deg fab|B(oo) = 3. If deg fab|B(o0) = 2, then there exists a unique compo-
nent B(oo) of fa_;(B(oo)) \ B(c0). In the same way as for Lemma 4.20 we

show that some preimage under ;ék_l) of the curve ¢} ,(Gop((—1,-71))

is contained in B(p, ) and lands at the same point as some preimage of the

(37)

curve % (v,”,) contained in B(o0). This gives B(c0) NS = (). Hence, we

have f.}(c0) Nel S = 0. Moreover, f,;(9S) C clS by the definition of S.
Hence, by the maximum principle, f, 5(clS) C clS. This implies that S does
not contain points from the Julia set of f, ;, which gives

S= Sog,b(P) - B(pa,b)'
This easily implies that gog’b(Ga,b(aDl ND™)) lands at p,p.
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Suppose 4,05”7% (Go,tn(20)) 7 Dap- Passing to a subsequence assume

ot (Gt (20)) = T # Pape By (37), ot (Gotn(2n)) € Pt (Pr),
so by Lemma 2.4 for the curves J we get = € cl o0 o (P)\{Pap} C B(pap)-
This leads to a contradiction with G4, +, (z,) — 1.

Note that 74 C Pp, \ (€%,) 71 (D7), 50 Ho, 1, (04, (V2 ) € 95, 1, (P \
Go, 1, (Dy,)) and the same arguments as previously show that
if En e Ho'n:tn <()0gln </‘)/,0_U;1 ))7 then En - pa‘?b'

The above facts together with the almost uniform convergence imply
that

Cl Ha'nvtn (SDZ/'TL( \ ’y,/u))
= cl(¢5, 1, (G 1, (0De, NDY) U Hy, 1, (0, (V)
tends to clg}, ,(Gap(0D1 NDT)) in the Hausdorff metric. m

Proof of Proposition 4.19. Lemmas 4.20 and 4.21 show that cl(yf, , (17 ;)
Upas(175%)) is a Jordan curve. Note that by almost uniform convergence,
L Ho, 1, (035 (Lo \ (v Ung X)) = el (132 (75, U7g,")) tends to
clogs (1 ﬁ\(fy’csb Uvg, ")) in the Hausdorff metric. ThlS together with Lem-
mas 4.20, 4.21 and (27) implies that 8% , (Us, ) tends to cl(¢” (I} ) U
Pap(I5%)) in the Hausdorff metric. m

An immediate consequence of Proposition 4.19 is

COROLLARY 4.22. The Jordan curve cl(¢}, (17 ,) UpeS,(I5%)) depends

continuously on (a,b) € Uy in the Hausdorff metric. m

Now for (a,b) € U, we define a topological disc U, such that f(’f’b is
quadratic-like on U, and clU,, ;, tends to clU, in the Hausdorff metric.

The case (a,b) € M. Let (a,b) € My and take o, € My, t, — 1~ such
that (a(cp,tn),b(0n, tn)) — (a,b). For ¢ € {pap, 00} denote by B(C) the
unique component of £} (B(¢)) \ B(¢). Consider the Blaschke product h,
from (26) for ¢ € [0,1]. Note that the forward trajectory of the hy-critical
point 0 is contained in [0, 1), so all inverse branches of h, k are defined on
D*. Moreover, hi|gp is a degree two covering depending continuously on
t € [0, 1]. Therefore, there exists a branch v, of h; * defined on D such that
vo(DF) = {re?™ : 0 <r <1, 0 € (3,0)} for 3,6 from the definition of U/,
and 14 depends continuously on ¢ € [0,1]. By (29) and the definition of the
sets Uy ¢, we have

8Ugn7t7L N B(go'nytn) = (pg (al/tn (DJF \Cl Dtn) N D)
8Ugn7t7L N E(go'nytn) fO’ (fo'nytn (aUanytn N B(£U7utn))) N E(ggnytn)‘

VL) n
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Now we observe that

(38)  cl(¢h, (A (DF\ ¢l Dy) (D)
U (fop (fan(@h ,(0v1 (DT \ el Dy) ND))) N B(pay))
Ueas((¢5s,) (U, , N By, , (c0)))

U (fap (Fa(@25((#5% )1 (0Us,, N By, ,(00))))) N B(20)))

is a Jordan curve and 9U,,, ;, converges to it in the Hausdorff metric. The
proof is the same as the proof of Proposition 4.19 and we leave it to the
reader.

DEFINITION 4.23. For (a,b) € M; let U, be the topological disc con-
taining 1, whose boundary is equal to the Jordan curve from (38).

By (34), we have clv; (D' \ c1 D;) € Dt \ ¢l Dy. This easily implies that
f!fvb is quadratic-like on U, ;. Moreover, 8fclf’b(Ua,b) is equal to the Jordan
curve from Proposition 4.19 (see Fig. 12).

’.
g %

Fig. 12. The set U, for a parabolic map f,

The case (a,b) & M;. Now we extend the definition of U, ; for (a,b) clU;.
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DEFINITION 4.24. For (a,b) € Uj let Agp be the component of the com-
plement of the Jordan curve cl(¢}, , (I} ) U5, (I75%)) from Proposition 4.19

containing ffyb(l) and let U, be the component of f;f(Aayb) containing 1.

By (33), if we take sufficiently small ¢; in the definition of Uy, then
for (a,b) € Uy the point f¥,(1) is not in cl(¢f ,(I7,) U, (I55)). Hence,
U, is a topological disc, f(f’b is quadratic-like on U, and clU,; depends

continuously on (a,b) € Uy by Corollary 4.22. Moreover, by Proposition 4.19,
if 0, e U’, t,, — 17 such that (a(oy,tn),b(0n,tn)) — (a,b), then

(39) clUs,, +, tends to clU, in the Hausdorff metric.

Note that for (a,b) € M; the definition of U, coincides with the previous
one.
It is easy to check by (1) that for o € C we have

(40) Fix(o) = {(a,b) € (C x C) \ Sing : P(o,a,b) = 0},

where P is a polynomial such that P(1,a,b) is equal to the left-hand side
of (30). Hence, every (ag, bg) € Fix(1) has an open neighbourhood

Waoybo = Ds(ao,bo)(QO) X Ds(ao,bo)(bO) cCxC
such that
(41) Fix(1) N Wag.b, = {(a,b) : a = @1(b), b€ De(ao,bo)(bO)}

for some holomorphic map w;. By (40) and the implicit function theorem,
for p € C close to 1 we have

Fix(0) N Wagpo = {(a,0) 1 a = &,(b), b € Deqq,0)(bo)}

for some holomorphic map w, depending holomorphically on p. This implies
that there exists a holomorphic homeomorphism

Hao,bo : Wao,bo —-CxC
such that
Hambo (ul N Wao,bo) C {(77,,&) = 1}7

Hag,bo (Qt(ul) a Wao,bo) - {(77,#) ‘N = wt(:u)}y

where w; is a holomorphic map depending continuously on ¢ < 1 close to 1
and w; = 1.

(42)

LEMMA 4.25. There exists ¢ > 0 such that for every t € (0,1),
Q:(U") D {(a,b) € Fix(t) : dist((a,b), My) < c},
Uy O {(a,b) € Fix(1) : dist((a, b), M) < c}.

Proof. Note that the first statement of the lemma together with Lem-
ma 4.12 and (42) implies the second one, so it is sufficient to prove the first
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statement. Let
A, ={o el : N¥(1) e U for 0 < j <n}.
It is easy to check that A,, is open in U’ and
(43) OA,C{ocU :NM1)cU, for0<j<n-—1, N"(1)€coU.}.

Since ﬂn>0 A, = My, we can find ng such that if A is the component of
A, containing My, then cl A C U’. It is easy to check that there exists a
component v of dA such that the index of « with respect to a point from
My is equal to 1. By (43) and the definition of U, ,

Q:(7) C {(al0,1),b(0,1)) : f573°(1) € AU}

for ); from Lemma 4.12. This together with (39) implies that any limit
point of the sequence @, (0,,) for oy, € 7, t,, — 1~ does not belong to M.
Hence, by the compactness of v and the properties of ()¢, there exists ¢ > 0
such that dist(Q¢(v), M) > ¢ for every t < 1. Note that by (42) and the
topological properties of surfaces we can assume that for some ¢ > 0 the set
{(a,b) € Fix(t) : dist((a, ), M;) < ¢} for every t < 1 is homeomorphic to an
open subset of C. Then repeating the proof of Lemma 4.12 with ~; replaced
by v we show that Q.(U’) D {(a,b) € Fix(¢) : dist((a,b), M) < c}. m

By Lemma 4.25, if we take sufficiently small €1 in the definition of 211,
then U, is open in Fix(1), so we have

COROLLARY 4.26. U is a one-dimensional complex manifold containing
My and {ff,b|Ua,b}(a bty S an analytic family of quadratic-like maps. w

LEMMA 4.27. For every o € My the curve {(a(o,t),b(0,t))}icio,1) lands
at a point in M.

Proof. Suppose that the curve has distinct limit points (a1, b1), (az,bs)
€ M. By Lemma 4.25, we can take a small ball V in C x C centred at
(a1,b1) such that (ag,bs) € clV and clV N Fix(1) C U;. Note that if V is
sufficiently small, then { ff,b|Va,b}(a,b)ev is an analytic family of quadratic-

like maps, where V,; is defined as the component of f(;lf( fhbl(Uahbl))

containing 1. It is easy to check (see [McM]) that if (a,b) € V N U, then
the filled-in Julia set of f¥,|v, , and f¥,|v, , coincide. Similarly, by (39), if
(a,b) = (a(o,t),b(0,t)) € VN Q(U'), then the filled-in Julia sets of fc’f,b\Uw
and ff7b|va7b are the same.

By assumption, the curve {(a(c,t),b(c,t))}e(0,1) must intersect 9V for
infinitely many ¢, < 1 such that ¢,, — 17. Passing to a subsequence, we can
assume that (a(o,t,),b(o,t,)) converges to some point in dV N U;. Since
V can be arbitrarily small, this easily implies that (a1,b;) is a point of
density of the set of limit points of the curve {(a(c,t),b(0,t))}icp,1)- By
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the definition of Us, the map fF,|u, , is hybrid equivalent to 2% + x(o).
By Theorem 3.3 for the family {ff,b’Va,b}(a,b)ew the point (a1, b1) is a point
of density of the set of points (a,b) € VN U, for which fc]f,b|va,b is hybrid
equivalent to z? + x(0). Then Theorem 3.4 implies that all maps f¥,|v, ,
for (a,b) € V are hybrid equivalent. Applying the same theorem to the
family {ff,b’Ua,b}(a7b)eﬁ1 we conclude that all maps fF,|v, , for (a,b) in the

component of U; containing (a1, b;) are hybrid equivalent. This is clearly
impossible (as follows e.g. from Lemma 4.25). m

By Lemma 4.27, we can define a mapping
Q1: My — My, Qo) = thf?_ Qi(o).
LEMMA 4.28. Q1 is a homeomorphism.

Proof. By definition, ()1 maps My onto M;. To show that (1 is injective,
suppose that Q1(01) = Q1(02) = (a1, b1). Define V and V, 5, as in the proof
of Lemma 4.27. Then Theorem 3.3 for the family {ff,b‘va,b}(a,b)ev shows
o1 = 0. Now we prove that ()i is continuous. Let o, — o for 0,,0 € My
and suppose that

(44) dist(Q1(0p), Q1(0)) > ¢co > 0

for all n. Take 0 < ¢; < ¢g. Since @ is continuous, for any j > 0 we
can choose n; such that dist(Qi_1/;(0n,),Q1-1/j(c0)) < c1. By (44), there
exists t; € (1 —1/4,1) such that dist(Qy,(on,),Qt,;(0)) = c1. Passing to
a subsequence, we can assume that Qy,(on;) — (a1,b1) € M; such that
dist((a1,b1),Q1(0)) = ¢1. Arguing as in the proof of Lemma 4.27 we show
that c’fl,bl |U,, 5, 1s hybrid equivalent to 22 + x(0). Since ¢; was arbitrary,
it follows that Q1(o) is a point of density of the set of points (a,b) € M;
for which f* plU., is hybrid equivalent to 2% 4+ x(c). As in the proof of
Lemma 4.27 ,7this leads to a contradiction.

We have shown that ()1 is a continuous injective map from My onto
M;. By the compactness of My, @)1 is a homeomorphism. m

Since Fix(1) is a one-dimensional complex manifold, using Lemma 4.28
we can find a topological disc in Fix(1) containing M;. This implies that
the map w; from (41) can be defined globally, i.e. there exist an open neigh-
bourhood W C C x C of M, a topological disc W C C and a holomorphic
map w; on W such that

Fix(1) "W C {(a,b) : a = w1(b), b e W}.

If £ in the definition of U is sufficiently small, then U C W and by the
implicit function theorem, there exists a biholomorphic map

H:W—-CxC
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such that
(45) HUh) C{(n,p):n=1},  HQU)NW) C{(n,p) :n=wi(p)},

where w; is a holomorphic map depending continuously on ¢ < 1 close to 1
and w; = 1. This together with Lemma 4.25 implies that the path of the
topological discs Uy, t € [0,1), from Corollary 4.13 can be extended con-
tinuously to Uy, t € [0,1], i.e. there exist disc-equivalent Riemann surfaces
U, C Fix(t), t € [0,1], such that Uy C U', My C Uy C Q(U’) for t € [0,1),
M, C U, CU and cl U; depends continuously on t € [0, 1] in the Hausdorff
metric. Let
£ ={f3lv.,tapyeu, forte[0,1].

By Corollary 4.13, (39), Corollary 4.26, Theorem 3.3 and Proposition 3.5,
the families f; for ¢ € [0,1] are Mandelbrot-like with the Mandelbrot-like
set M; and {ft}te[m] is a continuous path of Mandelbrot-like families. By
Proposition 3.7, the sets M; for ¢ € [0,1] are quasiconformally homeomor-
phic.

4.4. The construction of f2,f?°. To simplify notation, in the following
two subsections we will use a new holomorphic system of coordinates (7, )
in a part of the parameter space defined by H from (45). We write f, ,
for f,p, where H(a,b) = (n, ). Recall that these coordinates are defined
in some open neighbourhood of ¢; in C x C and in these coordinates U is
contained in the plane {n = 1}. For simplicity, we write u € My, p € U
instead of (1,u) € My, (1,u) € Uy respectively.

For p € Uy denote by p, the parabolic f; ,-fixed point of multiplier 1.
For ¢ € {0,00} let (PSW be the Bottcher coordinates on B(() for f, . If
i € M, then @iu is defined on B((). Hence, if we fix ro < 1 close to 1
and a small € > 0, and take U, sufficiently close to My, then for pu € U
and 1) € Dz(1) the map (®¢ ,)~" is defined on clD,, and (@%7#)*1([7”(2],7"0])
is contained in a small neighbourhood of p,,. Let

’yf,’u(s) = (@%7M)*1(s) for s € [0, 7).

For u € Uy we can extend the curve fyi ., taking its successive preimages by
the branch of fi ; fixing p,, and parameterize it by s € [0,1) in such a way
that viﬂ(SZ) = flju('yf#(s)). Then viu is a simple arc in B(() beginning
at ¢ and landing at p,. For n € Dz(1) we can extend fyf,’u in the same
way parameterizing it by s € [0, 7| such that r is arbitrarily close to 1 and
’yg,u(r) is arbitrarily close to p,, if n is sufficiently close to 1. Since the
Bottcher coordinates depend holomorphically on the mapping, the function
(n, ) — 'yg#(r) is holomorphic.

For p € Uy consider the family {f, ,.}nep.1)- Let n(A) = 1+ A? for
A € D sz Since fi,, has a double fixed point p,,, we can choose an f,(x) .-
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fixed point £, () such that £,(0) = p, and (A, i) — &, (A) is holomorphic.
Let

Ianu(2) = Fronu(z + Eu(N) = Eu(N).
Then the family {gx ,}rep = satisfies the assumptions of Theorem 1.4.21.

Taking §y = ’yfw(r) in this theorem and repeating the proof of Theo-
rem 1.4.20 we show that for every t € (1,1 + ¢] with some small ¢ > 0
there exists Ag(t) € D sz such that the curve ,ys(/\i(t)),u can be extended
to a simple arc in B(() connecting ¢ to fn(kﬁ(t)) M(u), parameterized by

¢ _ ¢
s € [0,2 — t] such that Wn(ki(t)),u(g) = fn(Afb(t))vﬂ(’yn(Aﬁ(t)),u(S))’

_ 6 _
fn(kﬁ(t))»u(u) - P)/n(/\i(t)),zx2 2

and A§(t) — 0 as t — 17. Moreover, by the proof of Theorem L.4.21 (see
[DH1]|, Proposition XI.5) and by the holomorphicity of (n,u) w%,u(r),
we can choose the parameter )\fL (t) so that it depends continuously on t €

(1,1 + ¢] and holomorphically on u € U .
Let GS(1) = 1 and G5(t) = n(X$,(t)) for t € (1,14 ¢]. Then
Gi:[1,1+¢ —C
is a curve such that
— A6
Fos (W) = 7g5(t),#(2 —1)
for t € (1,1 + ¢]. In particular, u € B(¢) for the map fg¢ s, Note that if
P is defined in a neighbourhood of the curve ’YéC(t) y (e.g.if 1 & B(Q)),
I )

Gh(t),m

then véﬁ(t“&(s) = (@ég(t%u)*l(s) for every s € [0,2 — ], so

10 Vs faswn) =2 -1
For t € [1,1 + €] let
U ={(G5(t), 1) - p € Uh}.
Since p — A5, (t) is holomorphic, p — gg(t) is holomorphic, so Uf are

disc-equivalent Riemann surfaces. For (n,u) € Z/{tC define U, , to be the
component of f*(fF (Uy,)) containing 1. If ¢ is sufficiently small, then

U, is a topological disc, f,’; ., 1s quadratic-like on Uy, and

ftc = {f7l7€7#|Un,u}(n,u)€Z/lf
is an analytic family of quadratic-like maps. By Theorem 3.3 and Propo-
sition 3.5, this is a Mandelbrot-like family and {ftC btel1,14¢) is a continu-
ous path of Mandelbrot-like families such that ff = f;. Let My be the
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Mandelbrot-like set in L{f. By Proposition 3.7, all the sets Mf are quasicon-
formally homeomorphic.

4.5. B(00) is exotic, B(0) is not exotic. Now we show that for ¢ > 1,
if (n, 1) € U°, then B(oo) for the map f, , is not simply connected and if
(n,p) € MY, then B(0) for the map f, ,, is simply connected.

Let p € U; and consider the curve

(47) cl(eg 5 (Gap([h1(0),1))) UTs,

where (a, b) is such that H(a, b) = (1, ) for H from (45) and 7{¢, is the curve
from Subsection 4.4. Then the curve (47) is contained in B(co)U{p, }UB(p,)
and connects oo to fi,(u). Moreover, one of the two components of the
preimage under f; i of this curve is equal to the Jordan curve

(48) ey ,(Gap((-1,1))) U s (va,, U (D5 )T (=7, 7)) UrgT))
for v b,fy”oo from (24), which is contained in B(oco) U flw(p#) U B(pp),

contains 0o, p,, v and separates 0 from fl_;i 0)\ {0}.

Let (n, u) € U for t > 1. Recall that the curve ¢, from Subsection 4.4
is contained in B(oco) for f, , and connects oo to fn,u( ). Moreover, the
proof of Theorem 1.4.20 applied for the family {f, . },ep.(1) shows that vp<,
is arbitrarily close to the curve (47), if ¢ is sufficiently close to 1. Taking
the component of the preimage under f77 4 of 779, which is close to (48) we
find a Jordan curve in B(oo) for f;, , separating 0 from f:(0)\ {0}. Hence,
B(00) is not simply connected for (n, u) € U°.

Consider now a map fy,, for 4 € M; and let K, be the filled-in Julia
set of the quadratic-like map fﬁM’Ul,u‘ By the definition of the set U, ,, it
is easy to check that B

K, 3 lx(a),le(a),

where a is Head’s angle used in the definition of U, and lo (), lo () denote
the landing points of the suitable rays for the map f; ,. Note that [ () is
a fixed repelling point for the quadratic-like map ff u’U 1,u- Hence, for the
map fy, , with (n,u) € MY and t > 1 close to 1 we have

Ky > loo(a),ZNOO(a),

where K, , is the filled-in Julia set of ff;,M|Um# and I (a), lso () are the
suitable landing points for the map f, ,,. Since K, ,, is connected, this implies

that the set B(oo) U K, , U B(o0) for [, is connected, so

C=cl U fr(B(oo) UK, )

n=—oo

is connected. By the classification theorem, since only one f, ,-critical point
1 is not contained in B(0) U B(c0), the closure of any Fatou component
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different from a component of the entire basin of attraction to 0 or oo must
contain points from the forward trajectory of 1 € K, ,,. This together with
the connectedness of C' easily implies that the complement of the entire basin
of attraction to 0 is connected. Moreover, by Theorem 1.4.4, B(0) is com-
pletely invariant, i.e. B(0) is the entire basin of attraction to 0. We conclude

that C \ B(0) is connected, which means that B(0) is simply connected.

REMARK. Note that it is not true that B(0) is simply connected for
every p € UY. In fact, if 1,u € B(0), then there are three critical points in
B(0), so B(0) cannot be simply connected.

Recall that an exotic basin for a cubic rational map is a non-simply con-
nected completely invariant basin of attraction containing less than three
critical points counted with multiplicity (for more information see [P1],
[Ba]). Let (n,pn) € M°. Then B(oo) for the map f, , is not simply con-
nected and contains two critical points counted with multiplicity. Moreover,
by Theorem 1.4.4, B(c0) is completely invariant. Hence, B(o0) is exotic.

Consider now (n, u) € M. We have shown that B(0) for the map f, .
is simply connected. Thus, there exists a topological disc V' C B(0) such
that 0,u € V and fn_,lL(V) is a topological disc containing cl V. If we perturb
slightly (n, 1) € U, then V has the same properties for the perturbed map
fou- If 1 € B(0) for f, ,, then B(0) is not exotic by definition. If 1 ¢ B(0),
then B(0) = U,,>q £, (V), so B(0) is simply connected as the union of an
increasing sequence of topological discs. Hence, if we take U, sufficiently close
to M; and ¢ sufficiently close to 0, then B(0) is not exotic for (n, 1) € U} .

4.6. Extending the path {fY}. We only sketch the proof, since it is sim-
ilar to the construction of the families f; for 0 < ¢t < 1. Return to the
standard coordinates (a,b) in the parameter space and consider the family
fY, .. To simplify notation, parameterize the topological disc U, by 7 in
some topological disc in C and write f, instead of fq for (a,b) € Uf,..

If 7 € M{,__, then 1 ¢ B(0) and f. on B(0) is conjugate to a cubic
Blaschke product with a supersink. Hence, there exists a topological disc
V; C B(0) with smooth Jordan boundary depending continuously on 7 €
MY . in the Hausdorff metric such that 0,u € ‘77 and there exists a simply
connected component V; of f~ 1(‘77) such that cl ‘77 C V.. Then f; is a cubic
cover on the closed annulus cl V- \ 177.

Note that diminishing the sets U, 1 < t < 1+¢, we can assume that Z/{&E
is arbitrarily close to M .- Hence, for 7 € Uy .. we can find a topological
disc ‘77 C B(0) with smooth Jordan boundary depending continuously on
T € U}, . with the same properties as above.

For 7 € Uy, let

YD — V.
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be the unique Riemann mapping such that ¢,(0) = 0 and ¢.(0) > 0. Fix
0 < 79 < 1. We define a C'-smooth cubic branched cover

gr:D—D

depending continuously on 7 such that g,(z) = 2*> on D\ D s and g-(2) =
ro; 1 (fr (1, (2/70))) on D,,. Applying the measurable Riemann theorem
for a suitable g, -invariant conformal structure on ID we obtain a continuous
family of quasiconformal homeomorphisms H, of D, holomorphic on D,
such that H,(0) = 0 and H, o g, o H-! is a cubic Blaschke product of the
form

(49) ho(z) = 22

Z—

1-az
for some oo = «(7) € D (having no relation to Head’s angle). Let v, be the
unique non-zero h,-critical point in D and let @, (resp. @, ) be the Bottcher
coordinates for h, on D (resp. fr on B(0)). If we take U, _ sufficiently
close to MY -, then @ is defined in a neighbourhood of the curve 727 , from
Subsection 4.4 for (n, u) corresponding to 7, so by (46) we have

. (fr(u)=1—¢ forTelUl,..
For a € D set

V() = Po(ha(va)).

Since f; on ‘77 is holomorphically conjugate to h ;) by

Gr(z) = HT(Tow;l(Z))7
it follows from the uniqueness of the Bottcher coordinates that
(50) Pory0Gr =P7, V(a(r))=1-c¢.

In the same way as in the proof of Theorem 1.4.14 we show that o — ¥(«)
is a local homeomorphism for aw € D\ {0}. Since 7 — «(7) is continuous,
this together with (50) implies that in fact there exists ag € D such that

a(r) =ay for every 7 € U7, ..

It is easy to check that if we take U7, . sufficiently close to MY, ., then we
can assume

(51) G.(V,) O D,,

for some fixed r; < 1 arbitrarily close to 1.
Now define f for t € [1 +¢,1 + 2¢], setting

U =u, ., £ ={fFu:treu

for topological discs U? such that 1 € UL, fF is quadratic-like on Uf, t — QU

is continuous in the Hausdorff metric, U™® = U,, Ul* > U for every
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t1 < tg and
fFUr) NV, =0 forreul,..

It is clear that we can find such sets U! by taking successive preimages of
the sets U, under (f¥|y, )=t Moreover, it is obvious that {ff};ef14c 1424 I8
a Mandelbrot-like path.

Fix some r € (Jag|,1). By (51), we can assume that v, € D,, for every
a € Dy, so h, is a cubic cover on the closed annulus cl(h,!(D,,) ND)\ D,,.
This enables us to define for & € D, and 7 € U, ,. a C'-smooth cubic

branched cover g, o of C depending continuously on 7, a such that g, o = f-
on C\ G (h7 (Dy,)ND), gra = Gilohe oGy on G7H(D,,) and gr.a, = fr-
As previously, apply the measurable Riemann theorem for suitable g -
invariant conformal structures to obtain quasiconformal homeomorphisms
H, ,, of C such that H, , is holomorphic on G (D,,) and HT’aogT,aoHT_jé =
fa(r,a),b(r,a) for some continuous functions a(7, ), b(7, ). Write f, . for
fa(’r,a),b('na) and let
Uro = Hr o (UF2).

Since fF(U}2¢) NV, = 0, we have f¥| 112c = gF | 142c. Hence, Uy, is a
topological disc containing 1 and fﬁa is quadratic-like on U . Moreover,
frioo = frs Uray = U2 and f£ |u, . is hybrid equivalent to f¥|; 2.

For 7 € U ,. and a € D, let Q(7,a) = (a(7, @), b(7, @)). Define also
Qa : U 5. — CxCand Q, : D, — CxC setting Qa(7) = Qr(a) = Q(7, ).
Let @, , be the Béttcher coordinates for f; , on B(0) and let

~

(1, a) = Pra(fra(u))
It is easy to check that

U (r,0) = ¥(a).
Since o — ¥(a) is a local homeomorphism for a # 0, this implies that for
every oy € I\ {0} we have Qu, (U, 5.)NQa, (UL, 5.) = 0 if as is sufficiently
close to ay. Moreover, for every o € D, the map @, is a homeomorphism
on M{, .. and Qa (MY, ,.) is disjoint from Qq (U, o, \ MY, ,.). Let

X ={(r,a): 7 €Uy, a €D, \{0}},
Y={(r,a): 7€ M} ,., a€D,\{0}}

We observe that Q(X) contains an open set in C x C containing Q()).
(The proof is the same as for Lemma 4.12, where we replace the indices
of curves by indices of () restricted to suitable three-dimensional mani-
folds (boundaries of open subsets of C x C) homeomorphic to the three-
dimensional sphere S3.) This implies that {f,,’.c,a|Uﬂ_,a}(a(q-,a)7b(7,a))61nt Q(x) 18
an analytic family of quadratic-like maps. Moreover, by Theorem 3.3, for
every 7 € MY, the set Q-(D, \ {0}) is analytic. These facts imply that
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Q- (D, \ {0}) is a Riemann surface for 7 € M, ,_. In the same way as in the

proof of Theorem 1.4.14 we show that the map ¥ has no critical points in
Q- (D, \ {0}) for T € M}, ,.. This together with the analyticity of the sets

{¥ = const} implies that the sets Qa (U, 5.) for a € D, \ {0} contain disc-
equivalent Riemann surfaces containing Qo (MY, ,.). Note that for a = 0
the map f- o has a double critical point at 0, so by (2), the set Qo(UY,,.) is
contained in the plane {(a,b) : b = 1/2}. Repeating the proof of Lemma 4.12
we show that Qo(U{,,.) contains a topological disc containing Qo(M7,,.).

Therefore, for o € D, we can find topological discs U0 C Qq (U 1o) such

that Qu(M? 12e) C Uu° CILNIg depends continuously on « in the Hausdorff

o’

metric and U3 = UY, .. Then {fclf,b|Ua,b}(a,b)ez]g is a Mandelbrot-like family
for U, = Uy o with the Mandelbrot-like set QQ(M{JHE).
Now for t € (1 + 2¢,2] we can define

) = {0 slvas b apeny  for UL =US o 10 20

It is clear that the path {f};c[1 o) is the suitable Mandelbrot-like path. This
finishes the proof of Theorem 4.1.
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