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Chain conditions in maximal models
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Paul Larson (Toronto) and Stevo Todorčević (Paris)

Abstract. We present two Pmax varations which create maximal models relative
to certain counterexamples to Martin’s Axiom, in hope of separating certain classical
statements which fall between MA and Suslin’s Hypothesis. One of these models is taken
from [19], in which we maximize relative to the existence of a certain type of Suslin tree,
and then force with that tree. In the resulting model, all Aronszajn trees are special and
Knaster’s forcing axiom K3 fails. Of particular interest is the still open question whether
K2 holds in this model.

1. Introduction. If P is a partial order, then P satisfies the countable
chain condition, or is c.c.c., if every set of pairwise incompatible elements of
P is countable. Similarly, if P is a partition on n-tuples or on finite subsets
of some underlying set, we say that P is c.c.c. if the partial order to force an
uncountable homogeneous subset of P by finite approximations is c.c.c. It
was shown in [32] that MAℵ1 is equivalent to the statement that every c.c.c.
partition on finite subsets of ω1 has an uncountable homogeneous subset. In
this paper, we continue the project from [32] of analyzing certain classical
statements which fall between MAℵ1 and Suslin’s Hypothesis.

To do this, we study the models derived from two Pmax variations, and
the theories they satisfy for c.c.c. partial orders. These variations are called
ST

max and Pst
max, the first of which first appeared in [19]. These forcings are

meant to be applied to models of determinacy, and for notational ease, we
will call the ST

max and Pst
max extensions of L(R), in the context of ADL(R),

M and N respectively. In M, there is a particular Suslin tree, which we
call SG, and we will call the extension by M created by forcing with this
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tree M[H]. Our interest in M[H] lies in its relationship with the question
from [32] of whether Knaster’s forcing axioms K2 and K3 (see Section 4) are
equivalent. K3 fails in this model, and several of the known consequences
of K2 hold there. The model N is intended to maximize the fragment of
MAℵ1 consistent with the existence of an unfilled tower, in the hope that
that fragment will include one of the Kn’s.

We work with Pmax and in the context of ADL(R) not because the ques-
tions we are interested in have large cardinal strength, but rather because
the models these variations create are canonical for the types of questions
we are interested in. For instance, the theory of M[H] is the answer to
the question of how much of MAℵ1 can hold after forcing with a coherent
Suslin tree. In the end, the results about c.c.c. partitions which these mod-
els yield should translate into ZFC arguments. Pmax, then, is being used
to streamline our investigation, though the models created here are also of
interest.

Sections 2 and 3 give a few introductory remarks about trees and towers.
Section 4 sets the stage by giving a summary of the consequences of some of
the statements we are considering, including C2, K2, K3 and K4. Section 5
gives the definitions of our forcings, and in Sections 6–8 we analyze M[H].
In the final section we rule out an optimistic way of showing that K2 holds
inM[H] by showing that it is possible for a partition on pairs to fill a tower.

The following chart gives a partial summary of results. The horizontal
implications are presented in Section 4. Only one of them, that under K3

every tower of length ω1 contained in an analytic filter is filled (Theorem
4.11(5)), is new. The facts listed about M[H] are shown in Sections 6–8.

True in M[H] False in M[H]

MA ts > ω1
K4 All sets Q-sets

Ladders uniformized
K3 ta > ω1 (2ω1 , <lex) ↪→ ωω/U
K2 Aronszajn trees special

Locally countable sets special
C2 b > ω1

Here ts and ta are the lengths of the shortest unfilled towers which are
slow and contained in an analytic filter respectively. The remaining defini-
tions are given in Sections 2–4.

Under the right formulation, all Π2 sentences for H(ω2) which hold in
M[H] should hold in N , but in general much less is known about N than
aboutM[H]. The maximality ofM[H] implies that for a Π2 sentence φ for
H(ω2), if it is possible for φ to hold after forcing with a coherent Suslin tree,
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then φ holds in M[H]. Whether the remaining consequences of K2 and C2

listed in Section 4 hold inM[H] are important test questions, though some
of them look to be as hard as the main questions themselves, i.e., whether
C2 and K2 hold in M[H].

2. Trees

Definition 2.1. A sequence 〈aα : α → ω | α < ω1〉 of functions is
coherent if {γ | aα(γ) 6= aβ(γ)} is finite for all α < β < ω1.

Definition 2.2. A coherent Suslin tree T is a Suslin tree induced by
a coherent sequence 〈aα | α < ω1〉, in the sense that T is the tree of all
functions b : β → ω for some countable ordinal β such that {γ < β | b(γ) 6=
aβ(γ)} is finite, ordered by extension.

Coherent trees are strongly homogeneous, in the terminology of [19] and
[25], and vice versa [15]. We recall some terminology and simple observa-
tions from [19]. In order to make the order on the tree consistent with the
order of the corresponding forcing, we adopt the convention that trees grow
downwards.

Definition 2.3. For models M ⊂ N , if T is an κ-tree in M , and A ∈
N \M is a subset of T , then A is a deep antichain of T with respect to M
if for all antichains B ⊂ T such that B ∈M , there is an element of A below
some element of B in T .

Lemma 2.4 (Antichain Lemma). Suppose κ is a regular cardinal , T is a
κ-tree and Q is a partial order. If forcing with Q can add a deep antichain
A of T with respect to the ground model , then forcing with T can put a
κ-antichain through Q.

Definition 2.5. If S is a coherent tree, and p and q are elements of the
same level α of S, then πSpq is the isomorphism from the trivial subtree of S
below p to the trivial subtree of S below q such that for β > α and p′ <S p
with β ∈ dom(p′), πSpq(p

′)(β) = p′(β).

Lemma 2.6. If S is a coherent Suslin tree, τ and σ are S-names for paths
through S, and G ⊂ S is generic, then in the extension by G there is some
finite a ⊂ ω1 such that for all p ∈ σG and q ∈ τG and α ∈ dom(p)∩dom(q)\a,
p(α) = q(α).

The following fact is also useful.

Lemma 2.7. If S is a coherent Suslin tree, then after forcing with S
every subset of S of size ω1 contains a set 〈pα | α < ω1〉 such that there
exists a strictly decreasing chain 〈qα | α < ω1〉 ⊂ S such that pα ≤S qα for
all α.
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Proof. Let τ be an S-name for an uncountable subset of S, and consider
the set of pairs A = {(r, p) ∈ S × S | r 
 p̌ ∈ τ}. Given r, p ∈ S, let q(r, p)
be the least node in the tree that is above both p and r. Using the fact
that every uncountable subset of a Suslin tree is somewhere dense, we will
be done if we can find s0, s1 ∈ S such that {q(πSs0s1(r), p) | (r, p) ∈ A} has
cardinality ω1, since then s0 forces that there will be ω1 many r’s in the
generic with the corresponding p’s and q(r, p)’s as desired.

To find s0 and s1, pick a club C ⊂ ω1, and a sequence 〈(rα, pα) ∈ A |
α ∈ C〉 such that α < levS(rα), levS(pα) < inf(C\(α+1)) for all α ∈ C. Now
by a regressive function argument, we may pick a level α and a stationary
set D ⊂ C such that {γ | rα(γ) 6= pα(γ)} ∩ (α, α) = ∅ for all α ∈ D.
Furthermore, we may refine D so that for some pair of nodes s0, s1, for all
α ∈ D we have rα ≤S s0 and pα ≤S s1. Then s0 and s1 are as desired.

The following construction shows that it is possible that forcing with an
Aronszajn tree can destroy a stationary subset of ω1. This contrasts with
(but does not contradict) Proposition 38 of [31] which says no Aronszajn
tree can be embedded in the tree of attempts to shoot a club through a
stationary, costationary subset of ω1.

Lemma 2.8. If diamond holds then there is a stationary set S ⊂ ω1

and an ω1-tree T such that forcing with T preserves ω1 but destroys the
stationarity of S.

Proof. Let S ⊂ ω1 be stationary, costationary, and let 〈σα | α ∈ S〉 be a
♦(S)-sequence. We construct an ω1-tree T with a subset A of T as follows.
For p ∈ T and q ≤T p, we say that q is a clean successor of p if there is
no p′ ∈ A with q ≤T p′ <T p. We construct T and A having the following
properties.

(i) For α a limit ordinal in S and β < α, if p ∈ T is on level β of T ,
then p has a successor in A at level α.

(ii) If α ∈ S, no p ∈ T on level α is in A.
(iii) If p ∈ T and cofinally many predecessors of p are in A, then p is

in A.
(iv) Every p ∈ T has at least two clean successors at each lower level.
(v) For α ∈ S, if σα codes ω-many maximal antichains in T �α, then

each node in T �α has a successor on the αth level of T such that the path
between them hits each of the maximal antichains coded by σα.

Conditions (i)–(iii) imply that the set of levels at which the generic path
through T hits a member of A will be a club subset disjoint from S. Condi-
tion (iv) serves as an induction hypothesis to help us build the tree. Condi-
tion (v) ensures that forcing with T will preserve ω1.
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Subject to these constraints, we build as follows. We let level 0 have one
node, not in A, and at successor levels we build ω successors of each node,
none in A. For limit λ, we build depending on whether λ is in S or S.

If λ ∈ S, then using a cofinal sequence in λ of ordertype ω, we apply
condition (iv) below to choose for each p ∈ T �λ two paths above p disjoint
from A and put a node (not in A) on the λth level above each of these paths.
The λth level of T will consist of only these choices.

For λ ∈ S, we first pick two clean successors for each node as in the
previous case. Then for each p ∈ T , we find a path above p meeting each
maximal antichain coded by σλ (if σλ does indeed code an ω-sequence of
maximal antichains in T �λ) and different from all the clean paths, and put
a node in A on the λth level above that path.

Given these steps, the construction is completed as desired.

One interesting consequence of the above lemma is that shooting a con-
tinuous increasing ω1-sequence through a projective stationary set (see [10])
can be rewritten as a Levy collapse followed by forcing with an Aronszajn
tree.

3. Towers. Following [7], we let Ω denote the set of limit ordinals less
than ω1. The following definition also comes from [7].

Definition 3.1. A sequence 〈eδ : ω → δ | δ ∈ Ω〉 of functions is a ladder
system on ω1 if each eδ is strictly increasing with range cofinal in δ.

We use a ⊂∗ b to mean that all but finitely many members of a are
members of b.

Definition 3.2. For any ordinal γ, a sequence 〈tα ⊂ ω | α < γ〉 is a
tower if tβ ⊂∗ tα for all α < β < γ. A tower is filled if there exists an infinite
x ⊂ ω such that x ⊂∗ tα for all α < γ, otherwise it is unfilled .

Following convention, we let t denote the length of the shortest unfilled
tower and c denote the cardinality of the continuum.

Definition 3.3. Let f be any function from ω to ω such that the preim-
age of every integer is infinite. Let z ⊂ ω be infinite, let E = 〈eα | α < ω1〉
be a ladder system on ω1, and let A be a function from ω1 to ω. Then
ST(z, f,A,E) is the tower 〈tα | α < ω1〉 constructed in the following way.

• t0 = z.
• At successor stages, n ∈ tα+1 if and only if for some m ∈ ω, n is the

mth member of tα and f(m) = A(α).
• tα = {i ∈ ω | ∃n ∈ ω such that i is the nth member of

⋂{teα(m) |
m < n}} for limit α.



82 P. Larson and S. Todorčević

A tower is called slow if it is of the form ST(z, f,A,E) for suitable z, f ,
A, and E.

The idea behind this definition is the following.

Lemma 3.4. Suppose that T is an Aronszajn tree such that forcing with
T preserves ω1. Let z ⊂ ω be infinite, f : ω → ω be such that all preimages
are infinite, and let E be a ladder system on ω1. Fix some wellordering of
the successors of each node of T in ordertype ω. Then after forcing a generic
path H through T , if we let A : ω1 → ω be such that for all α the member
of H on the (α + 1)st level of T is the A(α)th successor of the member of
H on the αth level in the fixed wellordering , then in the extension by H,
ST(z, f,A,E) is unfilled.

Proof. Note that by the definition of slow towers, there is a function g :
T → P(ω) such that in the extension byH, the αth member of ST(z, f,A,E)
will be the value of g at the member of H on the αth level of T . Note that
incompatible nodes in T define initial segments of ST(z, f,A,E) with dis-
joint elements, which means that any real filling ST(z, f,A,E) would define
a path through T . Since forcing with T does not add reals, ST(z, f,A,E) is
unfilled in the extension.

We have not resolved whether there is always a slow unfilled tower of
length t. Intuitively, slow towers should be more likely to be filled, and so
conceivably one could have all slow towers filled and still t = ω1.

For x ⊂ ω, the lower asymptotic density of x is lim infn→ω |x ∩ n|/n.
Upper asymptotic density is defined similarly, with limsup in place of liminf,
and asymptotic density is the common value when the two agree. Under CH,
it is possible to construct unfilled towers of length ω1 consisting of reals of
asymptotic density 1. We will see, however, that there are no such towers
in M[H]. We also note that the same remarks apply with any Borel filter
instead of the set of reals of asymptotic density 1.

The following concept comes from [14], though the terminology is ours.

Definition 3.5. A Q-sequence is a sequence 〈xα ⊂ ω | α < ω1〉 of
pairwise almost disjoint sets such that for all A ⊂ ω1 there is a y ⊂ ω such
that for all α < ω1, α ∈ A⇔ y ∩ xα is infinite.

It is a standard fact that there is a Q-sequence if and only if there is a
Q-set, i.e., an uncountable set of reals all of whose subsets are relatively Gδ.
A straightforward consequence of the existence of Q-sets is that 2ω = 2ω1 .

4. Chain conditions. We let C2 denote the statement that the prod-
uct of c.c.c. partial orders is c.c.c. The question of whether the countable
chain condition is a productive property was asked long ago by Marczewski
[23], who soon afterwards showed that the stronger chain condition K2 of
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Knaster (see below) is productive. The fundamental importance of C2 was
first realized ten years later by Kurepa [17] when he made the connection
of this statement with Suslin’s Hypothesis.

Definition 4.1. b is the least cardinal κ such that there exists 〈fα |
α < κ〉 ⊂ ωω such that no such function dominates each fα mod finite.

Theorem 4.2. C2 implies the following statements.

(i) ([17]) Suslin’s Hypothesis.
(ii) ([16]) Every Hausdorff gap in P(ω)/Fin is indestructible.
(iii) ([29]) b > ω1.
(iv) ([27]) The continuum has cofinality greater than ω1.
(v) ([11]) The Lebesgue measure cannot be extended to a countably ad-

ditive measure defined on all sets of reals.

A natural counterexample to C2 is obtained using a so-called entangled
set of reals (see [27], Theorem 6). Such a set can be obtained either assuming
that the continuum has cofinality ω1 (see [27], Theorem 1) or assuming that
the Lebesgue measure extends to all sets of reals (see [11], 7F). This is how
parts (iv) and (v) of Theorem 4.2 were proved. That Suslin’s Hypothesis
does not imply statements (iii)–(iv) of Theorem 4.2 follows from results of
Jensen [6] and Laver [22].

A partial order P is powerfully c.c.c. if for every integer n, the partial
order Pn is c.c.c., and productively c.c.c. if for every c.c.c. Q, P ×Q is c.c.c.
One approach to questions about C2 is to consider partial orders which are
productively or powerfully c.c.c. for particular reasons.

Definition 4.3. A partial order P on ω1 is split if there exist 〈aγ |
γ < ω1〉, 〈bγ | γ < ω1〉 contained in P such that for all finite A ⊂ ω1 there
are uncountably many γ such that for all γ ∈ A, aγ and bγ are incompatible.
Otherwise it is unsplit.

The idea for the definition above is that we would like some property
such that the product of any two c.c.c. partial orders with the property
is c.c.c. Being unsplit is such a property, but perhaps not maximal in this
regard.

As in [19], we use the following standard ultrafilter lemma, which ap-
peared in [2].

Lemma 4.4. Let U be a uniform ultrafilter on ω1. Let P be a set with
K ⊂ P × P , and let 〈pα0 , . . . , pαn | α < ω1〉 for some fixed integer n be such
that for U -many α < ω1,

{β < ω1 | ∃i, j ≤ n (pαi , p
β
j ) ∈ K} ∈ U.
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There there is a set A ∈ U and a pair i, j such that {β | (pα
i
, pβ
j
) ∈ K} ∈ U

for all α ∈ A.

A straightforward application of Lemma 4.4 gives us the following lem-
mas. They have essentially the same proof, with the second being slightly
more general.

Lemma 4.5. A finite product of unsplit partial orders on ω1 is unsplit.

Lemma 4.6. If P ⊂ [ω1]2 is a partition on pairs from ω2 which is split ,
then there is a sequence 〈(αγ , βγ) | γ < ω1〉 of pairs of ordinals such that for
all finite a ⊂ ω1 there are uncountably many γ such that {αγ , βγ} 6∈ P for
all γ ∈ a.

Proof. If P is split, then for some integers n,m, for each γ < ω1 there
are finite subsets aγ = {αiγ | i < n}, bγ = {βjγ | j < m} of ω1 such that for
all A ∈ [ω1]<ω the set

XA = {γ | ∀η ∈ A ∃i < n, j < m {αiη, βjγ} 6∈ P}
is uncountable. Let U be an ultrafilter on ω1 such that each such XA is in
U . Now Lemma 4.4 finishes the proof.

A typical example of an unsplit poset is the poset of all finite antichains
of an Aronszajn tree, a fact that was first (implicitly) established in [2].

The idea behind the following definitions comes from [30].

Definition 4.7. Given a partial order P , let N(P ) ⊂ [[P ]<ω]2 be the
partition on pairs of finite subsets of P such that {a, b} ∈ N(P ) if a∩ b 6= ∅
or if every member of a is compatible with every member of b.

Definition 4.8. We say that a partial order P has property N if for all
disjoint sequences 〈aα | α < ω1〉 of finite subsets of P , there exist α < β < ω1

such that every element of aα is compatible with every element of aβ .

A partial order P having property N means that there is no uncountable
1-homogeneous set for N(P ).

To see an example of a property N poset, consider subsets of P(ω) as
partially ordered sets ordered by inclusion. If X is such a subset of P(ω)
then the natural forcing notion of all finite antichains of X has property N
whenever X is locally countable, i.e., whenever

X(< y) = {x ∈ X | x ⊂ y}
is countable for all y ∈ X. This fact was essentially proved in [8], in the
course of proving that under MAℵ1 every well founded subposet of P(ω)
contains an uncountable antichain.

Unsplit partial orders have property N, and partial orders with property
N are powerfully c.c.c. Further, for any finite collection P0, . . . , Pn of unsplit
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partial orders, there is no 1-homogeneous set for the product of their re-
spective N(Pi)’s. The proof of Theorem 4.2(iii), however, shows that b = ω1

implies that there are two partial orders with property N whose product is
not c.c.c. Note that the poset of all finite antichains of a locally countable
subset of P(ω) is productively c.c.c.

A family of weakenings of MAℵ1 was suggested by Knaster in the Scottish
Book [23] as follows.

Definition 4.9. Let n ∈ ω. A subset X of partially ordered set P is
n-linked if

∀F ∈ [X]n ∃p ∈ P ∀q ∈ F p ≤ q.
A poset P has property Kn if ∀X ∈ [P ]ω1 ∃Y ∈ [X]ω1 Y is n-linked. Kn is
the statement that every c.c.c. poset has property Kn.

The following are some of the sharpest results for consequences of the
Kn’s.

Theorem 4.10 ([30]). K2 implies the following.

(i) Every property N poset of size ℵ1 is σ-linked.
(ii) All Aronszajn trees are special.
(iii) Every locally countable subset of P(ω) of size ℵ1 is special.

Theorem 4.11. K3 implies the following.

(i) ([32]) Every c.c.c. poset of size ℵ1 is σ-linked.
(ii) ([29]) (2ω1 , <lex) is embeddable in every nontrivial ultrapower ωω/U .
(iii) ([28]) Every uncountable subset of ωω contains an uncountable 2-

splitting subset.
(iv) ([24]) The Lebesgue measure and Baire category are ℵ1-additive.
(v) Every tower of length ω1 that can be embedded inside an analytic

filter is filled.

Proof. We give a proof for the fifth statement, which is the only new
fact on the list. Let 〈tα | α < ω1〉 be a tower contained in an analytic
filter G, where G is the range of a continuous function f with domain ωω.
For each α < ω1, fix sα ∈ f−1(tα). By Theorem 4.2(iii), b > ω1, and so
there is a function s which bounds each of the sα mod finite. For each finite
modification s′ of s, the image under f of the functions totally bounded by
s′ is a compact set, and so the tower is contained in an Fσ filter F .

From [18], then, we have an increasing sequence of natural numbers
〈nk : k ∈ ω〉 and sets {aki ⊂ [nk, nk+1) | k ∈ ω, i < mk} such that

• ∀x ∈ [mk]≤2k ⋂
i∈x a

k
i 6= ∅,

• ∀X ∈ F {k ∈ ω | ∀i < mk aki 6⊂ X} is finite.
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Now fix an enumeration 〈an | n ∈ ω〉 of the finite subsets of ω, and for
each α < ω1 let fα : ω → ω be such that (tα�nk = am) ⇒ fα(k) = m.
Apply (iii) to the fα’s, getting an uncountable 2-splitting set A ⊂ ω1. Then
Bk = |{fα�nk | α ∈ A}| ≤ 2k for each k ∈ ω. For each a ∈ Bk, choose
an aki ⊂ a if one exists, and define our filling real t ⊂ ω on the interval
[nk, nk+1) by taking the intersection of the chosen aki ’s. Then t will have
at least one element in each interval [g(n), g(n+ 1)), and will be contained
mod finite in each tα.

Theorem 4.12 ([32]). K4 implies that every ladder system can be uni-
formized , and that every uncountable set of reals is a Q-set.

The material in this paper is motivated by the following conjecture.

Conjecture 4.13 ([32]). K2 does not imply K3.

One key question we have yet to resolve is whether C2 holds in N . It is
possible that a Pmax variation could help resolve the following test question
for whether C2 implies K2.

Question 4.14. Does C2 imply that every Aronszajn tree is special?

Definition 4.15. If K ⊂ [ω1]<ω, then let PK = {b ∈ [ω1]<ω | ∀a ⊂ b
a ∈ K}, ordered by inclusion.

Similarly, for n ∈ ω, if K ⊂ [ω1]n, then let PK = {b ∈ [ω1]<ω | ∀a ∈ [b]n

a ∈ K}, ordered by inclusion.
In each case, we say that K is c.c.c. if the partial order PK is c.c.c.;

co-c.c.c. if K is c.c.c.; and powerfully c.c.c. if for all n ∈ ω the partial order
(PK)n is c.c.c.

For n < ω, we denote by ω1
ccc−→ (ω1, ω1)n the statement that every

c.c.c. partition on n-tuples from ω1 into two colors has an uncountable ho-
mogeneous subset, and by ω1

ccc−→ (ω1, ω1)<ω that every c.c.c. partition on
finite subsets of ω has an uncountable homogeneous subset. ω1

ccc−→ccc (ω1, ω1)n

means simply that there are no c.c.c., co-c.c.c. partitions of n-tuples on ω1.
A proof of the following statement for n = 2 appears in [30]. We include

a proof of the general case for completeness.

Lemma 4.16 ([30]). ω1
ccc−→ (ω1, ω1)n implies that every powerfully c.c.c.

poset has property Kn.

Proof. Let P be a powerfully c.c.c. poset, and let 〈pα | α < ω1〉 ⊂ P .
Define [ω1]n = K0∪K1 by letting {α0, . . . , αn−1} ∈ K0 if and only if there is
a lower bound for {pα0 , . . . , pαn−1} in P . Let F be a disjoint family of finite
homogeneous sets all of the same fixed size m. To each f ∈ F associate the
element of P k, where k = m+ (mn ), which first lists pα (α ∈ f) in increasing
order (call them pα0 , . . . , pαm−1) and which in the {i0 . . . in−1}th place has a
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lower bound of {pαi0 , . . . , pαin−1
} in P . Since P k is c.c.c. we can find f and

g in F for which the corresponding elements of P k are compatible, in which
case f ∪ g is 0-homogeneous. Thus [ω1]n = K0 ∪K1 is a c.c.c. partition. Let
H be an uncountable 0-homogeneous set. Then 〈pα | α ∈ H〉 is such that
every n-element subset has a lower bound.

We note that all the consequences of the Kn’s mentioned in this sec-
tion are actually consequences of the corresponding c.c.c. partition relations.
Also, it is not known whether MA for powerfully c.c.c. partial orders implies
all of MA.

The following table, in which the asterisks denote the corresponding
statements restricted to powerfully c.c.c. partial orders, gives the relation-
ships among certain weakenings of MA. Each statement implies those di-
rectly below or directly to the right of it, except for the middle two on the
last row, where nothing is known. We note that aside from the first two
statements in the first row, which were shown in [32] to be equivalent, none
of the reverse implications are resolved, and that all of the statements below
except the last two in the last row (for which it is open) are known to imply
Suslin’s Hypothesis.

MAℵ1 ω1
ccc−→ (ω1, ω1)<ω MA∗ℵ1

ω1
ccc∗−→ (ω1, ω1)<ω

. . . .

. . . .

. . . .

K4 ω1
ccc−→ (ω1, ω1)4 K∗4 ω1

ccc∗−→ (ω1, ω1)4

K3 ω1
ccc−→ (ω1, ω1)3 K∗3 ω1

ccc∗−→ (ω1, ω1)3

K2 ω1
ccc−→ (ω1, ω1)2 K∗2 ω1

ccc∗−→ (ω1, ω1)2

C2 ω1
ccc−→
ccc (ω1, ω1)2 C2∗ ω1

ccc∗−→
ccc

(ω1, ω1)2

A diagonal argument [12] (also, the proof of Theorem 4.2(iii)) shows that
CH implies the existence of a powerfully c.c.c., co-powerfully-c.c.c. partition
on ω1. Jensen’s result that CH+SH is consistent [6] then gives us that SH
does not imply any of the above statements.

5. Pmax variations. In this section, we give the definitions of the forc-
ings we are considering, and briefly present their basic analysis. The omitted
definitions, such as those for ψAC and “iterable”, can be found in [33] and
[19].

5.1. A variation for one coherent Suslin tree. The following is the forcing
ST

max from [19]. For notational ease, we denote by M the ST
max extension of

L(R), assuming ADL(R). InM, there is a Suslin tree which is the union of the
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Suslin trees selected by the conditions in the generic. The further extension
by forcing with this tree is calledM[H]. The modelM[H] satisfies Suslin’s
Hypothesis but not K3. It is not known whether it satisfies C2.

Definition 5.1. ST
max is the set 〈〈Mk | k < ω〉, S, a〉 of sequences such

that:

• a ∈M0, a ⊂ ωM0
1 , and ωM0

1 = ω
L[a,x]
1 for some x ∈ R ∩M0.

• Each Mk is a countable transitive model of ZFC.
• Mk ∈Mk+1, ωMk

1 = ω
Mk+1
1 .

• (INS)Mk+1 ∩Mk = (INS)Mk+2 ∩Mk.
• ⋃{Mk | k < ω} |= ψ∗AC.
• 〈Mk | k < ω〉 is iterable.
• S ∈M0 and ∀k < ω Mk |= S is a coherent Suslin tree.
• There exists X ∈M0 such that X ⊂ P(ω1)M0\IM1

NS , M0 |= “|X| = ω1, ”
and for all A,B ∈ X, if A 6= B then A ∩B ∈ IM0

NS .

The order on ST
max is as follows:

〈〈Nk | k < ω〉, S, b〉 < 〈〈Mk | k < ω〉, S, a〉
if 〈Mk | k < ω〉 ∈ N0, 〈Mk | k < ω〉 is hereditarily countable in N0 and
there exists an iteration

j : 〈Mk | k < ω〉 → 〈M∗k | k < ω〉
such that:

• j(a) = b,
• 〈M∗k | k < ω〉 ∈ N0 and j ∈ N0,
• (INS)M

∗
k+1 ∩M∗k = (INS)N1 ∩M∗k for all k < ω.

• j(S) = S.

The following theorems summarize the relevant facts about ST
max which

carry over from [19]. The proofs of Theorems 5.2, 5.4 and 5.7 are minor varia-
tions of the corresponding proofs in [33]. Theorems 5.6 and 5.5 use the proof
of the corresponding fact in [33] plus the optimal iteration lemma for coher-
ent Suslin trees, which is proved in [25]. In the right large cardinal context,
Theorem 5.6 says that any Π2-sentence for the structure 〈H(ω2), INS,∈〉
(where INS is a predicate for the nonstationary ideal) consistent with the
existence of a coherent Suslin tree holds in the ST

max extension of L(R).
Similarly, the maximal fragment of MAℵ1 consistent with the existence of a
coherent Suslin tree should hold there.

Theorem 5.2. Assume AD holds in L(R). Let n be an integer. Suppose
that φ is a sentence such that it is a theorem of ZFC +“there exist n Woodin
cardinals” that φ + “there exists a coherent Suslin tree” can be forced. Then
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the set of 〈〈Mk | k < ω〉, S, a〉 ∈ ST
max such that each Mk |= φ is dense in

ST
max.

Since an iteration of an ST
max condition 〈〈Mk | k < ω〉, S, a〉 is uniquely

determined by the image of a, and since compatible conditions agree about
their selected sets a to the extent that they agree about countable ordinals,
for a generic filter G ⊂ ST

max we can define the set AG to be the union of
the sets a selected by the elements of G. This in turn allows the following
definition.

Definition 5.3. For a filter G ⊂ ST
max,

P(ω1)G =
⋃
{(P(ω1)M0)∗ | 〈〈Mk | k < ω〉, S, a〉 ∈ G}

and
SG =

⋃
{S | ∃〈〈Mk | k < ω〉, S, a〉 ∈ G},

where for x ∈ M0, x∗ is the image of x under the iteration of 〈Mk | k < ω〉
sending a to AG.

Using this definition we can state the theorem which is the main tool for
showing Π2 facts in Pmax-style extensions.

Theorem 5.4. In M, P(ω1)G = P(ω1).

Theorems 5.2 and 5.4 give the following.

Theorem 5.5. Assume ADL(R). Let n be an integer and ψ a Π2 state-
ment for the structure 〈H(ω2),∈, INS〉. If it is a theorem of ZFC + “there
exist n Woodin cardinals” that ψ + “there exists a coherent Suslin tree” can
be forced to hold , then ψ holds in M.

Note that in the notation used in this paper, L(R)S
T
max is M, but we

write the following theorem in standard notation for clarity.

Theorem 5.6. Assume ADL(R) and that there exists a Woodin cardinal
with a measurable above it , and that ψ is a Π2 statement such that

〈H(ω2),∈, INS〉 |= ψ ∧ “there exists a coherent Suslin tree.”

Then in L(R)S
T
max , 〈H(ω2),∈, INS〉 |= ψ.

We also mention the following facts which carry over from the analysis
in [33].

Theorem 5.7. In M, c = ω2 = δ∼
1
2 and INS is saturated.

The following theorem follows from putting together Theorem 5.4 with
an analysis of posets preserving Suslin trees. Again, L(R)[G] in the statement
of the theorem is the model M in this paper.
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Theorem 5.8 ([19]). Assume ADL(R) and that G ⊂ ST
max is L(R)-gene-

ric, and that H is L(R)[G]-generic for forcing with SG. Then L(R)[G][H]
models Suslin’s Hypothesis. Further , if P is a partial order in L(R)[G] which
is c.c.c. in L(R)[G][H], and 〈Dα | α < ω1〉 is a sequence of dense subsets of
P in L(R)[G][H], then there is a filter F ⊂ P in L(R)[G] meeting each Dα.

5.2. A variation for one unfilled tower. Another Pmax variation for sepa-
rating consequences of MA is the following variation for slow unfilled towers.
The idea behind this variation is that it should satisfy the maximal frag-
ment of MAℵ1 consistent with the existence of an unfilled slow tower. The
key question is whether K2 implies that all slow towers are filled, and if the
answer is no, then N should be a witness to that fact.

The reader will notice that most of this paper concerns M and M[H],
and that there is relatively little discussion of N . Part of this has to do
with the fact that relatively little is known about what forcings preserve
unfilled towers, aside from a few specific forcings (see for example [3] and
[4]). Further, we need to resolve the iteration problems raised in the next
subsection, a solution to which should lead to a model N , perhaps arising
from a modified version of Pst

max, satisfying all the Π2 sentences for 〈H(ω2),
∈, INS〉 holding in M[H]. In any case, more on N will appear in [21].

Definition 5.9. Pst
max is the set of sequences 〈〈Mk | k < ω〉, T, a〉 such

that:

• a ∈M0, a ⊂ ωM0
1 , and ωM0

1 = ω
L[a,x]
1 for some x ∈ R ∩M0.

• Each Mk is a countable transitive model of ZFC.
• Mk ∈Mk+1, ωMk

1 = ω
Mk+1
1 .

• (INS)Mk+1 ∩Mk = (INS)Mk+2 ∩Mk

• ⋃{Mk | k < ω} |= ψ∗AC.
• 〈Mk | k < ω〉 is iterable.
• For some suitable z, f,A,E ∈ M0, T = ST(z, f,A,E) as computed in

M0, and T is unfilled in Mk for each k < ω.
• There exists X ∈M0 such that X ⊂ P(ω1)M0\IM1

NS , M0 |= “|X| = ω1, ”
and for all A,B ∈ X, if A 6= B then A ∩B ∈ IM0

NS .

The order on Pst
max is as follows:

〈〈Nk | k < ω〉, T, b〉 < 〈〈Mk | k < ω〉, T , a〉
if 〈Mk | k < ω〉 ∈ N0, 〈Mk | k < ω〉 is hereditarily countable in N0 and
there exists an iteration

j : 〈Mk | k < ω〉 → 〈M∗k | k < ω〉
such that:
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• j(a) = b,
• 〈M∗k | k < ω〉 ∈ N0 and j ∈ N0,
• (INS)M

∗
k+1 ∩M∗k = (INS)N1 ∩M∗k for all k < ω.

• j(T ) = T .

5.3. Iteration lemmas. In the terminology of [25], the optimal iteration
lemma for a Σ2 sentence ψ says roughly that given a Pmax condition model-
ing ψ, and given that ψ holds, there is an iteration of the condition of length
ω1 such that the image of the witness for ψ in the condition is a witness
for ψ. The optimal iteration lemma for coherent Suslin trees is proved in
[25]. It is noted there, by an argument of Woodin, that there is no optimal
iteration lemma for t = ω1. This also follows from the fact that there are
no unfilled towers of reals of asymptotic density 1 in M[H]. This in turn
follows from the fact that these reals form a filter definable in L(R). There-
fore, given a forcing P which does not add reals and a P -name for such a
tower, there is an indestructibly c.c.c. partial order giving a real which is
mod finite contained in all possible members of the tower. More generally,
we have the following, by the same argument.

Theorem 5.10. Suppose that S is a Suslin tree, 〈Mk | k < ω〉 is an
iterable sequence and T ∈M0 is a tower such that for all iterations j0, . . . , jn
of 〈Mk | k < ω〉 and all t0, . . . , tn in j0(T ), . . . , jn(T ) respectively ,

⋂
i≤n ti

is infinite. Suppose that τ is an S-name for an iteration of 〈Mk | k < ω〉 of
length ω1. Then there is an indestructibly c.c.c. forcing adding a real t such
that for any path H through S, t fills the image of T under τH .

Every tower is contained in a filter on ω. One consequence of Theorem
5.10 is that every tower in M[H] which is contained in a filter in M is
filled. We would like to characterize those towers for which the hypothesis
of Theorem 5.10 fails, that is, we would like to know when, given an iterable
sequence 〈Mk | k < ω〉 and an unfilled tower T in M0 there exist iterations
j0, . . . , jn of 〈Mk | k < ω〉 and an ordinal γ such that

⋂
i≤n ji(T )γ is finite.

For the case of iterations of single models, we can show (see [21]) from the
saturation of the nonstationary ideal plus Chang’s Conjecture that there
are such iterations for any tower not contained in a Σ∼

1
2 filter. The proof is

abstract, however, and does not use any information about the combinatorics
of the tower.

Another key question is whether there is a type of unfilled tower for which
there is an optimal iteration lemma. There is a relatively simple iteration
lemma for any type of tower from CH, which we present below. It uses the
following lemma.

Lemma 5.11. Let 〈Mk | k < ω〉 be an iterable sequence, and let T ∈M0

be a tower which is unfilled in each Mk. Let B ⊂ ωM0
1 be an element of Mk
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stationary in Mk+1, and let x ⊂ ω be infinite. Then there is an iteration

j : 〈Mk | k < ω〉 → 〈M∗k | k < ω〉
of length one such that j(T )

ω
M0
1

does not contain x mod finite.

Proof. Let T = 〈tα | α < ωM0
1 〉. The ultrafilter inducing the embedding

is constructed in ω steps with the usual bookkeeping, with the key point
as follows. For each step, we have some set A ∈ P(ω1)Mk \ IMk+1

NS for some
integer k, and some regressive function f ∈ Mk with domain A. We would
like to find a set B ∈ P(A)Mk \ IMk+1

NS such that f is constant on B, and
such that {α ∈ B | k′ ∈ tα} ∈ IMk+1

NS for some integer k′ ∈ x \ k. Pick any
B ∈ P(A)Mk \ IMk+1

NS such that f is constant on B. Since T is not filled in
Mk+1 and j(T )

ω
M0
1

will fill T , the set {n ∈ ω | {α ∈ B | n 6∈ tα} ∈ IMk+1
NS }

must be finite. Thus since x is infinite, we can refine B to B excluding some
element of x \ k from j(T )

ω
M0
1

.

The proof of the lemma below is just like that of the basic iteration
lemma for Pmax in [33], using the above lemma and CH to ensure that no
real fills the image of the tower.

Lemma 5.12. Assume CH , and let 〈〈Mk | k < ω〉, T, a〉 be a Pst
max con-

dition. Then there is an iteration

j : 〈Mk | k < ω〉 → 〈M∗k | k < ω〉

such that j(T ) is an unfilled tower and INS ∩M∗k = I
M∗k+1
NS ∩M∗k for each

k < ω.

6. Failures of MA inM[H]. It is well known that forcing with a Suslin
tree cannot recover MA. The easiest way to see this is to note that MA (in
fact, K4 [32]) implies that every ω1-sequence of almost disjoint subsets of ω1

is a Q-sequence. No sequence from the ground model can be a Q-sequence
after forcing with a Suslin tree, though, since forcing with the Suslin tree
adds no reals, and so no real can code the generic path through the tree by
a ground model sequence. In fact, something stronger holds.

Theorem 6.1. There are no Q-sequences after forcing with a Suslin tree.

Proof. Let S be a Suslin tree, and let τ be an S-name for an almost
disjoint ω1-sequence of subsets of ω. We may assume that there is a club set
C of levels of S such that for α ∈ C, the αth member of τ is decided by the
α+th level, where α+ is the least member of C above α. It is easy, then, to
construct an S-name σ for a subset of ω1 such that for all α ∈ C, “α̌ ∈ σ”
is never decided until level α+ + 1. Then no real x from the ground model
can code the realization of σ, since for each α ∈ C, the question of whether
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x has infinite intersection with the αth member of τ is decided before the
question of whether α is in σ. But forcing with S adds no reals.

Given a ladder system 〈eδ | δ ∈ Ω〉, a coloring of the system is a function
f : ω ×Ω → 2. A uniformization of the coloring is a function

F : {eδ(i) | i < ω, δ ∈ Ω} → 2

such that for all δ ∈ Ω there exists an iδ ∈ ω such that F (eδ(j)) = f(j, δ)
for all j > iδ. It is shown in [32] that K4 implies that every coloring on every
ladder system is uniformized. An argument very similar to that for Theorem
6.1 shows that inM[H], every ladder system has an un-uniformized coloring.

Theorem 6.2. Let S be a Suslin tree, and let σ be an S-name for a
ladder system. After forcing a generic path H through S there is a coloring
for which σH is not uniformized.

Proof. Let C ⊂ Ω be a club such that if α ∈ C and p is on the αth level
of S, then p decides the first α members of σ. Build a name τ for a coloring
such that for all α ∈ C, if p is on the αth level of S then there are nodes
p′, p′′ ≤S p deciding the coloring for σα such that for all i, p′ 
 τ (̌i, α̌) = 0
⇔ p′′ 
 τ (̌i, α̌) = 1. Then there can be no S-name for a uniformization of
this coloring, since if ν were such a name, then for some α ∈ C and p on the
αth level of C, p would decide ν up to α. But then one of the corresponding
p′, p′′ as above would make ν disagree with the coloring on σα infinitely
often.

It is shown in Chapter 7 of [29] that K3 implies that for any nonprincipal
ultrafilter U on ω1, (2ω1 , <lex) can be embedded in ωω/U . The following then
shows that K3 fails in M[H].

Theorem 6.3. Let U be an ultrafilter on ω and T an Aronszajn tree
preserving ω1. After forcing with T , there is no embedding of (2ω1 , <lex)
into ωω/U .

Proof. Fix U and T , and let τ be a T -name for such an embedding. For
t ∈ T , let Xt = {f ∈ 2ω | t forces that τ(π̌[g]) = ǎ/Ǔ}. Note that under the
initial segment topology, the intersection of ω1 dense open subsets of 2ω1 is
dense. Since the union of the Xt’s is all of 2ω1 , some Xt must be somewhere
dense.

Let t ∈ T and w ∈ 2<ω1 be such that Xt is dense in the set of extensions
of w. Let π be an embedding of the extensions of t in T into the extensions
of w in 2<ω1 . Find an extension s of t which decides that τ(π[g]) = a/U ,
where g is the generic branch through T . Now consider

(Xt)− = {x ∈ Xt | t 
 τ(x̌) < ǎ/Ǔ},
(Xt)+ = {x ∈ Xt | t 
 ǎ/Ǔ < τ(x̌)}.
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This is a pregap in (2ω1 , <lex) which gives us an uncountable branch through
T as follows:

B = {v ∈ T | v extends s and π[v] has extensions

in both (Xt)− and (Xt)+}.
Let {ax | x ∈ c} be a fixed independent family of subsets of ω (see [13]).

Then for every subset X of c there is a nonprincipal ultrafilter U on ω such
that x ∈ X iff ax ∈ U . It follows that a forcing notion adds a new subset of c
if and only if it introduces a new ultrafilter on ω. Further, it is a theorem of
ZFC + 2ω = 2ω1 that there is an ultrafilter U on ω such that (2ω1 , <lex) can
be embedded into ωω/U . This follows from the fact (see [5]) that there exists
in ZFC a set {ax | x ∈ c} of elements in ωω such that for all x0, . . . , xn ∈ c
and all orders σ on n + 1 the set {i ∈ ω | ∀j, k ≤ n axj (i) < axk(i) ⇔
σ(j) < σ(k)} is infinite. Then for any assignment of 2ω1 to the ax’s there is
an ultrafilter as desired.

7. Fragments of MA in M[H]. It is shown in [19] that Suslin’s Hy-
pothesis holds inM[H]. The argument proceeds by taking an S-name for an
Aronszajn tree, where S is our coherent tree, and showing that one can force
the existence of a name for an uncountable antichain in the Aronszajn tree
without adding an uncountable antichain to S. In this section we abstract
the key points in that proof to show that another fragment of MA holds in
M[H] (1).

Definition 7.1. A partial order ({pα | α < ω1}, <) is stable if there
exists an increasing sequence 〈γα | α < ω1〉 of ordinals such that for all
α, β < ω1 there exist β < γα and pβ∗ ≤ pβ such that pβ∗ and pβ are
compatible with the same elements of {pγ | γ < α}.

This notion of stability was introduced in [1]. Stable partitions include
those derived from the compatibility relation on Aronszajn trees, as well as
partitions derived from taking a subset of an Aronszajn tree. Other examples
can be formed by taking a partition on nodes from the same level of an
Aronszajn tree, and saying that a pair of nodes on the tree are compatible
if their greatest common point is in the set, or if the pair composed of their
first two points of difference is in the partition. Also, a partition K ⊂ [ω1]2 is
stable if every uncountable subset of it can be split into countably many sets

(1) Added in proof (February 2001). The arguments in this section have been con-
siderably improved. To begin with, H0, . . . ,Hn in the statement of Lemma 7.2 can be
replaced by a single path H, and so in Corollary 7.4 being unsplit can be replaced with
property N. The reader is referred to the sequel to this paper [21] as well as to the authors’
Katetov’s problem, in preparation.
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Ai such that for some partition B ⊂ [ω]2, for each pair of distinct integers
i, j and any p ∈ Ai and q ∈ Aj , {p, q} ∈ K ⇔ {i, j} ∈ B.

Lemma 7.2. Let S be a coherent Suslin tree, and τ an S-name for a
stable c.c.c. partial order on ω1. Suppose also that S and τ satisfy the con-
dition that if H0, . . . ,Hn are paths through S after forcing with S then there
is no 1-homogeneous set for

∏
i≤nN(τHi). Then there is a c.c.c. forcing pre-

serving the Suslinity of S and adding an S-name for a subset of τ meeting
any given ω1 dense subsets.

Proof. Let S be a coherent Suslin tree, let τ be an S-name for a stable
partial order on ω1, and let 〈σα | α < ω1〉 be S-names for dense sets in τ .
Let 〈να | α < ω1〉 be S-names for a sequence of ordinals witnessing that τ is
strongly stable. Let Q be the forcing whose conditions are finite a ⊂ S×ω1,
under the superset order, with the following added stipulations:

• If (p, α) ∈ a, then p decides τ ∩ (α× α).
• If (p, α), (q, β) ∈ a, and p ≤S q, then there exists (r, γ) ∈ a such that

r ≤S p and r 
S γ̌ ≤τ α̌ ∧ γ̌ ≤τ β̌.

Suppose that β < ω1, a ∈ Q and p ∈ S. We would like to be able to
expand a to an a′ such that there exists (q, α) ∈ a′ such that q 
 α̌ ∈ σβ
and q ≤S p. By extending p if necessary, we may assume that there are no
(r, γ) ∈ a such that r ≤S p. Let r be S-least such that r ≥S p and there
exists γ with (r, γ) ∈ a. By the second condition above, there is some γ with
(r, γ) ∈ a such that r 
 γ̌ ≤τ δ̌ for all (r′, δ) ∈ a with r ≤S r′. Then we
can pick a pair (q, α) with q ≤S p and q 
 α̌ ≤τ γ̌ ∧ α̌ ∈ σβ . Therefore, Q
forces the existence of an S-name for a filter contained in the realization of
τ meeting the realizations of all the σβ ’s.

By Lemma 2.4, we will be done if we show that Q is c.c.c. after forcing
with S, since then Q preserves that S is Suslin. Supposing otherwise, let
{aγ = 〈(pγi , αγi ) | i < n〉 | γ < ω1} be an antichain in Q after forcing
with S. We note that the incompatibility of aβ and aγ implies that there
exist integers i, j such that pβi and pγj are compatible but pβi ∧pγj forces that

αβi and αγj are incompatible in τ . By the usual ∆-system argument, then,

we may assume that the aγ ’s are disjoint, and that γ < γ′ ⇒ αγi < αγ
′

j . By
Lemma 2.7, and by thinning our sequence, we can fix 〈qγi | i < n, γ < ω1〉
such that γ < γ′ ⇒ qγ

′

i ≤S qγi for all i < n, and pγi ≤S qγi for all i, γ.
Further, we may assume that for each γ, the qγi ’s are on the same level of S.
Let Hi be the path defined by the qγi ’s. By Lemma 2.6 each qγi ∈ πSq0

0q
0
i
[H0].

By thinning our sequence again, we may assume that for each i, γ there
are ξγi , δ < min{αγi , levS(qγi )} such that qγi 
 νδ = ξ̌γi and δ > αγ

i
, for all

i, γ such that pγ
i
≥S pγi . But then by the definition of stability we can pick
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αγi , p
γ
i ≤ pγi and λγi < ξγi for each i, γ such that pγi forces αγi ≤τ αγi and

every element of δ incompatible with αγi is incompatible with λγi .
Define an equivalence relation on n by whether q0

i = q0
j . Let m be the

number of equivalence classes. Let 〈il | l < m〉 be a list of representatives
for the equivalence classes, and let

bγ = {{λγj | j < n ∧ q0
j = q0

il
} ∪ {αγj | pγj ∈ Hil} | l < m}.

Then for each γ<γ′, since aγ and aγ′ are incompatible in Q, there are i, j<n
such that pγ

′

i ≤S pγj and pγ
′

i forces that αγ
′

i and αγj are incompatible. It

follows that qγ
′

i forces that λγ
′

i and αγj are incompatible. Then if l is such that
q0
i = q0

j = q0
il

, the lth coordinates of bγ and bγ′ are incompatible in N(τHil ).
Thus the bγ ’s form a 1-homogeneous set in

∏
l≤mN(τHil ), contradicting our

hypothesis.

The following is an immediate corollary of Theorems 5.4 and 7.2.

Corollary 7.3. If τ is an SG-name in M for a stable partial order ,
and τ has the property that for all paths H0, . . . ,Hn through SG in M[H]
there is no 1-homogeneous set in

∏
i≤nN(τHi), then Martin’s Axiom holds

for τH in M[H].

Since any product of unsplit partial orders has property N, we have the
following. A simple variation of the proof in [19] shows that all Aronszajn
trees are special in M[H]. This fact does not appear to be subsumed by
Corollary 7.4.

Corollary 7.4. In M[H], Martin’s Axiom holds for partial orders
which are stable and unsplit.

One consequence of Corollary 7.3 is that if C2 holds in M[H], then MA
holds there for stable partial orders which have property N. Property N is
fairly restrictive, however, as it rules out partial orders with disconnected
rectangles.

A simpler version of the proof of Theorem 7.2, similar to the proof in
[19] that SH holds in M[H], shows that in M[H] every nonspecial tree of
cardinality ω1 contains a path. Since these trees need not have countable
levels, the corresponding partial order is not stable.

It is shown in [1] that ladder uniformization follows from MA(stable) and
so MA(stable) fails inM[H]. The forcing to uniformize a given ladder system
does not have property N, however. It is also shown in [1] that MA(stable)
is weaker than MA.

We note that the above strategy cannot work for S-names for c.c.c.
partial orders with the property that every subset of size ω1 contains a
disconnected rectangle, since then the corresponding forcing Q would indeed
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destroy the Suslinity of S. The above argument will also fail if the product
of the realizations of the name by two different paths through S is not
c.c.c., since then there will be an antichain in the corresponding Q. We can,
however, generalize the above proof in such a way as to get around these
obstacles, which we do in the last section of this paper.

Lastly, we prove that for any α < ω1 and n < ω the partition relation
ω1 → (ω1, α : n)2 holds in M[H], where α : n in the second coordinate
means that there is a set of ordertype α + n such that the top n nodes
are incompatible with each of the first α many. Partitions failing to meet
this criterion are productively c.c.c. failures of K2. Recently [21], we have
improved the theorem below to show that ω1 → (ω1, α)2 holds inM[H] for
all countable α.

Theorem 7.5. For all α < ω1 and n < ω, ω1 → (ω1, α : n)2 holds in
M[H].

Proof. Note that there are uncountably many α < ω1 such that for any
finite collection of subsets of α of ordertype less than α, the ordertype of the
union of the collection is less than α. We may assume that our α has this
property. Fix n. Let S be a coherent Suslin tree, and let τ be an S-name for a
partition on ω1. The usual forcing to create an uncountable 0-homogeneous
set by finite conditions preserves the Suslinity of S unless forcing with S
makes it not c.c.c. Let σ be an S-name for an antichain in this forcing
consisting of m-tuples for some fixed integer m, and fix an ultrafilter U on
α all of whose members have ordertype α, by the above property of α. By
Lemma 2.7, we can fix integers i, j < n and assume that the first coordinates
of the ith members of the antichain will form a chain in S, and that given
the first α members of the antichain 〈pβi | i < m, β < α〉, the jth member of
each subsequent member of the antichain will be incompatible with U -many
of the pβi . Fix s ∈ S deciding the first α members of the antichain and let
s′ ∈ S be below each of the first α-many pβi . Then densely below s′ one
can add elements to τ which are incompatible with U -many of the pβi . Any
n such elements, and the intersection of their corresponding sets from U ,
complete the proof.

8. More forcing axioms in M[H]

Definition 8.1. The Open Coloring Axiom (OCA) is the statement
that if O ⊂ R×R is open and symmetric, and A ⊂ R, then either there is an
uncountable set B ⊂ A such that [B]2 ⊂ O, or A is the union of countably
many sets 〈Cn | n ∈ ω〉 such that [Cn]2 ∩O = ∅ for each n.

The following facts about OCA appear in [9].
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Theorem 8.2. There is a partial order which forces OCA and preserves
Suslin trees.

Theorem 8.3. OCA is preserved by forcing with Suslin trees.

In [20], it is shown that OCA holds in the Pmax extension of L(R). The
proof of the following uses essentially the same arguments, plus Theorem 8.3.

Theorem 8.4. OCA holds in M and M[H].

Since OCA is not a statement about ω1, Theorem 8.4 cannot be proved
simply by referring to Theorem 5.4; more Pmax machinery is required.
Roughly, the proof is as follows. Since ST

max does not add reals, we can
assume that the open set O ⊂ R × R is defined by a real x. Let τ be an
ST

max-name for a set of reals, and let 〈〈Nk | k < ω〉, S, b〉 ∈ ST
max with x ∈ N0

force that the realization of τ is not contained in any countable union of sets
1-homogeneous for O. The key point is that one can find a countable transi-
tive modelM with the following properties, where A is a set of reals coding τ :

(i) M |= ZFC + “there exists a coherent Suslin tree.”
(ii) {A ∩M, 〈〈Nk | k < ω〉, S, b〉} ∈M .
(iii) There exists an ordinal δ which is Woodin in M , and such that

the pair (M, I<δ) is A-iterable (see [33]), i.e., all iterations of M by the
nonstationary ideal corresponding to δ are well founded and compute A
correctly.

(iv) 〈H(ω1)M ,∈, A ∩M〉 ≺ 〈H(ω1),∈, A〉.
(v) Properties (ii)–(iv) are true of any forcing extension of M preserving

ωM1 and the Woodiness of δ.

By property (iv) above, M is correct about its version of ST
max and also

which conditions force which statements about τ . By property (v), we may
assume that CH holds in M . Working in M , build a decreasing sequence of
ST

max conditions of length ωM1 , starting with 〈〈Nk | k < ω〉, S, b〉, such that
the limit sequence 〈N∗k | k < ω〉 agrees with M about stationary subsets of
ω1, and the image of the selected coherent Suslin trees in the members of
the sequence is in fact Suslin in M . Further, since M sees that no countable
sequence of closed sets can cover τ , this sequence can be built so that for
each sequence 〈Ci | i < ω〉 of closed sets of reals in M , either there exist
some i < ω and x, y ∈ [Ci]2∩O∩M such that some member of the sequence
forces {x, y} ⊂ τ , or there exists a real x in (M ∩ O) \ ⋃{Ci | i < ω} such
that some member of the sequence forces x ∈ τ . By [29] (Chapter 4), then,
there is a c.c.c. forcing in M preserving T which gives an uncountable (in the
extension of M) 0-homogeneous set for O contained in X. Call this further
extension M . By standard techniques [33] one can build an ST

max condition
below the sequence constructed in M whose first member is an iterate of M
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by its version of the nonstationary tower up to δ. This condition will also
be A-iterable, and so will force that the image of X as iterated through the
generic will be an uncountable subset of τ from which all pairs are in O.

Theorems 5.4 and 8.2 can be used to see that the set of conditions sat-
isfying OCA is dense in ST

max, and so one can see more simply that all the
consequences of OCA for H(ω2) hold in M.

OCA implies that every locally countable subset of P(ω) has an uncount-
able antichain, and so this fact holds in M[H]. We also have the following
direct proof that every locally countable set is special, verifying that the
conclusion of Theorem 4.19(iii) holds in M[H].

Theorem 8.5. Given a coherent Suslin tree S and an S-name τ for
a locally countable subset of P(ω), the forcing to add an S-name for a
specialization of τ by finite approximations preserves S.

Proof. Conditions in the forcing are finite sets 〈(pi, ri, ki) ∈ S×P(ω)×ω |
i < n〉 such that pi 
 ri ∈ τ for all i < n, and if pi and pj are compatible
and ki equals kj , then neither of ri and rj is contained in the other.

By Lemma 2.4, we need to see only that this forcing is c.c.c. after forcing
with S. By Lemma 2.7, any antichain in the forcing in the extension by S can
be written as 〈(pji,α, rji,α, kji,α) | α < ω1, j < n, i < mj〉 for some n ∈ ω and
{mj | j < n} ⊂ ω such that there exist S-decreasing chains 〈qjα | α < ω1〉 for
j < n such that pji,α <S q

j
α for all i < mj . By the usual thinning procedures

we assume that α < β implies that levS(pji,α) < levS(qjβ) < levS(pji,β), each

kji,α depends only on i and j, and the question of whether qjα+1 <S pji,α
<S q

j
α depends only on i and j.

We will be done after we prove the following claim, by applying it suc-
cessively to each j < n, k < mj and i < mj such that qjα ≥ pji,α ≥ qjα+1:
Let A,B be uncountable subsets of ω1 and fix j < n. Then there exist finite
x ⊂ ω and uncountable A′ ⊂ A, B′ ⊂ B such that x ⊂ rji,α for all α ∈ A′,
and x 6⊂ rjk,β for all β ∈ B′.

To see the claim, note that otherwise there are S-names for a pair A,B
of uncountable subsets of ω1 and (simplifyng notation slightly) sequences
〈(pi,α, ri,α) | α ∈ A〉 and 〈(pk,α, rk,α) | α ∈ B〉 with the property that
α < β implies pk,β <S pi,α, and for which no x satisfies the claim. We
may also assume that for each finite x ⊂ ω, x is an initial segment of
either uncountably many ri,α or none, and that each x which is an initial
segment of uncountably many ri,α is contained in all rk,α. But since the
set of potential pk,β ’s must be dense, the existence of such names implies
that in the realization of τ there are uncountable sets {rα | α ∈ A} and
{sβ | β ∈ B} of reals such that every sβ contains every rα, a contradiction
since τ is a name for a locally countable subset.
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Similar arguments can be used to directly show that other consequences
of OCA hold in M[H]. For instance, one can show directly thatM[H] sat-
isfies the statement that if 〈fα : ω → ω | α < ω1〉 is a mod-finite increasing
sequence then there is an uncountable subset of ω1 from which each corre-
sponding pair of functions oscillates. It is shown in [29] that this statement
implies b > ω1. Showing that b > ω1 inM[H] is even easier, however, since
if S is a Suslin tree and τ is an S-name for an ω1-sequence of functions from
ω to ω then there is an indestructibly c.c.c., and thus Suslin tree preserving,
partial order adding a function which dominates mod finite all those with
some chance to be in τ .

9. A tower-filling partition. As we have mentioned, one key test
question is whether K2 implies that t > ω1. In this section we show that
it is possible to have an unfilled tower and a c.c.c. partition on pairs from
ω1 for which any uncountable homogeneous set would define a real filling
the tower. We first prove a general lemma which shows roughly that if S is
a coherent Suslin tree and µ is an S-name for a partition on finite subsets
of ω1 which has property K2, then there is a way to force an S-name ν for
a c.c.c., co-c.c.c. partition on pairs such that any 0-homogeneous set for the
realization of ν is 0-homogeneous for the realization of µ.

Lemma 9.1. Let S be a coherent Suslin tree, and let µ be an S-name for a
partition on finite subsets of ω1. Suppose that µ is such that the partial order
for adding an uncountable set which is 0-homogeneous for the realization of
µ by finite approximations is forced to have property K2, and such that every
p ∈ S decides µ on [levS(p)]<ω. Let Q be the collection of finite a ⊂ S×[ω1]2

such that :

(i) for each (p, {α, β}) ∈ a, levS(p) = β + 1 and p 
 {α̌, β̌} ∈ µ,
(ii) for all p ∈ S, and for all finite b ⊂ levS(p), if for all α < β ∈ b there

exists q ≤S p such that (q, {α, β}) ∈ a, then p 
 b̌ ∈ µ.

Then Q, ordered by inclusion, preserves the Suslinity of S. Further , if
H is generic for Q and g is generic for S, then the partition

ν = {x ∈ [ω1]2 | ∃p ∈ g (p, x) ∈ H}
is uncountable and c.c.c., and all finite sets which are homogeneous for ν
are in µ.

Proof. To see that Q preserves the Suslinity of T , it suffices to show
that Q remains c.c.c. after forcing with T . Let 〈aα | α < ω1〉 be a sequence
of conditions in Q after forcing with T . For each α, define dα = {γ ∈ ω1 |
∃(p, x) ∈ aα γ ∈ x}. By refining, we may assume that the dα’s form a ∆-sys-
tem with root r, and also that the sets lα = {γ | ∃(p, x) ∈ aα levT (p) = γ}
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form a ∆-system with root s. Further, we may assume that the restriction
of each aα to the set of pairs (p, x) for which levT (p) ∈ s is the same. Then
for all α < β, if b is a finite set satisfying the premise of condition (ii) in the
definition of Q for aα ∪ aβ , then b satisfies the same premise for either aα
or aβ , and so aα and aβ are compatible.

One can easily check that the partition on pairs induced by Q is indeed
uncountable, i.e. that for every condition a ∈ Q, every α ∈ ω1 and every
p ∈ S, we can extend a to include a pair (q, {β, γ}) where q ≤S p and γ > α.

To see that the induced partition ν is c.c.c., let (a, p) force that τ is a
Q ∗ S-name for an ω1-sequence of 0-homogeneous n-tuples for ν, for some
integer n. For each α < ω1, let (aα, pα) ≤ (a, p) force that bα is the αth
member of this sequence. Applying the first paragraph, by refining we may
assume that the aα’s are pairwise compatible. Note that pα 
 bα ∈ µ. By
extending p if necessary, and renumbering, we may assume that the pα’s are
dense below p, in which case the sequence 〈(pα, bα) : α < ω1〉 defines an
S-name below p for a subset of the realization of µ of size ω1. Since µ is a
name for a partition satisfying K2, there is an S-name below p, χ, for an
uncountable pairwise compatible subset of the set {bα | pα ∈ H}, where H
is the generic path through S with p ∈ H. Let α < β < ω1 and q ≤S p be
such that q 
 bα, bβ ∈ χ. Let aq = {(qγ+1, {δ, γ}) | δ ∈ bα, γ ∈ bβ}, where
qγ+1 is the predecessor of q on level γ+ 1 of S. Then a∗ = aq ∪ aα ∪ aβ ∈ Q,
and (a∗, q) ≤Q∗S (aα, pα), (aα, pα) forces that bα and bβ are µ-compatible,
and thus ν-compatible, and so τ is not a Q ∗ S-name for an uncountable
antichain in ν.

A simpler argument shows that for any K2 partition on finite subsets
from ω1 there is a c.c.c. forcing which gives a c.c.c. partition on pairs from
ω1 for which any homogeneous set is homogeneous for the original partition.
In that case, however, we do not know if the forcing adds an uncountable
homogeneous set for the original partition.

For any tower of length ω1 there is a c.c.c. partition on finite subsets
of ω1 for which any uncountable homogeneous set defines a real filling the
tower, as follows.

Definition 9.2 ([32]). Given a tower t = 〈tα | α < ω1〉, let Pt be the
set of finite a ⊂ ω1 such that if we let x =

⋂{tα | α ∈ a} and

y = {n ∈ ω | ∃α, β ∈ a such that tα and tβ first differ at n},
then for all i < |a|, |x ∩ ni| ≥ i, where ni is the ith element of y. The order
on Pt is inclusion.

It is easy to see that Pt satisfies K2, and that any uncountable set of
compatible conditions defines a real filling t. Now let S be a coherent Suslin
tree, and let {ap | p ∈ S} be a set of subsets of ω such that for all p, q ∈ S,
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p ≤S q ⇔ ap ⊂∗ aq. Since forcing with S adds no reals, a generic path g
through S gives an unfilled tower tg = {aα | aα = ap for p ∈ g ∧ levS(p)
= α}. Lemma 9.1 then says that there is a forcing preserving the Suslinity
of S which gives an S-name for a c.c.c. partition on pairs from ω1 such that
any uncountable homogeneous set for this partition is also homogeneous for
Ptg and thus defines a real filling tg. A similar argument shows, however,
that the partition given by the ν corresponding to Ptg is also co-c.c.c. If the
partition could be made c.c.c. but not co-c.c.c., then one could not force K2

over M[H] in the usual manner without filling tg. A key question related
to the problem of C2 vs. MAℵ1 is whether there can exist an unfilled tower
and a partition on pairs such that any uncountable 0-homogeneous set or
antichain for the partition would fill the tower, in an absolute sense. We
note that under ADL(R) it is a simple consequence of the existence of Pmax

conditions plus Lemma 5.12 that if the existence of such an unfilled tower
and c.c.c. partition is always forceable, then CH implies that there is such
a pair.

10. Questions. We collect here some of the key questions left unre-
solved. Several of them have been asked before.

1. Does K2 imply K3? Does it imply MAℵ1?
2. Does C2 imply K2? Does it imply MAℵ1?
3. Does MA hold in M[H] for all partial orders that do not add a real

which along with some set from the ground model codes a path through
SG?

4. Can a forcing of size ω1 ever recover MA? Can adding a dominating
function ever restore MA? Can filling a tower ever restore MA?

5. Does t = ω1 imply the existence of a slow unfilled tower?
6. Is there an optimal iteration lemma for the existence of a slow unfilled

tower? For any type of unfilled tower?
7. Does MA for powerfully c.c.c. partial orders imply MA?
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