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The homotopy dimension of codiscrete subsets
of the 2-sphere S?
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Dedicated to the memory of Karol Borsuk
on the occasion of the centennial of his birth

Abstract. Andreas Zastrow conjectured, and Cannon—Conner—Zastrow proved, that
filling one hole in the Sierpinski curve with a disk results in a planar Peano continuum that
is not homotopy equivalent to a 1-dimensional set. Zastrow’s example is the motivation
for this paper, where we characterize those planar Peano continua that are homotopy
equivalent to 1-dimensional sets.

While many planar Peano continua are not homotopy equivalent to 1-dimensional
compacta, we prove that each has fundamental group that embeds in the fundamental
group of a 1-dimensional planar Peano continuum.

We leave open the following question: Is a planar Peano continuum homotopically
1-dimensional if its fundamental group is isomorphic with the fundamental group of a
1-dimensional planar Peano continuum?

1. Introduction. We say that a subset X of the 2-sphere S? is codis-
crete if its complement D(X), as subspace of S?, is discrete. For a codiscrete
set X, the set B(X) of limit points of D(X) in S?, which is necessarily a
closed subset of X having dimension < 1, is called the bad set of X. The
homotopy dimension of a space X is the smallest dimension of a space homo-
topy equivalent to X. We say that X is homotopically <k-dimensional if its
homotopy dimension is < k. Our main theorem characterizes the homotopy
dimension of X in terms of the interplay between D(X) and B(X):

THEOREM 1.1 (Characterization Theorem). Suppose that X is a codis-
crete subset of the 2-sphere S?. Then X has homotopy dimension < 1 if and
only if the following two conditions are satisfied:
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36 J. W. Cannon and G. R. Conner

(1) Every component of S\ B(X) contains a point of D(X).
(2) If D is any closed disk in the 2-sphere S?, then the components of
D\ B(X) that do not contain any point of D(X) form a null sequence.

[Recall that a sequence Cq,Cy, ... is a null sequence if the diameters of
the sets C), approach 0 as n approaches co.| Examples appear in the figure.
The first two examples of possible bad sets are locally connected. The one
is a circle with a null sequence of Hawaiian earrings attached. The other is
a Sierpiniski curve. The associated codiscrete set will be homotopically <1-
dimensional if and only if condition (1) is satisfied. The third example gives
an example of a possible bad set that is not locally connected. In order that
the associated codiscrete set be homotopically 1-dimensional, both condi-
tions (1) and (2) must be satisfied. Thus, near each point of the limiting arc,
where any small disk is separated into infinitely many components by the os-
cillating curve, almost all of these components must contain a point of D(X).
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Sierpinski curve Circle wedged with a countable
null sequence of Hawaiian earrings

Locally connected bad sets

A non-locally-connected bad set: the Warsaw circle
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A compactum is a compact metric space. A continuum is a connected
compactum. A Peano continuum is a locally connected continuum; equiv-
alently, a Peano continuum is the metric continuous image of the interval
[0,1]. 1.1 applies to all Peano continua in the 2-sphere S? because of the
following well-known theorem:

THEOREM 1.2. Every Peano continuum M in the 2-sphere S is homo-
topy equivalent to a codiscrete subset X of S?. Conversely, every codiscrete
subset X of S? is homotopy equivalent to a Peano continuum M in S?.

We shall indicate later (after Theorem 2.9) how this well-known theorem
is proved. For the moment, we simply mention that, given M, one can obtain
an appropriate codiscrete subset X by choosing for D(X) exactly one point
from each component of S? \ M. One can define the bad set B(M) of M as
the bad set B(X) of X. It is natural to ask how restricted bad sets are. The
following theorem, which characterizes the possible bad sets of codiscrete
sets X, is actually an easy exercise which we leave to the reader:

THEOREM 1.3. A subset B of the 2-sphere S? is the bad set B(X) of
some codiscrete subset X C S? if and only if B is closed and has dimension
less than 2.

It is an easy matter to use Characterization Theorem 1.1 and the con-
struction inherent in Theorem 1.3 to construct all manner of interesting
planar Peano continua that are, or are not, homotopy equivalent to a 1-
dimensional set. All the examples that have appeared in the literature (see
[4] and [12]) are likewise easily checked by means of Characterization Theo-
rem 1.1.

In light of the fact that so many planar Peano continua are not homo-
topically 1-dimensional, it is a little surprising to find that their fundamental
groups are essentially 1-dimensional in the following sense:

THEOREM 1.4. If M is a planar Peano continuum, then the fundamen-
tal group of M embeds in the fundamental group of a 1-dimensional planar
Peano continuum.

COROLLARY 1.5. If M is a planar Peano continuum, then the fundamen-
tal group of M embeds in an inverse limit of finitely generated free groups.

QUESTION 1.6. If M is a planar Peano continuum whose fundamental
group s isomorphic with the fundamental group of some 1-dimensional pla-
nar Peano continuum, is it true that M is homotopically 1-dimensional?

The remaining sections of this paper will be devoted to proofs of these
theorems.
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2. Fundamental ideas and tools. Our proofs make substantial use of
classical topology of the plane. As good basic references we suggest [21], [19],
[20], and [10], all deriving their initial impetus from the school and work of
R. L. Moore, who summarized much of his work in [15].

To minimize the necessity of turning to these references, we collect here
a number of the basic ideas and tools that will be used often in the proofs.
Many of these will be familiar to some of our readers. The topics will be
outlined in bold type so that the reader can quickly find those topics with
which they are not familiar. For many, the best way to read the paper will
be to turn immediately to the later sections and return to this section only
when they encounter a tool or idea with which they are not familiar. Where
it is possible, we outline the proofs so that the reader will not have to hunt
for obscure references.

Our first fundamental idea is that the Tietze Extension Theorem
can be used to cut off a map f on an absolute retract R. Let f : X — Y
be a continuous function from a compactum X to a space Y. Assume that
R is a closed subset of Y, that R is an absolute retract, and that f~!(R)
separates X into disjoint open subsets A and B. Then we obtain a new
function f’ : X — Y as follows: We define f/|(AUf~}(R)) = f|(AUf~Y(R)).
Since R is an absolute retract and f~!(R) is a closed subspace of the normal
space BUf~1(R), there is a continuous function f’|BUf~1(R)) that extends
flf~Y(R) and takes BU f~!(R) into R. We say that the map f' cuts f off
on R, fizing A.

We next consider the Phragmén—Brouwer properties, all satisfied by
the n-sphere S™ for n > 2. R. L. Wilder, in |21, Chapter 2, Theorem 4.12],
proves the equivalence of seven of them ([21, pp. 47-50]) in metric spaces S
that are connected and locally connected. We mention only two:

ProOPERTY I. If A and B are disjoint closed subsets of S, and z,y € S
are such that neither A nor B separates x and y in S, then A U B does not
separate x and y in S.

PROPERTY II (Brouwer Property). If M is a closed, connected subset of
S and C' is a component of S\ M, then the boundary of C' is a closed and
connected set.

Here are two corollaries of Property I:

COROLLARY 2.1. If A is an annulus and C is a closed subset of int(A)
that separates the boundary components J1 and Jo of A, then some component
of C separates Jy from Jo in A.

COROLLARY 2.2. If D 1is the square disk and C' is a closed subset of D
that separates the top of D from the bottom of D, then some component of
C separates them.
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The first of these corollaries is an immediate application of Property I,
when one passes to a minimal separator (which exists by the Brouwer Re-
duction Theorem, [20, Chapter I, 11.1]). The second follows from the first
when one fixes the right and left sides of D and doubles the remainder of D
to form an annulus.

We apply these ideas to show that homotopies of X within itself
must fix the bad set B(X) pointwise. This general principle can be
applied to all connected planar sets X and not just to codiscrete sets. If X
is any connected planar set, then we may define the bad set B(X) of X to
be the set of points x € X having the property that, in each neighborhood
of x, there is a simple closed curve J in X such that the interior of .J in
the plane R? is not entirely contained in the set X. This modified definition
coincides with the previous definition when the set X is codiscrete.

THEOREM 2.3 ([4, Theorem 5.2]). Suppose that X is a connected planar
set and that x € B(X). Then every homotopy of X within X fizes the point x.

Proof. Suppose that there is a homotopy H : X x [0,1] — X such that
H(y,0) =y forally € X and H(x,1) # x. Let Ny and Nj be disjoint neigh-
borhoods of = and H(z,1), respectively. By continuity, there is a neighbor-
hood M of x in Ny such that H(M,1) C Nj. There is a round circle J around
x that is not contained in X but intersects X only in Ny. There is a simple
closed curve K in int(J) N M C X whose interior is not contained entirely
in X. By 2.1, the annulus K x [0, 1] has its boundary components separated
by the H-preimage of some component of J N X. This component maps into
a single component L of J N X. Since L is an absolute retract that is closed
in X, the homotopy H|K X [0,1] can be cut off at this component via the
Tietze Extension Theorem, fixing H|K x {0}. The image of of K x {1} in L
is nullhomotopic in L. This allows one to shrink K in X, an impossibility. =

Our next fundamental idea is that of the convergence of a sequence
of sets. The two books by Whyburn, [19] and [20], and the text by Hocking
and Young, [10], give a good treatment of this topic. However, it does not
take much space to review the basics here. Suppose that Ay, As,... is a
sequence of subsets of a space S. We say that a point z € S is an element
of liminf; A; if every neighborhood of z intersects all but finitely many of
the sets A;. We say that x is an element of lim sup; A; if every neighborhood
of z intersects infinitely many of the sets A;. We say that the sequence A;
converges if the liminf and lim sup coincide. The limit is defined to be this
common liminf and lim sup.

THEOREM 2.4 (|19, Chapter I, Theorem 7.1|; [20, Chapter I, Theorem
7.1]; [10, pp. 102-103|). If A1, A, ... is any sequence of sets in a separable
metric space S, then there is a convergent subsequence.
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Proof. Let Uy, U, ... be a countable basis for the topology of S. Let Sy be
the given sequence Aq, Ao, ... of subsets of the space S. Assume inductively
that a subsequence S; of S has been chosen. If there is a subsequence of
S; no element of which intersects U;;1, let S;11 be such a subsequence.
Otherwise, let S;11 = 5;. Let S be the diagonal sequence, which takes as
first element the first element of 57, as second element the second element of
So, etc. We claim that the subsequence S, of Sy converges. Indeed, suppose
that = € limsup S, that is, every neighborhood of x intersects infinitely
many elements of S,. Suppose that there is a neighborhood U; of x that
misses infinitely many elements of S,,. Then S, by definition, must miss
Uj. But this implies that all elements of S, with index as high as j miss
U;, a contradiction. Thus, every element of the limsup lies in the liminf.
Since the opposite inclusion is obvious, these two limits are equal, and the
sequence So, converges. m

THEOREM 2.5 (Properties of the limit of a convergent sequence). Sup-
pose that the sequence A1, Ao, ... of nonempty subsets of a separable metric
space S converges to a set A. Then

(1) the set A is closed in S;

(2) if S is compact, then A is nonempty and compact;

(3) if S is compact and if each A; is connected, then the limit A is
nonempty, compact, and connected;

(4) if S is compact and if each A; has diameter > ¢, then A has diameter
> €.

Proof. Easy exercise. m

We shall in more than one place make use of R. L. Moore’s Decom-
position Theorem. In 1919 [13], R. L. Moore characterized the Euclidean
plane topologically. In 1925 [14], he noted that his axioms were also satisfied
by a large class of quotient spaces of the plane, so that those identification
spaces were also planes.

Since Moore’s theorem is somewhat inaccessible to today’s readers be-
cause of evolving terminology and background, we will give a fairly straight-
forward statement and we will outline the proof of this theorem. In the
remarks following the statement of the theorem, we point out some equiva-
lent statements of the fundamental hypotheses of the theorem that we use
in our applications. If any of the equivalent hypotheses is satisfied, we shall
simply refer to the Moore Decomposition Theorem.

THEOREM 2.6 (Moore Decomposition Theorem). Suppose that f:S? — X
is a continuous map from the 2-sphere S* onto a Hausdorff space X such that,
for each x € X, the set S?\ f~1(z) is homeomorphic with the plane R?. Then
X s a 2-sphere.
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REMARKS. (1) The requirement that S?\ f~!(x) be homeomorphic with
R? is equivalent to the requirement that both f~!(x) and S?\ f~!(z) be
nonempty and connected.

(2) The Hausdorff condition is equivalent in this setting to the more
central requirement that f be a closed map. The map f is closed if, whenever
C C S? is closed in S?, the set f(C) is closed in X. This, of course, in light
of the surjectivity of f, makes f an identification map.

An identification map f : A — B (surjective by hypothesis) is closed if
and only if the collection G = {f~1(b) |b € B} satisfies the upper semicon-
tinutty condition, which states that, if U is an open subset of A, then the
union of the elements of G that lie in U is also an open subset of A.

Moore originally stated his theorem in terms of upper semicontinuous
collections G filling S? or R? and described the topology of the resulting
quotient spaces S?/G and R?/G. The elements of G are simply the point
preimages of the surjection f.

The Hausdorff condition of the theorem can often be checked by con-
sidering sequences of elements of G and their limit points. A sequence {g;}
of elements of G is not allowed to contain convergent point sequences {x;}
and {y;} with limit points = and y in two different elements h and k of G,
for then one would not be able to separate in X the points defined by h
and k. The upper semicontinuity requirement is always satisfied when the
nondegenerate elements of G form a null sequence.

(3) The R. L. Moore Theorem has local versions that allow generalizations
to other 2-manifolds.

(4) There is an easy analogous version for quotients of the circle, where
point preimages are points or (closed) arcs.

(5) The theorem has generalizations to higher dimensions that require
stronger hypotheses: Suppose that f : S — X is a continuous map from the
n-sphere S™ onto a finite-dimensional Hausdorff space X such that, for each
v € X, the set S\ f~Y(z) is homeomorphic with the Buclidean space R™.
Then X is an n-sphere provided that, in addition, n > 5, and X satisfies
the condition that maps g : B2 — X from the 2-dimensional disk B? into X
can be approrimated by embeddings. This generalization was conjectured and
proved in many special cases by Cannon (see [2] for a substantial discussion of
these matters) and proved in general by R. D. Edwards (see Daverman’s book
[7]). The situation in dimensions 3 and 4 has not been completely resolved.

The proof of Moore’s Theorem 2.6, which we shall outline, relies on a
more intuitive theorem, called the Zippin Characterization Theorem. (See,
for example, [21, Chapter III, Theorem 4.2].)

THEOREM 2.7 (Zippin Characterization Theorem). The space X is a
2-sphere if the following four conditions are satisfied:
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(i) X is a nondegenerate Peano continuum.
(ii) No point x € X separates X (so that, in particular, X contains at
least one simple closed curve).
(iii) Each simple closed curve J C X separates X.
(iv) No arc A C X separates X .

Proof of Theorem 2.6. We prove the Moore Decomposition Theorem on
the basis of the Zippin Characterization Theorem. We verify the four condi-
tions of the Zippin Theorem in turn. (Note that conditions (iii) and (iv) are
true in the 2-sphere by standard homological arguments. We shall use those
same arguments here.)

(i) Since X is Hausdorff, the map f is a closed surjection; hence it is
easy to verify the conditions of the Urysohn metrization theorem so that X
is metric. (See [16, Theorem 34.1].) Since S? is a Peano continuum, that is,
a metric continuous image of [0, 1], so also is X. Since, for all x € X, both
f~1(z) and S?\ f~!(x) are nonempty, X has more than one point; that is,
X is nondegenerate.

(ii) By hypothesis, S? \ f~!(z) is connected. Hence so is X \ {z} =
FSEN\ fH ().

(iii) Let p1,po € J cut J into two arcs A; and As. Then f~1(Aj)
and f~1(Ag) are compact, connected, and have nonconnected intersection
f1(p1) U f~1(p2). The reduced Mayer—Vietoris homology sequence for the
pair U = S?\ f71(A4;) and V = S?\ f71(As3) contains the segment

Hi(S*\ [ (A1) @ Hi(S?\ £~ (42))

— Hy(S*\ (f 7 (o) U fH(p2) — Ho(S*\ (F (),
where Hy(U) = Hy(V) = 0 since f~1(A4;) and f~1(As) are connected and
H1(UUV) # 0 since f~1(A1) N f~1(As) is not connected. Thus we have
Ho(S2\ f~1(J)) = Hy(UNV) # 0, so that f~1(J) separates S2. Consequently,
J separates X.

(iv) If p € A separates A into arcs A; and Ag, and if A separates x and
y in X, then we claim that one of A; and A also separates x and y in X;
indeed, we see this by considering f~1(A4) = f~1(A1)U f~1(Az), which must
separate f~!(z) from f~!(y) in S?. The reduced Mayer—Vietoris homology
sequence for the pair U = S?\ f~1(A4;) and V = S§?\ f~1(As3) contains the

segment
0 — Ho(S*\ f71(A)) — Ho(S*\ f 7' (A1) @ Ho(S*\ /" (A2)).

Given any v € f~!(z) and v € f~!(y), the element u — v represents a
nonzero element of the center group, hence maps to a nonzero element of
Hy(S*\ f71(A1) @ Ho(S? \ f~'(A2)). Therefore, either f~1(A1) or f~1(A2)

separates u from v in S?, implying the claim.
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By induction, one obtains intervals Iy D I; D --- that separate x and y
in X such that (2, I,, is a single point ¢ that does not separate z from y.
But an arc « from x to y in the path connected open set X \ {¢} misses
some I, a contradiction. We conclude that A cannot separate X.

The proof of the Moore Decomposition Theorem 2.6 is complete. m

Our sixth topic is that of locally connected continua in the plane.
The following theorem characterizes planar Peano continua in several ways,
all well-known. A version of this theorem appears in |9].

THEOREM 2.8. Suppose that M is a continuum (= compact, connected
subset) in the 2-sphere S®. Then M is a Peano continuum (= locally con-
nected continuum) if and only if the following four equivalent conditions are
satisfied:

(1) For each disk D in S?, the components of D\ M form a null sequence.

(1) For each disk D in S?, the components of DO\M form a null sequence.

(2) For each annulus A in S?, the components of A\ M that intersect
both boundary components of A are finite in number.

(2') For each annulus A in S%, the components of AN M that intersect
both boundary components of A are finite in number.

REMARK. All proofs involving continua M C R? that are not locally
connected involve the construction of limit continua, that is, nondegenerate
continua . C M that are limits of a sequence of disjoint nondegenerate
continua L; in the complement of M that are separated from one another
by M in an open subset of M.

Proof. Assume that M is locally connected but (1) is not satisfied, so
that, for some disk D in S?, the components of D\ M do not form a null
sequence. Then some sequence U; of such components converges to a nonde-
generate continuum U in S? by Theorems 2.4 and 2.5. Let A be an annulus
in S? that separates two points of U. Then each U; contains an arc A; ir-
reducibly joining the two ends of A. We may assume that they converge
to a continuum A’ joining the two ends of A. The continuum A’ must be
a subset of M, for otherwise it could not have points of infinitely many of
the components U; close to it. We may pass to a subsequence of the A;’s so
chosen that their endpoints on one boundary component J of the annulus
A converge monotonically on J. It then follows that each A; is adjacent to
A; 1, with neither A’ nor any other A; between them. They must therefore
be separated by a component M; of AN M that intersects both ends of A.
(See Corollary 2.2.) The components M; converge to a subcontinuum of A’
that joins the ends of A. This shows that M is not locally connected at these
points of A, a contradiction.
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Suppose (1) is satisfied but (1’) is not. That is, there is a disk D in S? and
infinitely many large components of DN M. We may take a sequence of such
components that converge to a nondegenerate subcontinuum of M. We take
an annulus A that separates two points of the limit continuum. Infinitely
many of the large components cross this annulus. They are separated by
large components of A\ M that cross the annulus. Arcs in these components
that cross the annulus allow one to form a disk D that is crossed by infinitely
many large components of D \ M, a contradiction to (1). We conclude that
(1) is satisfied.

Similar arguments show that (1’) implies (1) and that these are equivalent
to (2) and (2').

Finally, if M is not locally connected, then there is a component of an
open subset of M that is not open. That is, there is an open set N, a
component C' of N, and a point p € C such that p is a limit point of N\ C.
If p; is a sequence from N \ C converging to p, then no component of N can
contain more than finitely many of the points p;, for, otherwise, p would be
a point of that component. But each component of N has a limit point in
M\ N (prove as an exercise or refer to |20, Chapter I, 10.1]). Thus the closure
of each of these components intersects the boundary of N in M. These large
components contradict (1'). m

THEOREM 2.9 (Filling Theorem). Suppose that M is a Peano continuum
in the 2-sphere S, and suppose that U is a component of the complement
of M in S%. Then there is a map f : B> — cl(U) from the 2-disk B? onto
the closure of the domain U that takes int(B?) homeomorphically onto U
and takes S' = O(B?) continuously onto d(U). In addition, if A is a free
boundary arc of cl(U), then we may assume that the map f is one-to-one
over the arc A. Furthermore, we may assume that, for each p € St, the set
f~1f(p) is totally disconnected.

REMARK. That the arc A is free means that A is accessible from precisely
one of its sides from the domain U and that int(A) is an open subset of 9(U).

Proof. We give only an indication of the proof. There are well-known,
completely topological proofs of this theorem. However, refinements of the
Riemann Mapping Theorem also give very enlightening analytic information.
The relevant analytic theory is the theory of prime ends. There is a good
exposition of the theory in John B. Conway’s readily available textbook,
[6, Chapter 14, Sections 1-5]. It follows from the local connectivity of M
(applying Theorem 2.8(1)) that the impressions of the prime ends in U are
all singletons. By the theory of prime ends, the Riemann mapping from
int(B?) onto U extends continuously to the boundary.

Since the arc A is free, the prime ends at A correspond exactly to the
points of A so that the map is one-to-one over A.
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Since the prime ends of int(B?) are singletons, the sets f~! f(p) are totally
disconnected. m

Proof of Theorem 1.2. Suppose that M is a locally connected continuum
in S2. If M = S?, then M is already codiscrete. Otherwise, let Uy, Us, ...
denote the complementary domains of M in S?. By Theorem 2.8, the com-
ponents of S? \ M form a null sequence. By Theorem 2.9, there is for each
i a continuous surjection f; : B2 — cl(U;) that takes S' onto the boundary
of U; and takes the interior of B2 homeomorphically onto U;. Let p; = f;(0).
Then the set D = {p1,p2,...} is obviously discrete. The set cl(U;) \ {pi}
can obviously be deformed into the boundary of U; by pushing points away
from p; along the images under f; of radii in B2. These deformations can
be combined to deform all of X = S?\ D onto M since the U; form a null
sequence. We conclude that M is homotopy equivalent to the codiscrete set
X =82\ D.

Conversely, if X is codiscrete, then we may take, about the points p of
D(X), small disjoint round disks d(p). The continuum M = S? \U, int(d(p))
is a Peano continuum to which X can be deformed by a strong deformation
retraction.

This completes the proof of Theorem 1.2. m

3. Peano domains. We may think of the Characterization Theorem 1.1
as a substantial generalization of the Filling Theorem, Theorem 2.9. We shall
need an intermediate generalization of Theorem 2.9 that deals with compact
sets that act much like Peano continua but are not necessarily connected.
We call the complementary domains of such compacta Peano domains. We
shall deal with the compacta themselves by joining them together by arcs so
as to form a Peano continuum.

DEFINITION 3.1. A connected open subset U of S? is called a Peano
domain if its nondegenerate boundary components form a null sequence
of Peano continua. (Note that there may be uncountably many additional
components that are single points.)

THEOREM 3.2. Suppose that U is a connected open subset of the 2-
sphere S%. Then the following three conditions are equivalent:

(1) The open set U is a Peano domain.

(2) For each disk D in S?, the components of UND form a null sequence.

(3) There is a continuous surjection f : B® — cl(U) such that f(S') D
O(U) and flint(B?) is a homeomorphism onto its image, which nec-
essarily lies in U.

REMARK. Note that (1) generalizes the notion of local connectedness.
Note that (2) generalizes characterization (1) of local connectedness in The-



46 J. W. Cannon and G. R. Conner

orem 2.8; the reader can reformulate (2) in each of the ways suggested by
Theorem 2.8. Note that (3) generalizes Theorem 2.9. Note that, in the proof,
we can assume that the map f is 1-1 over given free boundary arcs of U be-
cause the same is true in Theorem 2.9.

Proof. Assume (1), so that U is a Peano domain. Assume that (2) is not
satisfied, so that there is a disk D in S? such that the components of U N D
do not form a null sequence. Then some sequence Uy, Us, . .. of components
converges to a nondegenerate continuum M. The continuum M must be a
subset of a boundary component of U. We may assume that the components
Uy,Us, ... are separated from each other by large boundary components
of U. (Refer to the Brouwer Property II and to Corollary 2.2.) There are
only finitely many large boundary components of U. Hence infinitely many
of the separators must come from the same boundary component. It follows
that the limit, namely M, is also in the same boundary component. But
this boundary component is not locally connected at the points of M, a
contradiction. We conclude that (2) is satisfied so that (1) implies (2).

Assume that (2) is satisfied but (1) is not. Then either there is a com-
ponent of O(U) that is not locally connected, or there exist infinitely many
components of O(U) having diameter > &, for some fixed ¢ > 0. In either
case, taking a convergent sequence of large components or a limit contin-
uum from a single component that is not locally connected (Theorem 2.8),
we find the existence of an annulus A in S? and components X1, Xo, ... of
0(U) N A, each of which intersects both components of 9(A). These compo-
nents of 9(U) N A must be separated by large components of ANU. If we
remove a slice from one of these large separating components, we obtain a
disk D that is crossed by infinitely many large components of U N D, which
contradicts (2). Therefore (2) implies (1).

Assume that (3) is satisfied, so that there is a continuous surjection f :
B? — cl(U) such that f(S') D O(U) and flint(B?) is a homeomorphism
onto its image. Assume that (1) is not satisfied, so that either there is a
component of J(U) that is not locally connected, or there exist infinitely
many components of J(U) each having diameter greater than some fixed
positive number e. In either case, we find by taking limits (Theorem 2.8)
that there is an annulus A in S? and components X1, Xs,... of 9(U) N A,
each of which intersects both components of 9(A4). We may assume that
X1, Xy, ... converges to a continuum Xy joining both components of 9(A).
We may assume that X;_1UX;;1 separates X; from Xgin A, fori =2,3,....

Pick p; € X; Nint(A) for i > 0 such that p; — po. Let qo,q1, go2,... € S!
be points such that f(g;) = p;. Let B; be the straight-line segment in B2
joining qo to ¢;. We may assume that the arcs B; converge to an arc or a
point B in B2. We shall obtain a contradiction as follows.
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The image f(B;) joins X; to Xp. It misses X;_1 U X;41 C 9(U) since
f(q) € Xi, f(q0) € Xo, and f(int(B;)) C U. Hence, if we traverse B; from g;
toward qo, there exists a first point b; € B; such that f(b;) € 9(A). We may
assume that b; — by € B2 and f(b;) — f(by) € O(A). Since f(b;) is separated
from Xy by X;_1 U X;41 in A and since X; — Xy, we may conclude that
f(bo) € XoNA(A). Hence by € S'\{qo}. But by must therefore be an endpoint
of B distinct from gg and must therefore be the limit of the points ¢;. We
find that f(q;) — po € int(A) and f(q;) — f(bo) € I(A), a contradiction.

We conclude that (3) implies (1).

It remains to prove that (1) implies (3). This is by far the hardest of
the implications. It is a generalization of the rather deep Theorem 2.9, and
we shall reduce it to that theorem. We shall also make use of the wonderful
R. L. Moore Decomposition Theorem 2.6.

Our plan is to connect 9(U) by deleting from U a null sequence A1, As, . ..
of arcs to form a new connected open set V = U \ |J; A; whose boundary
0(V) = 0(U)ulY; A; is alocally connected continuum. Then we simply apply
Theorem 2.9.

For convenience, we wish to modify the closure of U so that each nonde-
generate boundary component of 9(U) is a simple closed curve. We shall do
so in such a way that the closure of the new U collapses to the closure of the
old U and preserves the property of being a Peano domain. This convenient,
yet inessential, modification simplifies the description of the structures that
we need to build in proving that U is a Peano domain.

We change the nondegenerate components C' of 9(U) into simple closed
curves as follows.

We define Uc to be the component of S? \ C' that contains U. Since C
is locally connected by (1), we may apply Theorem 2.9 to find a continu-
ous surjection g : B> — C U Uc that takes S! onto C' and takes int(B?)
homeomorphically onto Uc. We require that the sets g~ 1g(p) be totally dis-
connected for each p € S! = 9(B?). Radii in B? define radial segments in Ug
whose endpoints may be identified at various points of d(Uc).

We pull Ug into itself along these radial segments so as to split the
boundary identifications of g|(S! = 9(B?)) apart and make d(Uc) a simple
closed curve. Because the sets g~ 1g(p) are totally disconnected, it follows
that the nondegenerate boundary components of the new U also form a null
sequence. We may thus assume that 0(U¢) is a simple closed curve.

We repeat the argument with each of the countably many nondegenerate
boundary components in turn. Since each move can be made arbitrarily
small, there is no problem in getting the sequence of moves to converge. The
difficulty lies in getting all of the appropriate properties to be preserved in the
limit. It is possible to deal with that difficulty exactly as one does in the proof
of the Baire Category Theorem, in the embedding of n-dimensional com-
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pacta in Euclidean 2n + 1-dimensional space (see, for example, the proof of
[1, Chapter VI, Theorem 1.52]), or in forcing a sequence of homeomorphisms
to converge to a homeomorphism: namely, the desired properties can be
encoded in countably many open conditions in function space, and each
successive change can be made so small that more and more of the desired
conditions are satisfied and preserved in the limit.

We may thus repeat the argument infinitely often to conclude that we
lose no generality in assuming that each nondegenerate component is a
simple closed curve. That is, U is the complement of a null sequence of
disks D1, D5, ... and a O-dimensional set D, the union of D1, D5, ..., and D
being closed.

We shall string the components of 9(U) together by a null sequence of
arcs that run through U. These arcs will be built by approximation. At
every stage, the arcs together with certain larger and larger collections of
the disks D; will form a contractible set. The additions at each stage will be
smaller and smaller “feelers”. The feelers will be buffered from one another
so that, in the limit, they cannot grow back together. It follows that the
limit continuum cannot separate S?. Certain limit points in (U) will be
attached only in the limit. The structures defined make it clear that the
limiting continuum can be expressed as a union of finitely many arbitrarily
small connected sets so that the final continuum is a single Peano continuum.
Here is the process:

It may help the reader to imagine that the closure of U lies in the unit
square [0,1] x [0,1], that one of the disks D; is the complement of this
square in the compactified plane S? = R? U {cc0}, and that the other disks
D>, D3, ... are some subcollection of the disks whose interiors are removed
in forming the standard Sierpiriski curve. This is permissible by a theorem
of G. T. Whyburn [18]. However, this normalization is a conceptual aid only
since we have to enrich the Whyburn argument a bit. We explain the mild
complications that arise in our setting in the next paragraph.

We wish to construct a nice sequence of cellulations of the 2-sphere
that respect the boundary components of U. If, for example, we wish to
concentrate on some particular finite set S of the large disks D;, we may
form an upper semicontinuous decomposition of S? by declaring the other
D;’s that miss S to be the nondegenerate elements of the decomposition.
By R. L. Moore’s Decomposition Theorem 2.6, the quotient space is the
2-sphere S%2. The (homeomorphic) image of U in this new copy of S? will
have, as complement, the (images of the) elements of S and a 0-dimensional
set that is locally closed away from S. It is then an easy matter to cellu-
late S? so that the elements of S cover a subcomplex and the remainder of
the 1-skeleton misses J(U) entirely. This adjustment of the 1-skeleton is the
central part of the Whyburn argument [18]. Whyburn only has to have his
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1-skeleton miss a countable set. We need the 1-skeleton to miss a countable
family of closed, 0-dimensional sets. But since the complement of a closed
0-dimensional set is locally path connected, our requirements are no harder
to meet than his.

As a consequence, we find that there is a sequence S1, So, . . . of arbitrarily
fine cellulations of S?, S;, 1 subdividing S;, such that, for each i, the following
conditions are satisfied:

(i) Two 2-cells of S; that intersect intersect in an arc.

(ii) The 1-skeleton of S; misses all of the 0-dimensional part D of O(U).

(ili) For all j, the 1-skeleton of \S; either misses the disk D; or contains
0(Dj). Consequently, S; has a distinguished finite subcollection of
disks D; that are precisely equal to unions of 2-cells of S;. All other
disks Dy, will lie in the interiors of 2-cells of .S;.

(iv) If a 2-cell C' of S; has a boundary point in some d(D;), with int(C')
¢ Dj, then 0(C') N, Dy, is an arc in 9(Dj).

It is necessary to distinguish four types of 2-cells in the cellulation S;:

A 2-cell C of S; is of type 0 if it lies entirely in U.

A 2-cell C' is of type 1 if it lies entirely in the complement of U, hence
lies in one of the distinguished disks D; of the cellulation .S; (see (iii) above).

A 2-cell C is of type 2 if it intersects both U and the complement of U,
but its boundary lies entirely in U.

A 2-cell C is of type 3 if its boundary intersects both U and the com-
plement of U. Condition (iv) above implies that a 2-cell C' of type 3 has
boundary that intersects precisely one disk D;, that D; is one of the distin-
guished disks of S;, and the intersection is a boundary arc of each.

We shall essentially ignore the 2-cells of type 0. We shall deal with the
disks of type 1 only implicitly by considering instead their unions that give
the distinguished disks D; of the cellulation S; (see (iii) above). Cells of
type 2 will be joined to these distinguished disks by arcs in U. Cells of type 3
will be joined to these distinguished disks by their intersecting boundary arcs.

It will be convenient to use the notation C* for the union of the elements
of a collection C of sets.

Let D1 denote the collection of D;’s that are distinguished in the cellu-
lation S7. Then D} = |J{D € D;}. We may assume D; € D;. We may pick
a collection A; of arcs from the 1-skeleton Sfl) of S that irreducibly joins
together these distinguished disks D; € Dy, so that the union C; = D} U A}
of disks and arcs is contractible. Without destroying the contractibility of
the set C1, we add additional arcs from the 1-skeleton to the collection 4;
if necessary so that every cell of type 2 intersects one of the arcs of A;.

All of the cells of Sy of type 0 will be ignored from now on. All of the cells
of S7 of type 1 are contained in the contractible topological polyhedron Cj.
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As we proceed to the induction, we will attach “feelers” to C1. There will be
one feeler in each cell C of type 2 and it will be attached to C; at a single,
arbitrarily chosen point of the intersection of C' N Cy. We call that point the
attaching point. In each cell C' of type 3, there may be finitely many or a
null sequence of feelers, but each will be attached to C; at some point of
the boundary arc of C that lies in a distinguished disk. We call that arc the
attaching arc. There may certainly be other points of 9(C') that lie in Cq, but
none of these lies in O(U). Hence, for cells C of types 2 and 3, the complement
in 9(C) of the attaching point or attaching arc can serve as a buffer never to
be approached or crossed in the construction. It is these buffers that make
it easy to see that the limit continuum is contractible and locally connected.

We proceed by induction. We assume that we have constructed con-
tractible sets C; C --- C C; that lie except for distinguished disks of 51, S9,
..., 5; in the 1-skeletons of the cellulations. We may impose one additional
condition on the cellulation S;11:

(v) For each cell C of S; that has type 2 or 3, that part of the 1-skeleton
of S;11 that lies in the interior of C, taken together with the attach-
ing point (type 2) or attaching arc (type 3), is connected.

All of the action in creating C;y1 takes place in the individual cells C'
of S; of type 2 and 3. Exactly as in the construction of C;, we may pick
a collection of arcs A;;+1(C) from that part of the 1l-skeleton of S;;; that
lies in the interior of C, taken together with the attaching point (type 2) or
attaching arc (type 3), that irreducibly joins together the attaching set of
C, the distinguished disks D; € D;y1 in C, and the cells of ;1 of type 2
in C. All of these new distinguished disks and all of these new arcs can be
added to C; to form a new contractible set C;4.1. We denote the entire union
Uc Ais1(C) of arcs as A4 1.

For each of the new cells of types 2 and 3, we choose an attaching point
or arc as before.

We leave it to the reader to verify that M = (S2\ U) U J; 4; is a
single locally connected continuum with a single complementary domain V' =
U\ U; As.

By Theorem 2.9, there is a map f : B2 — cl(V) from the 2-disk B? onto
the closure of the domain V that takes int(B?) homeomorphically onto V
and takes S' = 9(B?) continuously onto (V). The same map establishes
condition (3) of Theorem 3.2.

This completes the proof that (1) implies (3). Thus all three conditions of
Theorem 3.2 are equivalent, as claimed. The proof of Theorem 3.2 is therefore
complete. m

Our final theorem of this section shows how to push a Peano domain
onto its boundary together with a 1-dimensional set provided the domain is
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punctured on a nonempty discrete set. This easy theorem will be needed as
the last step in the proof of Theorem 1.1.

THEOREM 3.3. Suppose that U is a Peano domain in S* and that C is
a nonempty countable or finite subset of U that has no limit points in U.
Then cl(U) \ C' can be retracted by a strong deformation retraction onto a
1-dimensional compactum that contains O(U).

Proof. By Theorem 3.2, we know that there is a continuous surjection
f : B% — cl(U) such that f(S') D d(U) and f|int(B?) is a homeomorphism
onto its image.

By invariance of domain, f|int(B2) is an open map. It follows that
f(int(B?)) is disjoint from f(9(B?)) = f(S'), for otherwise points of int(B?)
near S! would map to points already occupied by other points of f(int(B?)).

Since f(int(B?)) is dense in f(B?) = cl(U) and disjoint from f(S!), f(S!)
must be 1-dimensional. Hence it is an easy exercise to show that we may
modify f slightly over U so that f(S') misses C. We may further modify f so
that f maps the origin 0 € B? to a point of C' and so that all other points of C
have preimages on different radii of B2. Let f~1(C) = {co = 0, ¢y, c2,¢3,...}.
Let Aq, Ao, ... be the radial arcs beginning at cq,co, ..., respectively, and
ending on S! = 9(B?). Let D1, D, ... be disjoint round disks in int(B?)\ {0}
centered at ci,co,. .., respectively, such that the only A; intersected by D;
is A;. Let V = int(B?) \ [U; 4; U U, D;]. Then B? \ f~1(C) can obviously
be retracted by a strong deformation retraction onto the 1-dimensional set
(V). Hence f(B?)\ C = cl(U)\ C can be retracted by a strong deformation

retraction onto the 1-dimensional set f(9(V)). =

4. The necessity of conditions (1) and (2) in Theorem 1.1. We
assume that X is a codiscrete set that is homotopy equivalent to a metric
1-dimensional set Y. Let f: X — Y and ¢g: Y — X be homotopy inverses.

We isolate the three key technical constructions as lemmas. Each of these
is standard and well-known. We omit the proofs.

LEMMA 4.1 (Dimension Lemma). If g : Z' — Z is any map from a
1-dimensional compactum Z' into the closure Z of an open subset U of S?,
then g is homotopic, by a homotopy which only moves points in U to a
map ¢ : Z' — Z such that ¢'(Z') N U is 1-dimensional. (The key ideas are
explained, for example, in [17, Exercises for Chapter 3, Sections G and H].)

LEMMA 4.2 (Homotopy Lemma).

(i) Let C C S? be closed, and let H : C x [0,1] — S? denote a defor-
mation of C that begins at the identity (that is, H(c,0) = ¢ for all
c € C). Then H can be extended to a deformation H' : S?x[0,1] — S?
that also begins at the identity.



52 J. W. Cannon and G. R. Conner

(ii) If H moves no point as far as € > 0, then we may require that H'
have the same property.

(iii) If N is an open set in S? containing the points of O(C) that are
moved by the deformation H, then we may require that N contain
the points of S \ C moved by H'. (See [16, Section 62, Lemma 62.1
and Exercise 3|.)

LEMMA 4.3 (Annulus Lemma). Suppose condition (2) of Theorem 1.1
fails. Then there are an annulus R' in S® and components U, U}, ... of
R'\ B(X) such that each U intersects both boundary components of R" and
misses the set D(X). (See Theorem 2.8 and its proof.)

The three lemmas imply necessity of conditions (1) and (2) as
follows: By precomposing the homotopy equivalence f with a deformation
retraction onto a compact subset of X, we may assume that the image f(X)
is a 1-dimensional continuum Z’. By Dimension Lemma 4.1, we may assume
that go f(X)\ B(X) is 1-dimensional. Let G : X x [0, 1] — X be a homotopy
that begins with the identity on X and ends with go f. By Theorem 2.3, we
see that G(z,t) = z for each z € B(X).

Assume that condition (1) of the hypothesis of Theorem 1.1 fails, so that
some component U of S?\ B(X) contains no point of D(X). Hence U C X.
Let H : cl(U) x [0,1] — S? denote the restriction of G to cl(U) x [0, 1]. Since
H fixes O(U) C B(X), we may extend H to a deformation H' of S? that fixes
S?\ U pointwise. Since H'(S? x {1})NU C G(S? x {1})NU is 1-dimensional,
we see that H' deforms S? into a proper subset of itself, which is impossible.
Hence condition (1) must be satisfied.

Assume that condition (2) of the hypothesis of Theorem 1.1 fails. Then,
by Annulus Lemma 4.3, there are an annulus R’ in S? and components
U1, Uy, ... of R"\ B(X) such that each U} intersects both boundary compo-
nents of R’ and fails to intersect the set D(X).

By passing to a subsequence, we may assume that the components U7, UJ,
Uj, ... converge to a continuum A that joins the two boundary components
of R'. Since the components U J’ are separated by B(X), it follows that A C
B(X). Let D be a small disk in int(R’) centered at some point of A. Since
the deformation G constructed above moves no point of B(X), there is a
neighborhood N of A in X, no point of which is moved by G as far as 1/2,
the distance from 9(R’) to D. We choose j so large that cl(U]) C N and
U; Nint(D) # 0. Since no point of D(X) lies in U, all of cl(U7) lies in X.

We let H : cl(Uj) x [0,1] — S? be the restriction of G to cl(U}) x [0,1].
By Homotopy Lemma 4.2(i), there is a deformation H' : S§? x [0,1] — S?
that extends H. Since d(U}) Nint(R') C B(X), H does not move the points
of d(U;) N int(R'). Hence, by Homotopy Lemma 4.2(iii), we may require
that H'|[S*\ cl(U})] x [0, 1] moves points only near d(R) Ncl(Uj), a set that
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contains the points moved by H|8(UJ’) x [0, 1]. By Homotopy Lemma 4.2(ii),
we may require that no points of S?\ U } be carried into DNU;. Hence H' is

a homotopy of S? that takes S? to a proper subset of itself, an impossibility.
Hence condition (2) of Theorem 1.1 is also satisfied.

5. The sufficiency of conditions (1) and (2) in Characterization
Theorem 1.1. We assume conditions (1) and (2) of Characterization The-
orem 1.1. That is, the open set Uy = S? \ B(X) satisfies the following two
conditions:

(1) Each component of Uy contains a point of D(X).
(2) If D is any disk in S?, then the components of Uy N D that contain
no point of D(X) form a null sequence.

Our goal is to show that X is homotopy equivalent to a 1-dimensional
set.

Notice that properties (1) and (2) make no explicit mention of the bad set
B(X) and are simply properties that an open subset of S? may or may not
have. This is an important observation, because our proof that X is homo-
topy equivalent to a 1-dimensional set will involve a complicated induction
that will involve a null sequence Ugy, Uy, Us, ... of open sets, each of which
satisfies properties (1) and (2).

It will also be convenient to adopt the following terminology: we say that
set is punctured if it contains a point of D(X). Otherwise, we say that it is
unpunctured.

We first have to deal with the trivial case where B(X) = (). If B(X) = 0,
then the single component S? = S? \ B(X) must contain a point of D(X)
by (1). Thus there must be at least one point of D(X) and at most finitely
many. Hence X is clearly homotopy equivalent to a point or bouquet of circles.

From now on, we may assume that the set D(X) is infinite and the
set B(X) is nonempty. Since D(X) is countable, we may list the points
D0, P1,P2,--. of D(X). We need to show that X is homotopy equivalent
to a 1-dimensional set. We shall do this by constructing a null sequence
Uy, U1, Us, ... of disjoint Peano domains such that, for each ¢, p; € U;, and
such that the union | J, U; is dense in S?. Each set cl(U;)\{p;} can be deformed
onto a 1-dimensional set that contains its boundary by Theorem 3.3. Since
these sets form a null sequence, the deformations can be combined to give
a deformation that takes X onto the union of §? \ | J, U; and 1-dimensional
compacta that contain the sets d(U;). Each of these sets is a compact 1-
dimensional set. Hence their (countable) union is 1-dimensional.

The domains U; are created by a long induction. Each step of the induc-
tion constructs a null sequence of Peano domains. At step 0 of the induction,
an individual domain can have diameter as large as the diameter of S%. There-
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after, however, we may restrict the maximum diameter of a Peano domain
at step 7 to be bounded by 1/i. Hence the union of this countable collection
of null sequences is also a null sequence.

We consider S§? as R? U {oo}. We may assume that py = oo € D(X). By
scaling and translating R?, we may assume that [D(X) \ {co}] U B(X) lies
in the interior of the closed unit square S = [0, 1] x [0, 1].

We now begin the construction of our first null sequence of Peano do-
mains. We outline the strategy. The reader who digests this strategy will be
able to avoid getting lost in the details. We are trying to fill the open set
Uo = $? \ B(X) with small Peano domains, more precisely a null sequence
of Peano domains, that are punctured (contain points of D(X)). We there-
fore cover Uy with a fine grid to divide it into small pieces. What happens
then is reminiscent of the children’s story, “Fortunately” ([5]). Fortunately,
some of these small pieces will be punctured. Unfortunately, some will be
unpunctured. Fortunately, the unpunctured pieces form a null sequence by
hypothesis (2); unfortunately, however, they must be attached to adjacent
pieces that are punctured and, unfortunately, the adjacent punctured pieces
need not form a null sequence. Fortunately, we can carve out of the adja-
cent punctured pieces a null sequence of smaller punctured pieces to which
we can attach the unpunctured pieces. Unfortunately, the process of carving
out small punctured pieces creates new unpunctured pieces. Fortunately, the
new unpunctured pieces form a null sequence that we can attach to the null
sequence of punctured pieces. Unfortunately, the carving out of small punc-
tured pieces creates new, as yet unattached, punctured pieces that need not
form a null sequence. Fortunately, the unattached punctured pieces are uni-
formly small and, together, form a new open set U; that satisfies hypotheses
(1) and (2). We can then undertake the inductive step with a new open set
whose pieces are smaller than at the previous stage. Here are the details.

STEP 1: Creating small pieces. We impose a square grid on S consisting
of a large square formed from small constituent closed squares. Since the set
D(X) is countable, we lose no generality in assuming that the edges of the
grid miss D(X). The grid divides the open set Uy = S? \ B(X) into many
components. We call the collection of such components Cy. More precisely:

(i) The set S?\ int(S) is an element of C.
(ii) If T is any small, closed, constituent square of the grid, then each
component of T\ B(X) is also an element of Co.

Note that the elements of Cg are not in general disjoint since they can inter-
sect along the edges of the grid.

STEP 2: Collecting the unpunctured pieces into a null sequence of small
sets. Let C{ denote the subcollection of C( consisting of those elements whose
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interiors are unpunctured. We take the union | JCj, of the elements of C{, and
claim two things:

(iii) The components of |JC{, form a null sequence.
(iv) Each component of | JCj, shares points of an edge with an element
of Cg whose interior is punctured.

Proof of (iii). We apply here the fundamental principle of convergence of
continua from Theorems 2.4 and 2.5. The argument could be repeated almost
verbatim perhaps four more times in the course of Section 4. Often we will
have to consider two cases, depending on whether the limit continuum con-
tains a point in the interior of a constituent square of the superimposed grid
or does not. We will not always repeat the details after this first argument.
Here are the details:

Suppose € > 0, and suppose that there exist components Y7,Ys,... of
UCp, each of diameter > . We may assume that ¥; — Y in the sense of
Theorems 2.4 and 2.5, where Y is a continuum of diameter > €.

Suppose first that Y contains a point in the interior of some constituent
square. Then a small annulus A about that point in the interior of the
constituent square intersects all but finitely many of the Y; in a component
that crosses A from one boundary component to the other, which easily gives
a contradiction to hypothesis (2).

Suppose next that Y lies in the 1-skeleton of the grid. Then it contains
an interval of an edge of one of the small constituent squares. In this case,
we may take an annulus A that surrounds an interior point of the interval
and intersects each of the two adjacent squares in a disk (half of an annulus).
Again, all but finitely many of the Y; will intersect one of these two disks
in a component that crosses the disk from one side to the opposite, which
easily gives a contradiction to hypothesis (2).

This completes the proof of (iii).

Proof of (iv). We may expand the elements of Cy slightly without in-
troducing intersections between sets that did not already intersect; we thus
obtain an open covering of Uy. Each component of Uy is punctured, by hy-
pothesis (1). In each component V', any two elements of Cy, as expanded,
that lie in V are joined by a finite chain of such elements by a standard
connectedness argument. A minimal such chain connects each element of C;,
to an element of Cy that is punctured. Property (iv) follows.

STEP 3: Attaching the unpunctured pieces of Step 2 to a null sequence
of punctured pieces. To each component K of | JC{ we assign a punctured
element L = L(K) € Cp that intersects K along at least one edge. Such an
element L(K) exists by (iv) of Step 2. The elements L thus chosen definitely
need not form a null sequence, but we shall carve out from such elements
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L a new null sequence of punctured domains to which we may attach the
components K. Here is the argument:

For each component K, choose an open arc A(K) along which K is
attached to L(K). Choose a point ¢(K) € A(K). Enumerate these points
as qi, ¢o, . ... Each ¢; belongs to a specific K;, and arc A;, and component
L; = L(K;).

Choose an arc Bj in L; that joins ¢; to D(X) irreducibly. We may require
that By N(1-skeleton of grid) = ¢; and that, for every arc B having the same
properties, diam(B;) < 2diam(B).

Proceed inductively. Choose an arc By in Ly joining g1 to D(X)U
B U---U B irreducibly. We may require that By N (1-skeleton of grid) =
gr+1 and that, for every arc B having the same properties, diam(Byy1) <
2 diam(B).

We make the following claims about the arcs B;:

(v) The arcs By, Bs, ... form a null sequence.
(vi) For every € > 0, there exists k such that each component of B(k) =
By4+1U Bgyo U - has diameter less than €.

[Note that (vi) implies (v). Properties (v) and (vi) are stated separately
since (v) is used in the proof of (vi).|

Proof of (v). Suppose that (v) is not satisfied. Then there is a subse-
quence By, Bi,, ... that converges to a nondegenerate continuum B. [This
is our second application of the fundamental principle of Theorems 2.4 and
2.5.] We may assume that the B;; all lie in the same small constituent square
T of the grid and that their initial endpoints g;,, gi,, . . . converge to a point
q € O(T). Let A be a small annulus about ¢ that intersects 7" in a small disk
A’ of less than half of the diameter of B. All but finitely many of the arcs B;;
cross that disk A’ in a large component B{j. By hypothesis (2), only finitely
many large components of A’NUjy do not contain a point of D(X). It follows
easily that either some Bl{j is in a component that contains a point of D(X)
or is in a component that contains another Bék, with 7 > k. In either case,
the diameter of B;; can be reduced more than half by shortcutting B;; to
D(X) or to B;,, a contradiction. This completes the proof of (v).

Proof of (vi). We shall make strong use of (v). Suppose there is an € > 0
such that each of the sets B(k) = By11 U Bgyo U - -+ contains a component
Y;. of diameter > €. We may pick from Y a subset Yk/ that is a finite chain
Y, = By, U---UBjy, of the arcs By, By, ... and that has diameter > ¢/2. We
may assume that the sets Y, are disjoint. Indeed, passing to a subsequence,
we may certainly assume that different Y)’s involve different Byg,’s. Then,
since the components of B(1) are trees, one Y} can intersect another only
in one point. Hence, if one deletes the By, intersecting the previous Y/, one
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will still have at least one subchain of substantial size (approximately /4)
that is disjoint from the previous Y}. Passing to an appropriate subsequence,
we may certainly assume that the Y} all lie in the same small constituent
square T. If Y = By, U---U By, with k; < --- < k;, then we call q(k) = ¢,
the initial point of V). We may assume that the initial points (k) converge
to a point ¢ € O(T). Let A be a small annulus about ¢ that intersects
T in a small disk A’. Then each Y} is a chain of small arcs crossing A’
whose links By, all intersect O(T'). A Y), with small links, each intersecting
O(T), must hug 9(T) as it crosses A" and presents a barrier that cannot be
avoided by another (disjoint) Y, that crosses A’ in the same direction. It
follows that there can be at most two such that are disjoint, each crossing
A" along O(T) in a different direction, a contradiction. This completes the
proof of (vi).

From property (vi) it follows easily that each component B of ByUByU- - -
is a tree that lies in a single small constituent square 7', contains exactly one
point of D(X), and has, as its leaves (leaf = vertex lying on only one edge),
special attaching points ¢; in corresponding attaching arcs A; of certain
components K of |JC{. Furthermore, these trees B form a null sequence of
trees.

Each component of |JCj is attached to one of these trees at a leaf. We
thicken each of these trees slightly and disjointly so that they still form a
null sequence, still contain one point of D(X) each, but now intersect the
appropriate attaching arcs A; in neighborhoods A; of the attaching points g;.

If B is one of the tree components of B UBsU- - -, then we let B’ denote
its thickening. We let B}, B, ... denote the collection of thickened trees.

The interiors of the thickened trees B;- are clearly Peano domains since
it is an easy matter to construct a continuous surjection f : B2 — cl(B;)
that takes int(B?) homeomorphically onto int(B}). These Peano domains will
form the cores of the Peano domains that we are attempting to construct
in this stage of the induction. To them, we must attach the components K;
that we have described above and also certain sets that we will describe in
the next step.

STEP 4: Attaching the unpunctured components created by removing the
thickened trees of Step 3. When we remove the thickened trees B; from the
components L = L(K), we may create new components that are unpunc-
tured. We must attach each of those to an adjacent thickened tree B}.

We let C{ denote the collection of new domains M created by removing
the thickened trees B}. That is, for each punctured element L of Cy that is
assigned as L = L(K) for at least one component K of | J C{, the components
M of L\ B;- are elements of the collection C{j. We then have the following
fact.
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(vii) The elements M of C{ that contain no elements of D(X) form a
null sequence.

Proof of (vii). Suppose not. Then there are components M, Ma, . .. that
contain no point of D(X) and converge to a nondegenerate continuum M.
Since the thickened trees B;- are formed by adding small one-sided neighbor-
hoods to each side of the trees B;, and those neighborhoods contain no points
of D(X), we may add those neighborhoods back into the components M;
without changing the number of those components, without changing their
size in any substantial way, and without changing their limit. We therefore
ignore the thickenings and consider the M;’s as components of the comple-
ment of the union of the B;’s.

Suppose first that M has a point p that lies in the interior of a small
constituent square T'. Since Uj Bj is locally a finite graph away from the
edges of the grid, and a finite graph separates an open set locally into only
finitely many components, p ¢ Uj Bj. Hence there is a small annulus A
surrounding p that contains no point of | J ; Bj. Each M; crosses A in a “large”
set, contained in a component of A N Uy that contains no points of D(X)
and no points of J ; Bj- There are only finitely many such, a contradiction.

Suppose finally that M lies in the 1-skeleton of the grid. Then we may
suppose that M contains a nondegenerate interval I of an edge of a small
constituent square T, and we may assume that each M; also lies in that
square. We may take a small rectangular disk neighborhood Aof I' C I in T
so that all but finitely many M; cross A from one side to the other near I’. No
point of the larger interval int(I) can lie in | J; B, for most of the M;’s would
then have to cross some B, a contradiction. Hence, only large B;’s can come
near the smaller interval I’. Hence I’ has a neighborhood in A missing | J j B;.
But, by hypothesis (2), all but finitely many of the components crossing A
must contain points of D(X), a contradiction.

This completes the proof of (vii).

Each of the components M just discussed shares an arc with some thick-
ened tree B}. We attach each component M to such an adjacent B; along
an attaching arc.

STEP 5: Completion of the first null sequence of Peano domains. We
have at this point created three null sequences of sets, namely, the com-
ponents K of |JCj, the components B’ of thickened trees, and the un-
punctured components M that were formed when the thickened trees were
carved out of punctured components of Cy. Using the attaching arcs de-
scribed earlier, we can therefore form a null sequence of domains of the form
V=it(BBUK UKyU---UM;UMyU---), where B’ is a thickened tree
and the K’s and the M’s are attached to B’ along attaching arcs. (Each K;
and each M; is attached to a unique B;-. So the V’s are disjoint.)
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(viii) The sets V, which obviously form a null sequence of sets, are all
Peano domains.

Proof of (viii). We have already noted that int(B’) is a Peano domain.
Each int(K;) is a Peano domain because, by hypothesis (2) of this theorem
and a two-case argument similar to (iii), it satisfies hypothesis (2) of Theo-
rem 3.2. We see that the sets M; are Peano domains because of the following
argument. Suppose there is a disk D such that the components of M; "D do
not form a null sequence. We let Vi, Vs, ... denote a sequence of components
converging to a nondegenerate continuum V. We get a contradiction exactly
as in the argument for (vii) above.

We now choose, for the closures of B’ and for the closures of each of the
K;’s and each of the Mj’s, a continuous surjection from B2 as in condition
(3) of Theorem 3.2. By the proof of Theorem 3.2, as noted in the remark
following the statement of Theorem 3.2, we may assume that these maps
are 1-1 over the attaching arcs. It is thus an easy matter to piece these
functions together to get a single continuous surjection from B? onto the
closure of V =int(B'"UKy UKyU---UM; UMy U---) of the kind required
by Theorem 3.2(3).

This completes the proof of (viii).

STEP 6: Preparing for the next stage of the induction. If L is an element
of Co from which certain thickened trees B, have been removed, then the
remaining punctured components all have diameter less than or equal to the
mesh of the covering grid. However, they need not form a null sequence. We
simply take the union of the interiors of such elements in R? to form a new
open set Uy. This open set forms the input to the next stage of the induction.
We need to verify the following fact:

(ix) The open set U satisfies the two conditions (1) and (2) with which
we began Section 4.

Proof of (iz). The remaining components are all subsets of components
of elements of Cg, hence have diameter less than or equal to the mesh of the
covering grid.

Suppose that D is a disk and D N U; has infinitely many large compo-
nents M; that contain no point of D(X). We may assume M; — M, M
nondegenerate. We argue again exactly as in the proof of (vii) to obtain a
contradiction.

Thus hypothesis (2) is satisfied. Since each component of U; is, by hy-
pothesis, punctured, hypothesis (1) is also satisfied.

This completes the proof of (ix).

STEP 7: The inductive step and the completion of the proof. We now
recycle the new open set U; as the set Uy of the argument just given, but use
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a grid with much smaller mesh. We repeat this process inductively, infinitely
often. The completion of the argument is then clear provided we make the
following two remarks:

(x) We may require that the point p; € D(X) lie in one of the trees
constructed before or during the ith stage of the induction.

Proof of (z). We may choose the mesh so small that, if p; has not been
used before stage i, then p; is the only point of D(X) in a square of the
grid and its neighboring squares, all lying in U;. We can choose to attach the
neighboring squares to the square containing p;.

(xi) Eventually, every point p of §? \ (D(X) U B(X)) lies in the closure
of the constructed Peano domains.

Proof of (xi). When squares are sufficiently small, every square contain-
ing p misses D(X)U B(X). If p has not already appeared in the closure of
one of our Peano domains, then p will lie in a component K that contains no
point of D(X), hence will be attached to some thickened tree at that stage.

Thus our proof is complete that we can tile the complement of B(X') with
a null sequence of disjoint Peano domains. Hence, infinitely many applica-
tions of Theorem 3.3 show that X can be deformed by a strong deformation
retraction onto a 1-dimensional set.

6. Proof of Theorem 1.4. We are given a planar Peano continuum M.
We must show that the fundamental group of M embeds in the fundamental
group of a 1-dimensional planar Peano continuum M.

The construction of the 1-dimensional planar Peano continuum M'. We
shall associate with M a quotient map 7 : M — M’ onto a 1-dimensional
Peano continuum M’ in such a way that each nondegenerate point preimage
7~ 1(x), for x € M, is an arc in M with endpoints in M.

The vertical decomposition of M, and the quotient continuum M’. Let V
be a vertical line that intersects M. Let G(V') denote the set of components
of VM. Let G =y, G(V). Let Go be the trivial extension of G to all of R2.
(That is, Go \ G consists of the singleton sets of R\ M.) Let 7 : M — M’ =
M/G and 7’ : R2 — ]RQ/QO be the associated quotient maps.

CLAIM 1. The decomposition Gg is cellular and upper semicontinuous,
so that R? /G is homeomorphic with R? by the Moore Decomposition Theo-
rem 2.6. Since each element of G intersects O(M), M' = n7(M) = n'(M) is
nowhere dense in R? ~ R?/Gy. Consequently, M’ is a 1-dimensional Peano
continuum.

Proof of the claim. Since each element of Gg is a point or an arc, Gg
is cellular. Let g1, g2, ... be elements of Gy containing convergent sequences



Homotopy dimension of codiscrete subsets of S? 61

x; — x and y; — y, with z;,y; € g; € Go. If © # y, then g; must be a vertical

interval in M for all ¢ sufficiently large. Thus x and y must be elements of

M in the same vertical interval. The vertical intervals g; join x; to y;. Hence

their limits contain a vertical interval from x to y, which must lie in M. Thus

x and y are in the same element of Gg, and G is upper semicontinuous.
The remaining assertions of the claim are easily verified.

CramM 2. The projection map © : M — M’ induces a map on funda-
mental groups that is injective. [The proof of this claim will establish Theo-
rem 1.4.]

Proof of the claim. Let f : S' — M be a continuous function such that
f'=mof :S' — M’ is nullhomotopic in M’ (that is, there is a map
F' : B2 — M’ that extends f’). We must show that f is nullhomotopic
in M.

Analysis of f' = mo f: S — M’. (The analysis is essentially taken from
[3, 3.2.1].)

MAPPING ANALYSIS LEMMA (see [8] and [3, 3.2.1]). Suppose that f' :
S' — M’ is a nullhomotopic mapping from the circle S* into a 1-dimensional
continuum M'. Then there is an upper semicontinuous decomposition H of
S! into compacta that has the following three properties:

(1) The mapping [ is constant on each element of H.

(2) The decomposition H is noncrossing. That is, if hy and hs are distinct
elements of H, then the conver hulls Hull(hy) and Hull(hy) of hq
and ha in the disk B? are disjoint. [Equivalently, hy does not separate
ha on St.]

(3) The decomposition H is filling. That is, the disk B? is the union of
the convex hulls Hull(h) of the elements h € H.

Proof. Let F' : B2 — M’ be a map that extends f’: St — M’. We define
H={h=CnS" |3z € M such that C is a component of (F')"*(z)}.

It is obvious that H is an upper semicontinuous decomposition of S! into
compacta and that H satisfies conclusion (1) of the Mapping Analysis Lem-
ma. (One can easily check the upper semicontinuity by verifying the following
two exercises:

EXERCISE 1. If f : My — Ms is a continuous function between com-
pacta, then the components of the point preimages form an upper semi-
continuous decomposition G of M;. [Indeed, let z;,y; € K; € G with
x; > x € K(x) € Gand y; — y € K(y) € G. In order to prove the
Hausdorff condition, it suffices to show that K(x) = K(y). By Theorems 2.4
and 2.5, we may assume that the sequence K; converges to a continuum K.
By the continuity of f, f|K must be a constant function since each of the
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functions f|Kj; is constant. But z,y € K. Hence K C K(x) N K(y) and
K(z) = K(y).]

EXERCISE 2. If GG is an upper semicontinuous decomposition of a com-
pactum M into compact sets, and if X is a compact subset of M, then the
elements K N X, for K € G, form an upper semicontinuous decomposition
of X. [Indeed, proceed in a manner similar to the solution of Exercise 1.])

The proof of conclusion (2) of the Mapping Analysis Lemma is easy. If
hy separates hg on S', and if hy = C; NS and hy = Cy N'S!, then C; and
C5 must intersect, a contradiction.

The proof of conclusion (3) requires Lemma 6.1 below, which shows that
S'/H is a contractible set. Knowing that S!/H is contractible, we argue as
follows. Let H' be the collection of sets in R? that are either convex hulls
Hull(h) of elements of h € H or are singleton sets that miss all such convex
hulls. Since H is noncrossing, by (2), it follows easily that H' is a cellular,
upper semicontinuous decomposition of R?. Let 7 : R? — R%/H' ~ R?
denote the projection map. If H were not filling, then the contractible set
7(S!) ~ S'/H would separate the nonempty sets 7(R?\B?) and 7(B?)\ 7 (S')
in R?/H' ~ R?, a contradiction.

Here is the lemma that shows that S'/H is contractible.

LEMMA 6.1. Let F : B2 — M’ be a continuous function from the disk B>
into a 1-dimensional continuum M'. Define

H={h=0CnNS" |32z € M such that C is a component of F~'(z)}.

Then H is an upper semicontinuous decomposition of S' into compacta and
SY/H is a 1-dimensional, contractible, planar Peano continuum (that is,

SY/H is a dendrite).

Proof. BEach point p € B? lies in some component C' of some point preim-
age F~1(x), z € M’'. We may partially order these components by declaring
C < " if C lies in the union of C’ and its bounded complementary domains.
By a compactness argument, for each C, there is a maximal C’ with C' < (.
We may redefine F’ so that F’(p) = F’(C). This modification does not alter
the decomposition H of S!. After this modification, the nondegenerate com-
ponents of point preimages form the nondegenerate elements of a cellular
upper semicontinuous decomposition G of R? (see the two exercises above);
and, by the Moore Decomposition Theorem 2.6, the quotient R? /G is hom-
eomorphic with R?. We denote the quotient map by 7’ : R? — R?/G ~ R2.
The modified F” factors through the projection 7'|B? : B2 — B?/(G|B?):

P2 e B am?) £ M

The image 7/(B?) of the disk B? is contractible because it is a strong

deformation retract of the disk '(2B?) C R?/G. |The set 7/(2B?) is a disk
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since it is a compact set in the plane R? /G whose boundary is a simple closed
curve.|

The image 7'(B?) of the disk B? is 1-dimensional since (i) it admits
the mapping F” : 7/(B?) — M’ into a 1-dimensional space M’ and the
point preimages of F” are totally disconnected, while (ii) a map that reduces
dimension by k& must have at least one point preimage of dimension &k (|11,
Theorem VI 7).

The images 7'(B?) and 7/(S!) are equal for the following reasons. Since
7' (B?) is compact and 1-dimensional, the open set 7/(R?\ B?) is dense in the
plane R?/G. Hence the image of ©'(R? \ int(B?)) is the entire plane. Con-
sequently, 7/(S!) D 7/(B2). The opposite inclusion is obvious. We conclude
that 7/(S!) is contractible. m

The proof of Lemma 6.1 completes the proof of the Mapping Analysis
Lemma. =

Completion of the proof that f : S* — M s nullhomotopic. We recall the
cellular, upper semicontinuous decomposition G of R? that has as its nonde-
generate elements the maximal vertical intervals in M and whose quotient
map 7 : R? — R?/G takes M onto M’. We use the Mapping Analysis Lemma
to obtain an upper semicontinuous decomposition H of S' that models the
shrinking of f/ = mo f : S' — M’ in the 1-dimensional set M’. Since the
decomposition H is noncrossing and filling, we may expand this decomposi-
tion H to a decomposition G of B? by taking as elements the convex hulls in
B2 of the elements of H. The shrinking of f in M will rely on the interplay
between the decompositions G and G. We shall use the decomposition G
of B? as a model on which we shall base the construction of a continuous
function F : B> — M that extends f : S' — M.

If, for each g € G, f|gN'S! were constant (as is true for f’), we could
simply define F(g) = f(gNS'). However, this need not be the case. All that
we know is that for each g € G, there exists h(g) € G such that f(gNS!) C
h(g). We need to show how to define F|lg : ¢ — h(g) C M in such a way
that the union F' = |J{F'|g : g € G} is a continuous extension of f.

If g is a single point, then that point lies in S!, and we may define
F(g) = f(9).

If g is an interval with its ends in S!', then we extend the map f|dg
linearly to all of g.

If g is a disk, then we use an ideal triangulation of g in the following way:

The set g is the convex hull Hull(h) of a closed subset h of the unit
circle S'. Since ¢ is a disk, h contains at least three points. An ideal triangle
is a triangle in B? that has its vertices on S'. A collection {T;} of ideal
triangles is said to be an ideal triangulation of the convex hull g provided
that the collection of triangles is locally finite in int(B?), the triangles have
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disjoint interiors, have vertices in h, and have union whose intersection with
int(B?) is precisely g N int(B?).

TRIANGULATION LEMMA. If g = Hull(h) is a disk, then g has an ideal
triangulation.

Proof. Every point x € Hull(h) Nint(B?) has a neighborhood in Hull(h)
that is in the convex hull of a finite collection of points in h. [Hint: every
point of a convex hull lies in the hull of a finite subset; consider separately
the case where the point is in the interior or on the boundary of such a finite
polygon.| Hence, every compact subset of Hull(h) Nint(B?) is in the convex
hull of a finite collection of points in A.

Let C; C Cy C --- be an exhaustion of Hull(h) N int(B?) by compact
sets, and let F; C Fy C --- be finite subsets of h such that C; C Hull(F}).
It suffices to show that any ideal triangulation 7; of Hull(F;) extends to
an ideal triangulation T;y; of Hull(F;11), for then we may take T(X) =
Uz, T

To extend T; to Tj1, it suffices to see that we can add one point p at a
time to F;. Since each edge of T; separates B2, the domain of B? \ |T;| that
contains p is bounded by a single edge rs of T} followed by an arc of S! that
contains p. We simply add the triangle prs to T;.

Note that, since every compact set C; in g N int(B?) is actually covered
by a finite subcollection of the triangles T}, the collection is locally finite in
int(B?).

This completes the proof of the Triangulation Lemma.

With the Triangulation Lemma in hand, we are ready to define F|g :
g — M, for the case where g is a disk.

In this case, we note that h = g N'S! is a compact set having at least
three points. Hence, by the Triangulation Lemma, g has an ideal triangula-
tion T'(g). We define F on g N'S! to equal f. On each triangle ¢; of T(g),
we define F' to be the linear extension of f restricted to the three vertices
of t;.

Proof that F|g is continuous for each g € G. If F|g is not continuous,
then there are z; — x in g and € > 0 such that d(F(z;), F'(z)) > ¢ for all i.
Since F|gNS! = f|g N'S! is continuous, we may assume that each x; lies in
int(B?). Since F is continuous on any finite union of triangles of T'(g) and
since T'(g) is locally finite in int(B?), we may assume that x € h = g N'S!
and that z1, za, . .. come from distinct triangles of T'(g). Since these triangles
cannot accumulate at any interior point of B2, they must, in fact, have
diameter going to 0 and approach z. But then their vertices approach x
and, by linearity, their images approach F'(x), a contradiction. Hence F|g is
continuous.
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Proof that F' is continuous. If F is not continuous, then there are z; — x
in B? and & > 0 such that d(F(x;), F(z)) > ¢ for all 4. Since, for each g € G,
F|g is continuous, we may assume that x1,x9,...,z all come from distinct
elements g1, go, . .., g of G. By continuity of F|S' = f, we may ignore those
z; in S'. Hence, we may assume that z; € int(B?), and that g; is either an arc
t; or a disk, one of whose triangles t; contains x;. If the ¢; approach x, then
x € S', the vertices of the ¢; approach z, and the images of the ¢; approach
F(z) by linearity and the continuity of F|S' = f. Otherwise, we may assume
that the ¢; approach an edge t of g that contains x. Again, their vertices ap-
proach the vertices of ¢, and the continuity of F|S! = f and linearity imply
that F'(z;) — F(x), a contradiction. We conclude that F' is continuous.

This completes the proof of Theorem 1.4.

We recall the corollary and question associated with Theorem 1.4:

COROLLARY 1.5. If M is a planar Peano continuum, then the fundamen-
tal group of M embeds in an inverse limit of finitely generated free groups.

Proof. This theorem is well-known for 1-dimensional continua. See, for
example, [8] and [4]. =

QUESTION 1.6. If M 1is a planar Peano continuum whose fundamen-
tal group is isomorphic with the fundamental group of some 1-dimensional
planar Peano continuum, is it true that M is homotopically 1-dimensional?

It is not difficult to see that the projection that we have given that takes
M onto M’ does not give a surjection on fundamental groups if M is not
homotopically 1-dimensional. The key issue to resolve here is whether an
arbitrary group embedding into the group of a 1-dimensional continuum can
always be induced by a continuous map.

COROLLARY 1.7. If M is a planar Peano continuum, f : S' — M is a
loop in M, and f is nullhomotopic in every neighborhood of M in R?, then
f is nullhomotopic in M.

Proof. 1t follows easily that f’: S' — M’ is nullhomotopic in each neigh-
borhood of M’ in R?. But it is well-known [8], [3] that this implies that f’
is nullhomotopic in M’. Thus the argument of Theorem 1.4 applies to show
that f is nullhomotopic in M. =

For results that strengthen the last corollary, see [9].
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