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Abstract. Let G be a compact group and X a G-ANR. Then X is a G-AR iff the
H-fixed point set X

H is homotopy trivial for each closed subgroup H ⊂ G.

1. Introduction. The purpose of this paper is to prove the following

Main Theorem. Let G be a compact group and X a G-ANR. Then X
is a G-AR iff the H-fixed point set XH is homotopy trivial for each closed

subgroup H ⊂ G.

This is the equivariant version of a well known result in the theory of
retracts asserting that an ANR is an AR iff it is homotopy trivial [14, The-
orem 4.2.20].

Only the “if” part of the Main Theorem is nontrivial. Since a G-ANR is a
G-AR iff it is G-contractible (see [1, Theorem 6]), one just needs to establish
the G-contractibility of X. For G a compact Lie group this follows from the
following James–Segal Theorem [10]: a G-map f : X → Y of G-ANR’s is
a G-homotopy equivalence if its restriction fH : XH → Y H to the H-fixed
point sets is an ordinary homotopy equivalence for every closed subgroup
H ⊂ G. Validity of the Main Theorem for any compact (not necessarily Lie)
group actions leads us to believe that the James–Segal Theorem should be
true in this general case as well.

Our proof of the Main Theorem, even in the case of a compact Lie
group G, relies neither on the James–Segal Theorem nor on its proof. We
give a short proof based on the notion of an approximate slice (see Theo-
rem 2.2 below) which is applicable at once to arbitrary compact group ac-
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tions. Another important ingredient in our proof is the Jaworowski–Lashof
equivariant extension theorem [11], [13] (see Section 2).

The following example describes a situation where the Main Theorem
applies in an essential way. Let X be a Peano continuum (i.e., a connected,
locally connected, compact metric space containing more than one point) on
which a compact group G acts nontransitively. Let expX be the hyperspace
of all nonempty compact subsets of X endowed with the Hausdorff metric
topology and the induced action of G. Set Y = (expX) \ {X}. We claim
that Y is a G-AR. Indeed, it is proved in [5, Proposition 3.1] that expX is
a G-AR, so Y is a G-ANR. Hence, to prove that Y is a G-AR, it suffices to
show that Y isG-contractible. However, there is no canonical way to contract
Y equivariantly to a G-fixed point of Y (although expX is canonically G-
contractible to its G-fixed point {X}).

But the Main Theorem gives an answer here. Namely, if H ⊂ G is
a closed subgroup, then (expX)H ∼= exp(X/H). Since the H-orbit space
X/H is a Peano continuum (it is not a singleton because G acts nontran-
sitively on X) we infer that, due to the Curtis–Schori–West Hyperspace
Theorem (see [14, Theorem 4.2.27]), exp(X/H) is a Hilbert cube. Conse-
quently, Y H = (expX)H \ {X} is a Hilbert cube with a removed point and
hence is contractible. Now the Main Theorem works.

In connection with this example it is worth recalling that every compact
metrizable (not necessarily Lie) group G can act effectively (i.e., each g ∈ G
acts as a nontrivial homeomorphism) and nontransitively on a Peano contin-
uum. What is more, such a group can even act effectively and nontransitively
on the Hilbert cube. Indeed, according to a well-known result of Pontrya-
gin [19, Ch. 8, Theorem 68], every compact metrizable group G can be rep-
resented as the limit of an inverse system {Gn, πn,n+1 : n = 1, 2, . . . } of com-
pact Lie groups Gn and their continuous epimorphisms πn,n+1 : Gn+1 → Gn

such that each limit homomorphism G→ Gn is also an epimorphism. Then
for each n ≥ 1 we consider Cone(Gn), the cone with base Gn. Since Gn

is a compact ANR, Cone(Gn) is a compact AR containing more than one
point. Consequently, by a well-known result of West [20],

∏
∞

n=1 Cone(Gn)
is homeomorphic to the Hilbert cube. On the other hand, since Gn is the
quotient group G/Hn for a closed normal subgroup Hn ⊂ G, we see that
G acts naturally (on the left) on Gn, and this action extends to an action
of G on Cone(Gn). Next, since

⋂
∞

n=1Hn only contains the unity of G, the
induced diagonal action of G on the Hilbert cube

∏
∞

n=1 Cone(Gn) is effec-
tive. To complete our construction it remains to observe that this action
has a (unique) G-fixed point, and hence, is nontransitive. By the way, no
compact group can act transitively on the Hilbert cube; we leave the details
of the proof to the reader as a stimulating exercise.



G-ANR’s with homotopy trivial fixed point sets 3

It is also interesting to mention that
∏

∞

n=1 Cone(Gn) is, in fact, a G-AR.
This is because each coset Gn = G/Hn, being a Lie group, is a G-ANR
(see Proposition 2.3 below). In turn, this implies that Cone(Gn), n ≥ 1, is a
G-AR (see [4, Proposition 2.2]), and hence

∏
∞

n=1 Cone(Gn) is also a G-AR.
Thus, to each representation of a compact metrizable group G as the limit
of an inverse system of compact Lie groups corresponds an effective (and
nontransitive) G-action on the Hilbert cube, making the latter a G-AR.

Perhaps it is in order to recall here yet another (and more universal)
source of G-ANR’s: these are the mapping spaces. Namely, it is proved in
[2, Theorem 8] that for any compact group G and any A(N)R space L, the
space C(G,L) of all continuous mappings f : G → L, endowed with the
compact-open topology, is a G-A(N)R. Here G acts on C(G,L) according
to the rule (g, f) 7→ gf , where (gf)(t) = f(tg), t ∈ G. In particular, if L is
a normed linear space then C(G,L) is a G-AR. Moreover, each G-A(N)R is
a (neighborhood) G-retract of C(G,L) for a suitably chosen normed linear
space L [2, Corollary 5].

We conclude this introduction by considering yet another example where
the Main Theorem substantially helps to establish that a given G-ANR
space is, in fact, a G-AR. Let G be any compact group and L an infinite-
dimensional normed linear space. Further, letX denote the above mentioned
normed linear G-space C(G,L) with the origin removed. Since C(G,L) is
a G-AR we see that X is a G-ANR. But in fact X is a G-AR, though,
after removing the origin, the G-contractibility of X is not evident. First we
observe that for any closed subgroupH ⊂ G,XH = C(G,L)H\{0}. Further,
it is easy to see that C(G,L)H is homeomorphic to C(G/H,L), where G/H
denotes the right coset space. Since C(G/H,L) is an infinite-dimensional
normed linear space, according to a result of Klee [12], the complement
XH = C(G/H,L)\{0} is homeomorphic to C(G/H,L). It then follows that
XH is contractible, and hence homotopy trivial. It remains to apply the
Main Theorem.

Finally, we refer the reader to [4] where the “Lie case” of the Main Theo-
rem is applied in the study of proper actions (in the sense of R. Palais [18]) of
noncompact Lie groups. We hope that availability of the Main Theorem for
non-Lie groups will now foster further development of the theory of proper
actions of arbitrary locally compact groups.

2. Preliminaries. Throughout the paper the letter G will denote a
compact Hausdorff topological group unless otherwise stated; by e we denote
the unit element of G.

The basic ideas and facts of the theory of G-spaces or topological trans-
formation groups can be found in Bredon [7] and in Palais [17]. For the
equivariant theory of retracts the reader can see, for instance, the papers
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[1], [2] and [6]. Below, for the convenience of the reader, we recall some more
special definitions and facts.

All spaces are assumed to be completely regular and Hausdorff. All G-
maps are assumed to be continuous.

A space X is called homotopy trivial if for every n ≥ 0, every continuous
map from the sphere Sn to X can be continuously extended over the closed
ball Bn+1.

A metrizable G-space Y is called a G-equivariant absolute neighborhood

retract (for the class of all metrizable G-spaces) (notation: Y ∈ G-ANR) if,
for any closed invariant subset A of a metrizable G-space X and any G-map
f : A→ Y , there exist an invariant neighborhood U of A in X and a G-map
ψ : U → Y that extends f . If, in addition, one can always take U = X, then
we say that Y is a G-equivariant absolute retract (notation: Y ∈ G-AR).
The map ψ is called a G-extension of f .

For a point x of a G-space X, the subgroup Gx = {g ∈ G | gx = x} is
called the stabilizer or isotropy subgroup of x. For a subgroup H ⊂ G, the
set XH = {x ∈ X| H ⊂ Gx} is called the H-fixed point set of X. We denote
by G/H the G-space of cosets {gH | g ∈ G} under the action induced by
left translations.

The family (H) = {gHg−1 | g ∈ G} of all subgroups of G which are
conjugate to a given subgroup H ⊂ G is called a G-orbit type. One says that
a G-space X has finitely many G-orbit types if there exist a finite number
of closed subgroups H1, . . . , Hn of G such that (Gx) ∈ {(H1), . . . , (Hn)} for
all x ∈ X.

If X is a G-space and S ⊂ X then the set G(S) = {gs | g ∈ G, s ∈ S} is
called the saturation of S.

The notion of a slice is the key tool in our proofs, so let us recall it:

Definition 2.1 ([17]). Let X be a G-space and H ⊂ G a closed sub-
group. A subset S ⊂ X is called an H-slice in X if:

(1) S is H-invariant,
(2) the saturation G(S) is open in X,
(3) if g ∈ G \H, then gS ∩ S = ∅,
(4) S is closed in G(S).

The saturation G(S) is called an H-tube, and H is called a slicing subgroup.

Each H-slice S uniquely determines a G-map f : G(S) → G/H such
that f−1(eH) = S [17, Theorem 1.7.7]. We will call such a G-map f the
slicing map.

The classical Slice Theorem, which in its final form was proved in Mostow
[16], asserts that if G is a compact Lie group and x any point of a given G-
space X, then there exists a Gx-slice S ⊂ X that contains x. This theorem is
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no longer true if the acting group is not Lie (see [3]). However, the following
approximate version of the Slice Theorem remains true for arbitrary compact
group actions:

Theorem 2.2 (Approximate Slice Theorem [3]). Let X be a G-space

and x ∈ X. Then for any neighborhood U of x in X, there exist a large

subgroup K ⊂ G with Gx ⊂ K and a K-slice S such that x ∈ S ⊂ U .

Here a closed subgroup K of a compact group is called large [3] if there
exists a closed normal subgroup N of G such that N ⊂ K and G/N is a Lie
group. Large subgroups are characterized by the following proposition:

Proposition 2.3 ([3]). For a closed subgroup H ⊂ G, the following

conditions are equivalent :

(1) H is a large subgroup,
(2) G/H is a G-ANR,
(3) G/H is locally contractible,
(4) G/H is a smooth manifold.

Let X be a G-space, H ⊂ G a large subgroup, S an H-slice in X, and
O ⊂ G a neighborhood of the identity. The set gOS = {gps | p ∈ O, s ∈ S},
where g ∈ G, is called a tubular segment of type H.

A family

U = {gOµSµ | g ∈ G, µ ∈ M}

consisting of tubular segments with large slicing subgroups {Hµ | µ ∈ M}

is called a G-normal cover of X if the family Ũ = {G(Sµ) | µ ∈ M} of open
tubes covers X and there exists an invariant locally finite partition of unity
{ϕµ : X → [0, 1] | µ ∈ M} subordinated to Ũ , i.e., every ϕµ is an invariant
function with ϕ−1

µ ((0, 1]) ⊂ G(Sµ).

If X is paracompact then the orbit space X/G, being a closed image
of X, is paracompact as well (see [9, Ch. VIII, Theorem 2.4]). In this case
each cover of the form U = {gOµSµ | g ∈ G, µ ∈ M}, where Sµ is an
Hµ-slice with a large slicing subgroup Hµ, is a G-normal cover.

The following result is based on the Approximate Slice Theorem 2.2 and
plays an important role in this paper:

Lemma 2.4 ([6]). Let X be a paracompact G-space. Then for each open

cover V of X there exists a G-normal cover U = {gOµSµ | g ∈ G, µ ∈ M}
of X with large slicing subgroups {Hµ | µ ∈ M} such that U is a refinement

of V.

Definition 2.5. Let X be a G-space, U an open invariant subset of X
and U = {gOµSµ | g ∈ G, µ ∈ M} a G-normal cover of U . Then U is called
a Dugundji G-cover of U (with respect to X) if for any point a ∈ X \U and
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any neighborhood Va of a in X, there exists a neighborhood Wa ⊂ Va of a
in X such that every gOµSµ which meets Wa is contained in Va.

Lemma 2.6. If X is a metrizable G-space, then every invariant open

subset U ⊂ X admits a Dugundji G-cover with respect to X.

Proof. If U = X, then the one-element cover {X} (with G as the slicing
subgroup) is a Dugundji G-cover of U .

Let U 6= X. We consider an invariant metric ̺ on X (see, e.g., [17,
Proposition 1.1.12]). In what follows we shall denote by N(x, r) the open
ball in X of radius r centered at x ∈ X. Let rx = (1/4)̺(x,X\U). Consider
the index set M = U/G. In each orbit µ ∈ M we choose a point xµ; so
µ = G(xµ). By continuity of the G-action on X, choose a neighborhood Oµ

of the unity in G and a number 0 < δµ < rxµ such that OµN(xµ, δµ) ⊂
N(xµ, rxµ) (recall that for F ⊂ G and A ⊂ X we denote by FA the set
{ga | g ∈ F, a ∈ A}).

By Theorem 2.2, there exist a large subgroup Hµ of G with Gxµ ⊂Hµ and
an Hµ-slice Sµ such that xµ ∈ Sµ ⊂ N(xµ, δµ). Clearly, OµSµ ⊂ N(xµ, rxµ).

We claim that the G-normal cover U = {gOµSµ} | g ∈ G, µ ∈ M} is a
Dugundji G-cover of U with large slicing subgroups {Hµ | µ ∈ M}. Indeed,
since the orbit space U/G is metrizable (see [17, Proposition 1.1.12]), and
hence paracompact, there exists an invariant partition of unity subordinated
to the cover {G(Sµ) | µ ∈ M}.

Next, let a ∈ X\U and Va a neighborhood of a. Choose ε > 0 such that
N(a, 2ε) ⊂ Va. We will show that Wa = N(a, ε/2) is the desired neighbor-
hood of a. In fact, let gOµSµ ∩ Wa 6= ∅, and let y ∈ gOµSµ ∩ Wa. Since
y ∈Wa, one has ̺(a, y) < ε/2. On the other hand, y ∈ gOµSµ, implying

(2.1) ̺(y, gxµ) ≤ diam gOµSxµ .

Since OµSµ ⊂ N(xµ, rxµ), we see that diamOµSµ ≤ 2rxµ . Now, by the
invariance of the metric ̺, we have

diam gOµSµ = diamOµSµ ≤ 2rxµ = (1/2)̺(xµ, X\U)(2.2)

= (1/2)̺(gxµ, X\U).

Since a ∈ X\U , one has ̺(gxµ, X\U) ≤ ̺(gxµ, a). Consequently, (2.1)
and (2.2) yield

̺(y, gxµ) ≤ (1/2)̺(gxµ, a).

Using this inequality and the triangle inequality, we get

̺(a, gxµ) ≤ ̺(a, y) + ̺(y, gxµ) < ε/2 + (1/2)̺(a, gxµ).

This yields ̺(a, gxµ) < ε, which together with (2.2) implies that

diam gOµSµ ≤ (1/2)̺(gxµ, X\U) ≤ (1/2)̺(gxµ, a) < ε/2.
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Consequently, since gOµSµ meets Wa = N(a, ε/2), it follows from the in-
equality diam gOµSµ < ε/2 that gOµSµ ⊂ N(a, 2ε). Since N(a, 2ε) ⊂ Va,
the proof is finished.

We shall need the following theorem which is a particular case of a result
proved in Jaworowski [11] and Lashof [13]:

Theorem 2.7 (Jaworowski–Lashof). Let G be a compact Lie group, X
a finite-dimensional , separable, metrizable G-space with a finite number of

G-orbit types, and A a closed invariant subset of X. Suppose f : A → Y is

a G-map into a metrizable G-space Y . If the H-fixed point set Y H is an AR

for each closed subgroup H ⊂ G, then f extends to a G-map F : X → Y .

3. Replacement by a G-nerve. First we recall the definition of the
G-nerve of a G-normal cover [6].

Let X be a G-space and U = {gOµSµ | g ∈ G, µ ∈ M} a G-normal

cover of X with large slicing subgroups {Hµ | µ ∈ M}. Let Ñ (U) be the
ordinary nerve of the invariant cover {G(Sµ) | µ ∈ M}. We shall denote

by 〈µ0, . . . , µn〉 the closed n-simplex of Ñ (U) corresponding to the sets
G(Sµ0

), . . . , G(Sµn) with G(Sµ0
) ∩ · · · ∩ G(Sµn) 6= ∅. Let fµ : G(Sµ) →

G/Hµ be the corresponding slicing map (see Section 2). For any simplex

σ=〈µ0, . . . , µn〉 ⊂ Ñ (U), we define the following subset of the product∏n
i=0G/Hµi

endowed with the diagonal G-action:

Fσ =
{
(fµ0

(x), . . . , fµn(x))
∣∣∣ x ∈

n⋂

i=0

G(Sµi
)
}
.

It follows from the equivariance of fµi
that Fσ is an invariant subset of theG-

space
∏n

i=0G/Hµi
. Observe that if τ is a subsimplex of σ, then qστ (Fσ) ⊂ Fτ ,

where qστ :
∏

µ∈σ G/Hµ →
∏

µ∈τ G/Hµ is the Cartesian projection.

For a simplex σ = 〈µ0, . . . , µn〉 ⊂ Ñ (U), we denote by J (σ) the finite
join

G/Hµ0
∗ · · · ∗G/Hµn

in the sense of Milnor [15], equipped with the natural action of G. We shall
use the notation

∑n
i=0 tµi

gµi
Hµi

for the point in J (σ) determined by the
elements gµi

Hµi
∈ Gµi

/Hµi
and the numbers tµi

≥ 0 with
∑n

i=0 tµi
= 1.

The tµi
are called the barycentric coordinates of

∑n
i=0 tµi

gµi
Hµi

.
Since each Hµ is a large subgroup, G/Hµ is a compact metrizable G-

space (see Proposition 2.3). This implies that J (σ) is a compact metrizable
G-space as well.

Further, we denote by ∆(σ, Fσ) the invariant subset of J (σ) consisting
of all those

∑n
i=0 tµi

gµi
pµi

Hµi
∈ J (σ) for which

(gµ0
Hµ0

, . . . , gµnHµn) ∈ Fσ and pµi
∈ Oµi

, 1 ≤ i ≤ n.
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Set

∆(σ) =
⋃

{∆(τ, Fτ ) | τ is a subsimplex of σ}.

Then ∆(σ) is a G-invariant subset of J (σ). We will consider the induced
topology and G-action on ∆(σ).

We call ∆(σ) a closed G-n-simplex over the n-simplex σ associated with
the families

{Hµ0
, . . . , Hµn}, {Oµ0

, . . . , Oµn} and {Fτ | τ is a subsimplex of σ}.

The set

∂∆(σ) = ∆(σ) \
{ n∑

i=0

tµi
gµi
Hµi

∈ ∆(σ)
∣∣∣ tµi

> 0, 0 ≤ i ≤ n
}

is called theG-boundary of∆(σ).The homogeneous spacesG/Hµ0
, . . . , G/Hµn

are called the G-vertices of the G-simplex ∆(σ).
Next, if gµ0

Hµ0
∈ G/Hµ0

, . . . , gµnHµn ∈ G/Hµn are fixed elements,
then the closed (resp., open) n-cell 〈gµ0

Hµ0
, . . . , gµnHµn〉 is defined to be

the subset of J (σ) consisting of all
∑n

i=0 tµi
gµi
Hµi

, where ti ≥ 0 (res.,
ti > 0) and

∑n
i=0 tµi

= 1. The corresponding open n-cell is denoted by
(gµ0

Hµ0
, . . . , gµnHµn).

Consider the union

N (U) =
⋃

{∆(σ) | σ is a simplex of Ñ (U)},

endowed with the weak topology determined by the family {∆(σ) | σ ⊂

Ñ (U)}, i.e., a set U ⊂ N (U) is open in N (U) iff U ∩∆(σ) is open in ∆(σ)

for every simplex σ ⊂ Ñ (U). If σ and τ are two simplices of Ñ (U), then it
is easy to see that ∆(σ)∩∆(τ) = ∆(σ ∩ τ). This shows that ∆(σ)∩∆(τ) is
closed in both∆(σ) and∆(τ), implying that eachG-simplex∆(σ) retains its
original topology and is a closed subset of N (U) (see, e.g., [9, Ch. VI, § 8]).

It is an easy exercise to show that the induced G-action on N (U) is
continuous; thus N (U) is a G-space.

Definition 3.1 ([6]). The G-space N (U), endowed with the weak topol-
ogy and the G-action determined by the family of its G-simplices

{∆(σ) | σ is a simplex of Ñ (U)},

is called the equivariant nerve or G-nerve of the G-normal cover U .

In what follows we shall use the easily checked fact that a map f :
N (U) → Z is continuous iff its restriction f |∆(σ) to every closed G-simplex
∆(σ) is continuous.

Lemma 3.2 ([6]). Let Y be a G-space and U = {gOµSµ | g ∈ G, µ ∈ M}
a G-normal cover of Y . Then for each invariant partition of unity sub-

ordinated to the invariant cover {G(Sµ) | µ ∈ M}, there exists a G-map
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p : Y → N (U) such that the µth barycentric coordinate of p(y) vanishes

whenever y ∈ Y \G(Sµ).

Generalizing an idea of Dugundji [8], we define the replacement by a
G-nerve.

Let Y be a G-space, A an invariant closed subset of Y , and let

U = {gOµSµ | g ∈ G, µ ∈ M}

be a G-normal cover of Y \ A with large slicing subgroups {Hµ | µ ∈ M}.
Let N (U) be the G-nerve of U and let D(U) denote the disjoint union
A∪N (U). Topologize D(U) as follows. Let z ∈ D(U) be an arbitrary point.
If z ∈ N (U), a basis of neighborhoods of z in D(U) is taken to be all
neighborhoods of z in N (U). If z ∈ A, we define a basis of neighborhoods

of z in D(U) to be all sets W̃ defined as follows. For any neighborhood W

of z in Y , let W̃ ⊂ A∪N (U) be the set A∩W together with each open cell
(g1pµ1

Hµ1
, . . . , gnpµnHµn) in N (U), gi ∈ G, pµi

∈ Oµi
, 1 ≤ i ≤ n, such that

gjOµj
Sµj

⊂W for some 1 ≤ j ≤ n.

It is easy to verify that D(U) equipped with this topology is a Hausdorff
space, and that both A and N (U), as subspaces of D(U), preserve their
original topologies. Moreover, N (U) is open in D(U), and hence A is closed
in D(U). We equip D(U) with the natural action of G in such a way that A
and N(U) are invariant subsets of D(U), and we call the resulting G-space
D(U) the Dugundji G-replacement (associated with the G-normal cover U).

Lemma 3.3. The natural action of G on D(U) is continuous.

Proof. One only needs to check continuity at each a ∈ A. Let g ∈ G and
Ṽ be a basic neighborhood of ga in D(U). By continuity of the G-action
on Y , there are a neighborhood W of a in Y and a neighborhood O of g
in G such that O ·W ⊂ V . One easily sees that O · W̃ ⊂ Ṽ , completing the
proof.

Lemma 3.4. Let Y be a G-space, A a closed invariant subset of Y , and

U = {gOµSµ | g ∈ G, µ ∈ M} a Dugundji G-cover of Y \ A with large

slicing subgroups {Hµ | µ ∈ M}. Then there exists a G-map q : Y → D(U)
such that

(1) q|A is the identical homeomorphism,
(2) q(Y \ A) ⊂ D(U) \ q(A).

Proof. Choosing an invariant partition of unity subordinated to the in-
variant cover {G(Sµ) | µ ∈ M}, one can define a G-map p : Y \A → N (U)
as in Lemma 3.2. Now we define q : Y → D(U) by setting

q(y) =

{
y if y ∈ A,

p(y) if y ∈ Y \ A.
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Clearly, (1) and (2) hold. Let us check that q is continuous. For the continuity
on Y \ A we refer to Lemma 3.2. To prove the continuity on A, fix a ∈ A

and let Ṽ be a basic neighborhood of q(a) in D(U). By Definition 2.5, there
exists a neighborhood W ⊂ V of a in Y such that every gOµSµ which meets
W is contained in V .

We claim that q(W ) ⊂ Ṽ . Indeed, if y ∈ A∩W then q(y) = y ∈ A∩W ⊂

A ∩ V ⊂ Ṽ . Now let y ∈ (Y \ A) ∩W , and let µ1, . . . , µn be all the indices
such that y ∈ gµ1

Sµ1
∩ · · · ∩ gµnSµn for some gµ1

, . . . , gµn ∈ G. Then each
gµi
Sµi

, 1 ≤ i ≤ n, meets W at y, and hence

gµ1
Oµ1

Sµ1
∪ · · · ∪ gµnOµnSµn ⊂ V,

so that 〈gµ1
pµ1

Hµ1
, . . . , gµnpµnHµn〉 ⊂ Ṽ for all pµi

∈ Oµi
. Since q(y) =

p(y) ∈ 〈gµ1
pµ1

Hµ1
, . . . , gµnpµnHµn〉, we see that q(y) ∈ Ṽ . The continuity

of q is proved. Its equivariance follows from the invariance of ϕµ and the
equivariance of fµ, µ ∈ M.

Lemma 3.5. Under the hypotheses of Lemma 3.3, for every neighborhood

U of A in D(U), there exists an invariant neighborhood V of A in D(U) such

that V ⊂ U .

Proof. One can assume that U =
⋃

a∈A Ũa, where Ua is a neighborhood
of a in Y , and Uga = gUa for all g ∈ G and a ∈ A.

By Definition 2.5, choose a neighborhood Va ⊂ Ua of a in Y such that
every gOµSµ ∈ U which meets Va is contained in Ua. Clearly, one can assume
that Vga = gVa for all g ∈ G and a ∈ A.

We claim that V =
⋃

a∈A Ṽa is the desired neighborhood of A. Indeed,
for every G-vertex G/Hµ, we define the open star by

St(G/Hµ,N (U)) =
{ ∑

λ∈M

tλgλHλ ∈ N (U)
∣∣∣ tµ > 0

}
.

It is not difficult to find that V is the union of A and all the open stars
St(G/Hµ,N (U)) for which OµSµ ⊂ Va for some a ∈ A. Then the closure V
is just the union of A and all the corresponding closed stars

St
(
G/Hµ,N (U)

)
=

{ ∑

λ∈M

tλgλHλ ∈ N (U)
∣∣∣ tµ ≥ 0

}
.

Now let 〈gµ0
pµ0

Hµ0
, . . . , gµngµnHµn〉 be any closed cell contained in the

closed star St(G/Hµ0
,N (U)) with Oµ0

Sµ0
⊂ Va for some a ∈ A. It suffices

to show that 〈gµ0
pµ0

Hµ0
, . . . , gµngµnHµn〉 is contained in U .

By the definition of the cell 〈gµ0
pµ0

Hµ0
, . . . , gµngµnHµn〉, there exists a

point x ∈
⋂n

i=0G(Sµi
) such that fµi

(x) = gµi
Hµi

for all 0 ≤ i ≤ n, where
fµi

: G(Sµi
) → G/Hµi

is the slicing map (see Section 2). This shows, in
turn, that x ∈

⋂n
i=0 gµi

Sµi
, and in particular,

⋂n
i=0 gµi

Oµi
Sµi

6= ∅.
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But remember that Oµ0
Sµ0

⊂ Va for some a ∈ A, so gµ0
Oµ0

Sµ0
⊂

gµ0
Va = Vgµ0

a. Now, due to the choice of the neighborhood Vgµ0
a, each

gµi
Oµi

Sµi
, 0 ≤ i ≤ n, is contained in Ua because gµi

Oµi
Sµi

∩ Vgµ0
a ⊃

gµi
Oµi

Sµi
∩ gµ0

Oµ0
Sµ0

6= ∅. This shows that the closed cell 〈gµ0
pµ0

Hµ0
, . . .

. . . , gµngµnHµn〉 is contained in Ũa, and hence in U , as required.

4. Proof of Main Theorem

Lemma 4.1. Let (Y,A) be a G-pair , U = {gOµSµ | g ∈ G, µ ∈ M} a

Dugundji G-cover of Y \ A with large slicing subgroups {Hµ | µ ∈ M}, and

let X be a G-ANR. Then every G-map ϕ : A → X admits a G-extension

ϕ′ : U → X over a neighborhood U of A in the Dugundji G-replacement

D(U).

Proof. One can assume that X is a closed invariant subset of a G-space
of the form C(G,L), where L is a normed linear space and C(G,L) is the
normed linear G-space of all continuous maps G → L, endowed with the
sup-norm and the linear G-action defined by the formula (gf)(x) = f(xg)
for g, x ∈ G, f ∈ C(G,L) (see [2, Theorem 3]).

Let p : C(G,L) → L be the evaluation map defined by p(f) = f(e),
where f ∈ C(G,L) and e is the unity of G. Clearly p is continuous. Set
f = pϕ.

First we shall extend f to a continuous map F : D(U) → L. Then the
map f ′ : D(U) → C(G,L) defined by f ′(z)(g) = F (gz), z ∈ Z, g ∈ G, is a
G-extension of f . Further, since X is a G-ANR, there exists a G-retraction
r : T → X for some invariant neighborhood T of X in C(G,L). Put U =
(f ′)−1(T ) and ϕ′ = rf ′. Then the map ϕ′ : U → X is the desiredG-extension
of ϕ.

Now, let us proceed with the construction of F : D(U) → L.
Let Nk(U) denote the G-k-skeleton of N (U), i.e., Nk(U) is the union of

all G-m-simplices of N (U) with m ≤ k.
First we extend f over each G-vertex G/Hµ ⊂ N0(U). To this end, for

every G-vertex G/Hµ choose a finite open cover of the form

{g1OµHµ, . . . , gnOµHµ},

where n and g1, . . . , gn depend upon µ ∈ M. Of course, gk is not uniquely
determined by gkOµHµ, but for our further constructions it suffices to fix
just one such element. Let {ϕ1, . . . , ϕn} be a partition of unity of G/Hµ

subordinated to this cover, i.e., ϕ−1
k ((0, 1]) ⊂ gkOµHµ, 1 ≤ k ≤ n. For each

µ ∈ M choose an xµ ∈ Sµ and associate to it a point aµ ∈ A such that
̺(xµ, aµ) < 2̺(xµ, A). Since A is an invariant subset and ̺ is an invariant
metric,

(4.1) ̺(gxµ, gaµ) < 2̺(gxµ, A) for all g ∈ G and µ ∈ M.



12 S. A. Antonyan

Define Φ : A ∪N0(U) → L by setting

Φ(x) =

{
f(x), if x ∈ A,

ϕ1(x)f(g1aµ) + · · · + ϕn(x)f(gnaµ) if x ∈ G/Hµ.

As f(g1aµ), . . . , f(gnaµ) do not depend on x ∈ G/Hµ, and ϕ1, . . . , ϕn are
continuous functions on G/Hµ, we conclude that Φ is continuous at each
point of G/Hµ. Consequently, Φ is continuous on N0(U).

Let us verify continuity of Φ at each a ∈ A. Let M be a neighbor-
hood of Φ(a) = f(a) in L. Of course, one can assume that M is an open
ball centered at f(a). By continuity of f , there exists a δ > 0 such that
f(N(a, δ) ∩A) ⊂M . Recall that N(y, r) denotes the open ball in Y of ra-
dius r centered at y ∈ Y .

Let V = N(a, δ/3). By Definition 2.5, there exists a neighborhood W ⊂
V of a in Y such that every gOµSµ that meets W is contained in V . We

claim that Φ(W̃ ∩ (A ∪ N0(U))) ⊂ M , where W̃ is the basic neighborhood
of a in D(U) defined by W (see Section 3, the paragraph after Lemma 3.2).

Indeed, W̃ ∩A = W ∩A ⊂ N(a, δ) ∩A, so f(W̃ ∩A) ⊂M .

If x ∈ W̃ ∩N0(U) then x = g1Hµ ∈ G/Hµ for some G-vertex G/Hµ and
g1OµSµ ⊂W , where g1 ∈ G. Let g1OµHµ, . . . , gkOµHµ be all the elements of

the cover {g1OµHµ, . . . , gnOµHµ} which contain x. Then
⋂k

i=1 giOµSµ 6= ∅.
Since g1OµSµ ⊂ W , we infer that giOµSµ ∩W 6= ∅, 1 ≤ i ≤ k. Hence,

due to the choice of W , each giOµSµ must be contained in V .

Therefore, ̺(gixµ, a) < δ/3 for all i = 1, . . . , k. Using (4.1), we get

̺(giaµ, a) ≤ ̺(giaµ, gixµ) + ̺(gixµ, a) < 2̺(gixµ, A) + ̺(gixµ, a)

≤ 2̺(gixµ, a) + ̺(gixµ, a) < 2δ/3 + δ/3 = δ.

Hence all the points giaµ, i = 1, . . . , k, belong to the ball N(a, δ), which
yields f(g1aµ), . . . , f(gnaµ) ∈ M . Since M is convex, it then follows from
the definition of Φ(x) that Φ(x) ∈M . Thus, Φ is continuous on A ∪N0(U).

Since L is a linear space, we can extend Φ linearly over each G-simplex of
N (U) to obtain a map F : D(U) → X. More precisely, if σ = 〈µ0, . . . , µn〉 is
a simplex and

∑n
i=0 tµi

gµi
pµi

Hµi
is a point of the G-simplex ∆(σ) ⊂ N (U),

then we set

F
( n∑

i=0

tµi
gµi
pµi

Hµi

)
=

n∑

i=0

tµi
Φ(gµi

pµi
Hµi

).

Clearly, F is continuous on each G-simplex of N (U). Since N (U) is endowed
with the weak topology defined by its closed G-simplices, F is continuous
on N (U). It remains to check the continuity on A.

Fix a ∈ A and let M be a neighborhood of F (a) = Φ(a) in L. Clearly,
one can assume that M is an open ball centered at f(a).
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By continuity of Φ, there exists a basic neighborhood Ṽ of a in N (U)

such that Φ(Ṽ ∩ (A ∪ N0(U))) ⊂ M , where V is a neighborhood of a in Y .
By Definition 2.5, there exists a neighborhood W ⊂ V of a in Y such that
every gOµSµ which meets W is contained in V . We claim that F (W̃ ) ⊂M .

Indeed, W̃∩A=W∩A⊂V ∩A, so F (W̃∩A) =Φ(W ∩A)⊂Φ(V ∩A)⊂M.

If x ∈ W̃ ∩ N (U) then x belongs to an open cell

(gµ0
pµ1

Hµ1
, . . . , gµnpnHµn) ⊂ W̃ ∩ N (U)

with gµi
∈ G, pµi

∈ Oµi
, 0 ≤ i ≤ n, such that gµj

Oµj
Sµj

⊂ W for some
0 ≤ j ≤ n.

It follows from the definition of (gµ0
pµ0

Hµ0
, . . . , gµnpnHµn) that⋂n

i=0 gµi
Oµi

Sµi
6= ∅ (cf. the proof of Lemma 3.5). Since gµj

Oµj
Sµj

⊂ W , it
follows that every gµi

Oµi
Sµi

meets W , and is contained in V . Consequently,

each cell vertex gµi
pµi

Hµi
belongs to Ṽ ∩N0(ω), and so Φ(gµi

pµi
Hµi

) ∈M .
But F (x) is a convex combination of the points Φ(gµi

pµi
Hµi

), 0 ≤ i ≤ n,
and since M is convex, we conclude that F (x) ∈M .

Proof of Main Theorem. The “only if” part is evident. To prove the “if”
part, we first observe that the H-fixed point sets of a G-ANR are ANR’s [1,
Theorem 7]. On the other hand, it is well known that a homotopy trivial
ANR is an AR [14, Theorem 4.2.20]. So, in our case each XH is an AR.
Using this fact, let us prove that X is a G-AR.

Indeed, let Y be a metrizable G-space, A a closed invariant subset of
Y , and ϕ : A → X a G-map. We shall show that ϕ extends to a G-map
Φ : Y → X.

Choose a Dugundji G-cover U = {gOµSµ | g ∈ G, µ ∈ M} of Y \A with
large slicing subgroups {Hµ | µ ∈ M} (see Lemma 2.6). Let N (U) denote
the G-nerve of U and let q : Y → D(U) be a G-map as in Lemma 3.4. It
is sufficient to prove that ϕ : A → X extends to a G-map F : D(U) → X.
Then Φ = Fq is as desired.

Let Nk(U) denote the G-k-skeleton of N (U). Since X is a G-ANR, by
Lemma 4.1, ϕ extends to a G-map ϕ′ : U → X, where U is a G-invariant
neighborhood of A in D(U). By Lemma 3.5, choose a G-invariant neighbor-
hood V of A in D(U) such that V ⊂ U .

We will extend ϕ, by induction on the dimension k, to a G-map fk : V ∪
Nk(U) → X, k ≥ 0, and thus obtain the desired G-extension F : D(U) → X.

First we define f0 : V ∪ N0(U) → X. Since XG 6= ∅, we choose v ∈ XG.
If G/Hµ is a G-vertex in N0(U) \ V , we set f0(gHµ) = v, gHµ ∈ G/Hµ. We
also put f0|V = ϕ′|V . Since f0 is continuous at each G-vertex G/Hµ, it is
continuous on N0(U). Since it coincides with ϕ′ on V , it is continuous on A
as well. Moreover, it preserves the action of G, and hence it is a G-extension
of ϕ.
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Now suppose a G-extension fk : V ∪Nk(U) → X of fk−1, k ≥ 1, is already
constructed. We shall construct a G-extension fk+1 : V ∪ Nk+1(U) → X
of fk.

Let σ = 〈µ0, . . . , µk+1〉 be a k+1-simplex in Ñ (U) such that theG-(k+1)-
simplex ∆(σ) ⊂ Nk+1(U) is not contained in V . Consider the following
closed G-invariant subset of ∆(σ):

B = (V ∩∆(σ)) ∪ ∂∆(σ),

where ∂∆(σ) is the G-boundary of ∆(σ). Observe that fk is defined on B
because V ∩∆(σ) ⊂ V and ∂∆(σ) ⊂ Nk(U).

Let Nµi
, 0 ≤ i ≤ k + 1, be a closed normal subgroup of G such that

Nµi
⊂ Hµi

and G/Nµi
is a Lie group. Put N =

⋂k+1
i=0 Nµi

. This is clearly
a closed normal subgroup of G and the quotient group G/N is a Lie group
(see e.g. [19, Ch. 8, Section 46 (A)]). It is clear that N ⊂ Gb ⊂ Gfk(b) for

every b ∈ B. In other words, fk maps B into the N -fixed point set XN .

Since N is a normal subgroup of G, XN is a G-invariant subset of X,
and hence, a G-space. As N acts trivially on the join J (σ) = G/Hµ0

∗
· · · ∗ G/Hµk+1

and on XN , we can consider these G-spaces as G/N -spaces
endowed with the induced G/N -action.

Now we aim at extending the G/N -map fk : B → XN to a G/N -map
fσ : ∆(σ) → XN . Observe that for any closed subgroup K ′ ⊂ G/N , the set
(XN )K′

of K ′-fixed points in XN is an AR. Indeed, let K be the preimage
of K ′ under the natural homomorphism G → G/N . Then it is clear that
(XN )K′

= XK . But XK is an AR by the hypothesis.

Claim. The join J (σ) has finitely many G/N -orbit types.

Proof. First we observe that G/Hµi
is naturally G/N -homeomorphic

to (G/N)
/
(Hµi

/N). Since G/N is a Lie group, by [17, Proposition 1.4.1],
G/Hµi

can be G/N -equivariantly embedded into a Euclidean G/N -space Ei

equipped with an orthogonal action of G/N . This gives rise to a natural
G/N -equivariant embedding of J (σ) into E = E0 ⊕ · · · ⊕ Ek+1 endowed
with the diagonal action of G/N . Since E is a Euclidean G/N -space, it has
finitely many G/N -orbit types (see [17, Corollary 1.7.26]). This implies that
J (σ) also has finitely many G/N -orbit types, proving the claim.

Further, since ∆(σ) is an invariant subset of J (σ), which in turn is a
subset of a Euclidean G/N -space (see the proof of the Claim), we infer that
∆(σ) is a finite-dimensional, separable, metrizable G/N -space with finitely
many G/N -orbit types. Thus, the hypotheses of Jaworowski–Lashof Theo-
rem 2.7 are fulfilled, and so fk|B admits a G/N -extension fσ : ∆(σ) → XN .

In what follows we will consider fσ as a G-map from ∆(σ) to X.
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Next, we define the map fk+1 : V ∪ Nk+1(U) → X by setting

fk+1(z) =

{
fσ(z) if z ∈ ∆(σ) with dimσ = k + 1,

fk(a) if a ∈ V ∪Nk(U).

Then fk+1 is well defined and extends fk. Since fk+1|∆(τ) is continuous
for every G-simplex ∆(τ) ⊂ Nk+1(U), we see that fk+1 is continuous on
Nk+1(U). As fk+1 coincides with ϕ′ on V , it is continuous at the points of A
as well. It is also clear that fk+1 preserves the action of G. This completes
the inductive step.

Now, we define the desired G-map F : D(U) → X by setting

F (z) = fk(z) whenever z ∈ A ∪ Nk(U), k ≥ 0.

Clearly, F is well defined and preserves the G-action. Its continuity on N (U)
follows from the continuity of F |∆(τ) for each G-simplex∆(τ) ⊂ N (U). Since
F coincides with ϕ′ on the neighborhood V of A, it is continuous on A as
well. This completes the proof of the Main Theorem.
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