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On losed sets with onvex projetions in Hilbert spaebyStoyu Barov (So�a) and Jan J. Dijkstra (Amsterdam)
Abstrat. Let k be a �xed natural number. We show that if C is a losed and non-onvex set in Hilbert spae suh that the losures of the projetions onto all k-hyperplanes(planes with odimension k) are onvex and proper, then C must ontain a losed opyof Hilbert spae. In order to prove this result we introdue for onvex losed sets B theset Ek(B) onsisting of all points of B that are extremal with respet to projetions onto

k-hyperplanes. We prove that Ek(B) is preisely the intersetion of all k-imitations C of
B, i.e., losed sets C that have the same projetions as B onto all k-hyperplanes. For everylosed onvex set B in ℓ

2 with nonempty interior we onstrut �minimal� k-imitations C,in the sense that dim(C \ Ek(B)) ≤ 0. Finally, we show that whenever a ompat set hasonvex projetions onto all �nite-dimensional planes, then it must be onvex.1. Introdution. Consider the vetor spae R
n for n ≥ 3. Let us all theimage of a subset X of R

n or Hilbert spae under an orthogonal projetiononto a hyperplane a shadow of X. Borsuk [3℄ has shown that there existCantor sets in R
n suh that all their shadows ontain (n − 1)-dimensionalonvex bodies. In ontrast, Cobb [5℄ showed that every ompatum C in R

nwith the property that all its shadows are onvex bodies ontains an ar.Dijkstra, Goodsell, and Wright [6℄ improved on this result by showing thatsuh a C must ontain an (n− 2)-sphere, so in this ase projetions annotraise dimension by more than one.The starting point of the present paper are the results in Barov, Cobb,and Dijkstra [1℄. In that paper losed sets C in R
n that have onvex proje-tions onto all k-dimensional planes are onsidered. If the projetions of C areproper in a su�ient number of diretions, then it is proved that C ontainsa losed subset that is a (k− 1)-manifold without boundary. Also, for everylosed and onvex set B ⊂ R

n with nonempty interior �minimal imitations�2000 Mathematis Subjet Classi�ation: 52A07, 57N20.Key words and phrases: Hilbert spae, shadow, onvex projetion, hyperplane, k-imitation.The �rst author is pleased to thank the Vrije Universiteit Amsterdam for their hos-pitality and support. He was supported in part by a Ball State Researh Grant.[17℄ © Instytut Matematyzny PAN, 2007



18 S. Barov and J. J. Dijkstraare onstruted, whih are losed sets that have the same projetions onto
k-planes and are minimal with respet to dimension. A natural question iswhether one an get similar results when the underlying spae is the realHilbert spae ℓ2 instead of R

n. The answer to this question is positive andthe main purpose of this paper is to formulate and prove these results.In order to formulate the main theorems we need some de�nitions. If
A ⊂ ℓ2 then we de�ne

A⊥ = {v ∈ ℓ2 : v · x = v · y for all x, y ∈ A},where · denotes the inner produt. Also we de�ne
codimA = dimA⊥ ∈ {0, 1, . . . ,∞}.A plane in ℓ2 is a losed a�ne subspae of ℓ2 and a plane L is alled a

k-plane if dimL = k. A k-hyperplane H is a plane with codimH = k. If L isa plane then pL : ℓ2 → L denotes the orthogonal projetion onto L, de�nedby {pL(x)} = L ∩ (x + L⊥) for x ∈ ℓ2. A basis for ℓ2 is a set of linearlyindependent vetors whose linear hull is dense in ℓ2. Finally, A denotes thelosure of A in ℓ2.Theorem 1. Let k ∈ N, let B be a losed onvex subset of ℓ2, and let Cbe a losed set in ℓ2 suh that B 6= C. Assume that p(C) = p(B) for everyprojetion p of ℓ2 onto a k-hyperplane. If there exists a basis B for ℓ2 suhthat pL⊥(C) 6= L⊥ for every linear spae L generated by k elements of B,then C ontains a losed set homeomorphi to ℓ2.If k ∈ N then two subsets A and B of ℓ2 are alled k-imitations of eahother if they have idential projetions onto all k-hyperplanes or, equiv-alently, a k-plane meets A if and only if it meets B. In order to proveTheorem 1 we introdue for losed onvex sets B the sets Ek(B) onsist-ing of points of B that are �extremal with respet to projetions onto k-hyperplanes�. We prove that Ek(B) is preisely the intersetion of all losed
k-imitations of B (Corollary 23) and we �nd the required opy of ℓ2 in thisset.In the �nal setion we onstrut minimal imitations of B:Theorem 2. If k ∈ N and if B is a losed onvex subset of ℓ2 suhthat codimB 6= k, then there exists a losed k-imitation C of B suh that
dim(C \ Ek(B)) ≤ 0.In the proess of proving our results we follow the general approah of [1℄,whih in turn was based on the method of Dijkstra, Goodsell, and Wright [6℄.However, some of the arguments in [1℄ rely on properties of �nite-dimensionalspaes that are not valid in Hilbert spae suh as the fat that in R

n theinterior of a onvex set in its a�ne hull is nonempty and that every losed setin R
n is σ-ompat. This alls for a di�erent approah or a more ompliated



Closed sets with onvex projetions 19argument in some plaes. In partiular, the role of ompata is very di�erentin ℓ2 and is disussed in �4, a setion with no analogue in [1℄.Our paper is organized as follows. In �2 we establish the terminology andwe present basi lemmas. Theorem 1 is proved in �3. We deal with projetionsonto �nite-dimensional planes and the role of ompata in �4. �5 is abouthiding sets behind zero-dimensional sets, and the results from that setionare then used to prove Theorem 2 in �6.2. De�nitions and preliminaries. In this setion we set up our ter-minology and we give the basi lemmas in preparation for the proof of themain theorems. Throughout this paper the underlying spae will be the realHilbert spae ℓ2, de�ned as follows:
ℓ2 =

{

x = (xn)∞n=1 : xn ∈ R and
∞

∑

i=1

x2
i <∞

}

.The origin of ℓ2 will be denoted by 0. Let u=(u1, u2, . . . ) and v=(v1, v2, . . . )be elements of ℓ2. We shall use the standard dot produt: u · v =
∑∞

i=1 uivi.The norm on ℓ2 is given by ‖u‖ =
√
u · u and the metri d by d(u, v) =

‖v− u‖. Throughout this paper Bε(x) stands for the open ε-neighbourhoodof the point x. Let {e1, e2, . . . } denote the standard orthonormal basis for ℓ2,that is, ei is the unit vetor in the positive diretion of the xi-axis.A plane in ℓ2 is a losed a�ne subspae of ℓ2, thus planes have the form
v + L where v ∈ ℓ2 and L is a losed linear subspae of ℓ2. Note that theset A⊥ as de�ned in the introdution is a losed linear subspae of ℓ2. If Lis a plane in ℓ2, then L⊥ is alled the orthoomplement of L. Note that wehave extended the usual de�nition of orthoomplement from linear spaesto a�ne spaes in suh a way that L⊥ = (v + L)⊥. A k-plane in ℓ2 isa k-dimensional a�ne subspae of ℓ2 and a k-subspae is a k-dimensionallinear subspae of ℓ2. We will identify the spae R

k with the k-subspae
{x ∈ ℓ2 : xk+1 = xk+2 = · · · = 0}. The unit sphere in ℓ2 is denoted by
S∞. By projetion we mean orthogonal projetion. If L is a plane in ℓ2, then
pL : ℓ2 → L denotes the orthogonal projetion onto L. The losure of a set
A in ℓ2 is denoted by A. The interior of a set A in ℓ2 is denoted by intA.Definition 1. Let L be a plane in ℓ2. A plane H ⊂ L is alled a k-hyperplane in L if dim(H⊥ ∩ L) = k. In other words, a k-hyperplane is aplane with odimension k in the ambient spae. A hyperplane H of L isa plane of L of odimension 1. A shadow of a set A is a projetion of Aonto a hyperplane. The two omponents of L \H are alled the sides of thehyperplane H. We say that H uts a subset A of L if A ontains points onboth sides of H. A subset V of L is alled a halfspae of L if it is the unionof a hyperplane and one of its sides. If L is a k-plane, k ∈ N, then V is alleda k-halfplane in ℓ2. A 1-halfplane is alled a halfline or a ray .



20 S. Barov and J. J. DijkstraDefinition 2. Let A be a nonempty subset of ℓ2. We denote the onvexhull of A by 〈A〉. The a�ne hull aff A of A is the intersetion of all planesof ℓ2 that ontain A. Note that codimA = codim(aff A). Let ∂A stand forthe boundary of A with respet to aff A and let A◦ = A \ ∂A.If A is a �nite-dimensional onvex set, then A◦ 6= ∅. For in�nite-dimen-sional onvex sets this is not true (see Example 1).Lemma 3. Let B be a onvex set in ℓ2 with B◦ = ∅. If A is a subset of
B with �nite odimension in ℓ2, then A◦ = ∅.Proof. Striving for a ontradition, we assume that there is an X ⊂ Bsuh that X◦ 6= ∅ and codimX < ∞. Now, let n be the minimum integerwith the following property:

• There is a set A ⊂ B suh that A◦ 6= ∅ and codimA = n.Put H = aff A and F = B ∩H so H = aff F and F ◦ 6= ∅. Note that F 6= Band selet an x ∈ B\H. Consider H ′ = aff(F ∪{x}). Note that {x+t(y−x) :
0 < t < 1, y ∈ F ◦} is a nonempty open subset of H ′ that is ontained in B.So we have (H ′ ∩ B)◦ 6= ∅. Clearly, codim(H ′ ∩ B) = codimH ′ = n − 1 inviolation of the minimality of n.Definition 3. Let B be a losed onvex set in ℓ2. A nonempty subset
F of B is alled a fae of B if there is a hyperplane H of aff B that does notut B with the property F = B ∩H. Note that F is also losed and onvex,and codimF > codimB whenever codimB is �nite. If F is a fae of B wewrite F ≺ B. We say that a subset F of B is a derived fae of B if F = Bor there exists a sequene F = F1 ≺ · · · ≺ Fm = B for some m.Remark 1. Let F ≺ B and assume that m = codimF is �nite. Put
Hm = aff F , k = codimB, and Hk = aff B. There is a hyperplane Hk+1 of
Hk that does not ut B and has the property F = B∩Hk+1. If Hk+1 6= aff Fthen m > k + 1 and we an �ll in the missing dimensions and onstrut asequene Hm ⊂ Hm−1 ⊂ · · · ⊂ Hk of a�ne spaes suh that codimHi = ifor i ∈ {k, . . . ,m}. Note that if k + 1 < i ≤ m then

B ∩Hi−1 ⊂ B ∩Hk+1 = F ⊂ Hm ⊂ Hiand hene Hi is a hyperplane Hi−1 that does not ut B ∩Hi−1.Observe now that if F is a derived fae of B and m ≤ codimF , thenwe an �nd a sequene of a�ne spaes Hm ⊂ Hm−1 ⊂ · · · ⊂ H0 suh that
codimHi = i for eah i, aff F ⊂ Hm, and Hi is a hyperplane in Hi−1 thatdoes not ut B ∩Hi−1 for i ∈ {1, . . . ,m}.Remark 2. We list a few fats onerning losed onvex sets and hyper-planes. Note that if F ≺ B then F ⊂ ∂B. Let B be a losed onvex set in ℓ2with B◦ 6= ∅. Sine intB = B (see [4, p. TVS II.14℄), a hyperplane H uts



Closed sets with onvex projetions 21
B if and only if H meets the interior of B. Aording to the Hahn�Banahtheorem (see [10, p. 197℄) every point in ∂B is ontained in a hyperplane Hof aff B that does not ut B. In other words, ∂B equals the union of thefaes of B. However, if B◦ = ∅ then ∂B = B may not equal the union of allits faes as the following example shows.Example 1. Consider the onvex ompatum

B = {x ∈ ℓ2 : xn ∈ [−2−n, 2−n] for all n ∈ N}.Assume that H is a hyperplane through the origin. Then H an be rep-resented as H = {v ∈ ℓ2 : v · u = 0} for some u ∈ S∞. Thus, thereis a k ∈ N suh that uk 6= 0. Let v1 = (0, . . . , 0, 2−k, 0, . . .) and v2 =
(0, . . . , 0,−2−k, 0, . . .). Then v1 and v2 are on di�erent sides of H beause
u · v1 and u · v2 have opposite signs. Consequently, H uts B and hene0 is ontained in no fae of B. This also means that B is ontained in nohyperplane and hene aff B = ℓ2 and B◦ = ∅ beause B is ompat.However, the union of the faes is always dense in ∂B.Lemma 4. Let B be a losed onvex set in ℓ2 with B◦ = ∅. Then the set
⋃{F : F is a fae of B} is dense in B.Proof. Let x ∈ B = ∂B and ε > 0. Pik z ∈ Bε(x)∩(aff B\B). Aordingto [10, p. 347℄ there is a unique point y ∈ B with minimal distane to z.By the Hahn�Banah theorem there is a hyperplane H in aff B separating
B and Bδ(z), where δ = ‖z − y‖. Observe that y ∈ H. Hene y is a point ofthe fae H ∩B. Also,

‖x− y‖ ≤ ε+ δ ≤ 2ε.Sine ε is arbitrary, this ompletes the proof.Definition 4. Let B be a losed onvex set in ℓ2 and let k ∈ N. Wede�ne Ek(B) as the losure of
⋃

{F : F is a derived fae of B with codimF > k}.Lemma 5. Let B be a losed onvex set in ℓ2 with B◦ = ∅. Then Ek(B)
= B for every k ∈ N.Proof. Assume that Ek(B) 6= B and onsider the olletion

F = {F : F is a derived fae of B suh that F \ Ek(B) 6= ∅}.Sine B is a derived fae of itself we have B ∈ F . By the de�nition of Ek(B),every F ∈ F has codimF ≤ k. So we an selet an F in F with maximalodimension. By Lemma 3 we have F ◦ = ∅. Sine F \ Ek(B) is a nonemptyopen subset of F , Lemma 4 shows that there is a fae G of F suh that
G \ Ek(B) 6= ∅ and hene G ∈ F . Sine codimG > codimF , we have aontradition with the maximality of codimF .



22 S. Barov and J. J. DijkstraDefinition 5. Let B be a losed onvex set in ℓ2. We de�ne the har-ateristi one of B by
ccB = {y ∈ ℓ2 : there is an x with x+ αy ∈ B for all α ≥ 0}.The harateristi linear spae of B is de�ned by LB = ccB ∩ − ccB. Theross setion of B is the set csB = B ∩ L ⊥

B .Remark 3. If B ⊂ ℓ2 is losed and onvex, then we have the followingfats (see [8, �2.5℄ and [2, p. 93℄). The one ccB is losed and onvex. If x isany �xed element of B, then
ccB = {y ∈ ℓ2 : x+ αy ∈ B for all α ≥ 0}.

LB is a losed linear spae: the unique maximal linear subspae of ℓ2 suhthat B = B + LB.The following lemma is analogous to [1, Lemma 4℄ with a virtually iden-tial proof.Lemma 6. Let B be a losed onvex set in ℓ2. If F is a (derived) faeof B, then LF = LB and csF is a (derived) fae of csB. If , on the otherhand , F is a (derived) fae of csB, then LB + F is a (derived) fae of B.Remark 4. We will need information about the topology of boundariesof onvex bodies B in ℓ2, i.e. losed onvex sets with nonempty interior.Aording to [2, Proposition III.6.1℄ the boundary of a onvex body is eitherempty or homeomorphi to ℓ2 or Sn × ℓ2 for some n-sphere Sn. Thus ∂B iseither empty or it ontains losed opies of ℓ2.3. Projeting onto k-hyperplanes. The main purpose of this setionis to establish Theorem 1. We shall need the following result from [1℄, knownas the Tipping Lemma.Lemma 7. Let B be a losed onvex set in R
m for m ≥ 2, let C be alosed subset of B, and let H be a hyperplane of R

m that does not ut B. If Vis a halfspae of H suh that V ∩C = ∅ and V ∩B is nonempty and bounded ,then there exists a halfspae V ′ of R
m suh that V ⊂ V ′, V ′ ∩ C = ∅, and

V ′ ∩B is bounded.Before getting to the main theorems we need one more lemma.Lemma 8. Let C be a subset of ℓ2 and let D = 〈C〉. If p is a projetiononto a plane suh that p(C) is onvex , then p(C) = p(D). If B is a losedonvex set suh that pℓ(C) ⊂ pℓ(B) for every line ℓ in ℓ2, then D ⊂ B.Proof. If p(C) is onvex then
p(C) ⊂ p(D) = p(〈C〉) ⊂ p(〈C〉) = 〈p(C)〉 ⊂ 〈p(C)〉 = p(C) = p(C),thus p(C) = p(D).



Closed sets with onvex projetions 23For the seond part, assume that there is an x ∈ D \B. Sine B is losedand onvex we may assume that x ∈ C \ B. Then by [10, p. 191℄ there is ahyperplane H suh that x and B are on di�erent sides of H. Let ℓ be theline H⊥ and note that pℓ(x) and pℓ(B) are separated in ℓ by the point ofintersetion of ℓ and H. Thus pℓ(x) /∈ pℓ(B), whih ontradits the premisethat pℓ(C) ⊂ pℓ(B). We onlude that D ⊂ B.The following theorem is analogous to [1, Theorem 3℄. It tells us whihpoints are �extremal� with respet to projetions onto k-hyperplanes.Theorem 9. Let k ∈ N, let B be a losed onvex subset of ℓ2, and let
C be a losed set in ℓ2. If p(C) = p(B) for every projetion p of ℓ2 onto a
k-hyperplane, then Ek(B) ⊂ C ⊂ B.Proof. We �rst verify that C ⊂ B. Let ℓ be a line in ℓ2. Selet a k-hyperplane H that ontains ℓ. Then

pℓ(C) = pℓ(pH(C)) ⊂ pℓ(pH(B)) ⊂ pℓ(pH(B)) = pℓ(B),thus C ⊂ 〈C〉 ⊂ B by Lemma 8.In order to prove that Ek(B) ⊂ C it su�es to show that every derivedfae of B with odimension greater than k is ontained in C. So assume that
F is a derived fae of B with odimension m > k (m ould be ∞) and F \C
6= ∅. Choose a retangular oordinate system for ℓ2 suh that 0 ∈ F \C. ByRemark 1 we an �nd a sequene of a�ne spaes ℓ2 = H0 ⊃ H1 ⊃ · · · ⊃ Hk+1suh that codimHi = i for eah i, aff F ⊂ Hk+1, and Hi is a hyperplane in
Hi−1 that does not ut B ∩Hi−1 for i ∈ {1, . . . , k + 1}.We onstrut by indution a sequene 0 ∈ V1 ⊂ · · · ⊂ Vk+1 suh that for
1 ≤ i ≤ k + 1:(1) Vi is an i-halfplane in Hk+1−i,(2) Vi ∩ C = ∅,(3) Vi ∩B is bounded.Let V1 be a ray in Hk that emanates from 0 into the side of Hk+1 thatis disjoint from B. Note that V1 ∩ B = {0} and hene V1 ∩ C = ∅ so theindution hypotheses are satis�ed.Now let 1 ≤ i ≤ k and assume that Vi has been found. Let ℓ ⊂ Hk−i bethe line through 0 that is perpendiular to Hk−i+1 and let M ⊂ Hk−i be the
(i+1)-plane ℓ+aff Vi. Put H = Hk−i+1 ∩M , C ′ = C ∩M and B′ = B∩M .Apply Lemma 7 to M , H, C ′, B′, and Vi. We obtain a halfspae Vi+1 of Msuh that Vi ⊂ Vi+1, Vi+1 ∩ C ′ = Vi+1 ∩ C = ∅ and Vi+1 ∩ B′ = Vi+1 ∩ B isbounded. This ompletes the indution.Sine 0 is an element of the (k + 1)-halfplane Vk+1, there is a (unique)
k-plane N suh that 0 ∈ N ⊂ Vk+1. Of ourse, N ∩ C = ∅ and N ∩ B isbounded.



24 S. Barov and J. J. DijkstraNext we prove that d(N,C) > 0. Sine N ∩ B is bounded we an�nd an a > 0 suh that the sphere S = {x ∈ N : ‖x‖ = a} is dis-joint from B. By ompatness of S and of K = {x ∈ N : ‖x‖ ≤ a} wehave ε = min{d(S,B), d(K,C)} > 0. Let x ∈ C and y ∈ N be suh that
‖x − y‖ < ε. Then x ∈ B and b = ‖y‖ > a. By onvexity of B and 0 ∈ Bwe have x′ = (a/b)x ∈ B. Put y′ = (a/b)y and note that y′ ∈ S and
‖x′ − y′‖ = (a/b)‖x − y‖ < ε. So we have a ontradition with d(S,B) ≥ εand we may onlude that d(N,C) ≥ ε.Let O be the subspae of ℓ2 that is the orthoomplement of N . Clearly,the odimension of O is k. Then d(0, pO(C)) = d(N,C) > 0 and hene0 /∈ pO(C) = pO(B), whih ontradits the fat 0 = pO(0) ∈ pO(B). Wemay onlude that F ⊂ C.Corollary 10. Let k ∈ N and let B be a losed and onvex set in
ℓ2 with B◦ = ∅. If C is a losed set suh that pH(B) = pH(C) for every
k-hyperplane H in ℓ2, then B = C.Proof. This follows diretly from Lemma 5 and Theorem 9.The following theorem is analogous to [1, Theorem 4℄ with an importantdistintion: the essential property (f. Remark 4) that F ◦ 6= ∅ is gratis in�nite-dimensional spaes whereas here it is based on Lemma 4.Theorem 11. Let k ∈ N, let B be a losed onvex set in ℓ2, and let C bea losed subset of ℓ2 suh that C 6= B and p(C) = p(B) for every projetion
p of ℓ2 onto a k-hyperplane. Then there exists a derived fae F of B suhthat F ◦ 6= ∅, codimF ≤ k and ∂F ⊂ C.Proof. Consider the olletion D of all derived faes of B that are notontained in C. By Theorem 9, C ⊂ B so B 6= C implies that B ∈ D. Alsoby Theorem 9 every element of D has odimension at most k so there isan F ∈ D with maximal odimension in ℓ2. Every fae of F has a higherodimension than F so all the faes of F are subsets of C. If F ◦ = ∅ then byLemma 4 the union of its faes is dense in F and hene F ⊂ C beause C islosed. This result ontradits F ∈ D so we have F ◦ 6= ∅. Then by Remark 2every point of ∂F is ontained in some fae of F and hene ∂F ⊂ C.The zero-dimensional losed sets Zε of Theorem 19 below have onvexprojetions onto every hyperplane. However, they have the property that theboundary of every derived fae of 〈Zε〉 is empty, making Theorem 11 voidwhen applied to suh a set. Now the properness of ertain projetions in thepremise of Theorem 1 omes into play.Proof of Theorem 1. Let k, B and C be as in the statement. Assume that
p(C) = p(B) for every projetion p of ℓ2 onto a k-hyperplane and there exists



Closed sets with onvex projetions 25a basis B for ℓ2 suh that pL⊥(C) 6= L⊥ for every linear spae L generatedby k elements of B.By Theorem 11 we an �nd a derived fae F of B suh that codimF ≤ k,
∂F ⊂ C, and F ◦ 6= ∅. Let H be a k-hyperplane ontained in aff F andmeeting F ◦. If we put G = F ∩H then codimG = k and G◦ 6= ∅. Thus Gis a onvex body in aff G = H, a spae isomorphi to ℓ2. Clearly, ∂G is asubset of ∂F and C. By Remark 4, ∂G is empty or it ontains a losed opyof Hilbert spae. So, we only need to show that ∂G 6= ∅.Striving for a ontradition, assume that ∂G = ∅. Hene G = H. Wewill show that there exists a k-hyperplane L suh that L⊥ is generated byelements of B and pL(H) = L. Let ψ stand for the projetion pH⊥ and notethat sine B is a basis for ℓ2, the set {ψ(v) : v ∈ B} ontains a basis for H⊥,say {ψ(v1), . . . , ψ(vk)}. LetM be the k-dimensional linear spae spanned by
{v1, . . . , vk} and put L = M⊥. Pik an arbitrary y ∈ L and let us show thatthere is an x ∈ H suh that pL(x) = y. Indeed,

ψ(y) =
k

∑

i=1

αiψ(vi).Set
x = y −

k
∑

i=1

αiv
i.

Then x ∈ H sine ψ(x) = 0. Moreover, pL(x) = y sine y = x +
∑k

i=1 αiv
iwith x ∈ H and ∑k

i=1 αiv
i ∈ M = L⊥. That ompletes the proof of thetheorem.The following result is a reformulation of Theorem 1 without refereneto the onvex set B.Theorem 12. Let k ∈ N and let C be a losed nononvex subset of ℓ2.Assume that p(C) is onvex for every projetion p of ℓ2 onto a k-hyperplane.If there exists a basis B for ℓ2 suh that pL⊥(C) 6= L⊥ for all k-subspaes Lthat have a subset of B as basis, then C ontains a losed opy of ℓ2.Proof. Put B = 〈C〉. Sine C is nononvex we have C 6= B. Aordingto Lemma 8, p(C) = p(B) for every projetion p onto a k-hyperplane. Nowapply Theorem 1.4. Projeting onto �nite-dimensional planes. Consider a ompatset C in ℓ2 suh that all projetions onto k-hyperplanes are onvex. Put

B = 〈C〉 and note that B is also ompat (see [10, p. 244℄). If B◦ = ∅then aording to Lemma 8 and Corollary 10, C is onvex beause C = B.If B◦ 6= ∅ then aff B is �nite-dimensional and we an �nd a k-hyperplane
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H that ontains aff B. Thus C = pH(C) and C is onvex. The followingtheorem improves on this observation.Theorem 13. If C is a ompatum in ℓ2 suh that pRn(C) is onvex foreah n ∈ N, then C is onvex. Thus C is either an n-ell or the Hilbert ube.Proof. Let B = 〈C〉. Striving for a ontradition, assume that B 6= C,that is, there exists an x ∈ B \ C. Observe that by Lemma 8,

pRn(B) = pRn(C) for every n ∈ N.Thus, for every n ∈ N we an pik a yn ∈ C suh that
yn

i = xi for 1 ≤ i ≤ n.Consequently, the sequene (yn)n onverges oordinatewise to x. On theother hand, sine C is ompat we an �nd a subsequene (yni)i of (yn)nonverging with respet to the norm topology to a point, say z, in C. Thatimplies that (yni)i onverges oordinatewise to z. Hene z = x. We havearrived at a ontradition with x ∈ B \C and hene B = C. Therefore C isonvex and by Keller's theorem [9℄ it is homeomorphi either to some n-ellor to the Hilbert ube.As an immediate onsequene of Theorem 13 we get the following orol-lary.Corollary 14. Let C be a ompatum in ℓ2 all of whose projetionsonto �nite-dimensional planes are onvex. Then C must be onvex.Example 2. Consider the unit sphere S∞ in ℓ2. It is a bounded, losed,nononvex set all of whose shadows are onvex.We �nish this setion with a more interesting example.Example 3. Let K be a Cantor set in [1/2, 1], and for eah n ∈ N, let
fn : K → Jn be a ontinuous surjetion, where J = [−1, 1]. De�ne

Cn = {(fn(c), c, 0, 0, . . .) : c ∈ K} ⊂ Jn+1 ⊂ ℓ2.Basially, the Cn's are the graphs of the fn's, so eah Cn is homeomorphito K. Put
C =

⋃

n∈N

Cn and B = {x ∈ ℓ2 : xn ∈ J for all n ∈ N}.Note that C is zero-dimensional by [7, Theorem 1.5.3℄ and that B is a losedonvex set that ontains C and has a nonempty interior. Clearly, Jn =
pRn(Cn) ⊂ pRn(C) and on the other hand pRn(C) ⊂ pRn(B) = Jn.To prove that C is losed it su�es to show that {Cn : n ∈ N} is aloally �nite family. Indeed, �x x ∈ ℓ2. There exists an m ∈ N suh that
∑∞

i=m x2
i < 1/16 and hene |xi| ≤ 1/4 for eah i ≥ m. Now, if z ∈ Cn with

n ≥ m, then
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‖z − x‖ ≥ zn+1 − xn+1 ≥ 1

2
− 1

4
=

1

4
.Consequently, z 6∈ B1/4(x) and Cn ∩B1/4(x) = ∅ for all n ≥ m.To summarize:Claim 15. C is a losed zero-dimensional σ-ompatum suh that

pRn(C) = pRn(B) = Jn for all n ∈ N.The following result shows that in Theorem 1 we annot replae proje-tions onto k-hyperplanes with projetions onto �nite-dimensional planes.Claim 16. For every �nite-dimensional plane L in ℓ2 we have
pL(C) = pL(B).Proof. Let L be a �nite-dimensional plane in ℓ2. Sine we may assumethat 0 ∈ L we an hoose an orthonormal basis {u1, . . . , uk} for L. Pikarbitrary v ∈ B and ε ∈ (0, 1) and hoose an n ∈ N suh that

∞
∑

j=n+1

v2
j <

ε2

4k2
and

∞
∑

j=n+1

(ui
j)

2 <
ε2

4k2
for i = 1, . . . , k.Observe that there is a c ∈ K suh that w = (v1, . . . , vn, c, 0, 0, . . .) is in C.Then

‖pL(v) − pL(w)‖ = ‖pL(v − w)‖ =
∥

∥

∥

k
∑

i=1

((v − w) · ui)ui
∥

∥

∥

≤
k

∑

i=1

|(v − w) · ui| =
k

∑

i=1

∣

∣

∣
−cui

n+1 +
∞
∑

j=n+1

vju
i
j

∣

∣

∣

<
k

∑

i=1

(

ε

2k
+

ε2

4k2

)

< ε.Thus pL(C) is dense in pL(B) and the proof is omplete.We do not know whether Theorem 1 remains true if we onsider proje-tions onto planes of in�nite odimension instead of k-hyperplanes. However,the example C is well behaved with respet to suh planes provided that theyare assoiated with the standard basis. If A ⊂ N then we de�ne the plane
M(A) = {x ∈ ℓ2 : xi = 0 for every i ∈ A}.Claim 17. For every in�nite subset A of N we have

pM(A)(C) = pM(A)(B).Proof. Let A ⊂ N be in�nite. Pik arbitrary v ∈ B and 0 < ε < 1 andhoose an n ∈ A suh that ∑∞
j=n+1 v

2
j < ε2. Observe that there is a c ∈ K



28 S. Barov and J. J. Dijkstrasuh that w = (v1, . . . , vn−1, c, 0, 0, . . .) is in C. Then
‖pM(A)(v) − pM(A)(w)‖ = ‖pM(A)(v − w)‖ =

∥

∥

∥

∑

i∈N\A

(vi − wi)e
i
∥

∥

∥

=
∥

∥

∥

∑

i∈N\A
i>n

vie
i
∥

∥

∥
≤

√

√

√

√

∞
∑

i=n+1

v2
i < ε.

Thus pM(A)(C) is dense in pM(A)(B) and the proof is omplete.5. Zero-dimensional sreensDefinition 6. Let A,B ⊂ ℓ2. We say that B is a sreen for A if everyline in ℓ2 that meets A also meets B, or equivalently, every shadow of Bontains the orresponding shadow of A.Borsuk [3℄ has shown that there are Cantor sets in R
n that at as sreensfor ε-balls (see [6℄ for a simple proof). Sine in in�nite-dimensional vetorspaes ompata are nowhere dense, we need a di�erent approah to �ndzero-dimensional sreens in ℓ2.Definition 7. Let x ∈ ℓ2 and let a, b ∈ R with 0 ≤ a < b. De�ne theopen set shb

a(x) = {y : a < ‖y− x‖ < b}. We all any set of this form a shellwith thikness b− a.Let λ stand for the Lebesgue measure on R. We extend the use of λ tolines ℓ in Hilbert spae as follows: If A is a measurable set in R, x ∈ ℓ, and
u is a unit vetor parallel to ℓ, then λ({x+ tu : t ∈ A}) = λ(A).Lemma 18. If 0 ≤ a < b, p ∈ ℓ2, and ℓ is a line in ℓ2, then λ(ℓ∩ shb

a(p))
≤ 2

√
b2 − a2.Proof. We may assume that p = 0. Let x be the point on ℓ that is losestto 0 and note that

λ(ℓ ∩ shb
a(0)) = λ({t ∈ R : a2 − ‖x‖2 < t2 < b2 − ‖x‖2}).If ‖x‖ > b then ℓ ∩ shb

a(0) = ∅. If a ≤ ‖x‖ ≤ b then
λ(ℓ ∩ shb

a(0)) ≤ 2
√

b2 − ‖x‖2 ≤ 2
√

b2 − a2.If ‖x‖ < a then
λ(ℓ ∩ shb

a(0)) ≤ 2(
√

b2 − ‖x‖2 −
√

a2 − ‖x‖2) ≤ 2
√

b2 − a2,where we have used the fat √t+ s ≤
√
t+

√
s.Theorem 19. For every ε > 0 there exists a zero-dimensional losed set

Zε in ℓ2 suh that λ(ℓ \ Zε) < ε for every line ℓ in ℓ2, and hene Zε is asreen for ℓ2.



Closed sets with onvex projetions 29Proof. Let ε > 0 and selet a ountable base B = {Bγn
(vn) : n ∈ N}of neighbourhoods for ℓ2. We may assume that γn < 1 for all n. De�ne

δn = (1 + ε24−n−1)1/4 > 1 for every n ∈ N and put
Zε = ℓ2 \

∞
⋃

n=1

shγnδn

γn/δn
(vn).Sine the omplement of Zε ontains the boundary of every element of thebase B, the losed set Zε is zero-dimensional. Let ℓ be an arbitrary line in

ℓ2 and note that by Lemma 18 we have
λ(ℓ \ Zε) ≤

∞
∑

n=1

2

√

γ2
nδ

2
n − γ2

nδ
−2
n =

∞
∑

n=1

γn

δn
ε2−n <

∞
∑

n=1

ε2−n = ε.Corollary 20. If F is a losed subset of ℓ2 and U is an open neigh-bourhood of F , then there exists a zero-dimensional losed sreen for F in ℓ2that is ontained in U .Proof. Let G = ℓ2 \ U . We de�ne the following losed sets:
F0 = {x ∈ ℓ2 : d(x,G) ≥ 1/8}and for n ∈ N,

Fn = {x ∈ ℓ2 : d(x, F ) ≤ 2−n and 2−n−3 ≤ d(x,G) ≤ 2−n}.Invoking Theorem 19 we de�ne
Z =

∞
⋃

n=0

(Fn ∩ Z2−n−2).Sine every Fn is disjoint from G we have Z ⊂ U . We prove that Z is losedby showing that {Fn ∩ Z2−n−2 : n ∈ {0} ∪ N} is a loally �nite family. If
x ∈ ℓ2 then d(x, F ) > 0 or d(x,G) > 0. If α = d(x, F ) > 0 then Bα/2(x) willmiss every Fn with 2−n+1 < α and n > 0. Likewise, if β = d(x,G) > 0 then
Bβ/2(x) will miss every Fn with 2−n+1 < β and n > 0.It remains to show that Z is a sreen for F . Consider an arbitrary line ℓsuh that x ∈ ℓ∩F . We need to show that ℓ∩Z 6= ∅. Note that d(x,G) > 0.If d(x,G) > 1/4 then B1/8(x) ⊂ F0, whih means that λ(ℓ ∩ F0) ≥ λ(ℓ ∩
B1/8(x)) = 1/4. Sine λ(ℓ \ Z1/4) < 1/4 we have ℓ ∩ F0 ∩ Z1/4 6= ∅ andhene ℓ ∩ Z 6= ∅. So we may assume that d(x,G) ≤ 1/4. Then there is an
n ∈ N suh that 2−n−2 ≤ d(x,G) ≤ 2−n−1. Thus, B2−n−3(x) ⊂ Fn and hene
λ(ℓ∩Fn) ≥ λ(ℓ∩B2−n−3(x)) = 2−n−2. Sine λ(ℓ \ Z2−n−2) < 2−n−2 we have
ℓ ∩ Fn ∩ Z2−n−2 6= ∅ and hene ℓ ∩ Z 6= ∅.Finally, observe that Z is zero-dimensional as a ountable union of zero-dimensional losed sets.The next orollary explains why we onsider only projetions of losedsets in this paper.



30 S. Barov and J. J. DijkstraCorollary 21. If U is an open set in ℓ2, then there is a zero-dimen-sional losed subset Z of U suh that pH(Z) = pH(U) for every hyperplane
H in ℓ2.Proof. Take a loally �nite open over U = {Ui : i ∈ N} of the spae Usuh that U i ⊂ U for every i ∈ N. Shrink U to a losed over {Vi : i ∈ N}of U . Note that every Vi is losed in ℓ2. Now, for eah pair (Vi, Ui) we applyCorollary 20 to �nd a zero-dimensional losed set Zi ⊂ Ui that is a sreenfor Vi. The set Z =

⋃∞
i=1 Zi is as required.6. Imitating arbitrary losed onvex sets. Suppose B is a losedonvex set in ℓ2. If C is a losed set suh that B and C have the sameprojetions onto k-hyperplanes, then Theorem 9 implies that C ontains atleast the set Ek(B). We show that for every B there exist �minimal� examplesof suh �imitations� C of B, in the sense that dim(C \ Ek(B)) ≤ 0. This wasproved for losed sets B in R

n in [1, Theorem 6℄. Our starting point is theonstrution given in [1℄ but again some of the details are more ompliatedwhen dealing with sets in Hilbert spae.Definition 8. If A is a nonempty set in ℓ2, then starA = {tx : 0 ≤ t ≤ 1and x ∈ A}, that is, the union of all line segments that onnet the originto points of A. If A is losed and onvex, 0 ∈ A◦, and k ∈ N, then we de�ne
Kk(A) = star(Ek(A)) ∪ ccA. Note that Kk(A) is a losed subset of A andthat ∂A ∩ Kk(A) = Ek(A).The following lemma extends [1, Lemma 3℄ to sets in ℓ2.Lemma 22. If k ∈ N and B is a losed onvex set with 0 ∈ B◦, then
Kk(B) and B have idential projetions onto all k-hyperplanes H suh that
LB ∩H⊥ = {0}.Proof. Let H be a k-hyperplane suh that pH(Kk(B)) 6= pH(B) and
LB ∩H⊥ = {0}. Sine Kk(B) ⊂ B there is a w ∈ B suh that the k-plane
M = w +H⊥ is disjoint from Kk(B). Consider the olletion

F = {F : F a derived fae of B with F ∩M 6= ∅}.Note that B ∈ F beause B is a derived fae of itself and w ∈ B ∩M . Sine
Ek(B) ⊂ Kk(B) ⊂ ℓ2 \ M it follows that codimF ≤ k for eah F ∈ F .Thus we an hoose a derived fae F ∈ F with maximal odimension in ℓ2.If F ◦ = ∅ then Lemma 5 yields F = Ek(F ) ⊂ Ek(B) ⊂ Kk(B) and we havea ontradition with M ∩ Kk(B) = ∅ and F ∩M 6= ∅. Thus F ◦ 6= ∅. Let
u ∈ F ∩M .Assume that dim(M ∩ aff F ) ≥ 1 and so there is a line ℓ through u suhthat ℓ ⊂M∩aff F . If ℓ ontains points outside F , then ℓ will have to meet ∂F .Sine F ◦ 6= ∅ Remark 2 implies that ℓ meets some fae G of F . Consequently,
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codimG > codimF and G ∈ F , in violation of the maximality of codimF .Thus ℓ is ontained in F and hene ℓ − u ⊂ LF ⊂ LB . On the other hand,
ℓ− u ⊂M − u = H⊥, whih violates the assumption LB ∩H⊥ = {0}.Thus M ∩ aff F = {u} and the two planes are transverse. We have k ≥
codimF = codim(aff F ) ≥ dimM = k and hene codimF = k, whih meansthat M and aff F are omplementary planes. This allows us to de�ne a (notneessarily orthogonal) projetion ψ : ℓ2 → aff F by the rule {ψ(x)} =
(x− u+M) ∩ aff F . If ψ(0) = u then 0 ∈ M ∩ Kk(B) and we are done. Soassume that ψ(0) 6= u and onsider the ray R = {t(u− ψ(0)) : t ≥ 0} thatemanates from the origin. Observe that sine u ∈ F and ψ(0) ∈ aff F the ray
u+R is ontained in aff F . We �rst onsider the ase that u+R ⊂ F . Then
R ⊂ ccB ⊂ Kk(B). Note that u = ψ(u − ψ(0)) ∈ ψ(R) so M = ψ−1(u)intersets R and Kk(B). If, on the other hand, the ray u+R is not ontainedin F , then it intersets ∂F in some point v = u+t(u−ψ(0)). Note that sine
F ◦ 6= ∅, v is ontained in some fae G of F and codimG > codimF = k,so v ∈ Ek(B). The line segment σ that onnets 0 to v is ontained in
Kk(B). Note that ψ(σ) is a line segment that onnets ψ(0) to v and heneit ontains the point u = (v + tψ(0))/(1 + t). Consequently, M intersets σand hene it intersets Kk(B).Proof of Theorem 2. Let B be a losed onvex set in ℓ2 suh that codimB
6= k ∈ N. If B◦ = ∅ then aording to Lemma 5, Ek(B) = B and there isnothing to prove. If k < codimB then also Ek(B) = B. So we may assumethat B◦ 6= ∅ and k > codimB. Choose a oordinate system suh that 0 ∈ B◦.We �rst prove the assertion for the ase aff B = ℓ2.The k-imitation C will have the form Ek(B)∪Z1∪Z2, where both Z1 and
Z2 are zero-dimensional sets. We �rst onstrut Z1. Consider the open subset
D = B \ Ek(B) of B and the set K = Kk(B) \ Ek(B), whih is losed in D.Choose a loally �nite open over {Ui : i ∈ N} for K in D onsisting of setswhose losures are in D. Sine K ∩ ∂B = ∅ we may assume that the sets Uiare open in aff B = ℓ2. Shrink this over to a over {Vi : i ∈ N} ofK by losedsets suh that Vi ⊂ Ui for every i ∈ N. Aording to Corollary 20 we an �ndfor eah i ∈ N a zero-dimensional sreen Fi for Vi that is ontained in Ui andhene every line in ℓ2 that intersets Vi also meets Fi. Put Z1 =

⋃∞
i=1 Fi andnote that every line that intersets K also meets Z1. Then, sine {Fi : i ∈ N}is a loally �nite olletion of losed zero-dimensional sets in D, it followsthat Z1 is losed in D and zero-dimensional. Consequently, Ek(B) ∪ Z1 islosed in B and in ℓ2. For Z2 we simply take B ∩ Z1 (see Theorem 19).It remains to show that C and B have idential projetions onto k-hyperplanes. Let H be an arbitrary k-hyperplane and let u ∈ B. Let Mbe the k-dimensional plane u + H⊥ = p−1

H (pH(u)). First onsider the ase
LB ∩H⊥ 6= {0}. Then LB ∩H⊥ ontains a line ℓ through 0. Thus u+ ℓ ⊂
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B ∩M and we see that u + ℓ ∩ Z1 6= ∅ and hene u + ℓ ∩ Z2 6= ∅. Thus Mintersets C. If LB ∩H⊥ = {0} then Lemma 22 shows that M meets Kk(B)and therefore it meets Ek(B) or Z1 by the onstrution of Z1. Consequently,
M intersets C and the theorem is proved for codimB = 0.Finally, onsider the remaining ase k > codimB > 0. Put n = k −
codimB and note that H = aff B is a opy of ℓ2 that an be used as theambient spae. Applying what we have just proved to B ⊂ H and the integer
n we �nd a losed set C ⊂ B suh that every n-plane in H that meets B alsomeets C and dim(C\En

H(B)) ≤ 0, where En
H is determined withH as ambientspae. Note that En

H(B) = Ek(B). If M is a k-plane in ℓ2 that meets B, then
dim(M ∩H) ≥ n so M ∩H must meet C. The proof is omplete.Remark 5. If codimB = k, then the onlusion of Theorem 2 beomesinvalid. Consider a B with B◦ 6= ∅ and codimB = k. Aording to Remark 2,
∂B is the union of the faes of B so Ek(B) = ∂B and B \ Ek(B) is homeo-morphi to ℓ2. However, if we projet onto aff B we �nd that B is the only
k-imitation of B.Let x be an arbitrary vetor in ℓ2. Note that in the proof of Theorem 2the zero-dimensional set Z1 ∪ Z2 = C \ Ek(B) is onstruted as a subset of
⋃

ε>0 Zε (see also the proof of Corollary 20). If in the proof of Theorem 19we use a �xed base B suh that x is ontained in the boundary of one ofthe basi neighbourhoods, then we �nd that x /∈ C \ Ek(B). Combining thisobservation with Theorem 9 we �nd:Corollary 23. If B is a losed onvex set with codimB 6= k, then
Ek(B) equals the intersetion of all losed k-imitations of B.We onlude with an example that shows that in Theorem 1 not evenone of the diretions in whih the projetions are proper an be missed. Sothe theorem is sharp in that respet.Example 4. Consider the standard basis B = {e1, e2, . . . } in ℓ2. Fix
k ∈ N and let B = {x ∈ ℓ2 :

∑k
i=1 x

2
i ≤ 1}. Note that LB = {x ∈ ℓ2 :

x1 = · · · = xk = 0} is a k-hyperplane. Aording to Lemma 6 we have
Ek(B) = ∅ so by Theorem 2 the onvex body B has a zero-dimensionallosed k-imitation C. Consider the set H of all k-hyperplanes H suh that0 ∈ H and H⊥ has a subset of B as a basis. Then we have the following:

LB ∈ H, pLB
(B) = LB,if H 6= LB , H ∈ H, then pH(B) 6= H.So, in other words, the losure of the projetions onto all elements of Hbut one are proper and the k-imitation C, being zero-dimensional, does notontain a opy of ℓ2.
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