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The homotopy dimension of odisrete subsetsof the 2-sphere S
2byJ. W. Cannon and G. R. Conner (Provo, UT)Dediated to the memory of Karol Borsukon the oasion of the entennial of his birth

Abstrat. Andreas Zastrow onjetured, and Cannon�Conner�Zastrow proved, that�lling one hole in the Sierpi«ski urve with a disk results in a planar Peano ontinuum thatis not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivationfor this paper, where we haraterize those planar Peano ontinua that are homotopyequivalent to 1-dimensional sets.While many planar Peano ontinua are not homotopy equivalent to 1-dimensionalompata, we prove that eah has fundamental group that embeds in the fundamentalgroup of a 1-dimensional planar Peano ontinuum.We leave open the following question: Is a planar Peano ontinuum homotopially1-dimensional if its fundamental group is isomorphi with the fundamental group of a1-dimensional planar Peano ontinuum?1. Introdution. We say that a subset X of the 2-sphere S
2 is odis-rete if its omplement D(X), as subspae of S

2, is disrete. For a odisreteset X, the set B(X) of limit points of D(X) in S
2, whih is neessarily alosed subset of X having dimension ≤ 1, is alled the bad set of X. Thehomotopy dimension of a spae X is the smallest dimension of a spae homo-topy equivalent to X. We say that X is homotopially ≤k-dimensional if itshomotopy dimension is ≤ k. Our main theorem haraterizes the homotopydimension of X in terms of the interplay between D(X) and B(X):Theorem 1.1 (Charaterization Theorem). Suppose that X is a odis-rete subset of the 2-sphere S

2. Then X has homotopy dimension ≤ 1 if andonly if the following two onditions are satis�ed :2000 Mathematis Subjet Classi�ation: Primary 57N05; Seondary 54F45, 54F50,55M10, 55P10.Key words and phrases: Peano ontinuum, odisrete subset, homotopy dimension.The researh of the �rst author was supported NSF researh grant DMS-10104030.[35℄ © Instytut Matematyzny PAN, 2007



36 J. W. Cannon and G. R. Conner(1) Every omponent of S
2 \ B(X) ontains a point of D(X).(2) If D is any losed disk in the 2-sphere S

2, then the omponents of
D\B(X) that do not ontain any point of D(X) form a null sequene.[Reall that a sequene C1, C2, . . . is a null sequene if the diameters ofthe sets Cn approah 0 as n approahes ∞.℄ Examples appear in the �gure.The �rst two examples of possible bad sets are loally onneted. The oneis a irle with a null sequene of Hawaiian earrings attahed. The other isa Sierpi«ski urve. The assoiated odisrete set will be homotopially ≤1-dimensional if and only if ondition (1) is satis�ed. The third example givesan example of a possible bad set that is not loally onneted. In order thatthe assoiated odisrete set be homotopially 1-dimensional, both ondi-tions (1) and (2) must be satis�ed. Thus, near eah point of the limiting ar,where any small disk is separated into in�nitely many omponents by the os-illating urve, almost all of these omponents must ontain a point of D(X).

Sierpi«ski urve Cirle wedged with a ountablenull sequene of Hawaiian earringsLoally onneted bad sets

A non-loally-onneted bad set: the Warsaw irle



Homotopy dimension of odisrete subsets of S
2 37A ompatum is a ompat metri spae. A ontinuum is a onnetedompatum. A Peano ontinuum is a loally onneted ontinuum; equiv-alently, a Peano ontinuum is the metri ontinuous image of the interval

[0, 1]. 1.1 applies to all Peano ontinua in the 2-sphere S
2 beause of thefollowing well-known theorem:Theorem 1.2. Every Peano ontinuum M in the 2-sphere S

2 is homo-topy equivalent to a odisrete subset X of S
2. Conversely , every odisretesubset X of S

2 is homotopy equivalent to a Peano ontinuum M in S
2.We shall indiate later (after Theorem 2.9) how this well-known theoremis proved. For the moment, we simply mention that, given M , one an obtainan appropriate odisrete subset X by hoosing for D(X) exatly one pointfrom eah omponent of S

2 \ M . One an de�ne the bad set B(M) of M asthe bad set B(X) of X. It is natural to ask how restrited bad sets are. Thefollowing theorem, whih haraterizes the possible bad sets of odisretesets X, is atually an easy exerise whih we leave to the reader:Theorem 1.3. A subset B of the 2-sphere S
2 is the bad set B(X) ofsome odisrete subset X ⊂ S

2 if and only if B is losed and has dimensionless than 2.It is an easy matter to use Charaterization Theorem 1.1 and the on-strution inherent in Theorem 1.3 to onstrut all manner of interestingplanar Peano ontinua that are, or are not, homotopy equivalent to a 1-dimensional set. All the examples that have appeared in the literature (see[4℄ and [12℄) are likewise easily heked by means of Charaterization Theo-rem 1.1.In light of the fat that so many planar Peano ontinua are not homo-topially 1-dimensional, it is a little surprising to �nd that their fundamentalgroups are essentially 1-dimensional in the following sense:Theorem 1.4. If M is a planar Peano ontinuum, then the fundamen-tal group of M embeds in the fundamental group of a 1-dimensional planarPeano ontinuum.Corollary 1.5. If M is a planar Peano ontinuum, then the fundamen-tal group of M embeds in an inverse limit of �nitely generated free groups.Question 1.6. If M is a planar Peano ontinuum whose fundamentalgroup is isomorphi with the fundamental group of some 1-dimensional pla-nar Peano ontinuum, is it true that M is homotopially 1-dimensional?The remaining setions of this paper will be devoted to proofs of thesetheorems.



38 J. W. Cannon and G. R. Conner2. Fundamental ideas and tools. Our proofs make substantial use oflassial topology of the plane. As good basi referenes we suggest [21℄, [19℄,[20℄, and [10℄, all deriving their initial impetus from the shool and work ofR. L. Moore, who summarized muh of his work in [15℄.To minimize the neessity of turning to these referenes, we ollet herea number of the basi ideas and tools that will be used often in the proofs.Many of these will be familiar to some of our readers. The topis will beoutlined in bold type so that the reader an quikly �nd those topis withwhih they are not familiar. For many, the best way to read the paper willbe to turn immediately to the later setions and return to this setion onlywhen they enounter a tool or idea with whih they are not familiar. Whereit is possible, we outline the proofs so that the reader will not have to huntfor obsure referenes.Our �rst fundamental idea is that the Tietze Extension Theoreman be used to ut o� a map f on an absolute retrat R. Let f : X → Ybe a ontinuous funtion from a ompatum X to a spae Y . Assume that
R is a losed subset of Y , that R is an absolute retrat, and that f−1(R)separates X into disjoint open subsets A and B. Then we obtain a newfuntion f ′ : X → Y as follows: We de�ne f ′|(A∪f−1(R)) = f |(A∪f−1(R)).Sine R is an absolute retrat and f−1(R) is a losed subspae of the normalspae B∪f−1(R), there is a ontinuous funtion f ′|B∪f−1(R)) that extends
f |f−1(R) and takes B ∪ f−1(R) into R. We say that the map f ′ uts f o�on R, �xing A.We next onsider the Phragmén�Brouwer properties, all satis�ed bythe n-sphere S

n for n ≥ 2. R. L. Wilder, in [21, Chapter 2, Theorem 4.12℄,proves the equivalene of seven of them ([21, pp. 47�50℄) in metri spaes Sthat are onneted and loally onneted. We mention only two:
Property I. If A and B are disjoint losed subsets of S, and x, y ∈ Sare suh that neither A nor B separates x and y in S, then A ∪ B does notseparate x and y in S.
Property II (Brouwer Property). If M is a losed, onneted subset of

S and C is a omponent of S \ M , then the boundary of C is a losed andonneted set.Here are two orollaries of Property I:Corollary 2.1. If A is an annulus and C is a losed subset of int(A)that separates the boundary omponents J1 and J2 of A, then some omponentof C separates J1 from J2 in A.Corollary 2.2. If D is the square disk and C is a losed subset of Dthat separates the top of D from the bottom of D, then some omponent of
C separates them.



Homotopy dimension of odisrete subsets of S
2 39The �rst of these orollaries is an immediate appliation of Property I,when one passes to a minimal separator (whih exists by the Brouwer Re-dution Theorem, [20, Chapter I, 11.1℄). The seond follows from the �rstwhen one �xes the right and left sides of D and doubles the remainder of Dto form an annulus.We apply these ideas to show that homotopies of X within itselfmust �x the bad set B(X) pointwise. This general priniple an beapplied to all onneted planar sets X and not just to odisrete sets. If Xis any onneted planar set, then we may de�ne the bad set B(X) of X tobe the set of points x ∈ X having the property that, in eah neighborhoodof x, there is a simple losed urve J in X suh that the interior of J inthe plane R

2 is not entirely ontained in the set X. This modi�ed de�nitionoinides with the previous de�nition when the set X is odisrete.Theorem 2.3 ([4, Theorem 5.2℄). Suppose that X is a onneted planarset and that x ∈ B(X). Then every homotopy of X within X �xes the point x.Proof. Suppose that there is a homotopy H : X × [0, 1] → X suh that
H(y, 0) = y for all y ∈ X and H(x, 1) 6= x. Let N0 and N1 be disjoint neigh-borhoods of x and H(x, 1), respetively. By ontinuity, there is a neighbor-hood M of x in N0 suh that H(M, 1) ⊂ N1. There is a round irle J around
x that is not ontained in X but intersets X only in N0. There is a simplelosed urve K in int(J) ∩ M ⊂ X whose interior is not ontained entirelyin X. By 2.1, the annulus K × [0, 1] has its boundary omponents separatedby the H-preimage of some omponent of J ∩X. This omponent maps intoa single omponent L of J ∩X. Sine L is an absolute retrat that is losedin X, the homotopy H|K × [0, 1] an be ut o� at this omponent via theTietze Extension Theorem, �xing H|K ×{0}. The image of of K ×{1} in Lis nullhomotopi in L. This allows one to shrink K in X, an impossibility.Our next fundamental idea is that of the onvergene of a sequeneof sets. The two books by Whyburn, [19℄ and [20℄, and the text by Hokingand Young, [10℄, give a good treatment of this topi. However, it does nottake muh spae to review the basis here. Suppose that A1, A2, . . . is asequene of subsets of a spae S. We say that a point x ∈ S is an elementof lim infi Ai if every neighborhood of x intersets all but �nitely many ofthe sets Ai. We say that x is an element of lim supi Ai if every neighborhoodof x intersets in�nitely many of the sets Ai. We say that the sequene Aionverges if the lim inf and lim sup oinide. The limit is de�ned to be thisommon lim inf and lim sup.Theorem 2.4 ([19, Chapter I, Theorem 7.1℄; [20, Chapter I, Theorem7.1℄; [10, pp. 102�103℄). If A1, A2, . . . is any sequene of sets in a separablemetri spae S, then there is a onvergent subsequene.



40 J. W. Cannon and G. R. ConnerProof. Let U1, U2, . . . be a ountable basis for the topology of S. Let S0 bethe given sequene A1, A2, . . . of subsets of the spae S. Assume indutivelythat a subsequene Si of S has been hosen. If there is a subsequene of
Si no element of whih intersets Ui+1, let Si+1 be suh a subsequene.Otherwise, let Si+1 = Si. Let S∞ be the diagonal sequene, whih takes as�rst element the �rst element of S1, as seond element the seond element of
S2, et. We laim that the subsequene S∞ of S0 onverges. Indeed, supposethat x ∈ lim supS∞, that is, every neighborhood of x intersets in�nitelymany elements of S∞. Suppose that there is a neighborhood Uj of x thatmisses in�nitely many elements of S∞. Then Sj , by de�nition, must miss
Uj . But this implies that all elements of S∞ with index as high as j miss
Uj , a ontradition. Thus, every element of the lim sup lies in the lim inf.Sine the opposite inlusion is obvious, these two limits are equal, and thesequene S∞ onverges.Theorem 2.5 (Properties of the limit of a onvergent sequene). Sup-pose that the sequene A1, A2, . . . of nonempty subsets of a separable metrispae S onverges to a set A. Then(1) the set A is losed in S;(2) if S is ompat , then A is nonempty and ompat ;(3) if S is ompat and if eah Ai is onneted , then the limit A isnonempty , ompat , and onneted ;(4) if S is ompat and if eah Ai has diameter ≥ ε, then A has diameter

≥ ε.Proof. Easy exerise.We shall in more than one plae make use of R. L. Moore's Deom-position Theorem. In 1919 [13℄, R. L. Moore haraterized the Eulideanplane topologially. In 1925 [14℄, he noted that his axioms were also satis�edby a large lass of quotient spaes of the plane, so that those identi�ationspaes were also planes.Sine Moore's theorem is somewhat inaessible to today's readers be-ause of evolving terminology and bakground, we will give a fairly straight-forward statement and we will outline the proof of this theorem. In theremarks following the statement of the theorem, we point out some equiva-lent statements of the fundamental hypotheses of the theorem that we usein our appliations. If any of the equivalent hypotheses is satis�ed, we shallsimply refer to the Moore Deomposition Theorem.Theorem 2.6 (Moore Deomposition Theorem). Suppose that f :S2→Xis a ontinuous map from the 2-sphere S
2 onto a Hausdor� spae X suh that ,for eah x ∈ X, the set S

2\f−1(x) is homeomorphi with the plane R
2. Then

X is a 2-sphere.
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Remarks. (1) The requirement that S
2 \f−1(x) be homeomorphi with

R
2 is equivalent to the requirement that both f−1(x) and S

2 \ f−1(x) benonempty and onneted.(2) The Hausdor� ondition is equivalent in this setting to the moreentral requirement that f be a losed map. The map f is losed if, whenever
C ⊂ S

2 is losed in S
2, the set f(C) is losed in X. This, of ourse, in lightof the surjetivity of f , makes f an identi�ation map.An identi�ation map f : A → B (surjetive by hypothesis) is losed ifand only if the olletion G = {f−1(b) | b ∈ B} satis�es the upper semion-tinuity ondition, whih states that, if U is an open subset of A, then theunion of the elements of G that lie in U is also an open subset of A.Moore originally stated his theorem in terms of upper semiontinuousolletions G �lling S
2 or R

2 and desribed the topology of the resultingquotient spaes S
2/G and R

2/G. The elements of G are simply the pointpreimages of the surjetion f .The Hausdor� ondition of the theorem an often be heked by on-sidering sequenes of elements of G and their limit points. A sequene {gi}of elements of G is not allowed to ontain onvergent point sequenes {xi}and {yi} with limit points x and y in two di�erent elements h and k of G,for then one would not be able to separate in X the points de�ned by hand k. The upper semiontinuity requirement is always satis�ed when thenondegenerate elements of G form a null sequene.(3) The R. L. Moore Theorem has loal versions that allow generalizationsto other 2-manifolds.(4) There is an easy analogous version for quotients of the irle, wherepoint preimages are points or (losed) ars.(5) The theorem has generalizations to higher dimensions that requirestronger hypotheses: Suppose that f : S
n → X is a ontinuous map from the

n-sphere S
n onto a �nite-dimensional Hausdor� spae X suh that, for eah

x ∈ X, the set S
n \ f−1(x) is homeomorphi with the Eulidean spae R

n.Then X is an n-sphere provided that, in addition, n ≥ 5, and X satis�esthe ondition that maps g : B
2 → X from the 2-dimensional disk B

2 into Xan be approximated by embeddings. This generalization was onjetured andproved in many speial ases by Cannon (see [2℄ for a substantial disussion ofthese matters) and proved in general by R. D. Edwards (see Daverman's book[7℄). The situation in dimensions 3 and 4 has not been ompletely resolved.The proof of Moore's Theorem 2.6, whih we shall outline, relies on amore intuitive theorem, alled the Zippin Charaterization Theorem. (See,for example, [21, Chapter III, Theorem 4.2℄.)Theorem 2.7 (Zippin Charaterization Theorem). The spae X is a
2-sphere if the following four onditions are satis�ed :



42 J. W. Cannon and G. R. Conner(i) X is a nondegenerate Peano ontinuum.(ii) No point x ∈ X separates X (so that , in partiular , X ontains atleast one simple losed urve).(iii) Eah simple losed urve J ⊂ X separates X.(iv) No ar A ⊂ X separates X.Proof of Theorem 2.6. We prove the Moore Deomposition Theorem onthe basis of the Zippin Charaterization Theorem. We verify the four ondi-tions of the Zippin Theorem in turn. (Note that onditions (iii) and (iv) aretrue in the 2-sphere by standard homologial arguments. We shall use thosesame arguments here.)(i) Sine X is Hausdor�, the map f is a losed surjetion; hene it iseasy to verify the onditions of the Urysohn metrization theorem so that Xis metri. (See [16, Theorem 34.1℄.) Sine S
2 is a Peano ontinuum, that is,a metri ontinuous image of [0, 1], so also is X. Sine, for all x ∈ X, both

f−1(x) and S
2 \ f−1(x) are nonempty, X has more than one point; that is,

X is nondegenerate.(ii) By hypothesis, S
2 \ f−1(x) is onneted. Hene so is X \ {x} =

f(S2 \ f−1(x)).(iii) Let p1, p2 ∈ J ut J into two ars A1 and A2. Then f−1(A1)and f−1(A2) are ompat, onneted, and have nononneted intersetion
f−1(p1) ∪ f−1(p2). The redued Mayer�Vietoris homology sequene for thepair U = S

2 \ f−1(A1) and V = S
2 \ f−1(A2) ontains the segment

H1(S
2 \ f−1(A1)) ⊕ H1(S

2 \ f−1(A2))

→ H1(S
2 \ (f−1(p1) ∪ f−1(p2)) → H̃0(S

2 \ (f−1(J))),where H1(U) = H1(V ) = 0 sine f−1(A1) and f−1(A2) are onneted and
H1(U ∪ V ) 6= 0 sine f−1(A1) ∩ f−1(A2) is not onneted. Thus we have
H̃0(S

2\f−1(J)) = H̃0(U∩V ) 6= 0, so that f−1(J) separates S
2. Consequently,

J separates X.(iv) If p ∈ A separates A into ars A1 and A2, and if A separates x and
y in X, then we laim that one of A1 and A2 also separates x and y in X;indeed, we see this by onsidering f−1(A) = f−1(A1)∪f−1(A2), whih mustseparate f−1(x) from f−1(y) in S

2. The redued Mayer�Vietoris homologysequene for the pair U = S
2 \ f−1(A1) and V = S

2 \ f−1(A2) ontains thesegment
0 → H̃0(S

2 \ f−1(A)) → H̃0(S
2 \ f−1(A1)) ⊕ H̃0(S

2 \ f−1(A2)).Given any u ∈ f−1(x) and v ∈ f−1(y), the element u − v represents anonzero element of the enter group, hene maps to a nonzero element of
H̃0(S

2 \ f−1(A1) ⊕ H̃0(S
2 \ f−1(A2)). Therefore, either f−1(A1) or f−1(A2)separates u from v in S

2, implying the laim.



Homotopy dimension of odisrete subsets of S
2 43By indution, one obtains intervals I0 ⊃ I1 ⊃ · · · that separate x and yin X suh that ⋂∞

n=1 In is a single point q that does not separate x from y.But an ar α from x to y in the path onneted open set X \ {q} missessome In, a ontradition. We onlude that A annot separate X.The proof of the Moore Deomposition Theorem 2.6 is omplete.Our sixth topi is that of loally onneted ontinua in the plane.The following theorem haraterizes planar Peano ontinua in several ways,all well-known. A version of this theorem appears in [9℄.Theorem 2.8. Suppose that M is a ontinuum (= ompat , onnetedsubset) in the 2-sphere S
2. Then M is a Peano ontinuum (= loally on-neted ontinuum) if and only if the following four equivalent onditions aresatis�ed :(1) For eah disk D in S

2, the omponents of D\M form a null sequene.(1′) For eah disk D in S
2, the omponents of D∩M form a null sequene.(2) For eah annulus A in S

2, the omponents of A \ M that intersetboth boundary omponents of A are �nite in number.(2′) For eah annulus A in S
2, the omponents of A ∩ M that intersetboth boundary omponents of A are �nite in number.

Remark. All proofs involving ontinua M ⊂ R
2 that are not loallyonneted involve the onstrution of limit ontinua, that is, nondegenerateontinua L ⊂ M that are limits of a sequene of disjoint nondegenerateontinua Li in the omplement of M that are separated from one anotherby M in an open subset of M .Proof. Assume that M is loally onneted but (1) is not satis�ed, sothat, for some disk D in S

2, the omponents of D \ M do not form a nullsequene. Then some sequene Ui of suh omponents onverges to a nonde-generate ontinuum U in S
2 by Theorems 2.4 and 2.5. Let A be an annulusin S

2 that separates two points of U . Then eah Ui ontains an ar Ai ir-reduibly joining the two ends of A. We may assume that they onvergeto a ontinuum A′ joining the two ends of A. The ontinuum A′ must bea subset of M , for otherwise it ould not have points of in�nitely many ofthe omponents Ui lose to it. We may pass to a subsequene of the Ai's sohosen that their endpoints on one boundary omponent J of the annulus
A onverge monotonially on J . It then follows that eah Ai is adjaent to
Ai+1, with neither A′ nor any other Aj between them. They must thereforebe separated by a omponent Mi of A ∩ M that intersets both ends of A.(See Corollary 2.2.) The omponents Mi onverge to a subontinuum of A′that joins the ends of A. This shows that M is not loally onneted at thesepoints of A′, a ontradition.



44 J. W. Cannon and G. R. ConnerSuppose (1) is satis�ed but (1′) is not. That is, there is a disk D in S
2 andin�nitely many large omponents of D∩M . We may take a sequene of suhomponents that onverge to a nondegenerate subontinuum of M . We takean annulus A that separates two points of the limit ontinuum. In�nitelymany of the large omponents ross this annulus. They are separated bylarge omponents of A\M that ross the annulus. Ars in these omponentsthat ross the annulus allow one to form a disk D that is rossed by in�nitelymany large omponents of D \ M , a ontradition to (1). We onlude that(1′) is satis�ed.Similar arguments show that (1′) implies (1) and that these are equivalentto (2) and (2′).Finally, if M is not loally onneted, then there is a omponent of anopen subset of M that is not open. That is, there is an open set N , aomponent C of N , and a point p ∈ C suh that p is a limit point of N \C.If pi is a sequene from N \C onverging to p, then no omponent of N anontain more than �nitely many of the points pi, for, otherwise, p would bea point of that omponent. But eah omponent of N has a limit point in

M \N (prove as an exerise or refer to [20, Chapter I, 10.1℄). Thus the losureof eah of these omponents intersets the boundary of N in M . These largeomponents ontradit (1′).Theorem 2.9 (Filling Theorem). Suppose that M is a Peano ontinuumin the 2-sphere S
2, and suppose that U is a omponent of the omplementof M in S

2. Then there is a map f : B
2 → cl(U) from the 2-disk B

2 ontothe losure of the domain U that takes int(B2) homeomorphially onto Uand takes S
1 = ∂(B2) ontinuously onto ∂(U). In addition, if A is a freeboundary ar of cl(U), then we may assume that the map f is one-to-oneover the ar A. Furthermore, we may assume that , for eah p ∈ S

1, the set
f−1f(p) is totally disonneted.
Remark. That the ar A is freemeans that A is aessible from preiselyone of its sides from the domain U and that int(A) is an open subset of ∂(U).Proof. We give only an indiation of the proof. There are well-known,ompletely topologial proofs of this theorem. However, re�nements of theRiemann Mapping Theorem also give very enlightening analyti information.The relevant analyti theory is the theory of prime ends. There is a goodexposition of the theory in John B. Conway's readily available textbook,[6, Chapter 14, Setions 1�5℄. It follows from the loal onnetivity of M(applying Theorem 2.8(1)) that the impressions of the prime ends in U areall singletons. By the theory of prime ends, the Riemann mapping from

int(B2) onto U extends ontinuously to the boundary.Sine the ar A is free, the prime ends at A orrespond exatly to thepoints of A so that the map is one-to-one over A.



Homotopy dimension of odisrete subsets of S
2 45Sine the prime ends of int(B2) are singletons, the sets f−1f(p) are totallydisonneted.Proof of Theorem 1.2. Suppose that M is a loally onneted ontinuumin S

2. If M = S
2, then M is already odisrete. Otherwise, let U1, U2, . . .denote the omplementary domains of M in S

2. By Theorem 2.8, the om-ponents of S
2 \ M form a null sequene. By Theorem 2.9, there is for eah

i a ontinuous surjetion fi : B
2 → cl(Ui) that takes S

1 onto the boundaryof Ui and takes the interior of B
2 homeomorphially onto Ui. Let pi = fi(0).Then the set D = {p1, p2, . . .} is obviously disrete. The set cl(Ui) \ {pi}an obviously be deformed into the boundary of Ui by pushing points awayfrom pi along the images under fi of radii in B

2. These deformations anbe ombined to deform all of X = S
2 \ D onto M sine the Ui form a nullsequene. We onlude that M is homotopy equivalent to the odisrete set

X = S
2 \ D.Conversely, if X is odisrete, then we may take, about the points p of

D(X), small disjoint round disks d(p). The ontinuum M = S
2\

⋃
p int(d(p))is a Peano ontinuum to whih X an be deformed by a strong deformationretration.This ompletes the proof of Theorem 1.2.3. Peano domains. We may think of the Charaterization Theorem 1.1as a substantial generalization of the Filling Theorem, Theorem 2.9. We shallneed an intermediate generalization of Theorem 2.9 that deals with ompatsets that at muh like Peano ontinua but are not neessarily onneted.We all the omplementary domains of suh ompata Peano domains. Weshall deal with the ompata themselves by joining them together by ars soas to form a Peano ontinuum.Definition 3.1. A onneted open subset U of S

2 is alled a Peanodomain if its nondegenerate boundary omponents form a null sequeneof Peano ontinua. (Note that there may be unountably many additionalomponents that are single points.)Theorem 3.2. Suppose that U is a onneted open subset of the 2-sphere S
2. Then the following three onditions are equivalent :(1) The open set U is a Peano domain.(2) For eah disk D in S

2, the omponents of U∩D form a null sequene.(3) There is a ontinuous surjetion f : B
2 → cl(U) suh that f(S1) ⊃

∂(U) and f |int(B2) is a homeomorphism onto its image, whih ne-essarily lies in U .
Remark. Note that (1) generalizes the notion of loal onnetedness.Note that (2) generalizes haraterization (1) of loal onnetedness in The-



46 J. W. Cannon and G. R. Connerorem 2.8; the reader an reformulate (2) in eah of the ways suggested byTheorem 2.8. Note that (3) generalizes Theorem 2.9. Note that, in the proof,we an assume that the map f is 1-1 over given free boundary ars of U be-ause the same is true in Theorem 2.9.Proof. Assume (1), so that U is a Peano domain. Assume that (2) is notsatis�ed, so that there is a disk D in S
2 suh that the omponents of U ∩Ddo not form a null sequene. Then some sequene U1, U2, . . . of omponentsonverges to a nondegenerate ontinuum M . The ontinuum M must be asubset of a boundary omponent of U . We may assume that the omponents

U1, U2, . . . are separated from eah other by large boundary omponentsof U . (Refer to the Brouwer Property II and to Corollary 2.2.) There areonly �nitely many large boundary omponents of U . Hene in�nitely manyof the separators must ome from the same boundary omponent. It followsthat the limit, namely M , is also in the same boundary omponent. Butthis boundary omponent is not loally onneted at the points of M , aontradition. We onlude that (2) is satis�ed so that (1) implies (2).Assume that (2) is satis�ed but (1) is not. Then either there is a om-ponent of ∂(U) that is not loally onneted, or there exist in�nitely manyomponents of ∂(U) having diameter ≥ ε, for some �xed ε > 0. In eitherase, taking a onvergent sequene of large omponents or a limit ontin-uum from a single omponent that is not loally onneted (Theorem 2.8),we �nd the existene of an annulus A in S
2 and omponents X1, X2, . . . of

∂(U)∩A, eah of whih intersets both omponents of ∂(A). These ompo-nents of ∂(U) ∩ A must be separated by large omponents of A ∩ U . If weremove a slie from one of these large separating omponents, we obtain adisk D that is rossed by in�nitely many large omponents of U ∩D, whihontradits (2). Therefore (2) implies (1).Assume that (3) is satis�ed, so that there is a ontinuous surjetion f :
B

2 → cl(U) suh that f(S1) ⊃ ∂(U) and f |int(B2) is a homeomorphismonto its image. Assume that (1) is not satis�ed, so that either there is aomponent of ∂(U) that is not loally onneted, or there exist in�nitelymany omponents of ∂(U) eah having diameter greater than some �xedpositive number ε. In either ase, we �nd by taking limits (Theorem 2.8)that there is an annulus A in S
2 and omponents X1, X2, . . . of ∂(U) ∩ A,eah of whih intersets both omponents of ∂(A). We may assume that

X1, X2, . . . onverges to a ontinuum X0 joining both omponents of ∂(A).We may assume that Xi−1∪Xi+1 separates Xi from X0 in A, for i = 2, 3, . . . .Pik pi ∈ Xi ∩ int(A) for i ≥ 0 suh that pi → p0. Let q0, q1, q2, . . . ∈ S
1be points suh that f(qi) = pi. Let Bi be the straight-line segment in B
2joining q0 to qi. We may assume that the ars Bi onverge to an ar or apoint B in B

2. We shall obtain a ontradition as follows.
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2 47The image f(Bi) joins Xi to X0. It misses Xi−1 ∪ Xi+1 ⊂ ∂(U) sine

f(qi) ∈ Xi, f(q0) ∈ X0, and f(int(Bi)) ⊂ U . Hene, if we traverse Bi from qitoward q0, there exists a �rst point bi ∈ Bi suh that f(bi) ∈ ∂(A). We mayassume that bi → b0 ∈ B
2 and f(bi) → f(b0) ∈ ∂(A). Sine f(bi) is separatedfrom X0 by Xi−1 ∪ Xi+1 in A and sine Xi → X0, we may onlude that

f(b0) ∈ X0∩∂(A). Hene b0 ∈ S
1\{q0}. But b0 must therefore be an endpointof B distint from q0 and must therefore be the limit of the points qi. We�nd that f(qi) → p0 ∈ int(A) and f(qi) → f(b0) ∈ ∂(A), a ontradition.We onlude that (3) implies (1).It remains to prove that (1) implies (3). This is by far the hardest ofthe impliations. It is a generalization of the rather deep Theorem 2.9, andwe shall redue it to that theorem. We shall also make use of the wonderfulR. L. Moore Deomposition Theorem 2.6.Our plan is to onnet ∂(U) by deleting from U a null sequene A1, A2, . . .of ars to form a new onneted open set V = U \

⋃
i Ai whose boundary

∂(V ) = ∂(U)∪
⋃

i Ai is a loally onneted ontinuum. Then we simply applyTheorem 2.9.For onveniene, we wish to modify the losure of U so that eah nonde-generate boundary omponent of ∂(U) is a simple losed urve. We shall doso in suh a way that the losure of the new U ollapses to the losure of theold U and preserves the property of being a Peano domain. This onvenient,yet inessential, modi�ation simpli�es the desription of the strutures thatwe need to build in proving that U is a Peano domain.We hange the nondegenerate omponents C of ∂(U) into simple losedurves as follows.We de�ne UC to be the omponent of S
2 \ C that ontains U . Sine Cis loally onneted by (1), we may apply Theorem 2.9 to �nd a ontinu-ous surjetion g : B

2 → C ∪ UC that takes S
1 onto C and takes int(B2)homeomorphially onto UC . We require that the sets g−1g(p) be totally dis-onneted for eah p ∈ S

1 = ∂(B2). Radii in B
2 de�ne radial segments in UCwhose endpoints may be identi�ed at various points of ∂(UC).We pull UC into itself along these radial segments so as to split theboundary identi�ations of g|(S1 = ∂(B2)) apart and make ∂(UC) a simplelosed urve. Beause the sets g−1g(p) are totally disonneted, it followsthat the nondegenerate boundary omponents of the new U also form a nullsequene. We may thus assume that ∂(UC) is a simple losed urve.We repeat the argument with eah of the ountably many nondegenerateboundary omponents in turn. Sine eah move an be made arbitrarilysmall, there is no problem in getting the sequene of moves to onverge. Thedi�ulty lies in getting all of the appropriate properties to be preserved in thelimit. It is possible to deal with that di�ulty exatly as one does in the proofof the Baire Category Theorem, in the embedding of n-dimensional om-



48 J. W. Cannon and G. R. Connerpata in Eulidean 2n + 1-dimensional spae (see, for example, the proof of[1, Chapter VI, Theorem 1.52℄), or in foring a sequene of homeomorphismsto onverge to a homeomorphism: namely, the desired properties an beenoded in ountably many open onditions in funtion spae, and eahsuessive hange an be made so small that more and more of the desiredonditions are satis�ed and preserved in the limit.We may thus repeat the argument in�nitely often to onlude that welose no generality in assuming that eah nondegenerate omponent is asimple losed urve. That is, U is the omplement of a null sequene ofdisks D1, D2, . . . and a 0-dimensional set D, the union of D1, D2, . . ., and Dbeing losed.We shall string the omponents of ∂(U) together by a null sequene ofars that run through U . These ars will be built by approximation. Atevery stage, the ars together with ertain larger and larger olletions ofthe disks Dj will form a ontratible set. The additions at eah stage will besmaller and smaller �feelers�. The feelers will be bu�ered from one anotherso that, in the limit, they annot grow bak together. It follows that thelimit ontinuum annot separate S
2. Certain limit points in ∂(U) will beattahed only in the limit. The strutures de�ned make it lear that thelimiting ontinuum an be expressed as a union of �nitely many arbitrarilysmall onneted sets so that the �nal ontinuum is a single Peano ontinuum.Here is the proess:It may help the reader to imagine that the losure of U lies in the unitsquare [0, 1] × [0, 1], that one of the disks D1 is the omplement of thissquare in the ompati�ed plane S
2 = R

2 ∪ {∞}, and that the other disks
D2, D3, . . . are some subolletion of the disks whose interiors are removedin forming the standard Sierpi«ski urve. This is permissible by a theoremof G. T. Whyburn [18℄. However, this normalization is a oneptual aid onlysine we have to enrih the Whyburn argument a bit. We explain the mildompliations that arise in our setting in the next paragraph.We wish to onstrut a nie sequene of ellulations of the 2-spherethat respet the boundary omponents of U . If, for example, we wish toonentrate on some partiular �nite set S of the large disks Di, we mayform an upper semiontinuous deomposition of S

2 by delaring the other
Di's that miss S to be the nondegenerate elements of the deomposition.By R. L. Moore's Deomposition Theorem 2.6, the quotient spae is the2-sphere S

2. The (homeomorphi) image of U in this new opy of S
2 willhave, as omplement, the (images of the) elements of S and a 0-dimensionalset that is loally losed away from S. It is then an easy matter to ellu-late S

2 so that the elements of S over a subomplex and the remainder ofthe 1-skeleton misses ∂(U) entirely. This adjustment of the 1-skeleton is theentral part of the Whyburn argument [18℄. Whyburn only has to have his
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2 491-skeleton miss a ountable set. We need the 1-skeleton to miss a ountablefamily of losed, 0-dimensional sets. But sine the omplement of a losed0-dimensional set is loally path onneted, our requirements are no harderto meet than his.As a onsequene, we �nd that there is a sequene S1, S2, . . . of arbitrarily�ne ellulations of S

2, Si+1 subdividing Si, suh that, for eah i, the followingonditions are satis�ed:(i) Two 2-ells of Si that interset interset in an ar.(ii) The 1-skeleton of Si misses all of the 0-dimensional part D of ∂(U).(iii) For all j, the 1-skeleton of Si either misses the disk Dj or ontains
∂(Dj). Consequently, Si has a distinguished �nite subolletion ofdisks Dj that are preisely equal to unions of 2-ells of Si. All otherdisks Dk will lie in the interiors of 2-ells of Si.(iv) If a 2-ell C of Si has a boundary point in some ∂(Dj), with int(C)
6⊂ Dj , then ∂(C) ∩

⋃
k Dk is an ar in ∂(Dj).It is neessary to distinguish four types of 2-ells in the ellulation Si:A 2-ell C of Si is of type 0 if it lies entirely in U .A 2-ell C is of type 1 if it lies entirely in the omplement of U , henelies in one of the distinguished disks Dj of the ellulation Si (see (iii) above).A 2-ell C is of type 2 if it intersets both U and the omplement of U ,but its boundary lies entirely in U .A 2-ell C is of type 3 if its boundary intersets both U and the om-plement of U . Condition (iv) above implies that a 2-ell C of type 3 hasboundary that intersets preisely one disk Dj , that Dj is one of the distin-guished disks of Si, and the intersetion is a boundary ar of eah.We shall essentially ignore the 2-ells of type 0. We shall deal with thedisks of type 1 only impliitly by onsidering instead their unions that givethe distinguished disks Dj of the ellulation Si (see (iii) above). Cells oftype 2 will be joined to these distinguished disks by ars in U . Cells of type 3will be joined to these distinguished disks by their interseting boundary ars.It will be onvenient to use the notation C∗ for the union of the elementsof a olletion C of sets.Let D1 denote the olletion of Dj 's that are distinguished in the ellu-lation S1. Then D∗

1 =
⋃
{D ∈ D1}. We may assume D1 ∈ D1. We may pika olletion A1 of ars from the 1-skeleton S

(1)
1 of S1 that irreduibly joinstogether these distinguished disks Dj ∈ D1, so that the union C1 = D∗

1 ∪A∗
1of disks and ars is ontratible. Without destroying the ontratibility ofthe set C1, we add additional ars from the 1-skeleton to the olletion A1if neessary so that every ell of type 2 intersets one of the ars of A1.All of the ells of S1 of type 0 will be ignored from now on. All of the ellsof S1 of type 1 are ontained in the ontratible topologial polyhedron C1.



50 J. W. Cannon and G. R. ConnerAs we proeed to the indution, we will attah �feelers� to C1. There will beone feeler in eah ell C of type 2 and it will be attahed to C1 at a single,arbitrarily hosen point of the intersetion of C ∩ C1. We all that point theattahing point. In eah ell C of type 3, there may be �nitely many or anull sequene of feelers, but eah will be attahed to C1 at some point ofthe boundary ar of C that lies in a distinguished disk. We all that ar theattahing ar. There may ertainly be other points of ∂(C) that lie in C1, butnone of these lies in ∂(U). Hene, for ells C of types 2 and 3, the omplementin ∂(C) of the attahing point or attahing ar an serve as a bu�er never tobe approahed or rossed in the onstrution. It is these bu�ers that makeit easy to see that the limit ontinuum is ontratible and loally onneted.We proeed by indution. We assume that we have onstruted on-tratible sets C1 ⊂ · · · ⊂ Ci that lie exept for distinguished disks of S1, S2,
. . . , Si in the 1-skeletons of the ellulations. We may impose one additionalondition on the ellulation Si+1:(v) For eah ell C of Si that has type 2 or 3, that part of the 1-skeletonof Si+1 that lies in the interior of C, taken together with the attah-ing point (type 2) or attahing ar (type 3), is onneted.All of the ation in reating Ci+1 takes plae in the individual ells Cof Si of type 2 and 3. Exatly as in the onstrution of C1, we may pika olletion of ars Ai+1(C) from that part of the 1-skeleton of Si+1 thatlies in the interior of C, taken together with the attahing point (type 2) orattahing ar (type 3), that irreduibly joins together the attahing set of
C, the distinguished disks Dj ∈ Di+1 in C, and the ells of Si+1 of type 2in C. All of these new distinguished disks and all of these new ars an beadded to Ci to form a new ontratible set Ci+1. We denote the entire union⋃

C Ai+1(C) of ars as Ai+1.For eah of the new ells of types 2 and 3, we hoose an attahing pointor ar as before.We leave it to the reader to verify that M = (S2 \ U) ∪
⋃

i Ai is asingle loally onneted ontinuum with a single omplementary domain V =
U \

⋃
i Ai.By Theorem 2.9, there is a map f : B

2 → cl(V ) from the 2-disk B
2 ontothe losure of the domain V that takes int(B2) homeomorphially onto Vand takes S

1 = ∂(B2) ontinuously onto ∂(V ). The same map establishesondition (3) of Theorem 3.2.This ompletes the proof that (1) implies (3). Thus all three onditions ofTheorem 3.2 are equivalent, as laimed. The proof of Theorem 3.2 is thereforeomplete.Our �nal theorem of this setion shows how to push a Peano domainonto its boundary together with a 1-dimensional set provided the domain is
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2 51puntured on a nonempty disrete set. This easy theorem will be needed asthe last step in the proof of Theorem 1.1.Theorem 3.3. Suppose that U is a Peano domain in S

2 and that C isa nonempty ountable or �nite subset of U that has no limit points in U .Then cl(U) \ C an be retrated by a strong deformation retration onto a
1-dimensional ompatum that ontains ∂(U).Proof. By Theorem 3.2, we know that there is a ontinuous surjetion
f : B

2 → cl(U) suh that f(S1) ⊃ ∂(U) and f |int(B2) is a homeomorphismonto its image.By invariane of domain, f |int(B2) is an open map. It follows that
f(int(B2)) is disjoint from f(∂(B2)) = f(S1), for otherwise points of int(B2)near S

1 would map to points already oupied by other points of f(int(B2)).Sine f(int(B2)) is dense in f(B2) = cl(U) and disjoint from f(S1), f(S1)must be 1-dimensional. Hene it is an easy exerise to show that we maymodify f slightly over U so that f(S1) misses C. We may further modify f sothat f maps the origin 0 ∈ B
2 to a point of C and so that all other points of Chave preimages on di�erent radii of B

2. Let f−1(C) = {c0 = 0, c1, c2, c3, . . .}.Let A1, A2, . . . be the radial ars beginning at c1, c2, . . ., respetively, andending on S
1 = ∂(B2). Let D1, D2, . . . be disjoint round disks in int(B2)\{0}entered at c1, c2, . . ., respetively, suh that the only Aj interseted by Diis Ai. Let V = int(B2) \ [

⋃
i Ai ∪

⋃
i Di]. Then B

2 \ f−1(C) an obviouslybe retrated by a strong deformation retration onto the 1-dimensional set
∂(V ). Hene f(B2)\C = cl(U)\C an be retrated by a strong deformationretration onto the 1-dimensional set f(∂(V )).4. The neessity of onditions (1) and (2) in Theorem 1.1. Weassume that X is a odisrete set that is homotopy equivalent to a metri1-dimensional set Y . Let f : X → Y and g : Y → X be homotopy inverses.We isolate the three key tehnial onstrutions as lemmas. Eah of theseis standard and well-known. We omit the proofs.Lemma 4.1 (Dimension Lemma). If g : Z ′ → Z is any map from a
1-dimensional ompatum Z ′ into the losure Z of an open subset U of S

2,then g is homotopi, by a homotopy whih only moves points in U to amap g′ : Z ′ → Z suh that g′(Z ′) ∩ U is 1-dimensional. (The key ideas areexplained, for example, in [17, Exerises for Chapter 3, Setions G and H℄.)Lemma 4.2 (Homotopy Lemma).(i) Let C ⊂ S
2 be losed , and let H : C × [0, 1] → S

2 denote a defor-mation of C that begins at the identity (that is, H(c, 0) = c for all
c ∈ C). Then H an be extended to a deformation H ′ : S

2×[0, 1] → S
2that also begins at the identity.



52 J. W. Cannon and G. R. Conner(ii) If H moves no point as far as ε > 0, then we may require that H ′have the same property.(iii) If N is an open set in S
2 ontaining the points of ∂(C) that aremoved by the deformation H, then we may require that N ontainthe points of S

2 \ C moved by H ′. (See [16, Setion 62, Lemma 62.1and Exerise 3℄.)Lemma 4.3 (Annulus Lemma). Suppose ondition (2) of Theorem 1.1fails. Then there are an annulus R′ in S
2 and omponents U ′

1, U
′
2, . . . of

R′ \B(X) suh that eah U ′
j intersets both boundary omponents of R′ andmisses the set D(X). (See Theorem 2.8 and its proof.)The three lemmas imply neessity of onditions (1) and (2) asfollows: By preomposing the homotopy equivalene f with a deformationretration onto a ompat subset of X, we may assume that the image f(X)is a 1-dimensional ontinuum Z ′. By Dimension Lemma 4.1, we may assumethat g◦f(X)\B(X) is 1-dimensional. Let G : X× [0, 1] → X be a homotopythat begins with the identity on X and ends with g ◦ f . By Theorem 2.3, wesee that G(x, t) = x for eah x ∈ B(X).Assume that ondition (1) of the hypothesis of Theorem 1.1 fails, so thatsome omponent U of S

2 \B(X) ontains no point of D(X). Hene U ⊂ X.Let H : cl(U)× [0, 1] → S
2 denote the restrition of G to cl(U)× [0, 1]. Sine

H �xes ∂(U) ⊂ B(X), we may extend H to a deformation H ′ of S
2 that �xes

S2 \U pointwise. Sine H ′(S2×{1})∩U ⊂ G(S2×{1})∩U is 1-dimensional,we see that H ′ deforms S
2 into a proper subset of itself, whih is impossible.Hene ondition (1) must be satis�ed.Assume that ondition (2) of the hypothesis of Theorem 1.1 fails. Then,by Annulus Lemma 4.3, there are an annulus R′ in S

2 and omponents
U ′

1, U
′
2, . . . of R′ \B(X) suh that eah U ′

j intersets both boundary ompo-nents of R′ and fails to interset the set D(X).By passing to a subsequene, we may assume that the omponents U ′
1, U ′

2,
U ′

3, . . . onverge to a ontinuum A that joins the two boundary omponentsof R′. Sine the omponents U ′
j are separated by B(X), it follows that A ⊂

B(X). Let D be a small disk in int(R′) entered at some point of A. Sinethe deformation G onstruted above moves no point of B(X), there is aneighborhood N of A in X, no point of whih is moved by G as far as 1/2,the distane from ∂(R′) to D. We hoose j so large that cl(U ′
j) ⊂ N and

U ′
j ∩ int(D) 6= ∅. Sine no point of D(X) lies in U ′

j , all of cl(U ′
j) lies in X.We let H : cl(U ′

j) × [0, 1] → S
2 be the restrition of G to cl(U ′

j) × [0, 1].By Homotopy Lemma 4.2(i), there is a deformation H ′ : S
2 × [0, 1] → S

2that extends H. Sine ∂(U ′
j)∩ int(R′) ⊂ B(X), H does not move the pointsof ∂(U ′

j) ∩ int(R′). Hene, by Homotopy Lemma 4.2(iii), we may requirethat H ′|[S2 \ cl(U ′
j)]× [0, 1] moves points only near ∂(R)∩ cl(U ′

j), a set that
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2 53ontains the points moved by H|∂(U ′

j)× [0, 1]. By Homotopy Lemma 4.2(ii),we may require that no points of S
2 \U ′

j be arried into D∩U ′
j . Hene H ′ isa homotopy of S

2 that takes S
2 to a proper subset of itself, an impossibility.Hene ondition (2) of Theorem 1.1 is also satis�ed.5. The su�ieny of onditions (1) and (2) in CharaterizationTheorem 1.1. We assume onditions (1) and (2) of Charaterization The-orem 1.1. That is, the open set U0 = S

2 \ B(X) satis�es the following twoonditions:(1) Eah omponent of U0 ontains a point of D(X).(2) If D is any disk in S
2, then the omponents of U0 ∩ D that ontainno point of D(X) form a null sequene.Our goal is to show that X is homotopy equivalent to a 1-dimensionalset.Notie that properties (1) and (2) make no expliit mention of the bad set

B(X) and are simply properties that an open subset of S
2 may or may nothave. This is an important observation, beause our proof that X is homo-topy equivalent to a 1-dimensional set will involve a ompliated indutionthat will involve a null sequene U0, U1, U2, . . . of open sets, eah of whihsatis�es properties (1) and (2).It will also be onvenient to adopt the following terminology: we say thatset is puntured if it ontains a point of D(X). Otherwise, we say that it isunpuntured.We �rst have to deal with the trivial ase where B(X) = ∅. If B(X) = ∅,then the single omponent S

2 = S
2 \ B(X) must ontain a point of D(X)by (1). Thus there must be at least one point of D(X) and at most �nitelymany. HeneX is learly homotopy equivalent to a point or bouquet of irles.From now on, we may assume that the set D(X) is in�nite and theset B(X) is nonempty. Sine D(X) is ountable, we may list the points

p0, p1, p2, . . . of D(X). We need to show that X is homotopy equivalentto a 1-dimensional set. We shall do this by onstruting a null sequene
U0, U1, U2, . . . of disjoint Peano domains suh that, for eah i, pi ∈ Ui, andsuh that the union ⋃

i Ui is dense in S
2. Eah set cl(Ui)\{pi} an be deformedonto a 1-dimensional set that ontains its boundary by Theorem 3.3. Sinethese sets form a null sequene, the deformations an be ombined to givea deformation that takes X onto the union of S

2 \
⋃

i Ui and 1-dimensionalompata that ontain the sets ∂(Ui). Eah of these sets is a ompat 1-dimensional set. Hene their (ountable) union is 1-dimensional.The domains Ui are reated by a long indution. Eah step of the indu-tion onstruts a null sequene of Peano domains. At step 0 of the indution,an individual domain an have diameter as large as the diameter of S
2. There-



54 J. W. Cannon and G. R. Connerafter, however, we may restrit the maximum diameter of a Peano domainat step i to be bounded by 1/i. Hene the union of this ountable olletionof null sequenes is also a null sequene.We onsider S
2 as R

2 ∪ {∞}. We may assume that p0 = ∞ ∈ D(X). Bysaling and translating R
2, we may assume that [D(X) \ {∞}] ∪ B(X) liesin the interior of the losed unit square S = [0, 1] × [0, 1].We now begin the onstrution of our �rst null sequene of Peano do-mains. We outline the strategy. The reader who digests this strategy will beable to avoid getting lost in the details. We are trying to �ll the open set

U0 = S
2 \ B(X) with small Peano domains, more preisely a null sequeneof Peano domains, that are puntured (ontain points of D(X)). We there-fore over U0 with a �ne grid to divide it into small piees. What happensthen is reminisent of the hildren's story, �Fortunately� ([5℄). Fortunately,some of these small piees will be puntured. Unfortunately, some will beunpuntured. Fortunately, the unpuntured piees form a null sequene byhypothesis (2); unfortunately, however, they must be attahed to adjaentpiees that are puntured and, unfortunately, the adjaent puntured pieesneed not form a null sequene. Fortunately, we an arve out of the adja-ent puntured piees a null sequene of smaller puntured piees to whihwe an attah the unpuntured piees. Unfortunately, the proess of arvingout small puntured piees reates new unpuntured piees. Fortunately, thenew unpuntured piees form a null sequene that we an attah to the nullsequene of puntured piees. Unfortunately, the arving out of small pun-tured piees reates new, as yet unattahed, puntured piees that need notform a null sequene. Fortunately, the unattahed puntured piees are uni-formly small and, together, form a new open set U1 that satis�es hypotheses(1) and (2). We an then undertake the indutive step with a new open setwhose piees are smaller than at the previous stage. Here are the details.

Step 1: Creating small piees. We impose a square grid on S onsistingof a large square formed from small onstituent losed squares. Sine the set
D(X) is ountable, we lose no generality in assuming that the edges of thegrid miss D(X). The grid divides the open set U0 = S

2 \ B(X) into manyomponents. We all the olletion of suh omponents C0. More preisely:(i) The set S
2 \ int(S) is an element of C0.(ii) If T is any small, losed, onstituent square of the grid, then eahomponent of T \ B(X) is also an element of C0.Note that the elements of C0 are not in general disjoint sine they an inter-set along the edges of the grid.

Step 2: Colleting the unpuntured piees into a null sequene of smallsets. Let C′
0 denote the subolletion of C0 onsisting of those elements whose
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C′
0 of the elements of C ′

0 andlaim two things:(iii) The omponents of ⋃
C′

0 form a null sequene.(iv) Eah omponent of ⋃
C′

0 shares points of an edge with an elementof C0 whose interior is puntured.Proof of (iii). We apply here the fundamental priniple of onvergene ofontinua from Theorems 2.4 and 2.5. The argument ould be repeated almostverbatim perhaps four more times in the ourse of Setion 4. Often we willhave to onsider two ases, depending on whether the limit ontinuum on-tains a point in the interior of a onstituent square of the superimposed gridor does not. We will not always repeat the details after this �rst argument.Here are the details:Suppose ε > 0, and suppose that there exist omponents Y1, Y2, . . . of⋃
C′

0, eah of diameter ≥ ε. We may assume that Yi → Y in the sense ofTheorems 2.4 and 2.5, where Y is a ontinuum of diameter ≥ ε.Suppose �rst that Y ontains a point in the interior of some onstituentsquare. Then a small annulus A about that point in the interior of theonstituent square intersets all but �nitely many of the Yi in a omponentthat rosses A from one boundary omponent to the other, whih easily givesa ontradition to hypothesis (2).Suppose next that Y lies in the 1-skeleton of the grid. Then it ontainsan interval of an edge of one of the small onstituent squares. In this ase,we may take an annulus A that surrounds an interior point of the intervaland intersets eah of the two adjaent squares in a disk (half of an annulus).Again, all but �nitely many of the Yi will interset one of these two disksin a omponent that rosses the disk from one side to the opposite, whiheasily gives a ontradition to hypothesis (2).This ompletes the proof of (iii).Proof of (iv). We may expand the elements of C0 slightly without in-troduing intersetions between sets that did not already interset; we thusobtain an open overing of U0. Eah omponent of U0 is puntured, by hy-pothesis (1). In eah omponent V , any two elements of C0, as expanded,that lie in V are joined by a �nite hain of suh elements by a standardonnetedness argument. A minimal suh hain onnets eah element of C′
0to an element of C0 that is puntured. Property (iv) follows.

Step 3: Attahing the unpuntured piees of Step 2 to a null sequeneof puntured piees. To eah omponent K of ⋃
C′

0 we assign a punturedelement L = L(K) ∈ C0 that intersets K along at least one edge. Suh anelement L(K) exists by (iv) of Step 2. The elements L thus hosen de�nitelyneed not form a null sequene, but we shall arve out from suh elements
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L a new null sequene of puntured domains to whih we may attah theomponents K. Here is the argument:For eah omponent K, hoose an open ar A(K) along whih K isattahed to L(K). Choose a point q(K) ∈ A(K). Enumerate these pointsas q1, q2, . . . . Eah qi belongs to a spei� Ki, and ar Ai, and omponent
Li = L(Ki).Choose an ar B1 in L1 that joins q1 to D(X) irreduibly. We may requirethat B1∩(1-skeleton of grid) = q1 and that, for every ar B having the sameproperties, diam(B1) ≤ 2 diam(B).Proeed indutively. Choose an ar Bk+1 in Lk+1 joining qk+1 to D(X)∪
B1 ∪ · · · ∪Bk irreduibly. We may require that Bk+1 ∩ (1-skeleton of grid) =
qk+1 and that, for every ar B having the same properties, diam(Bk+1) ≤
2 diam(B).We make the following laims about the ars Bi:(v) The ars B1, B2, . . . form a null sequene.(vi) For every ε > 0, there exists k suh that eah omponent of B(k) =

Bk+1 ∪ Bk+2 ∪ · · · has diameter less than ε.[Note that (vi) implies (v). Properties (v) and (vi) are stated separatelysine (v) is used in the proof of (vi).℄Proof of (v). Suppose that (v) is not satis�ed. Then there is a subse-quene Bi1 , Bi2 , . . . that onverges to a nondegenerate ontinuum B. [Thisis our seond appliation of the fundamental priniple of Theorems 2.4 and2.5.℄ We may assume that the Bij all lie in the same small onstituent square
T of the grid and that their initial endpoints qi1 , qi2 , . . . onverge to a point
q ∈ ∂(T ). Let A be a small annulus about q that intersets T in a small disk
A′ of less than half of the diameter of B. All but �nitely many of the ars Bijross that disk A′ in a large omponent B′

ij
. By hypothesis (2), only �nitelymany large omponents of A′∩U0 do not ontain a point of D(X). It followseasily that either some B′

ij
is in a omponent that ontains a point of D(X)or is in a omponent that ontains another B′

ik
, with j > k. In either ase,the diameter of Bij an be redued more than half by shortutting Bij to

D(X) or to Bik , a ontradition. This ompletes the proof of (v).Proof of (vi). We shall make strong use of (v). Suppose there is an ε > 0suh that eah of the sets B(k) = Bk+1 ∪ Bk+2 ∪ · · · ontains a omponent
Yk of diameter ≥ ε. We may pik from Yk a subset Y ′

k that is a �nite hain
Y ′

k = Bk1
∪ · · · ∪Bkl

of the ars B1, B2, . . . and that has diameter ≥ ε/2. Wemay assume that the sets Y ′
k are disjoint. Indeed, passing to a subsequene,we may ertainly assume that di�erent Y ′

k's involve di�erent Bkj
's. Then,sine the omponents of B(1) are trees, one Y ′

k an interset another onlyin one point. Hene, if one deletes the Bkj
interseting the previous Y ′

k, one
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2 57will still have at least one subhain of substantial size (approximately ε/4)that is disjoint from the previous Y ′

k. Passing to an appropriate subsequene,we may ertainly assume that the Y ′
k all lie in the same small onstituentsquare T . If Y ′

k = Bk1
∪ · · · ∪Bkl

with k1 < · · · < kl, then we all q(k) = qklthe initial point of Y ′
k. We may assume that the initial points q(k) onvergeto a point q ∈ ∂(T ). Let A be a small annulus about q that intersets

T in a small disk A′. Then eah Y ′
k is a hain of small ars rossing A′whose links Bkj

all interset ∂(T ). A Y ′
k with small links, eah interseting

∂(T ), must hug ∂(T ) as it rosses A′ and presents a barrier that annot beavoided by another (disjoint) Y ′
k that rosses A′ in the same diretion. Itfollows that there an be at most two suh that are disjoint, eah rossing

A′ along ∂(T ) in a di�erent diretion, a ontradition. This ompletes theproof of (vi).From property (vi) it follows easily that eah omponent B of B1∪B2∪· · ·is a tree that lies in a single small onstituent square T , ontains exatly onepoint of D(X), and has, as its leaves (leaf = vertex lying on only one edge),speial attahing points qj in orresponding attahing ars Aj of ertainomponents Kj of ⋃
C′

0. Furthermore, these trees B form a null sequene oftrees.Eah omponent of ⋃
C′

0 is attahed to one of these trees at a leaf. Wethiken eah of these trees slightly and disjointly so that they still form anull sequene, still ontain one point of D(X) eah, but now interset theappropriate attahing ars Aj in neighborhoods A′
j of the attahing points qj .If B is one of the tree omponents of B1∪B2∪· · · , then we let B′ denoteits thikening. We let B′

1, B
′
2, . . . denote the olletion of thikened trees.The interiors of the thikened trees B′

j are learly Peano domains sineit is an easy matter to onstrut a ontinuous surjetion f : B
2 → cl(B′

j)that takes int(B2) homeomorphially onto int(B′
j). These Peano domains willform the ores of the Peano domains that we are attempting to onstrutin this stage of the indution. To them, we must attah the omponents Kjthat we have desribed above and also ertain sets that we will desribe inthe next step.

Step 4: Attahing the unpuntured omponents reated by removing thethikened trees of Step 3. When we remove the thikened trees B′
j from theomponents L = L(K), we may reate new omponents that are unpun-tured. We must attah eah of those to an adjaent thikened tree B′

j.We let C ′′
0 denote the olletion of new domains M reated by removingthe thikened trees B′

j . That is, for eah puntured element L of C0 that isassigned as L = L(K) for at least one omponent K of ⋃
C ′

0, the omponents
M of L \

⋃
B′

j are elements of the olletion C ′′
0 . We then have the followingfat.
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0 that ontain no elements of D(X) form anull sequene.Proof of (vii). Suppose not. Then there are omponents M1, M2, . . . thatontain no point of D(X) and onverge to a nondegenerate ontinuum M .Sine the thikened trees B′

j are formed by adding small one-sided neighbor-hoods to eah side of the trees Bj , and those neighborhoods ontain no pointsof D(X), we may add those neighborhoods bak into the omponents Miwithout hanging the number of those omponents, without hanging theirsize in any substantial way, and without hanging their limit. We thereforeignore the thikenings and onsider the Mi's as omponents of the omple-ment of the union of the Bj 's.Suppose �rst that M has a point p that lies in the interior of a smallonstituent square T . Sine ⋃
j Bj is loally a �nite graph away from theedges of the grid, and a �nite graph separates an open set loally into only�nitely many omponents, p 6∈

⋃
j Bj . Hene there is a small annulus Asurrounding p that ontains no point of ⋃

j Bj . Eah Mi rosses A in a �large�set, ontained in a omponent of A ∩ U0 that ontains no points of D(X)and no points of ⋃
j Bj . There are only �nitely many suh, a ontradition.Suppose �nally that M lies in the 1-skeleton of the grid. Then we maysuppose that M ontains a nondegenerate interval I of an edge of a smallonstituent square T , and we may assume that eah Mi also lies in thatsquare. We may take a small retangular disk neighborhood A of I ′ ⊂ I in Tso that all but �nitely many Mi ross A from one side to the other near I ′. Nopoint of the larger interval int(I) an lie in ⋃

j Bj, for most of the Mi's wouldthen have to ross some Bj , a ontradition. Hene, only large Bj 's an omenear the smaller interval I ′. Hene I ′ has a neighborhood in A missing ⋃
j Bj.But, by hypothesis (2), all but �nitely many of the omponents rossing Amust ontain points of D(X), a ontradition.This ompletes the proof of (vii).Eah of the omponents M just disussed shares an ar with some thik-ened tree B′

j . We attah eah omponent M to suh an adjaent B′
j alongan attahing ar.

Step 5: Completion of the �rst null sequene of Peano domains. Wehave at this point reated three null sequenes of sets, namely, the om-ponents K of ⋃
C′

0, the omponents B′ of thikened trees, and the un-puntured omponents M that were formed when the thikened trees werearved out of puntured omponents of C0. Using the attahing ars de-sribed earlier, we an therefore form a null sequene of domains of the form
V = int(B′ ∪ K1 ∪ K2 ∪ · · · ∪ M1 ∪ M2 ∪ · · · ), where B′ is a thikened treeand the K's and the M 's are attahed to B′ along attahing ars. (Eah Kiand eah Mi is attahed to a unique B′

j . So the V 's are disjoint.)
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2 59(viii) The sets V , whih obviously form a null sequene of sets, are allPeano domains.Proof of (viii). We have already noted that int(B′) is a Peano domain.Eah int(Ki) is a Peano domain beause, by hypothesis (2) of this theoremand a two-ase argument similar to (iii), it satis�es hypothesis (2) of Theo-rem 3.2. We see that the sets Mj are Peano domains beause of the followingargument. Suppose there is a disk D suh that the omponents of Mj ∩D donot form a null sequene. We let V1, V2, . . . denote a sequene of omponentsonverging to a nondegenerate ontinuum V . We get a ontradition exatlyas in the argument for (vii) above.We now hoose, for the losures of B′ and for the losures of eah of the

Ki's and eah of the Mj 's, a ontinuous surjetion from B
2 as in ondition(3) of Theorem 3.2. By the proof of Theorem 3.2, as noted in the remarkfollowing the statement of Theorem 3.2, we may assume that these mapsare 1-1 over the attahing ars. It is thus an easy matter to piee thesefuntions together to get a single ontinuous surjetion from B

2 onto thelosure of V = int(B′ ∪K1 ∪K2 ∪ · · · ∪M1 ∪M2 ∪ · · · ) of the kind requiredby Theorem 3.2(3).This ompletes the proof of (viii).
Step 6: Preparing for the next stage of the indution. If L is an elementof C0 from whih ertain thikened trees B′

i have been removed, then theremaining puntured omponents all have diameter less than or equal to themesh of the overing grid. However, they need not form a null sequene. Wesimply take the union of the interiors of suh elements in R
2 to form a newopen set U1. This open set forms the input to the next stage of the indution.We need to verify the following fat:(ix) The open set U1 satis�es the two onditions (1) and (2) with whihwe began Setion 4.Proof of (ix). The remaining omponents are all subsets of omponentsof elements of C0, hene have diameter less than or equal to the mesh of theovering grid.Suppose that D is a disk and D ∩ U1 has in�nitely many large ompo-nents Mi that ontain no point of D(X). We may assume Mi → M , Mnondegenerate. We argue again exatly as in the proof of (vii) to obtain aontradition.Thus hypothesis (2) is satis�ed. Sine eah omponent of U1 is, by hy-pothesis, puntured, hypothesis (1) is also satis�ed.This ompletes the proof of (ix).

Step 7: The indutive step and the ompletion of the proof. We nowreyle the new open set U1 as the set U0 of the argument just given, but use



60 J. W. Cannon and G. R. Connera grid with muh smaller mesh. We repeat this proess indutively, in�nitelyoften. The ompletion of the argument is then lear provided we make thefollowing two remarks:(x) We may require that the point pi ∈ D(X) lie in one of the treesonstruted before or during the ith stage of the indution.Proof of (x). We may hoose the mesh so small that, if pi has not beenused before stage i, then pi is the only point of D(X) in a square of thegrid and its neighboring squares, all lying in Ui. We an hoose to attah theneighboring squares to the square ontaining pi.(xi) Eventually, every point p of S
2 \ (D(X) ∪ B(X)) lies in the losureof the onstruted Peano domains.Proof of (xi). When squares are su�iently small, every square ontain-ing p misses D(X) ∪ B(X). If p has not already appeared in the losure ofone of our Peano domains, then p will lie in a omponent K that ontains nopoint of D(X), hene will be attahed to some thikened tree at that stage.Thus our proof is omplete that we an tile the omplement of B(X) witha null sequene of disjoint Peano domains. Hene, in�nitely many applia-tions of Theorem 3.3 show that X an be deformed by a strong deformationretration onto a 1-dimensional set.6. Proof of Theorem 1.4. We are given a planar Peano ontinuum M .We must show that the fundamental group of M embeds in the fundamentalgroup of a 1-dimensional planar Peano ontinuum M ′.The onstrution of the 1-dimensional planar Peano ontinuum M ′. Weshall assoiate with M a quotient map π : M → M ′ onto a 1-dimensionalPeano ontinuum M ′ in suh a way that eah nondegenerate point preimage

π−1(x), for x ∈ M ′, is an ar in M with endpoints in ∂M .The vertial deomposition of M , and the quotient ontinuum M ′. Let Vbe a vertial line that intersets M . Let G(V ) denote the set of omponentsof V ∩M . Let G =
⋃

V G(V ). Let G0 be the trivial extension of G to all of R
2.(That is, G0 \ G onsists of the singleton sets of R

2 \M .) Let π : M → M ′ =
M/G and π′ : R

2 → R
2/G0 be the assoiated quotient maps.

Claim 1. The deomposition G0 is ellular and upper semiontinuous,so that R
2/G0 is homeomorphi with R

2 by the Moore Deomposition Theo-rem 2.6. Sine eah element of G intersets ∂(M), M ′ = π(M) = π′(M) isnowhere dense in R
2 ∼ R

2/G0. Consequently, M ′ is a 1-dimensional Peanoontinuum.Proof of the laim. Sine eah element of G0 is a point or an ar, G0is ellular. Let g1, g2, . . . be elements of G0 ontaining onvergent sequenes
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xi → x and yi → y, with xi, yi ∈ gi ∈ G0. If x 6= y, then gi must be a vertialinterval in M for all i su�iently large. Thus x and y must be elements of
M in the same vertial interval. The vertial intervals gi join xi to yi. Henetheir limits ontain a vertial interval from x to y, whih must lie in M . Thus
x and y are in the same element of G0, and G0 is upper semiontinuous.The remaining assertions of the laim are easily veri�ed.
Claim 2. The projetion map π : M → M ′ indues a map on funda-mental groups that is injetive. [The proof of this laim will establish Theo-rem 1.4.℄Proof of the laim. Let f : S

1 → M be a ontinuous funtion suh that
f ′ = π ◦ f : S

1 → M ′ is nullhomotopi in M ′ (that is, there is a map
F ′ : B

2 → M ′ that extends f ′). We must show that f is nullhomotopiin M .Analysis of f ′ = π ◦ f : S
1 → M ′. (The analysis is essentially taken from[3, 3.2.1℄.)

Mapping Analysis Lemma (see [8℄ and [3, 3.2.1℄). Suppose that f ′ :
S

1 → M ′ is a nullhomotopi mapping from the irle S
1 into a 1-dimensionalontinuum M ′. Then there is an upper semiontinuous deomposition H of

S
1 into ompata that has the following three properties:(1) The mapping f ′ is onstant on eah element of H.(2) The deomposition H is nonrossing. That is, if h1 and h2 are distintelements of H, then the onvex hulls Hull(h1) and Hull(h2) of h1and h2 in the disk B

2 are disjoint. [Equivalently, h1 does not separate
h2 on S

1.](3) The deomposition H is �lling. That is, the disk B
2 is the union ofthe onvex hulls Hull(h) of the elements h ∈ H.Proof. Let F ′ : B

2 → M ′ be a map that extends f ′ : S
1 → M ′. We de�ne

H = {h = C ∩ S
1 | ∃x ∈ M ′ suh that C is a omponent of (F ′)−1(x)}.It is obvious that H is an upper semiontinuous deomposition of S

1 intoompata and that H satis�es onlusion (1) of the Mapping Analysis Lem-ma. (One an easily hek the upper semiontinuity by verifying the followingtwo exerises:
Exercise 1. If f : M1 → M2 is a ontinuous funtion between om-pata, then the omponents of the point preimages form an upper semi-ontinuous deomposition G of M1. [Indeed, let xi, yi ∈ Ki ∈ G with

xi → x ∈ K(x) ∈ G and yi → y ∈ K(y) ∈ G. In order to prove theHausdor� ondition, it su�es to show that K(x) = K(y). By Theorems 2.4and 2.5, we may assume that the sequene Ki onverges to a ontinuum K.By the ontinuity of f , f |K must be a onstant funtion sine eah of the



62 J. W. Cannon and G. R. Connerfuntions f |Ki is onstant. But x, y ∈ K. Hene K ⊂ K(x) ∩ K(y) and
K(x) = K(y).℄
Exercise 2. If G is an upper semiontinuous deomposition of a om-patum M into ompat sets, and if X is a ompat subset of M , then theelements K ∩ X, for K ∈ G, form an upper semiontinuous deompositionof X. [Indeed, proeed in a manner similar to the solution of Exerise 1.℄)The proof of onlusion (2) of the Mapping Analysis Lemma is easy. If

h1 separates h2 on S
1, and if h1 = C1 ∩ S

1 and h2 = C2 ∩ S
1, then C1 and

C2 must interset, a ontradition.The proof of onlusion (3) requires Lemma 6.1 below, whih shows that
S

1/H is a ontratible set. Knowing that S
1/H is ontratible, we argue asfollows. Let H ′ be the olletion of sets in R

2 that are either onvex hullsHull(h) of elements of h ∈ H or are singleton sets that miss all suh onvexhulls. Sine H is nonrossing, by (2), it follows easily that H ′ is a ellular,upper semiontinuous deomposition of R
2. Let π : R

2 → R
2/H ′ ≈ R

2denote the projetion map. If H were not �lling, then the ontratible set
π(S1) ≈ S

1/H would separate the nonempty sets π(R2\B
2) and π(B2)\π(S1)in R

2/H ′ ≈ R
2, a ontradition.Here is the lemma that shows that S

1/H is ontratible.Lemma 6.1. Let F : B
2 → M ′ be a ontinuous funtion from the disk B

2into a 1-dimensional ontinuum M ′. De�ne
H = {h = C ∩ S1 | ∃x ∈ M ′ suh that C is a omponent of F−1(x)}.Then H is an upper semiontinuous deomposition of S

1 into ompata and
S

1/H is a 1-dimensional , ontratible, planar Peano ontinuum (that is,
S

1/H is a dendrite).Proof. Eah point p ∈ B
2 lies in some omponent C of some point preim-age F−1(x), x ∈ M ′. We may partially order these omponents by delaring

C ≤ C ′ if C lies in the union of C ′ and its bounded omplementary domains.By a ompatness argument, for eah C, there is a maximal C ′ with C ≤ C ′.We may rede�ne F ′ so that F ′(p) = F ′(C). This modi�ation does not alterthe deomposition H of S
1. After this modi�ation, the nondegenerate om-ponents of point preimages form the nondegenerate elements of a ellularupper semiontinuous deomposition G of R

2 (see the two exerises above);and, by the Moore Deomposition Theorem 2.6, the quotient R
2/G is hom-eomorphi with R

2. We denote the quotient map by π′ : R
2 → R

2/G ≈ R
2.The modi�ed F ′ fators through the projetion π′|B2 : B

2 → B
2/(G|B2):

F ′ : B
2 π′|B2

−→ B
2/(G|B2)

F ′′

−→ M ′.The image π′(B2) of the disk B
2 is ontratible beause it is a strongdeformation retrat of the disk π′(2B

2) ⊂ R
2/G. [The set π′(2B

2) is a disk
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2/G whose boundary is a simple losedurve.℄The image π′(B2) of the disk B
2 is 1-dimensional sine (i) it admitsthe mapping F ′′ : π′(B2) → M ′ into a 1-dimensional spae M ′ and thepoint preimages of F ′′ are totally disonneted, while (ii) a map that reduesdimension by k must have at least one point preimage of dimension k ([11,Theorem VI 7℄).The images π′(B2) and π′(S1) are equal for the following reasons. Sine

π′(B2) is ompat and 1-dimensional, the open set π′(R2 \B
2) is dense in theplane R

2/G. Hene the image of π′(R2 \ int(B2)) is the entire plane. Con-sequently, π′(S1) ⊃ π′(B2). The opposite inlusion is obvious. We onludethat π′(S1) is ontratible.The proof of Lemma 6.1 ompletes the proof of the Mapping AnalysisLemma.Completion of the proof that f : S
1 → M is nullhomotopi. We reall theellular, upper semiontinuous deomposition G of R

2 that has as its nonde-generate elements the maximal vertial intervals in M and whose quotientmap π : R
2 → R

2/G takes M onto M ′. We use the Mapping Analysis Lemmato obtain an upper semiontinuous deomposition H of S
1 that models theshrinking of f ′ = π ◦ f : S

1 → M ′ in the 1-dimensional set M ′. Sine thedeomposition H is nonrossing and �lling, we may expand this deomposi-tion H to a deomposition G of B
2 by taking as elements the onvex hulls in

B
2 of the elements of H. The shrinking of f in M will rely on the interplaybetween the deompositions G and G. We shall use the deomposition Gof B

2 as a model on whih we shall base the onstrution of a ontinuousfuntion F : B
2 → M that extends f : S

1 → M .If, for eah g ∈ G, f |g ∩ S
1 were onstant (as is true for f ′), we ouldsimply de�ne F (g) = f(g∩S

1). However, this need not be the ase. All thatwe know is that for eah g ∈ G, there exists h(g) ∈ G suh that f(g ∩ S
1) ⊂

h(g). We need to show how to de�ne F |g : g → h(g) ⊂ M in suh a waythat the union F =
⋃
{F |g : g ∈ G} is a ontinuous extension of f .If g is a single point, then that point lies in S

1, and we may de�ne
F (g) = f(g).If g is an interval with its ends in S

1, then we extend the map f |∂glinearly to all of g.If g is a disk, then we use an ideal triangulation of g in the following way:The set g is the onvex hull Hull(h) of a losed subset h of the unitirle S
1. Sine g is a disk, h ontains at least three points. An ideal triangleis a triangle in B

2 that has its verties on S
1. A olletion {Ti} of idealtriangles is said to be an ideal triangulation of the onvex hull g providedthat the olletion of triangles is loally �nite in int(B2), the triangles have



64 J. W. Cannon and G. R. Connerdisjoint interiors, have verties in h, and have union whose intersetion with
int(B2) is preisely g ∩ int(B2).
Triangulation Lemma. If g = Hull(h) is a disk, then g has an idealtriangulation.Proof. Every point x ∈ Hull(h)∩ int(B2) has a neighborhood in Hull(h)that is in the onvex hull of a �nite olletion of points in h. [Hint: everypoint of a onvex hull lies in the hull of a �nite subset; onsider separatelythe ase where the point is in the interior or on the boundary of suh a �nitepolygon.℄ Hene, every ompat subset of Hull(h)∩ int(B2) is in the onvexhull of a �nite olletion of points in h.Let C1 ⊂ C2 ⊂ · · · be an exhaustion of Hull(h) ∩ int(B2) by ompatsets, and let F1 ⊂ F2 ⊂ · · · be �nite subsets of h suh that Ci ⊂ Hull(Fi).It su�es to show that any ideal triangulation Ti of Hull(Fi) extends toan ideal triangulation Ti+1 of Hull(Fi+1), for then we may take T (X) =⋃∞

i=1 Ti.To extend Ti to Ti+1, it su�es to see that we an add one point p at atime to Fi. Sine eah edge of Ti separates B
2, the domain of B

2 \ |Ti| thatontains p is bounded by a single edge rs of Ti followed by an ar of S
1 thatontains p. We simply add the triangle prs to Ti.Note that, sine every ompat set Ci in g ∩ int(B2) is atually overedby a �nite subolletion of the triangles Tj , the olletion is loally �nite in

int(B2).This ompletes the proof of the Triangulation Lemma.With the Triangulation Lemma in hand, we are ready to de�ne F |g :
g → M , for the ase where g is a disk.In this ase, we note that h = g ∩ S

1 is a ompat set having at leastthree points. Hene, by the Triangulation Lemma, g has an ideal triangula-tion T (g). We de�ne F on g ∩ S
1 to equal f . On eah triangle ti of T (g),we de�ne F to be the linear extension of f restrited to the three vertiesof ti.Proof that F |g is ontinuous for eah g ∈ G. If F |g is not ontinuous,then there are xi → x in g and ε > 0 suh that d(F (xi), F (x)) ≥ ε for all i.Sine F |g ∩ S

1 = f |g ∩ S
1 is ontinuous, we may assume that eah xi lies in

int(B2). Sine F is ontinuous on any �nite union of triangles of T (g) andsine T (g) is loally �nite in int(B2), we may assume that x ∈ h = g ∩ S
1and that x1, x2, . . . ome from distint triangles of T (g). Sine these trianglesannot aumulate at any interior point of B

2, they must, in fat, havediameter going to 0 and approah x. But then their verties approah xand, by linearity, their images approah F (x), a ontradition. Hene F |g isontinuous.
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2 65Proof that F is ontinuous. If F is not ontinuous, then there are xi → xin B

2 and ε > 0 suh that d(F (xi), F (x)) ≥ ε for all i. Sine, for eah g ∈ G,
F |g is ontinuous, we may assume that x1, x2, . . . , x all ome from distintelements g1, g2, . . . , g of G. By ontinuity of F |S1 = f , we may ignore those
xi in S

1. Hene, we may assume that xi ∈ int(B2), and that gi is either an ar
ti or a disk, one of whose triangles ti ontains xi. If the ti approah x, then
x ∈ S

1, the verties of the ti approah x, and the images of the ti approah
F (x) by linearity and the ontinuity of F |S1 = f . Otherwise, we may assumethat the ti approah an edge t of g that ontains x. Again, their verties ap-proah the verties of t, and the ontinuity of F |S1 = f and linearity implythat F (xi) → F (x), a ontradition. We onlude that F is ontinuous.This ompletes the proof of Theorem 1.4.We reall the orollary and question assoiated with Theorem 1.4:
Corollary 1.5. If M is a planar Peano ontinuum, then the fundamen-tal group of M embeds in an inverse limit of �nitely generated free groups.Proof. This theorem is well-known for 1-dimensional ontinua. See, forexample, [8℄ and [4℄.
Question 1.6. If M is a planar Peano ontinuum whose fundamen-tal group is isomorphi with the fundamental group of some 1-dimensionalplanar Peano ontinuum, is it true that M is homotopially 1-dimensional?It is not di�ult to see that the projetion that we have given that takes

M onto M ′ does not give a surjetion on fundamental groups if M is nothomotopially 1-dimensional. The key issue to resolve here is whether anarbitrary group embedding into the group of a 1-dimensional ontinuum analways be indued by a ontinuous map.
Corollary 1.7. If M is a planar Peano ontinuum, f : S

1 → M is aloop in M, and f is nullhomotopi in every neighborhood of M in R
2, then

f is nullhomotopi in M .Proof. It follows easily that f ′ : S
1 → M ′ is nullhomotopi in eah neigh-borhood of M ′ in R

2. But it is well-known [8℄, [3℄ that this implies that f ′is nullhomotopi in M ′. Thus the argument of Theorem 1.4 applies to showthat f is nullhomotopi in M .For results that strengthen the last orollary, see [9℄.
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