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The homotopy dimension of 
odis
rete subsetsof the 2-sphere S
2byJ. W. Cannon and G. R. Conner (Provo, UT)Dedi
ated to the memory of Karol Borsukon the o

asion of the 
entennial of his birth

Abstra
t. Andreas Zastrow 
onje
tured, and Cannon�Conner�Zastrow proved, that�lling one hole in the Sierpi«ski 
urve with a disk results in a planar Peano 
ontinuum thatis not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivationfor this paper, where we 
hara
terize those planar Peano 
ontinua that are homotopyequivalent to 1-dimensional sets.While many planar Peano 
ontinua are not homotopy equivalent to 1-dimensional
ompa
ta, we prove that ea
h has fundamental group that embeds in the fundamentalgroup of a 1-dimensional planar Peano 
ontinuum.We leave open the following question: Is a planar Peano 
ontinuum homotopi
ally1-dimensional if its fundamental group is isomorphi
 with the fundamental group of a1-dimensional planar Peano 
ontinuum?1. Introdu
tion. We say that a subset X of the 2-sphere S
2 is 
odis-
rete if its 
omplement D(X), as subspa
e of S

2, is dis
rete. For a 
odis
reteset X, the set B(X) of limit points of D(X) in S
2, whi
h is ne
essarily a
losed subset of X having dimension ≤ 1, is 
alled the bad set of X. Thehomotopy dimension of a spa
e X is the smallest dimension of a spa
e homo-topy equivalent to X. We say that X is homotopi
ally ≤k-dimensional if itshomotopy dimension is ≤ k. Our main theorem 
hara
terizes the homotopydimension of X in terms of the interplay between D(X) and B(X):Theorem 1.1 (Chara
terization Theorem). Suppose that X is a 
odis-
rete subset of the 2-sphere S

2. Then X has homotopy dimension ≤ 1 if andonly if the following two 
onditions are satis�ed :2000 Mathemati
s Subje
t Classi�
ation: Primary 57N05; Se
ondary 54F45, 54F50,55M10, 55P10.Key words and phrases: Peano 
ontinuum, 
odis
rete subset, homotopy dimension.The resear
h of the �rst author was supported NSF resear
h grant DMS-10104030.[35℄ 
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36 J. W. Cannon and G. R. Conner(1) Every 
omponent of S
2 \ B(X) 
ontains a point of D(X).(2) If D is any 
losed disk in the 2-sphere S

2, then the 
omponents of
D\B(X) that do not 
ontain any point of D(X) form a null sequen
e.[Re
all that a sequen
e C1, C2, . . . is a null sequen
e if the diameters ofthe sets Cn approa
h 0 as n approa
hes ∞.℄ Examples appear in the �gure.The �rst two examples of possible bad sets are lo
ally 
onne
ted. The oneis a 
ir
le with a null sequen
e of Hawaiian earrings atta
hed. The other isa Sierpi«ski 
urve. The asso
iated 
odis
rete set will be homotopi
ally ≤1-dimensional if and only if 
ondition (1) is satis�ed. The third example givesan example of a possible bad set that is not lo
ally 
onne
ted. In order thatthe asso
iated 
odis
rete set be homotopi
ally 1-dimensional, both 
ondi-tions (1) and (2) must be satis�ed. Thus, near ea
h point of the limiting ar
,where any small disk is separated into in�nitely many 
omponents by the os-
illating 
urve, almost all of these 
omponents must 
ontain a point of D(X).

Sierpi«ski 
urve Cir
le wedged with a 
ountablenull sequen
e of Hawaiian earringsLo
ally 
onne
ted bad sets

A non-lo
ally-
onne
ted bad set: the Warsaw 
ir
le
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2 37A 
ompa
tum is a 
ompa
t metri
 spa
e. A 
ontinuum is a 
onne
ted
ompa
tum. A Peano 
ontinuum is a lo
ally 
onne
ted 
ontinuum; equiv-alently, a Peano 
ontinuum is the metri
 
ontinuous image of the interval

[0, 1]. 1.1 applies to all Peano 
ontinua in the 2-sphere S
2 be
ause of thefollowing well-known theorem:Theorem 1.2. Every Peano 
ontinuum M in the 2-sphere S

2 is homo-topy equivalent to a 
odis
rete subset X of S
2. Conversely , every 
odis
retesubset X of S

2 is homotopy equivalent to a Peano 
ontinuum M in S
2.We shall indi
ate later (after Theorem 2.9) how this well-known theoremis proved. For the moment, we simply mention that, given M , one 
an obtainan appropriate 
odis
rete subset X by 
hoosing for D(X) exa
tly one pointfrom ea
h 
omponent of S

2 \ M . One 
an de�ne the bad set B(M) of M asthe bad set B(X) of X. It is natural to ask how restri
ted bad sets are. Thefollowing theorem, whi
h 
hara
terizes the possible bad sets of 
odis
retesets X, is a
tually an easy exer
ise whi
h we leave to the reader:Theorem 1.3. A subset B of the 2-sphere S
2 is the bad set B(X) ofsome 
odis
rete subset X ⊂ S

2 if and only if B is 
losed and has dimensionless than 2.It is an easy matter to use Chara
terization Theorem 1.1 and the 
on-stru
tion inherent in Theorem 1.3 to 
onstru
t all manner of interestingplanar Peano 
ontinua that are, or are not, homotopy equivalent to a 1-dimensional set. All the examples that have appeared in the literature (see[4℄ and [12℄) are likewise easily 
he
ked by means of Chara
terization Theo-rem 1.1.In light of the fa
t that so many planar Peano 
ontinua are not homo-topi
ally 1-dimensional, it is a little surprising to �nd that their fundamentalgroups are essentially 1-dimensional in the following sense:Theorem 1.4. If M is a planar Peano 
ontinuum, then the fundamen-tal group of M embeds in the fundamental group of a 1-dimensional planarPeano 
ontinuum.Corollary 1.5. If M is a planar Peano 
ontinuum, then the fundamen-tal group of M embeds in an inverse limit of �nitely generated free groups.Question 1.6. If M is a planar Peano 
ontinuum whose fundamentalgroup is isomorphi
 with the fundamental group of some 1-dimensional pla-nar Peano 
ontinuum, is it true that M is homotopi
ally 1-dimensional?The remaining se
tions of this paper will be devoted to proofs of thesetheorems.



38 J. W. Cannon and G. R. Conner2. Fundamental ideas and tools. Our proofs make substantial use of
lassi
al topology of the plane. As good basi
 referen
es we suggest [21℄, [19℄,[20℄, and [10℄, all deriving their initial impetus from the s
hool and work ofR. L. Moore, who summarized mu
h of his work in [15℄.To minimize the ne
essity of turning to these referen
es, we 
olle
t herea number of the basi
 ideas and tools that will be used often in the proofs.Many of these will be familiar to some of our readers. The topi
s will beoutlined in bold type so that the reader 
an qui
kly �nd those topi
s withwhi
h they are not familiar. For many, the best way to read the paper willbe to turn immediately to the later se
tions and return to this se
tion onlywhen they en
ounter a tool or idea with whi
h they are not familiar. Whereit is possible, we outline the proofs so that the reader will not have to huntfor obs
ure referen
es.Our �rst fundamental idea is that the Tietze Extension Theorem
an be used to 
ut o� a map f on an absolute retra
t R. Let f : X → Ybe a 
ontinuous fun
tion from a 
ompa
tum X to a spa
e Y . Assume that
R is a 
losed subset of Y , that R is an absolute retra
t, and that f−1(R)separates X into disjoint open subsets A and B. Then we obtain a newfun
tion f ′ : X → Y as follows: We de�ne f ′|(A∪f−1(R)) = f |(A∪f−1(R)).Sin
e R is an absolute retra
t and f−1(R) is a 
losed subspa
e of the normalspa
e B∪f−1(R), there is a 
ontinuous fun
tion f ′|B∪f−1(R)) that extends
f |f−1(R) and takes B ∪ f−1(R) into R. We say that the map f ′ 
uts f o�on R, �xing A.We next 
onsider the Phragmén�Brouwer properties, all satis�ed bythe n-sphere S

n for n ≥ 2. R. L. Wilder, in [21, Chapter 2, Theorem 4.12℄,proves the equivalen
e of seven of them ([21, pp. 47�50℄) in metri
 spa
es Sthat are 
onne
ted and lo
ally 
onne
ted. We mention only two:
Property I. If A and B are disjoint 
losed subsets of S, and x, y ∈ Sare su
h that neither A nor B separates x and y in S, then A ∪ B does notseparate x and y in S.
Property II (Brouwer Property). If M is a 
losed, 
onne
ted subset of

S and C is a 
omponent of S \ M , then the boundary of C is a 
losed and
onne
ted set.Here are two 
orollaries of Property I:Corollary 2.1. If A is an annulus and C is a 
losed subset of int(A)that separates the boundary 
omponents J1 and J2 of A, then some 
omponentof C separates J1 from J2 in A.Corollary 2.2. If D is the square disk and C is a 
losed subset of Dthat separates the top of D from the bottom of D, then some 
omponent of
C separates them.
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2 39The �rst of these 
orollaries is an immediate appli
ation of Property I,when one passes to a minimal separator (whi
h exists by the Brouwer Re-du
tion Theorem, [20, Chapter I, 11.1℄). The se
ond follows from the �rstwhen one �xes the right and left sides of D and doubles the remainder of Dto form an annulus.We apply these ideas to show that homotopies of X within itselfmust �x the bad set B(X) pointwise. This general prin
iple 
an beapplied to all 
onne
ted planar sets X and not just to 
odis
rete sets. If Xis any 
onne
ted planar set, then we may de�ne the bad set B(X) of X tobe the set of points x ∈ X having the property that, in ea
h neighborhoodof x, there is a simple 
losed 
urve J in X su
h that the interior of J inthe plane R

2 is not entirely 
ontained in the set X. This modi�ed de�nition
oin
ides with the previous de�nition when the set X is 
odis
rete.Theorem 2.3 ([4, Theorem 5.2℄). Suppose that X is a 
onne
ted planarset and that x ∈ B(X). Then every homotopy of X within X �xes the point x.Proof. Suppose that there is a homotopy H : X × [0, 1] → X su
h that
H(y, 0) = y for all y ∈ X and H(x, 1) 6= x. Let N0 and N1 be disjoint neigh-borhoods of x and H(x, 1), respe
tively. By 
ontinuity, there is a neighbor-hood M of x in N0 su
h that H(M, 1) ⊂ N1. There is a round 
ir
le J around
x that is not 
ontained in X but interse
ts X only in N0. There is a simple
losed 
urve K in int(J) ∩ M ⊂ X whose interior is not 
ontained entirelyin X. By 2.1, the annulus K × [0, 1] has its boundary 
omponents separatedby the H-preimage of some 
omponent of J ∩X. This 
omponent maps intoa single 
omponent L of J ∩X. Sin
e L is an absolute retra
t that is 
losedin X, the homotopy H|K × [0, 1] 
an be 
ut o� at this 
omponent via theTietze Extension Theorem, �xing H|K ×{0}. The image of of K ×{1} in Lis nullhomotopi
 in L. This allows one to shrink K in X, an impossibility.Our next fundamental idea is that of the 
onvergen
e of a sequen
eof sets. The two books by Whyburn, [19℄ and [20℄, and the text by Ho
kingand Young, [10℄, give a good treatment of this topi
. However, it does nottake mu
h spa
e to review the basi
s here. Suppose that A1, A2, . . . is asequen
e of subsets of a spa
e S. We say that a point x ∈ S is an elementof lim infi Ai if every neighborhood of x interse
ts all but �nitely many ofthe sets Ai. We say that x is an element of lim supi Ai if every neighborhoodof x interse
ts in�nitely many of the sets Ai. We say that the sequen
e Ai
onverges if the lim inf and lim sup 
oin
ide. The limit is de�ned to be this
ommon lim inf and lim sup.Theorem 2.4 ([19, Chapter I, Theorem 7.1℄; [20, Chapter I, Theorem7.1℄; [10, pp. 102�103℄). If A1, A2, . . . is any sequen
e of sets in a separablemetri
 spa
e S, then there is a 
onvergent subsequen
e.



40 J. W. Cannon and G. R. ConnerProof. Let U1, U2, . . . be a 
ountable basis for the topology of S. Let S0 bethe given sequen
e A1, A2, . . . of subsets of the spa
e S. Assume indu
tivelythat a subsequen
e Si of S has been 
hosen. If there is a subsequen
e of
Si no element of whi
h interse
ts Ui+1, let Si+1 be su
h a subsequen
e.Otherwise, let Si+1 = Si. Let S∞ be the diagonal sequen
e, whi
h takes as�rst element the �rst element of S1, as se
ond element the se
ond element of
S2, et
. We 
laim that the subsequen
e S∞ of S0 
onverges. Indeed, supposethat x ∈ lim supS∞, that is, every neighborhood of x interse
ts in�nitelymany elements of S∞. Suppose that there is a neighborhood Uj of x thatmisses in�nitely many elements of S∞. Then Sj , by de�nition, must miss
Uj . But this implies that all elements of S∞ with index as high as j miss
Uj , a 
ontradi
tion. Thus, every element of the lim sup lies in the lim inf.Sin
e the opposite in
lusion is obvious, these two limits are equal, and thesequen
e S∞ 
onverges.Theorem 2.5 (Properties of the limit of a 
onvergent sequen
e). Sup-pose that the sequen
e A1, A2, . . . of nonempty subsets of a separable metri
spa
e S 
onverges to a set A. Then(1) the set A is 
losed in S;(2) if S is 
ompa
t , then A is nonempty and 
ompa
t ;(3) if S is 
ompa
t and if ea
h Ai is 
onne
ted , then the limit A isnonempty , 
ompa
t , and 
onne
ted ;(4) if S is 
ompa
t and if ea
h Ai has diameter ≥ ε, then A has diameter

≥ ε.Proof. Easy exer
ise.We shall in more than one pla
e make use of R. L. Moore's De
om-position Theorem. In 1919 [13℄, R. L. Moore 
hara
terized the Eu
lideanplane topologi
ally. In 1925 [14℄, he noted that his axioms were also satis�edby a large 
lass of quotient spa
es of the plane, so that those identi�
ationspa
es were also planes.Sin
e Moore's theorem is somewhat ina

essible to today's readers be-
ause of evolving terminology and ba
kground, we will give a fairly straight-forward statement and we will outline the proof of this theorem. In theremarks following the statement of the theorem, we point out some equiva-lent statements of the fundamental hypotheses of the theorem that we usein our appli
ations. If any of the equivalent hypotheses is satis�ed, we shallsimply refer to the Moore De
omposition Theorem.Theorem 2.6 (Moore De
omposition Theorem). Suppose that f :S2→Xis a 
ontinuous map from the 2-sphere S
2 onto a Hausdor� spa
e X su
h that ,for ea
h x ∈ X, the set S

2\f−1(x) is homeomorphi
 with the plane R
2. Then

X is a 2-sphere.
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Remarks. (1) The requirement that S
2 \f−1(x) be homeomorphi
 with

R
2 is equivalent to the requirement that both f−1(x) and S

2 \ f−1(x) benonempty and 
onne
ted.(2) The Hausdor� 
ondition is equivalent in this setting to the more
entral requirement that f be a 
losed map. The map f is 
losed if, whenever
C ⊂ S

2 is 
losed in S
2, the set f(C) is 
losed in X. This, of 
ourse, in lightof the surje
tivity of f , makes f an identi�
ation map.An identi�
ation map f : A → B (surje
tive by hypothesis) is 
losed ifand only if the 
olle
tion G = {f−1(b) | b ∈ B} satis�es the upper semi
on-tinuity 
ondition, whi
h states that, if U is an open subset of A, then theunion of the elements of G that lie in U is also an open subset of A.Moore originally stated his theorem in terms of upper semi
ontinuous
olle
tions G �lling S
2 or R

2 and des
ribed the topology of the resultingquotient spa
es S
2/G and R

2/G. The elements of G are simply the pointpreimages of the surje
tion f .The Hausdor� 
ondition of the theorem 
an often be 
he
ked by 
on-sidering sequen
es of elements of G and their limit points. A sequen
e {gi}of elements of G is not allowed to 
ontain 
onvergent point sequen
es {xi}and {yi} with limit points x and y in two di�erent elements h and k of G,for then one would not be able to separate in X the points de�ned by hand k. The upper semi
ontinuity requirement is always satis�ed when thenondegenerate elements of G form a null sequen
e.(3) The R. L. Moore Theorem has lo
al versions that allow generalizationsto other 2-manifolds.(4) There is an easy analogous version for quotients of the 
ir
le, wherepoint preimages are points or (
losed) ar
s.(5) The theorem has generalizations to higher dimensions that requirestronger hypotheses: Suppose that f : S
n → X is a 
ontinuous map from the

n-sphere S
n onto a �nite-dimensional Hausdor� spa
e X su
h that, for ea
h

x ∈ X, the set S
n \ f−1(x) is homeomorphi
 with the Eu
lidean spa
e R

n.Then X is an n-sphere provided that, in addition, n ≥ 5, and X satis�esthe 
ondition that maps g : B
2 → X from the 2-dimensional disk B

2 into X
an be approximated by embeddings. This generalization was 
onje
tured andproved in many spe
ial 
ases by Cannon (see [2℄ for a substantial dis
ussion ofthese matters) and proved in general by R. D. Edwards (see Daverman's book[7℄). The situation in dimensions 3 and 4 has not been 
ompletely resolved.The proof of Moore's Theorem 2.6, whi
h we shall outline, relies on amore intuitive theorem, 
alled the Zippin Chara
terization Theorem. (See,for example, [21, Chapter III, Theorem 4.2℄.)Theorem 2.7 (Zippin Chara
terization Theorem). The spa
e X is a
2-sphere if the following four 
onditions are satis�ed :



42 J. W. Cannon and G. R. Conner(i) X is a nondegenerate Peano 
ontinuum.(ii) No point x ∈ X separates X (so that , in parti
ular , X 
ontains atleast one simple 
losed 
urve).(iii) Ea
h simple 
losed 
urve J ⊂ X separates X.(iv) No ar
 A ⊂ X separates X.Proof of Theorem 2.6. We prove the Moore De
omposition Theorem onthe basis of the Zippin Chara
terization Theorem. We verify the four 
ondi-tions of the Zippin Theorem in turn. (Note that 
onditions (iii) and (iv) aretrue in the 2-sphere by standard homologi
al arguments. We shall use thosesame arguments here.)(i) Sin
e X is Hausdor�, the map f is a 
losed surje
tion; hen
e it iseasy to verify the 
onditions of the Urysohn metrization theorem so that Xis metri
. (See [16, Theorem 34.1℄.) Sin
e S
2 is a Peano 
ontinuum, that is,a metri
 
ontinuous image of [0, 1], so also is X. Sin
e, for all x ∈ X, both

f−1(x) and S
2 \ f−1(x) are nonempty, X has more than one point; that is,

X is nondegenerate.(ii) By hypothesis, S
2 \ f−1(x) is 
onne
ted. Hen
e so is X \ {x} =

f(S2 \ f−1(x)).(iii) Let p1, p2 ∈ J 
ut J into two ar
s A1 and A2. Then f−1(A1)and f−1(A2) are 
ompa
t, 
onne
ted, and have non
onne
ted interse
tion
f−1(p1) ∪ f−1(p2). The redu
ed Mayer�Vietoris homology sequen
e for thepair U = S

2 \ f−1(A1) and V = S
2 \ f−1(A2) 
ontains the segment

H1(S
2 \ f−1(A1)) ⊕ H1(S

2 \ f−1(A2))

→ H1(S
2 \ (f−1(p1) ∪ f−1(p2)) → H̃0(S

2 \ (f−1(J))),where H1(U) = H1(V ) = 0 sin
e f−1(A1) and f−1(A2) are 
onne
ted and
H1(U ∪ V ) 6= 0 sin
e f−1(A1) ∩ f−1(A2) is not 
onne
ted. Thus we have
H̃0(S

2\f−1(J)) = H̃0(U∩V ) 6= 0, so that f−1(J) separates S
2. Consequently,

J separates X.(iv) If p ∈ A separates A into ar
s A1 and A2, and if A separates x and
y in X, then we 
laim that one of A1 and A2 also separates x and y in X;indeed, we see this by 
onsidering f−1(A) = f−1(A1)∪f−1(A2), whi
h mustseparate f−1(x) from f−1(y) in S

2. The redu
ed Mayer�Vietoris homologysequen
e for the pair U = S
2 \ f−1(A1) and V = S

2 \ f−1(A2) 
ontains thesegment
0 → H̃0(S

2 \ f−1(A)) → H̃0(S
2 \ f−1(A1)) ⊕ H̃0(S

2 \ f−1(A2)).Given any u ∈ f−1(x) and v ∈ f−1(y), the element u − v represents anonzero element of the 
enter group, hen
e maps to a nonzero element of
H̃0(S

2 \ f−1(A1) ⊕ H̃0(S
2 \ f−1(A2)). Therefore, either f−1(A1) or f−1(A2)separates u from v in S

2, implying the 
laim.



Homotopy dimension of 
odis
rete subsets of S
2 43By indu
tion, one obtains intervals I0 ⊃ I1 ⊃ · · · that separate x and yin X su
h that ⋂∞

n=1 In is a single point q that does not separate x from y.But an ar
 α from x to y in the path 
onne
ted open set X \ {q} missessome In, a 
ontradi
tion. We 
on
lude that A 
annot separate X.The proof of the Moore De
omposition Theorem 2.6 is 
omplete.Our sixth topi
 is that of lo
ally 
onne
ted 
ontinua in the plane.The following theorem 
hara
terizes planar Peano 
ontinua in several ways,all well-known. A version of this theorem appears in [9℄.Theorem 2.8. Suppose that M is a 
ontinuum (= 
ompa
t , 
onne
tedsubset) in the 2-sphere S
2. Then M is a Peano 
ontinuum (= lo
ally 
on-ne
ted 
ontinuum) if and only if the following four equivalent 
onditions aresatis�ed :(1) For ea
h disk D in S

2, the 
omponents of D\M form a null sequen
e.(1′) For ea
h disk D in S
2, the 
omponents of D∩M form a null sequen
e.(2) For ea
h annulus A in S

2, the 
omponents of A \ M that interse
tboth boundary 
omponents of A are �nite in number.(2′) For ea
h annulus A in S
2, the 
omponents of A ∩ M that interse
tboth boundary 
omponents of A are �nite in number.

Remark. All proofs involving 
ontinua M ⊂ R
2 that are not lo
ally
onne
ted involve the 
onstru
tion of limit 
ontinua, that is, nondegenerate
ontinua L ⊂ M that are limits of a sequen
e of disjoint nondegenerate
ontinua Li in the 
omplement of M that are separated from one anotherby M in an open subset of M .Proof. Assume that M is lo
ally 
onne
ted but (1) is not satis�ed, sothat, for some disk D in S

2, the 
omponents of D \ M do not form a nullsequen
e. Then some sequen
e Ui of su
h 
omponents 
onverges to a nonde-generate 
ontinuum U in S
2 by Theorems 2.4 and 2.5. Let A be an annulusin S

2 that separates two points of U . Then ea
h Ui 
ontains an ar
 Ai ir-redu
ibly joining the two ends of A. We may assume that they 
onvergeto a 
ontinuum A′ joining the two ends of A. The 
ontinuum A′ must bea subset of M , for otherwise it 
ould not have points of in�nitely many ofthe 
omponents Ui 
lose to it. We may pass to a subsequen
e of the Ai's so
hosen that their endpoints on one boundary 
omponent J of the annulus
A 
onverge monotoni
ally on J . It then follows that ea
h Ai is adja
ent to
Ai+1, with neither A′ nor any other Aj between them. They must thereforebe separated by a 
omponent Mi of A ∩ M that interse
ts both ends of A.(See Corollary 2.2.) The 
omponents Mi 
onverge to a sub
ontinuum of A′that joins the ends of A. This shows that M is not lo
ally 
onne
ted at thesepoints of A′, a 
ontradi
tion.



44 J. W. Cannon and G. R. ConnerSuppose (1) is satis�ed but (1′) is not. That is, there is a disk D in S
2 andin�nitely many large 
omponents of D∩M . We may take a sequen
e of su
h
omponents that 
onverge to a nondegenerate sub
ontinuum of M . We takean annulus A that separates two points of the limit 
ontinuum. In�nitelymany of the large 
omponents 
ross this annulus. They are separated bylarge 
omponents of A\M that 
ross the annulus. Ar
s in these 
omponentsthat 
ross the annulus allow one to form a disk D that is 
rossed by in�nitelymany large 
omponents of D \ M , a 
ontradi
tion to (1). We 
on
lude that(1′) is satis�ed.Similar arguments show that (1′) implies (1) and that these are equivalentto (2) and (2′).Finally, if M is not lo
ally 
onne
ted, then there is a 
omponent of anopen subset of M that is not open. That is, there is an open set N , a
omponent C of N , and a point p ∈ C su
h that p is a limit point of N \C.If pi is a sequen
e from N \C 
onverging to p, then no 
omponent of N 
an
ontain more than �nitely many of the points pi, for, otherwise, p would bea point of that 
omponent. But ea
h 
omponent of N has a limit point in

M \N (prove as an exer
ise or refer to [20, Chapter I, 10.1℄). Thus the 
losureof ea
h of these 
omponents interse
ts the boundary of N in M . These large
omponents 
ontradi
t (1′).Theorem 2.9 (Filling Theorem). Suppose that M is a Peano 
ontinuumin the 2-sphere S
2, and suppose that U is a 
omponent of the 
omplementof M in S

2. Then there is a map f : B
2 → cl(U) from the 2-disk B

2 ontothe 
losure of the domain U that takes int(B2) homeomorphi
ally onto Uand takes S
1 = ∂(B2) 
ontinuously onto ∂(U). In addition, if A is a freeboundary ar
 of cl(U), then we may assume that the map f is one-to-oneover the ar
 A. Furthermore, we may assume that , for ea
h p ∈ S

1, the set
f−1f(p) is totally dis
onne
ted.
Remark. That the ar
 A is freemeans that A is a

essible from pre
iselyone of its sides from the domain U and that int(A) is an open subset of ∂(U).Proof. We give only an indi
ation of the proof. There are well-known,
ompletely topologi
al proofs of this theorem. However, re�nements of theRiemann Mapping Theorem also give very enlightening analyti
 information.The relevant analyti
 theory is the theory of prime ends. There is a goodexposition of the theory in John B. Conway's readily available textbook,[6, Chapter 14, Se
tions 1�5℄. It follows from the lo
al 
onne
tivity of M(applying Theorem 2.8(1)) that the impressions of the prime ends in U areall singletons. By the theory of prime ends, the Riemann mapping from

int(B2) onto U extends 
ontinuously to the boundary.Sin
e the ar
 A is free, the prime ends at A 
orrespond exa
tly to thepoints of A so that the map is one-to-one over A.
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e the prime ends of int(B2) are singletons, the sets f−1f(p) are totallydis
onne
ted.Proof of Theorem 1.2. Suppose that M is a lo
ally 
onne
ted 
ontinuumin S

2. If M = S
2, then M is already 
odis
rete. Otherwise, let U1, U2, . . .denote the 
omplementary domains of M in S

2. By Theorem 2.8, the 
om-ponents of S
2 \ M form a null sequen
e. By Theorem 2.9, there is for ea
h

i a 
ontinuous surje
tion fi : B
2 → cl(Ui) that takes S

1 onto the boundaryof Ui and takes the interior of B
2 homeomorphi
ally onto Ui. Let pi = fi(0).Then the set D = {p1, p2, . . .} is obviously dis
rete. The set cl(Ui) \ {pi}
an obviously be deformed into the boundary of Ui by pushing points awayfrom pi along the images under fi of radii in B

2. These deformations 
anbe 
ombined to deform all of X = S
2 \ D onto M sin
e the Ui form a nullsequen
e. We 
on
lude that M is homotopy equivalent to the 
odis
rete set

X = S
2 \ D.Conversely, if X is 
odis
rete, then we may take, about the points p of

D(X), small disjoint round disks d(p). The 
ontinuum M = S
2\

⋃
p int(d(p))is a Peano 
ontinuum to whi
h X 
an be deformed by a strong deformationretra
tion.This 
ompletes the proof of Theorem 1.2.3. Peano domains. We may think of the Chara
terization Theorem 1.1as a substantial generalization of the Filling Theorem, Theorem 2.9. We shallneed an intermediate generalization of Theorem 2.9 that deals with 
ompa
tsets that a
t mu
h like Peano 
ontinua but are not ne
essarily 
onne
ted.We 
all the 
omplementary domains of su
h 
ompa
ta Peano domains. Weshall deal with the 
ompa
ta themselves by joining them together by ar
s soas to form a Peano 
ontinuum.Definition 3.1. A 
onne
ted open subset U of S

2 is 
alled a Peanodomain if its nondegenerate boundary 
omponents form a null sequen
eof Peano 
ontinua. (Note that there may be un
ountably many additional
omponents that are single points.)Theorem 3.2. Suppose that U is a 
onne
ted open subset of the 2-sphere S
2. Then the following three 
onditions are equivalent :(1) The open set U is a Peano domain.(2) For ea
h disk D in S

2, the 
omponents of U∩D form a null sequen
e.(3) There is a 
ontinuous surje
tion f : B
2 → cl(U) su
h that f(S1) ⊃

∂(U) and f |int(B2) is a homeomorphism onto its image, whi
h ne
-essarily lies in U .
Remark. Note that (1) generalizes the notion of lo
al 
onne
tedness.Note that (2) generalizes 
hara
terization (1) of lo
al 
onne
tedness in The-
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an reformulate (2) in ea
h of the ways suggested byTheorem 2.8. Note that (3) generalizes Theorem 2.9. Note that, in the proof,we 
an assume that the map f is 1-1 over given free boundary ar
s of U be-
ause the same is true in Theorem 2.9.Proof. Assume (1), so that U is a Peano domain. Assume that (2) is notsatis�ed, so that there is a disk D in S
2 su
h that the 
omponents of U ∩Ddo not form a null sequen
e. Then some sequen
e U1, U2, . . . of 
omponents
onverges to a nondegenerate 
ontinuum M . The 
ontinuum M must be asubset of a boundary 
omponent of U . We may assume that the 
omponents

U1, U2, . . . are separated from ea
h other by large boundary 
omponentsof U . (Refer to the Brouwer Property II and to Corollary 2.2.) There areonly �nitely many large boundary 
omponents of U . Hen
e in�nitely manyof the separators must 
ome from the same boundary 
omponent. It followsthat the limit, namely M , is also in the same boundary 
omponent. Butthis boundary 
omponent is not lo
ally 
onne
ted at the points of M , a
ontradi
tion. We 
on
lude that (2) is satis�ed so that (1) implies (2).Assume that (2) is satis�ed but (1) is not. Then either there is a 
om-ponent of ∂(U) that is not lo
ally 
onne
ted, or there exist in�nitely many
omponents of ∂(U) having diameter ≥ ε, for some �xed ε > 0. In either
ase, taking a 
onvergent sequen
e of large 
omponents or a limit 
ontin-uum from a single 
omponent that is not lo
ally 
onne
ted (Theorem 2.8),we �nd the existen
e of an annulus A in S
2 and 
omponents X1, X2, . . . of

∂(U)∩A, ea
h of whi
h interse
ts both 
omponents of ∂(A). These 
ompo-nents of ∂(U) ∩ A must be separated by large 
omponents of A ∩ U . If weremove a sli
e from one of these large separating 
omponents, we obtain adisk D that is 
rossed by in�nitely many large 
omponents of U ∩D, whi
h
ontradi
ts (2). Therefore (2) implies (1).Assume that (3) is satis�ed, so that there is a 
ontinuous surje
tion f :
B

2 → cl(U) su
h that f(S1) ⊃ ∂(U) and f |int(B2) is a homeomorphismonto its image. Assume that (1) is not satis�ed, so that either there is a
omponent of ∂(U) that is not lo
ally 
onne
ted, or there exist in�nitelymany 
omponents of ∂(U) ea
h having diameter greater than some �xedpositive number ε. In either 
ase, we �nd by taking limits (Theorem 2.8)that there is an annulus A in S
2 and 
omponents X1, X2, . . . of ∂(U) ∩ A,ea
h of whi
h interse
ts both 
omponents of ∂(A). We may assume that

X1, X2, . . . 
onverges to a 
ontinuum X0 joining both 
omponents of ∂(A).We may assume that Xi−1∪Xi+1 separates Xi from X0 in A, for i = 2, 3, . . . .Pi
k pi ∈ Xi ∩ int(A) for i ≥ 0 su
h that pi → p0. Let q0, q1, q2, . . . ∈ S
1be points su
h that f(qi) = pi. Let Bi be the straight-line segment in B
2joining q0 to qi. We may assume that the ar
s Bi 
onverge to an ar
 or apoint B in B

2. We shall obtain a 
ontradi
tion as follows.
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e

f(qi) ∈ Xi, f(q0) ∈ X0, and f(int(Bi)) ⊂ U . Hen
e, if we traverse Bi from qitoward q0, there exists a �rst point bi ∈ Bi su
h that f(bi) ∈ ∂(A). We mayassume that bi → b0 ∈ B
2 and f(bi) → f(b0) ∈ ∂(A). Sin
e f(bi) is separatedfrom X0 by Xi−1 ∪ Xi+1 in A and sin
e Xi → X0, we may 
on
lude that

f(b0) ∈ X0∩∂(A). Hen
e b0 ∈ S
1\{q0}. But b0 must therefore be an endpointof B distin
t from q0 and must therefore be the limit of the points qi. We�nd that f(qi) → p0 ∈ int(A) and f(qi) → f(b0) ∈ ∂(A), a 
ontradi
tion.We 
on
lude that (3) implies (1).It remains to prove that (1) implies (3). This is by far the hardest ofthe impli
ations. It is a generalization of the rather deep Theorem 2.9, andwe shall redu
e it to that theorem. We shall also make use of the wonderfulR. L. Moore De
omposition Theorem 2.6.Our plan is to 
onne
t ∂(U) by deleting from U a null sequen
e A1, A2, . . .of ar
s to form a new 
onne
ted open set V = U \

⋃
i Ai whose boundary

∂(V ) = ∂(U)∪
⋃

i Ai is a lo
ally 
onne
ted 
ontinuum. Then we simply applyTheorem 2.9.For 
onvenien
e, we wish to modify the 
losure of U so that ea
h nonde-generate boundary 
omponent of ∂(U) is a simple 
losed 
urve. We shall doso in su
h a way that the 
losure of the new U 
ollapses to the 
losure of theold U and preserves the property of being a Peano domain. This 
onvenient,yet inessential, modi�
ation simpli�es the des
ription of the stru
tures thatwe need to build in proving that U is a Peano domain.We 
hange the nondegenerate 
omponents C of ∂(U) into simple 
losed
urves as follows.We de�ne UC to be the 
omponent of S
2 \ C that 
ontains U . Sin
e Cis lo
ally 
onne
ted by (1), we may apply Theorem 2.9 to �nd a 
ontinu-ous surje
tion g : B

2 → C ∪ UC that takes S
1 onto C and takes int(B2)homeomorphi
ally onto UC . We require that the sets g−1g(p) be totally dis-
onne
ted for ea
h p ∈ S

1 = ∂(B2). Radii in B
2 de�ne radial segments in UCwhose endpoints may be identi�ed at various points of ∂(UC).We pull UC into itself along these radial segments so as to split theboundary identi�
ations of g|(S1 = ∂(B2)) apart and make ∂(UC) a simple
losed 
urve. Be
ause the sets g−1g(p) are totally dis
onne
ted, it followsthat the nondegenerate boundary 
omponents of the new U also form a nullsequen
e. We may thus assume that ∂(UC) is a simple 
losed 
urve.We repeat the argument with ea
h of the 
ountably many nondegenerateboundary 
omponents in turn. Sin
e ea
h move 
an be made arbitrarilysmall, there is no problem in getting the sequen
e of moves to 
onverge. Thedi�
ulty lies in getting all of the appropriate properties to be preserved in thelimit. It is possible to deal with that di�
ulty exa
tly as one does in the proofof the Baire Category Theorem, in the embedding of n-dimensional 
om-
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ta in Eu
lidean 2n + 1-dimensional spa
e (see, for example, the proof of[1, Chapter VI, Theorem 1.52℄), or in for
ing a sequen
e of homeomorphismsto 
onverge to a homeomorphism: namely, the desired properties 
an been
oded in 
ountably many open 
onditions in fun
tion spa
e, and ea
hsu

essive 
hange 
an be made so small that more and more of the desired
onditions are satis�ed and preserved in the limit.We may thus repeat the argument in�nitely often to 
on
lude that welose no generality in assuming that ea
h nondegenerate 
omponent is asimple 
losed 
urve. That is, U is the 
omplement of a null sequen
e ofdisks D1, D2, . . . and a 0-dimensional set D, the union of D1, D2, . . ., and Dbeing 
losed.We shall string the 
omponents of ∂(U) together by a null sequen
e ofar
s that run through U . These ar
s will be built by approximation. Atevery stage, the ar
s together with 
ertain larger and larger 
olle
tions ofthe disks Dj will form a 
ontra
tible set. The additions at ea
h stage will besmaller and smaller �feelers�. The feelers will be bu�ered from one anotherso that, in the limit, they 
annot grow ba
k together. It follows that thelimit 
ontinuum 
annot separate S
2. Certain limit points in ∂(U) will beatta
hed only in the limit. The stru
tures de�ned make it 
lear that thelimiting 
ontinuum 
an be expressed as a union of �nitely many arbitrarilysmall 
onne
ted sets so that the �nal 
ontinuum is a single Peano 
ontinuum.Here is the pro
ess:It may help the reader to imagine that the 
losure of U lies in the unitsquare [0, 1] × [0, 1], that one of the disks D1 is the 
omplement of thissquare in the 
ompa
ti�ed plane S
2 = R

2 ∪ {∞}, and that the other disks
D2, D3, . . . are some sub
olle
tion of the disks whose interiors are removedin forming the standard Sierpi«ski 
urve. This is permissible by a theoremof G. T. Whyburn [18℄. However, this normalization is a 
on
eptual aid onlysin
e we have to enri
h the Whyburn argument a bit. We explain the mild
ompli
ations that arise in our setting in the next paragraph.We wish to 
onstru
t a ni
e sequen
e of 
ellulations of the 2-spherethat respe
t the boundary 
omponents of U . If, for example, we wish to
on
entrate on some parti
ular �nite set S of the large disks Di, we mayform an upper semi
ontinuous de
omposition of S

2 by de
laring the other
Di's that miss S to be the nondegenerate elements of the de
omposition.By R. L. Moore's De
omposition Theorem 2.6, the quotient spa
e is the2-sphere S

2. The (homeomorphi
) image of U in this new 
opy of S
2 willhave, as 
omplement, the (images of the) elements of S and a 0-dimensionalset that is lo
ally 
losed away from S. It is then an easy matter to 
ellu-late S

2 so that the elements of S 
over a sub
omplex and the remainder ofthe 1-skeleton misses ∂(U) entirely. This adjustment of the 1-skeleton is the
entral part of the Whyburn argument [18℄. Whyburn only has to have his
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ountable set. We need the 1-skeleton to miss a 
ountablefamily of 
losed, 0-dimensional sets. But sin
e the 
omplement of a 
losed0-dimensional set is lo
ally path 
onne
ted, our requirements are no harderto meet than his.As a 
onsequen
e, we �nd that there is a sequen
e S1, S2, . . . of arbitrarily�ne 
ellulations of S

2, Si+1 subdividing Si, su
h that, for ea
h i, the following
onditions are satis�ed:(i) Two 2-
ells of Si that interse
t interse
t in an ar
.(ii) The 1-skeleton of Si misses all of the 0-dimensional part D of ∂(U).(iii) For all j, the 1-skeleton of Si either misses the disk Dj or 
ontains
∂(Dj). Consequently, Si has a distinguished �nite sub
olle
tion ofdisks Dj that are pre
isely equal to unions of 2-
ells of Si. All otherdisks Dk will lie in the interiors of 2-
ells of Si.(iv) If a 2-
ell C of Si has a boundary point in some ∂(Dj), with int(C)
6⊂ Dj , then ∂(C) ∩

⋃
k Dk is an ar
 in ∂(Dj).It is ne
essary to distinguish four types of 2-
ells in the 
ellulation Si:A 2-
ell C of Si is of type 0 if it lies entirely in U .A 2-
ell C is of type 1 if it lies entirely in the 
omplement of U , hen
elies in one of the distinguished disks Dj of the 
ellulation Si (see (iii) above).A 2-
ell C is of type 2 if it interse
ts both U and the 
omplement of U ,but its boundary lies entirely in U .A 2-
ell C is of type 3 if its boundary interse
ts both U and the 
om-plement of U . Condition (iv) above implies that a 2-
ell C of type 3 hasboundary that interse
ts pre
isely one disk Dj , that Dj is one of the distin-guished disks of Si, and the interse
tion is a boundary ar
 of ea
h.We shall essentially ignore the 2-
ells of type 0. We shall deal with thedisks of type 1 only impli
itly by 
onsidering instead their unions that givethe distinguished disks Dj of the 
ellulation Si (see (iii) above). Cells oftype 2 will be joined to these distinguished disks by ar
s in U . Cells of type 3will be joined to these distinguished disks by their interse
ting boundary ar
s.It will be 
onvenient to use the notation C∗ for the union of the elementsof a 
olle
tion C of sets.Let D1 denote the 
olle
tion of Dj 's that are distinguished in the 
ellu-lation S1. Then D∗

1 =
⋃
{D ∈ D1}. We may assume D1 ∈ D1. We may pi
ka 
olle
tion A1 of ar
s from the 1-skeleton S

(1)
1 of S1 that irredu
ibly joinstogether these distinguished disks Dj ∈ D1, so that the union C1 = D∗

1 ∪A∗
1of disks and ar
s is 
ontra
tible. Without destroying the 
ontra
tibility ofthe set C1, we add additional ar
s from the 1-skeleton to the 
olle
tion A1if ne
essary so that every 
ell of type 2 interse
ts one of the ar
s of A1.All of the 
ells of S1 of type 0 will be ignored from now on. All of the 
ellsof S1 of type 1 are 
ontained in the 
ontra
tible topologi
al polyhedron C1.
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eed to the indu
tion, we will atta
h �feelers� to C1. There will beone feeler in ea
h 
ell C of type 2 and it will be atta
hed to C1 at a single,arbitrarily 
hosen point of the interse
tion of C ∩ C1. We 
all that point theatta
hing point. In ea
h 
ell C of type 3, there may be �nitely many or anull sequen
e of feelers, but ea
h will be atta
hed to C1 at some point ofthe boundary ar
 of C that lies in a distinguished disk. We 
all that ar
 theatta
hing ar
. There may 
ertainly be other points of ∂(C) that lie in C1, butnone of these lies in ∂(U). Hen
e, for 
ells C of types 2 and 3, the 
omplementin ∂(C) of the atta
hing point or atta
hing ar
 
an serve as a bu�er never tobe approa
hed or 
rossed in the 
onstru
tion. It is these bu�ers that makeit easy to see that the limit 
ontinuum is 
ontra
tible and lo
ally 
onne
ted.We pro
eed by indu
tion. We assume that we have 
onstru
ted 
on-tra
tible sets C1 ⊂ · · · ⊂ Ci that lie ex
ept for distinguished disks of S1, S2,
. . . , Si in the 1-skeletons of the 
ellulations. We may impose one additional
ondition on the 
ellulation Si+1:(v) For ea
h 
ell C of Si that has type 2 or 3, that part of the 1-skeletonof Si+1 that lies in the interior of C, taken together with the atta
h-ing point (type 2) or atta
hing ar
 (type 3), is 
onne
ted.All of the a
tion in 
reating Ci+1 takes pla
e in the individual 
ells Cof Si of type 2 and 3. Exa
tly as in the 
onstru
tion of C1, we may pi
ka 
olle
tion of ar
s Ai+1(C) from that part of the 1-skeleton of Si+1 thatlies in the interior of C, taken together with the atta
hing point (type 2) oratta
hing ar
 (type 3), that irredu
ibly joins together the atta
hing set of
C, the distinguished disks Dj ∈ Di+1 in C, and the 
ells of Si+1 of type 2in C. All of these new distinguished disks and all of these new ar
s 
an beadded to Ci to form a new 
ontra
tible set Ci+1. We denote the entire union⋃

C Ai+1(C) of ar
s as Ai+1.For ea
h of the new 
ells of types 2 and 3, we 
hoose an atta
hing pointor ar
 as before.We leave it to the reader to verify that M = (S2 \ U) ∪
⋃

i Ai is asingle lo
ally 
onne
ted 
ontinuum with a single 
omplementary domain V =
U \

⋃
i Ai.By Theorem 2.9, there is a map f : B

2 → cl(V ) from the 2-disk B
2 ontothe 
losure of the domain V that takes int(B2) homeomorphi
ally onto Vand takes S

1 = ∂(B2) 
ontinuously onto ∂(V ). The same map establishes
ondition (3) of Theorem 3.2.This 
ompletes the proof that (1) implies (3). Thus all three 
onditions ofTheorem 3.2 are equivalent, as 
laimed. The proof of Theorem 3.2 is therefore
omplete.Our �nal theorem of this se
tion shows how to push a Peano domainonto its boundary together with a 1-dimensional set provided the domain is
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tured on a nonempty dis
rete set. This easy theorem will be needed asthe last step in the proof of Theorem 1.1.Theorem 3.3. Suppose that U is a Peano domain in S

2 and that C isa nonempty 
ountable or �nite subset of U that has no limit points in U .Then cl(U) \ C 
an be retra
ted by a strong deformation retra
tion onto a
1-dimensional 
ompa
tum that 
ontains ∂(U).Proof. By Theorem 3.2, we know that there is a 
ontinuous surje
tion
f : B

2 → cl(U) su
h that f(S1) ⊃ ∂(U) and f |int(B2) is a homeomorphismonto its image.By invarian
e of domain, f |int(B2) is an open map. It follows that
f(int(B2)) is disjoint from f(∂(B2)) = f(S1), for otherwise points of int(B2)near S

1 would map to points already o

upied by other points of f(int(B2)).Sin
e f(int(B2)) is dense in f(B2) = cl(U) and disjoint from f(S1), f(S1)must be 1-dimensional. Hen
e it is an easy exer
ise to show that we maymodify f slightly over U so that f(S1) misses C. We may further modify f sothat f maps the origin 0 ∈ B
2 to a point of C and so that all other points of Chave preimages on di�erent radii of B

2. Let f−1(C) = {c0 = 0, c1, c2, c3, . . .}.Let A1, A2, . . . be the radial ar
s beginning at c1, c2, . . ., respe
tively, andending on S
1 = ∂(B2). Let D1, D2, . . . be disjoint round disks in int(B2)\{0}
entered at c1, c2, . . ., respe
tively, su
h that the only Aj interse
ted by Diis Ai. Let V = int(B2) \ [

⋃
i Ai ∪

⋃
i Di]. Then B

2 \ f−1(C) 
an obviouslybe retra
ted by a strong deformation retra
tion onto the 1-dimensional set
∂(V ). Hen
e f(B2)\C = cl(U)\C 
an be retra
ted by a strong deformationretra
tion onto the 1-dimensional set f(∂(V )).4. The ne
essity of 
onditions (1) and (2) in Theorem 1.1. Weassume that X is a 
odis
rete set that is homotopy equivalent to a metri
1-dimensional set Y . Let f : X → Y and g : Y → X be homotopy inverses.We isolate the three key te
hni
al 
onstru
tions as lemmas. Ea
h of theseis standard and well-known. We omit the proofs.Lemma 4.1 (Dimension Lemma). If g : Z ′ → Z is any map from a
1-dimensional 
ompa
tum Z ′ into the 
losure Z of an open subset U of S

2,then g is homotopi
, by a homotopy whi
h only moves points in U to amap g′ : Z ′ → Z su
h that g′(Z ′) ∩ U is 1-dimensional. (The key ideas areexplained, for example, in [17, Exer
ises for Chapter 3, Se
tions G and H℄.)Lemma 4.2 (Homotopy Lemma).(i) Let C ⊂ S
2 be 
losed , and let H : C × [0, 1] → S

2 denote a defor-mation of C that begins at the identity (that is, H(c, 0) = c for all
c ∈ C). Then H 
an be extended to a deformation H ′ : S

2×[0, 1] → S
2that also begins at the identity.
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2 
ontaining the points of ∂(C) that aremoved by the deformation H, then we may require that N 
ontainthe points of S

2 \ C moved by H ′. (See [16, Se
tion 62, Lemma 62.1and Exer
ise 3℄.)Lemma 4.3 (Annulus Lemma). Suppose 
ondition (2) of Theorem 1.1fails. Then there are an annulus R′ in S
2 and 
omponents U ′

1, U
′
2, . . . of

R′ \B(X) su
h that ea
h U ′
j interse
ts both boundary 
omponents of R′ andmisses the set D(X). (See Theorem 2.8 and its proof.)The three lemmas imply ne
essity of 
onditions (1) and (2) asfollows: By pre
omposing the homotopy equivalen
e f with a deformationretra
tion onto a 
ompa
t subset of X, we may assume that the image f(X)is a 1-dimensional 
ontinuum Z ′. By Dimension Lemma 4.1, we may assumethat g◦f(X)\B(X) is 1-dimensional. Let G : X× [0, 1] → X be a homotopythat begins with the identity on X and ends with g ◦ f . By Theorem 2.3, wesee that G(x, t) = x for ea
h x ∈ B(X).Assume that 
ondition (1) of the hypothesis of Theorem 1.1 fails, so thatsome 
omponent U of S

2 \B(X) 
ontains no point of D(X). Hen
e U ⊂ X.Let H : cl(U)× [0, 1] → S
2 denote the restri
tion of G to cl(U)× [0, 1]. Sin
e

H �xes ∂(U) ⊂ B(X), we may extend H to a deformation H ′ of S
2 that �xes

S2 \U pointwise. Sin
e H ′(S2×{1})∩U ⊂ G(S2×{1})∩U is 1-dimensional,we see that H ′ deforms S
2 into a proper subset of itself, whi
h is impossible.Hen
e 
ondition (1) must be satis�ed.Assume that 
ondition (2) of the hypothesis of Theorem 1.1 fails. Then,by Annulus Lemma 4.3, there are an annulus R′ in S

2 and 
omponents
U ′

1, U
′
2, . . . of R′ \B(X) su
h that ea
h U ′

j interse
ts both boundary 
ompo-nents of R′ and fails to interse
t the set D(X).By passing to a subsequen
e, we may assume that the 
omponents U ′
1, U ′

2,
U ′

3, . . . 
onverge to a 
ontinuum A that joins the two boundary 
omponentsof R′. Sin
e the 
omponents U ′
j are separated by B(X), it follows that A ⊂

B(X). Let D be a small disk in int(R′) 
entered at some point of A. Sin
ethe deformation G 
onstru
ted above moves no point of B(X), there is aneighborhood N of A in X, no point of whi
h is moved by G as far as 1/2,the distan
e from ∂(R′) to D. We 
hoose j so large that cl(U ′
j) ⊂ N and

U ′
j ∩ int(D) 6= ∅. Sin
e no point of D(X) lies in U ′

j , all of cl(U ′
j) lies in X.We let H : cl(U ′

j) × [0, 1] → S
2 be the restri
tion of G to cl(U ′

j) × [0, 1].By Homotopy Lemma 4.2(i), there is a deformation H ′ : S
2 × [0, 1] → S

2that extends H. Sin
e ∂(U ′
j)∩ int(R′) ⊂ B(X), H does not move the pointsof ∂(U ′

j) ∩ int(R′). Hen
e, by Homotopy Lemma 4.2(iii), we may requirethat H ′|[S2 \ cl(U ′
j)]× [0, 1] moves points only near ∂(R)∩ cl(U ′

j), a set that
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ontains the points moved by H|∂(U ′

j)× [0, 1]. By Homotopy Lemma 4.2(ii),we may require that no points of S
2 \U ′

j be 
arried into D∩U ′
j . Hen
e H ′ isa homotopy of S

2 that takes S
2 to a proper subset of itself, an impossibility.Hen
e 
ondition (2) of Theorem 1.1 is also satis�ed.5. The su�
ien
y of 
onditions (1) and (2) in Chara
terizationTheorem 1.1. We assume 
onditions (1) and (2) of Chara
terization The-orem 1.1. That is, the open set U0 = S

2 \ B(X) satis�es the following two
onditions:(1) Ea
h 
omponent of U0 
ontains a point of D(X).(2) If D is any disk in S
2, then the 
omponents of U0 ∩ D that 
ontainno point of D(X) form a null sequen
e.Our goal is to show that X is homotopy equivalent to a 1-dimensionalset.Noti
e that properties (1) and (2) make no expli
it mention of the bad set

B(X) and are simply properties that an open subset of S
2 may or may nothave. This is an important observation, be
ause our proof that X is homo-topy equivalent to a 1-dimensional set will involve a 
ompli
ated indu
tionthat will involve a null sequen
e U0, U1, U2, . . . of open sets, ea
h of whi
hsatis�es properties (1) and (2).It will also be 
onvenient to adopt the following terminology: we say thatset is pun
tured if it 
ontains a point of D(X). Otherwise, we say that it isunpun
tured.We �rst have to deal with the trivial 
ase where B(X) = ∅. If B(X) = ∅,then the single 
omponent S

2 = S
2 \ B(X) must 
ontain a point of D(X)by (1). Thus there must be at least one point of D(X) and at most �nitelymany. Hen
eX is 
learly homotopy equivalent to a point or bouquet of 
ir
les.From now on, we may assume that the set D(X) is in�nite and theset B(X) is nonempty. Sin
e D(X) is 
ountable, we may list the points

p0, p1, p2, . . . of D(X). We need to show that X is homotopy equivalentto a 1-dimensional set. We shall do this by 
onstru
ting a null sequen
e
U0, U1, U2, . . . of disjoint Peano domains su
h that, for ea
h i, pi ∈ Ui, andsu
h that the union ⋃

i Ui is dense in S
2. Ea
h set cl(Ui)\{pi} 
an be deformedonto a 1-dimensional set that 
ontains its boundary by Theorem 3.3. Sin
ethese sets form a null sequen
e, the deformations 
an be 
ombined to givea deformation that takes X onto the union of S

2 \
⋃

i Ui and 1-dimensional
ompa
ta that 
ontain the sets ∂(Ui). Ea
h of these sets is a 
ompa
t 1-dimensional set. Hen
e their (
ountable) union is 1-dimensional.The domains Ui are 
reated by a long indu
tion. Ea
h step of the indu
-tion 
onstru
ts a null sequen
e of Peano domains. At step 0 of the indu
tion,an individual domain 
an have diameter as large as the diameter of S
2. There-
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t the maximum diameter of a Peano domainat step i to be bounded by 1/i. Hen
e the union of this 
ountable 
olle
tionof null sequen
es is also a null sequen
e.We 
onsider S
2 as R

2 ∪ {∞}. We may assume that p0 = ∞ ∈ D(X). Bys
aling and translating R
2, we may assume that [D(X) \ {∞}] ∪ B(X) liesin the interior of the 
losed unit square S = [0, 1] × [0, 1].We now begin the 
onstru
tion of our �rst null sequen
e of Peano do-mains. We outline the strategy. The reader who digests this strategy will beable to avoid getting lost in the details. We are trying to �ll the open set

U0 = S
2 \ B(X) with small Peano domains, more pre
isely a null sequen
eof Peano domains, that are pun
tured (
ontain points of D(X)). We there-fore 
over U0 with a �ne grid to divide it into small pie
es. What happensthen is reminis
ent of the 
hildren's story, �Fortunately� ([5℄). Fortunately,some of these small pie
es will be pun
tured. Unfortunately, some will beunpun
tured. Fortunately, the unpun
tured pie
es form a null sequen
e byhypothesis (2); unfortunately, however, they must be atta
hed to adja
entpie
es that are pun
tured and, unfortunately, the adja
ent pun
tured pie
esneed not form a null sequen
e. Fortunately, we 
an 
arve out of the adja-
ent pun
tured pie
es a null sequen
e of smaller pun
tured pie
es to whi
hwe 
an atta
h the unpun
tured pie
es. Unfortunately, the pro
ess of 
arvingout small pun
tured pie
es 
reates new unpun
tured pie
es. Fortunately, thenew unpun
tured pie
es form a null sequen
e that we 
an atta
h to the nullsequen
e of pun
tured pie
es. Unfortunately, the 
arving out of small pun
-tured pie
es 
reates new, as yet unatta
hed, pun
tured pie
es that need notform a null sequen
e. Fortunately, the unatta
hed pun
tured pie
es are uni-formly small and, together, form a new open set U1 that satis�es hypotheses(1) and (2). We 
an then undertake the indu
tive step with a new open setwhose pie
es are smaller than at the previous stage. Here are the details.

Step 1: Creating small pie
es. We impose a square grid on S 
onsistingof a large square formed from small 
onstituent 
losed squares. Sin
e the set
D(X) is 
ountable, we lose no generality in assuming that the edges of thegrid miss D(X). The grid divides the open set U0 = S

2 \ B(X) into many
omponents. We 
all the 
olle
tion of su
h 
omponents C0. More pre
isely:(i) The set S
2 \ int(S) is an element of C0.(ii) If T is any small, 
losed, 
onstituent square of the grid, then ea
h
omponent of T \ B(X) is also an element of C0.Note that the elements of C0 are not in general disjoint sin
e they 
an inter-se
t along the edges of the grid.

Step 2: Colle
ting the unpun
tured pie
es into a null sequen
e of smallsets. Let C′
0 denote the sub
olle
tion of C0 
onsisting of those elements whose
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tured. We take the union ⋃

C′
0 of the elements of C ′

0 and
laim two things:(iii) The 
omponents of ⋃
C′

0 form a null sequen
e.(iv) Ea
h 
omponent of ⋃
C′

0 shares points of an edge with an elementof C0 whose interior is pun
tured.Proof of (iii). We apply here the fundamental prin
iple of 
onvergen
e of
ontinua from Theorems 2.4 and 2.5. The argument 
ould be repeated almostverbatim perhaps four more times in the 
ourse of Se
tion 4. Often we willhave to 
onsider two 
ases, depending on whether the limit 
ontinuum 
on-tains a point in the interior of a 
onstituent square of the superimposed gridor does not. We will not always repeat the details after this �rst argument.Here are the details:Suppose ε > 0, and suppose that there exist 
omponents Y1, Y2, . . . of⋃
C′

0, ea
h of diameter ≥ ε. We may assume that Yi → Y in the sense ofTheorems 2.4 and 2.5, where Y is a 
ontinuum of diameter ≥ ε.Suppose �rst that Y 
ontains a point in the interior of some 
onstituentsquare. Then a small annulus A about that point in the interior of the
onstituent square interse
ts all but �nitely many of the Yi in a 
omponentthat 
rosses A from one boundary 
omponent to the other, whi
h easily givesa 
ontradi
tion to hypothesis (2).Suppose next that Y lies in the 1-skeleton of the grid. Then it 
ontainsan interval of an edge of one of the small 
onstituent squares. In this 
ase,we may take an annulus A that surrounds an interior point of the intervaland interse
ts ea
h of the two adja
ent squares in a disk (half of an annulus).Again, all but �nitely many of the Yi will interse
t one of these two disksin a 
omponent that 
rosses the disk from one side to the opposite, whi
heasily gives a 
ontradi
tion to hypothesis (2).This 
ompletes the proof of (iii).Proof of (iv). We may expand the elements of C0 slightly without in-trodu
ing interse
tions between sets that did not already interse
t; we thusobtain an open 
overing of U0. Ea
h 
omponent of U0 is pun
tured, by hy-pothesis (1). In ea
h 
omponent V , any two elements of C0, as expanded,that lie in V are joined by a �nite 
hain of su
h elements by a standard
onne
tedness argument. A minimal su
h 
hain 
onne
ts ea
h element of C′
0to an element of C0 that is pun
tured. Property (iv) follows.

Step 3: Atta
hing the unpun
tured pie
es of Step 2 to a null sequen
eof pun
tured pie
es. To ea
h 
omponent K of ⋃
C′

0 we assign a pun
turedelement L = L(K) ∈ C0 that interse
ts K along at least one edge. Su
h anelement L(K) exists by (iv) of Step 2. The elements L thus 
hosen de�nitelyneed not form a null sequen
e, but we shall 
arve out from su
h elements
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L a new null sequen
e of pun
tured domains to whi
h we may atta
h the
omponents K. Here is the argument:For ea
h 
omponent K, 
hoose an open ar
 A(K) along whi
h K isatta
hed to L(K). Choose a point q(K) ∈ A(K). Enumerate these pointsas q1, q2, . . . . Ea
h qi belongs to a spe
i�
 Ki, and ar
 Ai, and 
omponent
Li = L(Ki).Choose an ar
 B1 in L1 that joins q1 to D(X) irredu
ibly. We may requirethat B1∩(1-skeleton of grid) = q1 and that, for every ar
 B having the sameproperties, diam(B1) ≤ 2 diam(B).Pro
eed indu
tively. Choose an ar
 Bk+1 in Lk+1 joining qk+1 to D(X)∪
B1 ∪ · · · ∪Bk irredu
ibly. We may require that Bk+1 ∩ (1-skeleton of grid) =
qk+1 and that, for every ar
 B having the same properties, diam(Bk+1) ≤
2 diam(B).We make the following 
laims about the ar
s Bi:(v) The ar
s B1, B2, . . . form a null sequen
e.(vi) For every ε > 0, there exists k su
h that ea
h 
omponent of B(k) =

Bk+1 ∪ Bk+2 ∪ · · · has diameter less than ε.[Note that (vi) implies (v). Properties (v) and (vi) are stated separatelysin
e (v) is used in the proof of (vi).℄Proof of (v). Suppose that (v) is not satis�ed. Then there is a subse-quen
e Bi1 , Bi2 , . . . that 
onverges to a nondegenerate 
ontinuum B. [Thisis our se
ond appli
ation of the fundamental prin
iple of Theorems 2.4 and2.5.℄ We may assume that the Bij all lie in the same small 
onstituent square
T of the grid and that their initial endpoints qi1 , qi2 , . . . 
onverge to a point
q ∈ ∂(T ). Let A be a small annulus about q that interse
ts T in a small disk
A′ of less than half of the diameter of B. All but �nitely many of the ar
s Bij
ross that disk A′ in a large 
omponent B′

ij
. By hypothesis (2), only �nitelymany large 
omponents of A′∩U0 do not 
ontain a point of D(X). It followseasily that either some B′

ij
is in a 
omponent that 
ontains a point of D(X)or is in a 
omponent that 
ontains another B′

ik
, with j > k. In either 
ase,the diameter of Bij 
an be redu
ed more than half by short
utting Bij to

D(X) or to Bik , a 
ontradi
tion. This 
ompletes the proof of (v).Proof of (vi). We shall make strong use of (v). Suppose there is an ε > 0su
h that ea
h of the sets B(k) = Bk+1 ∪ Bk+2 ∪ · · · 
ontains a 
omponent
Yk of diameter ≥ ε. We may pi
k from Yk a subset Y ′

k that is a �nite 
hain
Y ′

k = Bk1
∪ · · · ∪Bkl

of the ar
s B1, B2, . . . and that has diameter ≥ ε/2. Wemay assume that the sets Y ′
k are disjoint. Indeed, passing to a subsequen
e,we may 
ertainly assume that di�erent Y ′

k's involve di�erent Bkj
's. Then,sin
e the 
omponents of B(1) are trees, one Y ′

k 
an interse
t another onlyin one point. Hen
e, if one deletes the Bkj
interse
ting the previous Y ′

k, one



Homotopy dimension of 
odis
rete subsets of S
2 57will still have at least one sub
hain of substantial size (approximately ε/4)that is disjoint from the previous Y ′

k. Passing to an appropriate subsequen
e,we may 
ertainly assume that the Y ′
k all lie in the same small 
onstituentsquare T . If Y ′

k = Bk1
∪ · · · ∪Bkl

with k1 < · · · < kl, then we 
all q(k) = qklthe initial point of Y ′
k. We may assume that the initial points q(k) 
onvergeto a point q ∈ ∂(T ). Let A be a small annulus about q that interse
ts

T in a small disk A′. Then ea
h Y ′
k is a 
hain of small ar
s 
rossing A′whose links Bkj

all interse
t ∂(T ). A Y ′
k with small links, ea
h interse
ting

∂(T ), must hug ∂(T ) as it 
rosses A′ and presents a barrier that 
annot beavoided by another (disjoint) Y ′
k that 
rosses A′ in the same dire
tion. Itfollows that there 
an be at most two su
h that are disjoint, ea
h 
rossing

A′ along ∂(T ) in a di�erent dire
tion, a 
ontradi
tion. This 
ompletes theproof of (vi).From property (vi) it follows easily that ea
h 
omponent B of B1∪B2∪· · ·is a tree that lies in a single small 
onstituent square T , 
ontains exa
tly onepoint of D(X), and has, as its leaves (leaf = vertex lying on only one edge),spe
ial atta
hing points qj in 
orresponding atta
hing ar
s Aj of 
ertain
omponents Kj of ⋃
C′

0. Furthermore, these trees B form a null sequen
e oftrees.Ea
h 
omponent of ⋃
C′

0 is atta
hed to one of these trees at a leaf. Wethi
ken ea
h of these trees slightly and disjointly so that they still form anull sequen
e, still 
ontain one point of D(X) ea
h, but now interse
t theappropriate atta
hing ar
s Aj in neighborhoods A′
j of the atta
hing points qj .If B is one of the tree 
omponents of B1∪B2∪· · · , then we let B′ denoteits thi
kening. We let B′

1, B
′
2, . . . denote the 
olle
tion of thi
kened trees.The interiors of the thi
kened trees B′

j are 
learly Peano domains sin
eit is an easy matter to 
onstru
t a 
ontinuous surje
tion f : B
2 → cl(B′

j)that takes int(B2) homeomorphi
ally onto int(B′
j). These Peano domains willform the 
ores of the Peano domains that we are attempting to 
onstru
tin this stage of the indu
tion. To them, we must atta
h the 
omponents Kjthat we have des
ribed above and also 
ertain sets that we will des
ribe inthe next step.

Step 4: Atta
hing the unpun
tured 
omponents 
reated by removing thethi
kened trees of Step 3. When we remove the thi
kened trees B′
j from the
omponents L = L(K), we may 
reate new 
omponents that are unpun
-tured. We must atta
h ea
h of those to an adja
ent thi
kened tree B′

j.We let C ′′
0 denote the 
olle
tion of new domains M 
reated by removingthe thi
kened trees B′

j . That is, for ea
h pun
tured element L of C0 that isassigned as L = L(K) for at least one 
omponent K of ⋃
C ′

0, the 
omponents
M of L \

⋃
B′

j are elements of the 
olle
tion C ′′
0 . We then have the followingfa
t.
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0 that 
ontain no elements of D(X) form anull sequen
e.Proof of (vii). Suppose not. Then there are 
omponents M1, M2, . . . that
ontain no point of D(X) and 
onverge to a nondegenerate 
ontinuum M .Sin
e the thi
kened trees B′

j are formed by adding small one-sided neighbor-hoods to ea
h side of the trees Bj , and those neighborhoods 
ontain no pointsof D(X), we may add those neighborhoods ba
k into the 
omponents Miwithout 
hanging the number of those 
omponents, without 
hanging theirsize in any substantial way, and without 
hanging their limit. We thereforeignore the thi
kenings and 
onsider the Mi's as 
omponents of the 
omple-ment of the union of the Bj 's.Suppose �rst that M has a point p that lies in the interior of a small
onstituent square T . Sin
e ⋃
j Bj is lo
ally a �nite graph away from theedges of the grid, and a �nite graph separates an open set lo
ally into only�nitely many 
omponents, p 6∈

⋃
j Bj . Hen
e there is a small annulus Asurrounding p that 
ontains no point of ⋃

j Bj . Ea
h Mi 
rosses A in a �large�set, 
ontained in a 
omponent of A ∩ U0 that 
ontains no points of D(X)and no points of ⋃
j Bj . There are only �nitely many su
h, a 
ontradi
tion.Suppose �nally that M lies in the 1-skeleton of the grid. Then we maysuppose that M 
ontains a nondegenerate interval I of an edge of a small
onstituent square T , and we may assume that ea
h Mi also lies in thatsquare. We may take a small re
tangular disk neighborhood A of I ′ ⊂ I in Tso that all but �nitely many Mi 
ross A from one side to the other near I ′. Nopoint of the larger interval int(I) 
an lie in ⋃

j Bj, for most of the Mi's wouldthen have to 
ross some Bj , a 
ontradi
tion. Hen
e, only large Bj 's 
an 
omenear the smaller interval I ′. Hen
e I ′ has a neighborhood in A missing ⋃
j Bj.But, by hypothesis (2), all but �nitely many of the 
omponents 
rossing Amust 
ontain points of D(X), a 
ontradi
tion.This 
ompletes the proof of (vii).Ea
h of the 
omponents M just dis
ussed shares an ar
 with some thi
k-ened tree B′

j . We atta
h ea
h 
omponent M to su
h an adja
ent B′
j alongan atta
hing ar
.

Step 5: Completion of the �rst null sequen
e of Peano domains. Wehave at this point 
reated three null sequen
es of sets, namely, the 
om-ponents K of ⋃
C′

0, the 
omponents B′ of thi
kened trees, and the un-pun
tured 
omponents M that were formed when the thi
kened trees were
arved out of pun
tured 
omponents of C0. Using the atta
hing ar
s de-s
ribed earlier, we 
an therefore form a null sequen
e of domains of the form
V = int(B′ ∪ K1 ∪ K2 ∪ · · · ∪ M1 ∪ M2 ∪ · · · ), where B′ is a thi
kened treeand the K's and the M 's are atta
hed to B′ along atta
hing ar
s. (Ea
h Kiand ea
h Mi is atta
hed to a unique B′

j . So the V 's are disjoint.)
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h obviously form a null sequen
e of sets, are allPeano domains.Proof of (viii). We have already noted that int(B′) is a Peano domain.Ea
h int(Ki) is a Peano domain be
ause, by hypothesis (2) of this theoremand a two-
ase argument similar to (iii), it satis�es hypothesis (2) of Theo-rem 3.2. We see that the sets Mj are Peano domains be
ause of the followingargument. Suppose there is a disk D su
h that the 
omponents of Mj ∩D donot form a null sequen
e. We let V1, V2, . . . denote a sequen
e of 
omponents
onverging to a nondegenerate 
ontinuum V . We get a 
ontradi
tion exa
tlyas in the argument for (vii) above.We now 
hoose, for the 
losures of B′ and for the 
losures of ea
h of the

Ki's and ea
h of the Mj 's, a 
ontinuous surje
tion from B
2 as in 
ondition(3) of Theorem 3.2. By the proof of Theorem 3.2, as noted in the remarkfollowing the statement of Theorem 3.2, we may assume that these mapsare 1-1 over the atta
hing ar
s. It is thus an easy matter to pie
e thesefun
tions together to get a single 
ontinuous surje
tion from B

2 onto the
losure of V = int(B′ ∪K1 ∪K2 ∪ · · · ∪M1 ∪M2 ∪ · · · ) of the kind requiredby Theorem 3.2(3).This 
ompletes the proof of (viii).
Step 6: Preparing for the next stage of the indu
tion. If L is an elementof C0 from whi
h 
ertain thi
kened trees B′

i have been removed, then theremaining pun
tured 
omponents all have diameter less than or equal to themesh of the 
overing grid. However, they need not form a null sequen
e. Wesimply take the union of the interiors of su
h elements in R
2 to form a newopen set U1. This open set forms the input to the next stage of the indu
tion.We need to verify the following fa
t:(ix) The open set U1 satis�es the two 
onditions (1) and (2) with whi
hwe began Se
tion 4.Proof of (ix). The remaining 
omponents are all subsets of 
omponentsof elements of C0, hen
e have diameter less than or equal to the mesh of the
overing grid.Suppose that D is a disk and D ∩ U1 has in�nitely many large 
ompo-nents Mi that 
ontain no point of D(X). We may assume Mi → M , Mnondegenerate. We argue again exa
tly as in the proof of (vii) to obtain a
ontradi
tion.Thus hypothesis (2) is satis�ed. Sin
e ea
h 
omponent of U1 is, by hy-pothesis, pun
tured, hypothesis (1) is also satis�ed.This 
ompletes the proof of (ix).

Step 7: The indu
tive step and the 
ompletion of the proof. We nowre
y
le the new open set U1 as the set U0 of the argument just given, but use
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h smaller mesh. We repeat this pro
ess indu
tively, in�nitelyoften. The 
ompletion of the argument is then 
lear provided we make thefollowing two remarks:(x) We may require that the point pi ∈ D(X) lie in one of the trees
onstru
ted before or during the ith stage of the indu
tion.Proof of (x). We may 
hoose the mesh so small that, if pi has not beenused before stage i, then pi is the only point of D(X) in a square of thegrid and its neighboring squares, all lying in Ui. We 
an 
hoose to atta
h theneighboring squares to the square 
ontaining pi.(xi) Eventually, every point p of S
2 \ (D(X) ∪ B(X)) lies in the 
losureof the 
onstru
ted Peano domains.Proof of (xi). When squares are su�
iently small, every square 
ontain-ing p misses D(X) ∪ B(X). If p has not already appeared in the 
losure ofone of our Peano domains, then p will lie in a 
omponent K that 
ontains nopoint of D(X), hen
e will be atta
hed to some thi
kened tree at that stage.Thus our proof is 
omplete that we 
an tile the 
omplement of B(X) witha null sequen
e of disjoint Peano domains. Hen
e, in�nitely many appli
a-tions of Theorem 3.3 show that X 
an be deformed by a strong deformationretra
tion onto a 1-dimensional set.6. Proof of Theorem 1.4. We are given a planar Peano 
ontinuum M .We must show that the fundamental group of M embeds in the fundamentalgroup of a 1-dimensional planar Peano 
ontinuum M ′.The 
onstru
tion of the 1-dimensional planar Peano 
ontinuum M ′. Weshall asso
iate with M a quotient map π : M → M ′ onto a 1-dimensionalPeano 
ontinuum M ′ in su
h a way that ea
h nondegenerate point preimage

π−1(x), for x ∈ M ′, is an ar
 in M with endpoints in ∂M .The verti
al de
omposition of M , and the quotient 
ontinuum M ′. Let Vbe a verti
al line that interse
ts M . Let G(V ) denote the set of 
omponentsof V ∩M . Let G =
⋃

V G(V ). Let G0 be the trivial extension of G to all of R
2.(That is, G0 \ G 
onsists of the singleton sets of R

2 \M .) Let π : M → M ′ =
M/G and π′ : R

2 → R
2/G0 be the asso
iated quotient maps.

Claim 1. The de
omposition G0 is 
ellular and upper semi
ontinuous,so that R
2/G0 is homeomorphi
 with R

2 by the Moore De
omposition Theo-rem 2.6. Sin
e ea
h element of G interse
ts ∂(M), M ′ = π(M) = π′(M) isnowhere dense in R
2 ∼ R

2/G0. Consequently, M ′ is a 1-dimensional Peano
ontinuum.Proof of the 
laim. Sin
e ea
h element of G0 is a point or an ar
, G0is 
ellular. Let g1, g2, . . . be elements of G0 
ontaining 
onvergent sequen
es
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xi → x and yi → y, with xi, yi ∈ gi ∈ G0. If x 6= y, then gi must be a verti
alinterval in M for all i su�
iently large. Thus x and y must be elements of
M in the same verti
al interval. The verti
al intervals gi join xi to yi. Hen
etheir limits 
ontain a verti
al interval from x to y, whi
h must lie in M . Thus
x and y are in the same element of G0, and G0 is upper semi
ontinuous.The remaining assertions of the 
laim are easily veri�ed.
Claim 2. The proje
tion map π : M → M ′ indu
es a map on funda-mental groups that is inje
tive. [The proof of this 
laim will establish Theo-rem 1.4.℄Proof of the 
laim. Let f : S

1 → M be a 
ontinuous fun
tion su
h that
f ′ = π ◦ f : S

1 → M ′ is nullhomotopi
 in M ′ (that is, there is a map
F ′ : B

2 → M ′ that extends f ′). We must show that f is nullhomotopi
in M .Analysis of f ′ = π ◦ f : S
1 → M ′. (The analysis is essentially taken from[3, 3.2.1℄.)

Mapping Analysis Lemma (see [8℄ and [3, 3.2.1℄). Suppose that f ′ :
S

1 → M ′ is a nullhomotopi
 mapping from the 
ir
le S
1 into a 1-dimensional
ontinuum M ′. Then there is an upper semi
ontinuous de
omposition H of

S
1 into 
ompa
ta that has the following three properties:(1) The mapping f ′ is 
onstant on ea
h element of H.(2) The de
omposition H is non
rossing. That is, if h1 and h2 are distin
telements of H, then the 
onvex hulls Hull(h1) and Hull(h2) of h1and h2 in the disk B

2 are disjoint. [Equivalently, h1 does not separate
h2 on S

1.](3) The de
omposition H is �lling. That is, the disk B
2 is the union ofthe 
onvex hulls Hull(h) of the elements h ∈ H.Proof. Let F ′ : B

2 → M ′ be a map that extends f ′ : S
1 → M ′. We de�ne

H = {h = C ∩ S
1 | ∃x ∈ M ′ su
h that C is a 
omponent of (F ′)−1(x)}.It is obvious that H is an upper semi
ontinuous de
omposition of S

1 into
ompa
ta and that H satis�es 
on
lusion (1) of the Mapping Analysis Lem-ma. (One 
an easily 
he
k the upper semi
ontinuity by verifying the followingtwo exer
ises:
Exercise 1. If f : M1 → M2 is a 
ontinuous fun
tion between 
om-pa
ta, then the 
omponents of the point preimages form an upper semi-
ontinuous de
omposition G of M1. [Indeed, let xi, yi ∈ Ki ∈ G with

xi → x ∈ K(x) ∈ G and yi → y ∈ K(y) ∈ G. In order to prove theHausdor� 
ondition, it su�
es to show that K(x) = K(y). By Theorems 2.4and 2.5, we may assume that the sequen
e Ki 
onverges to a 
ontinuum K.By the 
ontinuity of f , f |K must be a 
onstant fun
tion sin
e ea
h of the
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tions f |Ki is 
onstant. But x, y ∈ K. Hen
e K ⊂ K(x) ∩ K(y) and
K(x) = K(y).℄
Exercise 2. If G is an upper semi
ontinuous de
omposition of a 
om-pa
tum M into 
ompa
t sets, and if X is a 
ompa
t subset of M , then theelements K ∩ X, for K ∈ G, form an upper semi
ontinuous de
ompositionof X. [Indeed, pro
eed in a manner similar to the solution of Exer
ise 1.℄)The proof of 
on
lusion (2) of the Mapping Analysis Lemma is easy. If

h1 separates h2 on S
1, and if h1 = C1 ∩ S

1 and h2 = C2 ∩ S
1, then C1 and

C2 must interse
t, a 
ontradi
tion.The proof of 
on
lusion (3) requires Lemma 6.1 below, whi
h shows that
S

1/H is a 
ontra
tible set. Knowing that S
1/H is 
ontra
tible, we argue asfollows. Let H ′ be the 
olle
tion of sets in R

2 that are either 
onvex hullsHull(h) of elements of h ∈ H or are singleton sets that miss all su
h 
onvexhulls. Sin
e H is non
rossing, by (2), it follows easily that H ′ is a 
ellular,upper semi
ontinuous de
omposition of R
2. Let π : R

2 → R
2/H ′ ≈ R

2denote the proje
tion map. If H were not �lling, then the 
ontra
tible set
π(S1) ≈ S

1/H would separate the nonempty sets π(R2\B
2) and π(B2)\π(S1)in R

2/H ′ ≈ R
2, a 
ontradi
tion.Here is the lemma that shows that S

1/H is 
ontra
tible.Lemma 6.1. Let F : B
2 → M ′ be a 
ontinuous fun
tion from the disk B

2into a 1-dimensional 
ontinuum M ′. De�ne
H = {h = C ∩ S1 | ∃x ∈ M ′ su
h that C is a 
omponent of F−1(x)}.Then H is an upper semi
ontinuous de
omposition of S

1 into 
ompa
ta and
S

1/H is a 1-dimensional , 
ontra
tible, planar Peano 
ontinuum (that is,
S

1/H is a dendrite).Proof. Ea
h point p ∈ B
2 lies in some 
omponent C of some point preim-age F−1(x), x ∈ M ′. We may partially order these 
omponents by de
laring

C ≤ C ′ if C lies in the union of C ′ and its bounded 
omplementary domains.By a 
ompa
tness argument, for ea
h C, there is a maximal C ′ with C ≤ C ′.We may rede�ne F ′ so that F ′(p) = F ′(C). This modi�
ation does not alterthe de
omposition H of S
1. After this modi�
ation, the nondegenerate 
om-ponents of point preimages form the nondegenerate elements of a 
ellularupper semi
ontinuous de
omposition G of R

2 (see the two exer
ises above);and, by the Moore De
omposition Theorem 2.6, the quotient R
2/G is hom-eomorphi
 with R

2. We denote the quotient map by π′ : R
2 → R

2/G ≈ R
2.The modi�ed F ′ fa
tors through the proje
tion π′|B2 : B

2 → B
2/(G|B2):

F ′ : B
2 π′|B2

−→ B
2/(G|B2)

F ′′

−→ M ′.The image π′(B2) of the disk B
2 is 
ontra
tible be
ause it is a strongdeformation retra
t of the disk π′(2B

2) ⊂ R
2/G. [The set π′(2B

2) is a disk
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e it is a 
ompa
t set in the plane R

2/G whose boundary is a simple 
losed
urve.℄The image π′(B2) of the disk B
2 is 1-dimensional sin
e (i) it admitsthe mapping F ′′ : π′(B2) → M ′ into a 1-dimensional spa
e M ′ and thepoint preimages of F ′′ are totally dis
onne
ted, while (ii) a map that redu
esdimension by k must have at least one point preimage of dimension k ([11,Theorem VI 7℄).The images π′(B2) and π′(S1) are equal for the following reasons. Sin
e

π′(B2) is 
ompa
t and 1-dimensional, the open set π′(R2 \B
2) is dense in theplane R

2/G. Hen
e the image of π′(R2 \ int(B2)) is the entire plane. Con-sequently, π′(S1) ⊃ π′(B2). The opposite in
lusion is obvious. We 
on
ludethat π′(S1) is 
ontra
tible.The proof of Lemma 6.1 
ompletes the proof of the Mapping AnalysisLemma.Completion of the proof that f : S
1 → M is nullhomotopi
. We re
all the
ellular, upper semi
ontinuous de
omposition G of R

2 that has as its nonde-generate elements the maximal verti
al intervals in M and whose quotientmap π : R
2 → R

2/G takes M onto M ′. We use the Mapping Analysis Lemmato obtain an upper semi
ontinuous de
omposition H of S
1 that models theshrinking of f ′ = π ◦ f : S

1 → M ′ in the 1-dimensional set M ′. Sin
e thede
omposition H is non
rossing and �lling, we may expand this de
omposi-tion H to a de
omposition G of B
2 by taking as elements the 
onvex hulls in

B
2 of the elements of H. The shrinking of f in M will rely on the interplaybetween the de
ompositions G and G. We shall use the de
omposition Gof B

2 as a model on whi
h we shall base the 
onstru
tion of a 
ontinuousfun
tion F : B
2 → M that extends f : S

1 → M .If, for ea
h g ∈ G, f |g ∩ S
1 were 
onstant (as is true for f ′), we 
ouldsimply de�ne F (g) = f(g∩S

1). However, this need not be the 
ase. All thatwe know is that for ea
h g ∈ G, there exists h(g) ∈ G su
h that f(g ∩ S
1) ⊂

h(g). We need to show how to de�ne F |g : g → h(g) ⊂ M in su
h a waythat the union F =
⋃
{F |g : g ∈ G} is a 
ontinuous extension of f .If g is a single point, then that point lies in S

1, and we may de�ne
F (g) = f(g).If g is an interval with its ends in S

1, then we extend the map f |∂glinearly to all of g.If g is a disk, then we use an ideal triangulation of g in the following way:The set g is the 
onvex hull Hull(h) of a 
losed subset h of the unit
ir
le S
1. Sin
e g is a disk, h 
ontains at least three points. An ideal triangleis a triangle in B

2 that has its verti
es on S
1. A 
olle
tion {Ti} of idealtriangles is said to be an ideal triangulation of the 
onvex hull g providedthat the 
olle
tion of triangles is lo
ally �nite in int(B2), the triangles have



64 J. W. Cannon and G. R. Connerdisjoint interiors, have verti
es in h, and have union whose interse
tion with
int(B2) is pre
isely g ∩ int(B2).
Triangulation Lemma. If g = Hull(h) is a disk, then g has an idealtriangulation.Proof. Every point x ∈ Hull(h)∩ int(B2) has a neighborhood in Hull(h)that is in the 
onvex hull of a �nite 
olle
tion of points in h. [Hint: everypoint of a 
onvex hull lies in the hull of a �nite subset; 
onsider separatelythe 
ase where the point is in the interior or on the boundary of su
h a �nitepolygon.℄ Hen
e, every 
ompa
t subset of Hull(h)∩ int(B2) is in the 
onvexhull of a �nite 
olle
tion of points in h.Let C1 ⊂ C2 ⊂ · · · be an exhaustion of Hull(h) ∩ int(B2) by 
ompa
tsets, and let F1 ⊂ F2 ⊂ · · · be �nite subsets of h su
h that Ci ⊂ Hull(Fi).It su�
es to show that any ideal triangulation Ti of Hull(Fi) extends toan ideal triangulation Ti+1 of Hull(Fi+1), for then we may take T (X) =⋃∞

i=1 Ti.To extend Ti to Ti+1, it su�
es to see that we 
an add one point p at atime to Fi. Sin
e ea
h edge of Ti separates B
2, the domain of B

2 \ |Ti| that
ontains p is bounded by a single edge rs of Ti followed by an ar
 of S
1 that
ontains p. We simply add the triangle prs to Ti.Note that, sin
e every 
ompa
t set Ci in g ∩ int(B2) is a
tually 
overedby a �nite sub
olle
tion of the triangles Tj , the 
olle
tion is lo
ally �nite in

int(B2).This 
ompletes the proof of the Triangulation Lemma.With the Triangulation Lemma in hand, we are ready to de�ne F |g :
g → M , for the 
ase where g is a disk.In this 
ase, we note that h = g ∩ S

1 is a 
ompa
t set having at leastthree points. Hen
e, by the Triangulation Lemma, g has an ideal triangula-tion T (g). We de�ne F on g ∩ S
1 to equal f . On ea
h triangle ti of T (g),we de�ne F to be the linear extension of f restri
ted to the three verti
esof ti.Proof that F |g is 
ontinuous for ea
h g ∈ G. If F |g is not 
ontinuous,then there are xi → x in g and ε > 0 su
h that d(F (xi), F (x)) ≥ ε for all i.Sin
e F |g ∩ S

1 = f |g ∩ S
1 is 
ontinuous, we may assume that ea
h xi lies in

int(B2). Sin
e F is 
ontinuous on any �nite union of triangles of T (g) andsin
e T (g) is lo
ally �nite in int(B2), we may assume that x ∈ h = g ∩ S
1and that x1, x2, . . . 
ome from distin
t triangles of T (g). Sin
e these triangles
annot a

umulate at any interior point of B

2, they must, in fa
t, havediameter going to 0 and approa
h x. But then their verti
es approa
h xand, by linearity, their images approa
h F (x), a 
ontradi
tion. Hen
e F |g is
ontinuous.
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ontinuous. If F is not 
ontinuous, then there are xi → xin B

2 and ε > 0 su
h that d(F (xi), F (x)) ≥ ε for all i. Sin
e, for ea
h g ∈ G,
F |g is 
ontinuous, we may assume that x1, x2, . . . , x all 
ome from distin
telements g1, g2, . . . , g of G. By 
ontinuity of F |S1 = f , we may ignore those
xi in S

1. Hen
e, we may assume that xi ∈ int(B2), and that gi is either an ar

ti or a disk, one of whose triangles ti 
ontains xi. If the ti approa
h x, then
x ∈ S

1, the verti
es of the ti approa
h x, and the images of the ti approa
h
F (x) by linearity and the 
ontinuity of F |S1 = f . Otherwise, we may assumethat the ti approa
h an edge t of g that 
ontains x. Again, their verti
es ap-proa
h the verti
es of t, and the 
ontinuity of F |S1 = f and linearity implythat F (xi) → F (x), a 
ontradi
tion. We 
on
lude that F is 
ontinuous.This 
ompletes the proof of Theorem 1.4.We re
all the 
orollary and question asso
iated with Theorem 1.4:
Corollary 1.5. If M is a planar Peano 
ontinuum, then the fundamen-tal group of M embeds in an inverse limit of �nitely generated free groups.Proof. This theorem is well-known for 1-dimensional 
ontinua. See, forexample, [8℄ and [4℄.
Question 1.6. If M is a planar Peano 
ontinuum whose fundamen-tal group is isomorphi
 with the fundamental group of some 1-dimensionalplanar Peano 
ontinuum, is it true that M is homotopi
ally 1-dimensional?It is not di�
ult to see that the proje
tion that we have given that takes

M onto M ′ does not give a surje
tion on fundamental groups if M is nothomotopi
ally 1-dimensional. The key issue to resolve here is whether anarbitrary group embedding into the group of a 1-dimensional 
ontinuum 
analways be indu
ed by a 
ontinuous map.
Corollary 1.7. If M is a planar Peano 
ontinuum, f : S

1 → M is aloop in M, and f is nullhomotopi
 in every neighborhood of M in R
2, then

f is nullhomotopi
 in M .Proof. It follows easily that f ′ : S
1 → M ′ is nullhomotopi
 in ea
h neigh-borhood of M ′ in R

2. But it is well-known [8℄, [3℄ that this implies that f ′is nullhomotopi
 in M ′. Thus the argument of Theorem 1.4 applies to showthat f is nullhomotopi
 in M .For results that strengthen the last 
orollary, see [9℄.
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