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Boundaries of right-angled hyperboli
 buildingsbyJan Dymara (Wro
ªaw) and Damian Osajda (Wro
ªaw and Paris)
Abstra
t. We prove that the boundary of a right-angled hyperboli
 building is auniversal Menger spa
e. As a 
onsequen
e, the 3-dimensional universal Menger spa
e isthe boundary of some Gromov-hyperboli
 group.INTRODUCTIONHyperboli
 right-angled buildings were �rst explored by Mar
 Bourdon.The easiest non-trivial example 
an be glued from in�nitely many pen-tagons. We glue them along edges�a �nite number greater than 2 alongea
h edge�so that a small neighbourhood of ea
h vertex is a 
one over afull bipartite graph. We want the obtained polyhedral 
omplex to be 
on-ne
ted and simply 
onne
ted; this is easily arranged by passing to the uni-versal 
over of a 
onne
ted 
omponent. A natural metri
 on our 
omplexis a pie
ewise hyperboli
 metri
, ea
h pentagon given the shape of a right-angled hyperboli
 pentagon. This and similar examples were 
onstru
ted andthoroughly investigated by Bourdon ([Bd1℄, [Bd2℄) and Bourdon and Pajot([BP1℄, [BP2℄).In parti
ular, Bourdon states that the Gromov boundary of any of the
omplexes he 
onsiders is the Menger 
urve. There are two folklore proofsof this statement. The �rst follows the arguments of Benakli (
f. [Bd1℄, [B℄).The se
ond uses the result of Kapovi
h and Kleiner ([KK℄): if the boundaryof a one-ended hyperboli
 group is 1-dimensional and has no lo
al 
ut pointsthen it is either the Menger 
urve or the Sierpi«ski 
arpet. This result appliesto uniform latti
es in the isometry groups of Bourdon's buildings. Sin
e (asone 
an 
he
k) the boundary of a thi
k building 
ontains a non-planar subset,2000 Mathemati
s Subje
t Classi�
ation: 20E42, 54F35, 20F67.Key words and phrases: hyperboli
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124 J. Dymara and D. Osajdait follows that in this 
ase the boundary is the Menger 
urve. No details ofeither of the arguments have been published.The purpose of this paper is to prove the following theorem.
Main Theorem. Let X be a lo
ally �nite right-angled thi
k hyperboli
building of dimension n ≥ 2. Then the Gromov boundary of X is homeomor-phi
 to the universal (n− 1)-dimensional Menger spa
e µn−1.A dis
ussion of buildings explaining the meaning of our assumptions is
ontained in Se
tion 1. Let us just mention that hyperboli
 means Loba-
hevski��-hyperboli
 rather than Gromov-hyperboli
. The existen
e of X asin the theorem is equivalent to the existen
e of a bounded �nite right-angledpolyhedron in H

n. Therefore, X exists only for n = 2, 3, 4 ([Vin℄). On
e thepolyhedron is given, X 
an be 
onstru
ted as the universal 
over of some�nite 
omplex (
f. [D2℄, [GP℄ or Se
tion 4). The fundamental group of this�nite 
omplex is quasi-isometri
 to X; thus, one gets examples of Gromov-hyperboli
 groups with Gromov boundary µ3, µ2 and µ1. The latter twospa
es have been known to be boundaries of Gromov-hyperboli
 groups (
f.[BK℄), but µ3 is new.The proof of the main theorem is based on the following 
hara
terisationof µn−1, due to Bestvina [Be℄. A metri
 spa
e Y is homeomorphi
 to µn−1if and only if it is 
ompa
t, (n − 1)-dimensional, (n − 2)-
onne
ted, lo
ally
(n − 2)-
onne
ted, and has the (n − 1)-dimensional disjoint dis
 property(DDn−1P ). We 
he
k that these 
onditions are satis�ed for the boundary ∂Xof an n-dimensional right-angled hyperboli
 building X. In Lemma 3.1 weprove that ∂X is 
ompa
t and (n − 1)-dimensional. Re
all that Y is lo
ally
(n−2)-
onne
ted if for ea
h y ∈ Y and every open neighbourhood U of y thereexists an open set V with y ∈ V ⊆ U su
h that everymapSk → V extends to amap Bk+1 → U (for k = 0, 1, . . . , n− 2). In Proposition 3.6 we 
he
k that ∂Xis (n− 2)-
onne
ted and lo
ally (n− 2)-
onne
ted. The (n− 1)-dimensionaldisjoint dis
 property says that for any two maps f, g : Dn−1 → Y and any
ε > 0 there exist maps f ′, g′ : Dn−1 → Y su
h that f ′ is ε-
lose to f , g′ is
ε-
lose to g, and f ′(Dn−1)∩ g′(Dn−1) = ∅. A standard way to proveDDn−1Pis to 
onstru
t, for any ε > 0, two maps φ, ψ : Y → Y , both ε-
lose to theidentity map and with disjoint images. Su
h maps for ∂X are 
onstru
ted inTheorem 4.11 and Corollary 4.13.In Se
tion 4, we investigate the stru
ture of right-angled buildings, re-proving some results of Globus ([Gl℄) and Haglund and Paulin ([HP℄). Theadvantages of our approa
h are as follows: (i) our assumptions on the thi
k-ness of the buildings are weaker; (ii) we obtain a deeper understanding ofthe automorphism group, allowing us to prove DDn−1P .Finally, in the appendix we prove that an n-dimensional hyperboli
 (notne
essarily right-angled) or Eu
lidean building is (n−2)-
onne
ted at in�nity.



Boundaries of right-angled hyperboli
 buildings 125This is a spe
ial 
ase of some results of [GP℄ and [DM℄. We brie�y 
riti
isethe arguments given in those papers (
f. [DM′℄).A variant of the main theorem has been proved independently by A. Dra-nishnikov and T. Januszkiewi
z. We have not seen the details of their work.We are grateful to Mike Davis, Frédéri
 Paulin, Tadeusz Januszkiewi
zand Ja
ek �wi¡tkowski for helpful 
onversations.
1. GENERALITIES ON BUILDINGSTwo standard referen
es for buildings are [Br℄ and [Ron℄. Metri
s onbuildings are dis
ussed in [D2℄, and hyperboli
 buildings in [GP℄.A Coxeter system is a pair (W,S), where W is a group, S is a generatingsubset of W , and W = 〈S | {(st)mst}s,t∈S〉. The numbers mst are positiveintegers or in�nity; mst = 1 exa
tly when s = t; mst = ∞ means that thereis no relation between s and t. We usually speak about a Coxeter group

W , in fa
t meaning some Coxeter system (W,S). A Coxeter group W isright-angled if mst ∈ {1, 2,∞} for all s, t ∈ S. A spe
ial subgroup of W is asubgroup generated by some subset T of S: WT = 〈T 〉. It is well known that
(WT , T ) is a Coxeter system. A subset T ⊂ S is 
alled spheri
al if WT is�nite. For example, ∅ is spheri
al; {s} is always spheri
al; {s, t} is spheri
alunless mst = ∞. If W is right-angled, then T is spheri
al if and only if anytwo elements of T 
ommute. For w ∈ W we de�ne ℓ(w) to be the length ofa shortest word in the generators S representing w. We put

In(w) = {s ∈ S | ℓ(ws) < ℓ(w)}.It is well known that In(w) is always spheri
al.Several di�erent des
riptions of buildings will be useful for us. We startwith a 
ombinatorial one. Let W be a Coxeter group. We equip W witha family (∼s)s∈S of equivalen
e relations, de�ned as follows: w ∼s v ⇔
w ∈ {v, vs}. Suppose that A and B are two sets, ea
h equipped with an S-indexed family of equivalen
e relations. A map from A to B is a morphismif it preserves ea
h of the equivalen
e relations; it is an isomorphism if it isa bije
tive morphism and if its inverse is also a morphism. A W -building isa set (of 
hambers) equipped with a family of equivalen
e relations (∼s)s∈Sand with a family of subsets (
alled apartments) isomorphi
 toW , su
h that:(B1) any two 
hambers are 
ontained in some apartment;(B2) if two 
hambers x, y are both 
ontained in apartments A,A′, thenthere exists an isomorphism A→ A′ �xing x and y;(B3) if apartments A, A′ 
ontain a 
hamber x and both interse
t anequivalen
e 
lass R of one of the relations ∼s, then there exists anisomorphism A→ A′ �xing x and mapping R ∩A to R ∩A′.



126 J. Dymara and D. OsajdaFor the equivalen
e of this de�nition and a more standard one see [Ron,Thm 3.11℄. A building is 
alled thi
k if ea
h equivalen
e 
lass of ea
h relation
∼s has at least three elements. We will 
all a building lo
ally �nite if ea
hequivalen
e 
lass of ea
h relation ∼s is �nite. For example, W is a lo
ally�nite building, but it is not thi
k. Chambers x, y su
h that x ∼s y are
alled s-adja
ent or simply adja
ent. A gallery in a building X is a sequen
eof 
hambers su
h that any two 
onse
utive elements are adja
ent. A �nitegallery is minimal if there is no shorter gallery with the same extremities.For a subset T ⊆ S and x ∈ X we de�ne the residue Res(x, T ) as the setof all y ∈ X su
h that there exists a gallery of the form x = x0 ∼s1 x1 ∼
· · · ∼sk

xk = y, where s1, . . . , sk ∈ T . For X = W the T -residue of x is theleft WT -
oset 
ontaining x: Res(x, T ) = xWT . In general, it is well knownthat Res(x, T ) is a WT -building.The notion of folding map is very important for us. Let X be a W -building. Pi
k any 
hamber B ∈ X. By (B1), for any x ∈ X there exists anapartment A su
h that B, x ∈ A. Let ιA : A→W be the unique isomorphismwhi
h sends B to 1. Then, by (B2), ιA(x) does not depend on A. The formula
πB(x) = ιA(x) de�nes the (B-based) folding map πB : X →W . This map isa morphism of buildings (one uses (B3) to 
he
k that). We often abbreviate
πB to π. Here is a list of some well-known and useful properties of π.(F1) If x ∈ X and t ∈ In(π(x)), then there exists a unique xt ∈ X su
hthat x ∼t x

t and π(xt) = π(x)t.(F2) The image under π of a minimal gallery in X starting at B isa minimal gallery in W . Conversely, if x ∈ X then any minimalgallery in W from B to π(x) is the image under π of a uniqueminimal gallery from B to x.For x ∈ X we may de�ne its length (meaning the distan
e from B) in termsof the folding: ℓ(x) = ℓ(π(x)).(F3) For any x ∈ X and T ⊆ S there exists a unique shortest 
hamber yin Res(x, T ). Moreover, if z ∈ Res(x, T ), then there exists a minimalgallery fromB to z via y. The restri
tion of π to Res(x, T ) 
omposedwith left multipli
ation by π(y)−1 
oin
ides with the y-based foldingmap πy : Res(x, T ) →WT .Buildings also have geometri
 realisations. The most general 
onstru
tionis due to Davis. Let D be a topologi
al spa
e with a family (Ds)s∈S ofsubspa
es (D is a model for a 
hamber; Ds is a model for the interse
tion oftwo s-adja
ent 
hambers). For p ∈ D we put S(p) = {s ∈ S | p ∈ Ds}. Nowfor anyW -building X Davis de�nes XD = X×D/∼, where (x, p) ∼ (y, q) ⇔
p = q and x ∈ Res(y, S(p)). The best 
hoi
e for D is the Davis 
hamber K:it is de�ned as the geometri
 realisation of the poset of all spheri
al subsets
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luding ∅); the subspa
e Ks is the sub
omplex spanned by subsets
ontaining {s}. We will denote XK by |X|. For X = W one obtains the Davis
omplex |W |. The geometri
 realisation |Y | of a subset Y of X is the subsetof |X| given by |Y | = {[(y, p)]∼ | y ∈ Y, p ∈ K}, where [(y, p)]∼ denotes the
∼-equivalen
e 
lass of (y, p). Apartments in |X| are geometri
 realisations ofapartments in X. The folding map indu
es a map |π| : |X| → |W |, whi
h isalso 
alled the folding map and is usually denoted by π. Here are some ni
eproperties of |X|:

• if X is lo
ally �nite, then |X| is lo
ally 
ompa
t;
• |X| is 
ontra
tible;
• |X| 
arries a pie
ewise-Eu
lidean CAT(0) metri
 (the Moussong met-ri
, 
f. [M℄).Let P be a 
onvex polytope in the hyperboli
 spa
e H

n. Suppose thatea
h dihedral angle of P is of the form π/k, where the positive integer k mayvary from angle to angle. Then the re�e
tions in 
odimension-one fa
es of Pgenerate a Coxeter groupW ; Coxeter groups arising in this way will be 
alledhyperboli
. The group W a
ts on H
n with fundamental domain P (this is atheorem of Poin
aré). The bary
entri
 subdivision of P is isomorphi
 to theDavis 
hamber K 
orresponding to the group W . Using this isomorphismone 
an de�ne a polyhedral stru
ture and a pie
ewise hyperboli
 metri
on |X| for any W -building X. Then ea
h apartment in |X| is isometri
 to

H
n, with 
hambers 
orresponding to W -translates of P in H

n. Moreover,the whole building |X| is CAT(−1) (
f. [D2℄, [GP℄). A building X (oftenmeaning the geometri
 realisation |X|, equipped with the CAT(−1) metri
and the polyhedral stru
ture des
ribed above) 
orresponding to a hyperboli
Coxeter group will be 
alled a hyperboli
 building. If all dihedral angles of Pare π/2, then P , W and X are 
alled right-angled.The Gromov boundary ∂X of a hyperboli
 building X (or, more generally,of a CAT(−1) spa
e, 
f. [BH℄) 
an be de�ned as the set of geodesi
 rays
γ : [0,∞) → X starting at some �xed point x0. The topology on ∂X isde�ned by the basis of open sets {Ur(x) | x ∈ X, r > 0}, where

Ur(x) = {γ ∈ ∂X | γ([0,∞)) ∩Br(x) 6= ∅}(Br(x) is the open ball in X of radius r 
entred at x). The topologi
al spa
ethus obtained is independent of the 
hoi
e of x0. We will always 
hoose x0in the interior of a 
hamber. For p, q ∈ X ∪∂X we denote by pq the geodesi
segment from p to q (whi
h exists and is unique be
ause X is a CAT(−1)spa
e). We de�ne the topology on X∪∂X by the basis of open sets 
onsistingof open balls in X and sets
Vr(x) = {y ∈ X ∪ ∂X | x0y ∩Br(x) 6= ∅};



128 J. Dymara and D. Osajdarestri
ted to ∂X, this topology yields the topology des
ribed above. If X islo
ally 
ompa
t then X ∪ ∂X is a 
ompa
ti�
ation of X. The folding map
π : X → H

n extends to a map π : X ∪ ∂X → H
n ∪ ∂H

n, where ∂H
n is theGromov boundary of the hyperboli
 spa
e.

2. HALF-SPACESThe purpose of this se
tion is to prove some auxiliary fa
ts about build-ings. In Subse
tion 2.A we give a di�erent basis of open sets for the topologyon X ∪ ∂X; in 2.B we prove some properties of the elements of this new ba-sis; in 2.C we dis
uss 
onne
tedness properties of some subsets of spheri
albuildings.2.A. Standard neighbourhoods. In this subse
tion we assume that
X is a hyperboli
 building. We keep the notation (W , P , π, x0, Br(x), Vr(x))as in the �nal two paragraphs of Se
tion 1. In parti
ular, π is the folding mapbased at a 
hamber B and sending B to P . We 
hoose x0 in the interior of B.We denote by pR the geodesi
 retra
tion of X∪∂X onto BR(x0): pR(x) is theinterse
tion point of SR(x0) and x0x if d(x0, x) > R; otherwise pR(x) = x.We also use pR to denote the 
orresponding retra
tion in H

n ∪ ∂H
n.Let H be a hyperplane in H

n = |W | 
ontaining a 
odimension-one fa
eof some W -translate wP of P . Su
h hyperplane is 
alled a wall and di-vides H
n into two open 
onne
ted pie
es: H+ and H− (our 
onvention is

int(P ) ⊆ H−). We put ∂H+ = {y ∈ ∂H
n | py ∩ H+ 6= ∅}, for some

p ∈ int(P ) (the result does not depend on the 
hoi
e of p; one may 
hoose
p = π(x0)). Let H be the set of all 
onne
ted 
omponents of sets of theform π−1(H+ ∪ ∂H+), over all walls H. Sin
e all Br(x) and Vr(x) are path-wise 
onne
ted (any y ∈ Vr(x) 
an be 
onne
ted by a part of x0y to apoint in Br(x)), the spa
e X ∪ ∂X is lo
ally pathwise 
onne
ted. Therefore,elements of H are open; they will be used as neighbourhoods of bound-ary points, and 
alled standard (open) neighbourhoods. By 
onvention, thewhole spa
e X ∪ ∂X is also a standard open neighbourhood. We 
laim that
H∪{Br(x) | x ∈ X, r > 0} is another basis of open sets for the topology on
X ∪ ∂X. This is implied by the following lemma.Lemma 2.1. Let x ∈ ∂X and U ⊂ X ∪ ∂X be its neighbourhood. Thenthere exists a wall H su
h that one of the 
onne
ted 
omponents of the set
π−1(H+ ∪ ∂H+) 
ontains x and is 
ontained in U .Proof. By the de�nition of the topology on X ∪ ∂X, and be
ause x0 ∈
int(B), one 
an �nd a point x1 lying on the geodesi
 ray x0x and insidea 
hamber C, and a positive number r, su
h that Br(x1) ⊆ int(C) and
Vr(x1) ⊆ U . Then Vr(x1) is an open neighbourhood of x 
ontained in U .
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Claim. There exists a wall F ⊂ H

n su
h that
π(x) ∈ F+ ∪ ∂F+ ⊂ π(Vr(x1)).Proof. Noti
e that π(Vr(x1)) equals Vr(π(x1),H

n), hen
e is an openneighbourhood of π(x) in H
n ∪ ∂H

n. Indeed, this follows easily from thefollowing two observations: π(Br(x1)) = Br(π(x1),H
n); any geodesi
 seg-ment in X starting at x0 is mapped by π onto a geodesi
 segment in H

n.Choose R > 0 su
h that every hyperplane in H
n 
ontained in H

n \
BR(π(x0),H

n) and interse
ting the geodesi
 ray π(x0)π(x) is 
ontained in
π(Vr(x1)). Only �nitely many walls interse
t BR(π(x0),H

n), while in�nitelymany walls interse
t π(x0)π(x); therefore, there exists a wall F interse
ting
π(x0)π(x) and 
ontained in H

n \BR(π(x0),H
n). By the 
hoi
e of R, this Fis 
ontained in π(Vr(x1)), and satis�es the 
onditions of the 
laim. ClaimLet now F be as in the 
laim. Let F̃+ be the 
onne
ted 
omponent of

π−1(F+ ∪ ∂F+) 
ontaining x. Let D be the length of a geodesi
 segment
π(x0)q whi
h is tangent to Sr(π(x1),H

n) at q. Then we have π(pD(F̃+)) ⊆

pD(F+ ∪ ∂F+) ⊂ Br(π(x1),H
n), hen
e pD(F̃+) ⊂ π−1(Br(π(x1),H

n)). Re-
all that Br(x1) is 
ontained in the interior of one 
hamber. Therefore, Br(x1)is one of the 
onne
ted 
omponents of π−1(Br(π(x1),H
n)). However, F̃+ is
onne
ted and its 
losure 
ontains x, hen
e pD(F̃+) is 
onne
ted and 
on-tains pD(x). Sin
e pD(x) = pD(x1), we have pD(F̃+) ⊂ Br(x1). This implies

F̃+ ⊂ Vr(x1) ⊂ U . Lemma2.1Lemma 2.2. Let H be a wall , and let x ∈ π−1(H+). Then the 
onne
ted
omponent of x in π−1(H+) is dense in the 
onne
ted 
omponent of x in
π−1(H+ ∪ ∂H+).Proof. Sin
e X ∪ ∂X is lo
ally pathwise 
onne
ted, 
onne
ted 
ompo-nents of open sets in this spa
e are pathwise 
onne
ted. Let y be in the
onne
ted 
omponent of x in π−1(H+ ∪ ∂H+), and let γ : [0, 1] → X ∪ ∂Xbe a path from x to y 
ontained in that 
omponent. We may 
hoose R solarge that pR ◦γ is a path starting at x and 
ontained in π−1(H+). Con
ate-nating this path with pR(y)y we obtain a path from x to y whi
h is 
ontainedin π−1(H+), ex
ept perhaps for its endpoint y. It follows that y belongs tothe 
losure of the 
omponent of x in π−1(H+).2.B. Shortest elements. In this subse
tionW is a right-angled Coxetergroup (we assume that W is hyperboli
 only in Propositions 2.12 and 2.13).Our goal is to prove that any half-spa
e in W has a unique shortest element(Prop. 2.5); we will also investigate the 
orresponding question for buildings(Prop. 2.11). A half-spa
e in W is a set of the form

H(w, s) = {h ∈W | d(h,ws) < d(h,w)},



130 J. Dymara and D. Osajdawhere w ∈ W , s ∈ S and d(w1, w2) = ℓ(w−1
1 w2). The name is motivated bythe fa
t that if W is hyperboli
 then the geometri
 realisation of H(w, s) isa 
losed half-spa
e in the usual sense in |W | = H

n.We begin with two prin
iples whi
h are very useful when dealing withdistan
es in Coxeter groups.(±1) d(as, b) = d(a, b) ± 1 and d(a, bs) = d(a, b) ± 1, for every a, b ∈ Wand every s ∈ S.(R) Let t, t′ ∈ S be two distin
t 
ommuting generators of W , let R bea {t, t′}-residue in W , and let x ∈W . Then the four distan
es from
x to 
hambers of R yield three 
onse
utive integers, the middle oneattained twi
e, on two non-adja
ent 
hambers of R.Property (R) follows from properties (±1) and (F3) (the latter is stated inSe
tion 1). Now we pro
eed to some preliminary lemmas. The proofs arequite standard, so we omit the details.Lemma 2.3. Suppose h ∈ H(w, s) \ {ws}, ht 6∈ H(w, s) for some t ∈ S.Then there exists t′ ∈ S su
h that t′t = tt′ and d(ht′, ws) < d(h,ws). More-over :(a) ht′ ∈ H(w, s), ht′t 6∈ H(w, s);(b) H(ht, t) = H(htt′, t).Proof. Choose t′ su
h that ht′ is 
loser to ws than h. Using (±1) one 
andedu
e that ht′ is then 
loser to w than h. Therefore, t, t′ ∈ In(w−1h), hen
e

tt′ = t′t. It remains to prove (a) and (b).We apply property (R) to the residue R = Res(h, {t, t′}). First, we take
x = w and x = ws. The eight distan
es are easily determined up to a 
ommonadditive 
onstant; part (a) follows. Se
ond, take an arbitrary x ∈ W . Thenthere are four 
ases to 
onsider, depending on whi
h element of R is 
losestto x. In ea
h 
ase it is readily 
he
ked that x ∈ H(ht, t) if and only if
x ∈ H(htt′, t); this proves (b).Lemma 2.4. Suppose h ∈ H(w, s), ht 6∈ H(w, s) for some t ∈ S. Then
t = s and H(hs, s) = H(w, s).Proof. Take a 
ounterexample (to the 
laim t = s) whi
h is 
losest to w.Lemma 2.3 produ
es a 
ounterexample whi
h is even 
loser to w, a 
ontra-di
tion. The same argument proves the se
ond 
laim.Lemma 2.5. Suppose that h ∈ H(w, s) and hs 6∈ H(w, s). Then thereexists a minimal gallery ws,wst1, . . . , wst1 . . . tm = h su
h that tis = sti.The 
onverse is also true.Proof. The �rst statement follows from Lemma 2.3. The 
onverse iseasily proved by indu
tion on m: one should apply property (R) to R =
Res(wst1 . . . tm, {tm, s}) and x = w,ws.
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 buildings 131Corollary 2.6.(a) The set {h∈W | h ∈ H(w, s), hs 6∈ H(w, s)} 
oin
ides with wsW{s}′ ,where {s}′ = {t ∈ S \ {s} | ts = st}.(b) Any half-spa
e is gallery 
onne
ted.Proof. Part (a) follows dire
tly from Lemma 2.5. To prove (b), 
onsider agallery from x ∈ H(w, s) to w. Let y be the �rst element of that gallery whi
hdoes not belong to H(w, s). Then, by Lemma 2.4 and part (a), ys ∈ wsW{s}′ ,so that it 
an be 
onne
ted to ws by a gallery in wsW{s}′ . Con
atenatingthe part from x to ys of the �rst gallery with the se
ond gallery we obtaina gallery in H(w, s) 
onne
ting x to ws. Statement (b) follows.Proposition 2.7. Every half-spa
e (in any right-angled Coxeter group)has a unique shortest element.Proof. We assume that 1 does not belong to our half-spa
e H(w, s)�otherwise the statement is trivial. Let x ∈ H(w, s), and let y be the �rstelement in a minimal gallery from x to 1 whi
h does not belong to H(w, s).Then, by Lemma 2.4 and Corollary 2.6, ys ∈ wsW{s}′ . Any residue 
ontainsa unique shortest element; let g be the shortest element in wsW{s}′ . Thereexists a minimal gallery from ys via g to 1 (
f. property (F3), Se
tion 1).Consequently, ℓ(x) ≥ ℓ(ys) ≥ ℓ(g); equalities hold only if x = y = g. Itfollows that g is the unique shortest element in H(w, s).The proof of Proposition 2.7 has the following 
orollary.Corollary 2.8. Any element of H(w, s) 
an be 
onne
ted with 1 by aminimal gallery passing through the shortest element of H(w, s).Proof. In the situation of the proof of Proposition 2.7, 
on
atenate thepart from x to ys of the �rst gallery with the se
ond gallery. The result is aminimal gallery from x via g to 1.We now turn to buildings. Let X be a W -building, and let π : X → Wbe the B-based folding map. We also �x a half-spa
e H(w, s). We assumethat 1 6∈ H(w, s) (be
ause we are eventually interested in standard openneighbourhoods) and that ws is the shortest element of H(w, s) (we may doso be
ause of Lemma 2.4).Lemma 2.9. Suppose that x ∈ X, π(x) ∈ H(w, s). Then there exists aminimal gallery (x0 = x, x1, . . . , xℓ = B) su
h that π(xk) = ws for k =
d(π(x), ws). If (x′0 = x0, x

′
1, . . . , x

′
ℓ) is another su
h gallery , then x′k = xk.Proof. Let π(x) = g. If σ = (g, gs1, . . . , gs1 . . . sℓ) is a minimal galleryfrom g to 1 via ws = gs1 . . . sk, then σ̃ = (x, xs1 , (xs1)s2 , . . .) is the uniquegallery from x to B that folds onto σ (
f. properties (F1) and (F2) of thefolding map). Moreover, σ̃ is minimal. This gives the �rst assertion.



132 J. Dymara and D. OsajdaNow let τ = (g = π(x′0), π(x′1), . . . , π(x′ℓ) = 1). By Tits' solution of theword problem in Coxeter groups, the gallery σ 
an be transformed into τ bya sequen
e of moves of the form
(∗)

η = (. . . , hi, hi+1 = ht, hi+2 = htu, . . .)

↓

ξ = (. . . , h′i = hi, h
′
i+1 = hu, h′i+2 = hut = htu = hi+2, . . .)where tu = ut. Moreover, this 
an be done with the kth 
hamber of thegallery equal to ws throughout the pro
ess (just operate separately on thegallery segments from g to ws and from ws to 1). Let (σ = σ1, . . . , σm = τ)be a sequen
e of galleries 
orresponding to su
h a transformation. Noti
ethat in the situation of the move (∗) the galleries η̃, ξ̃ 
oin
ide ex
ept forthe (i+ 1)st 
hamber. This is be
ause both (yu)t and (yt)u are the shortestelement in Res(y, {t, u}) so that they 
oin
ide (here y denotes the 
ommon

ith element of η̃ and ξ̃). It follows that the kth 
hamber of ea
h σ̃i is thesame; therefore xk = x′k.We now de�ne 
ombinatorial and geometri
 
ounterparts of standardopen neighbourhoods, in the setting of general right-angled buildings. Let
x ∈ X and π(x) ∈ H(w, s). We de�ne Y ⊆ X as follows: y ∈ Y if there existsa gallery (x = x0 ∼s1 x1 ∼s2 · · · ∼sm xm = y) su
h that Res(π(xi), si) ⊆
H(w, s). We also de�ne

H(w, s)r = {[g, p] ∈ |W | | Res(g, S(p)) ⊆ H(w, s)},

Yr = π−1(H(w, s)r) ∩ |Y |

= {[y, p] ∈ |X| | y ∈ Y, Res(π(y), S(p)) ⊆ H(w, s)}.Noti
e that Y = {y ∈ X | int(|y|) ⊆ Yr}.Lemma 2.10. Yr is pathwise 
onne
ted and both 
losed and open in
π−1(H(w, s)r).Proof. 1) Yr is pathwise 
onne
ted: Re
all that the Davis 
hamber Kis the geometri
 realisation of the poset of all spheri
al subsets of S. Thevertex of K 
orresponding to ∅ will be denoted bar(K), and the vertex
orresponding to {s} by bar(Ks). The 
orresponding points in a 
hamber
|z| ⊆ |X| will be denoted bar(|z|), bar(|z|s). Any point in |z| 
an be 
onne
tedto bar(|z|) by a line segment 
ontained in |z|.Let [y, p] ∈ Yr; the segment from [y, p] to bar(|y|) is 
ontained in Yr. Nowlet (x = x0 ∼s1 x1 ∼s2 · · · ∼sm xm = y) be a gallery as in the de�nition of Y .The pie
ewise linear path bar(|x0|) − bar(|x1|s1) − bar(|x1|) − · · · − bar(|y|)is 
ontained in Yr: the only problemati
 points are pi = bar(|xi|si

); however,
S(pi) = {si} and Res(π(xi), si) ⊆ H(w, s). Thus, any point in Yr 
an be
onne
ted by a path to bar(|x|) so that Yr is pathwise 
onne
ted.
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hamber
K 
onsisting of points q su
h that S(q) ⊆ S(p). Then ⋃

z∈Res(y,S(p)) z × V isan open subset of X×K, 
losed under the equivalen
e relation de�ning |X|.Therefore ⋃
z∈Res(y,S(p)){[z, v] | v ∈ V } is an open neighbourhood of [y, p].This neighbourhood is 
ontained in Yr.3) Yr is 
losed in π−1(H(w, s)r): Let [z, q] be in the 
losure of Yr in |X|.Let N be the open neighbourhood of [z, q] 
onstru
ted in 2); then N ∩ Yr

6= ∅. Let [y, p] ∈ Yr ∩ N . Sin
e [y, p] is in the 
losure of the interior of |y|,some interior points of |y| belong to N . This implies that y ∈ Res(z, S(q)),and [z, q] = [y, q]. We are done, unless Res(π(y), S(q)) is not 
ontained in
H(w, s); in that 
ase, though, [π(z), q] = [π(y), q] 6∈ H(w, s)r and [z, q] 6∈
π−1(H(w, s)r).Proposition 2.11. Y has a unique shortest 
hamber.Proof. Let σ be a minimal gallery from y ∈ Y to B via π−1(ws); wedenote by a(y) the element of σ that folds onto ws (this element is wellde�ned due to Lemma 2.9).Suppose now that y, y′ ∈ Y , y ∼t y

′ and Res(π(y), t) ⊆ H(w, s). Wewill prove that a(y) = a(y′). If y′ = yt, then there exists a gallery σ from
y to B via a(y) passing through y′ (see the 
onstru
tion of a gallery in theproof of Corollary 2.8: one 
an start 
onstru
ting σ by shortening y in anarbitrary manner, provided one does not leave H(w, s)), hen
e a(y) = a(y′)in this 
ase. The 
ase y = y′t is analogous. Now suppose that the shortestelement u of Res(y, t) is di�erent from both y and y′. Sin
e y ∈ Y and
Res(π(u), t) = Res(π(y), t) ⊆ H(w, s) we have u ∈ Y . Then u = yt = y′t,and a(y) = a(u) = a(y′) by the previous 
ase.It follows that if y ∈ Y and (x = x0, . . . , xl = y) is a gallery as inthe de�nition of Y , then a(y) = a(xl−1) = · · · = a(x). Consequently, any
y ∈ Y \ {a(x)} is stri
tly longer than a(y) = a(x). Thus a(x) is the uniqueshortest element of Y .We 
on
lude with two propositions summarising the above dis
ussion inthe hyperboli
 
ase.Proposition 2.12. Suppose that W is a right-angled hyperboli
 Coxetergroup, asso
iated to a polyhedron P ⊆ H

n, and let H be a wall. Then amongall w ∈W su
h that int(wP ) ⊆ H+ there is a unique shortest one; let us 
allit w0. Suppose that H 
ontains the fa
e w0Ps of P ; then, for any x0 ∈ int(P ),the geodesi
 through x0 perpendi
ular to H interse
ts H in the interior ofthe fa
e w0Ps.Proof. Suppose that H 
ontains the fa
e wPs of the 
hamber wP . Wemay assume that ℓ(w) < ℓ(ws) (swapping w and ws if ne
essary). Then,under the usual identi�
ation of |W | and H
n, the geometri
 realisation of
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H(w, s) 
orresponds to the 
losed half-spa
e H+. This follows easily fromthe fa
t that the distan
e between two elements ofW is equal to the numberof walls separating the 
orresponding 
hambers. Now the �rst assertion ofthe proposition follows from Proposition 2.7.For the se
ond assertion observe that the geodesi
 γ passing through x0and perpendi
ular to H interse
ts H at an interior point γ(t) of the fa
e
wPs = wsPs. Indeed, otherwise γ(t) ∈ H ′ for some wall H ′ ⊥ H; then,however, the image of γ is 
ontained in H ′, and 
annot 
ontain x0. Now if
ws 6= w0, then there exists a wall H ′ ⊥ H separating wsP from w0P (andhen
e from x0). Sin
e γ ⊥ H, γ does not interse
t H ′. On the other hand, γ
onne
ts points x0 and γ(t) lying on di�erent sides of H ′, a 
ontradi
tion.Proposition 2.13. Suppose that W is a right-angled hyperboli
 Coxetergroup, asso
iated to a polyhedron P ⊆ H

n, and let H be a wall. Let w0 bethe element of W de�ned in Proposition 2.12. Suppose further that X is a
W -building , and that U is a 
onne
ted 
omponent of π−1(H+ ∪∂H+). Then
π−1(w0P ) ∩ U 
onsists of one 
hamber.Proof. Choose w ∈W and s ∈ S su
h that H is the wall separating wPfrom wsP . We use the notation introdu
ed before Lemma 2.10; we 
hoose xsu
h that int(|x|) ⊆ U . Note that H(w, s)r = H+. By Lemma 2.10, Yr is the
onne
ted 
omponent of π−1(H+) that 
ontains int(|x|). Then Lemma 2.2implies that Yr is also equal to the interse
tion of U and |X|. Re
all that
Y = {y ∈ X | int(|y|) ⊆ Yr}. Therefore, the proposition follows from Propo-sition 2.11.2.C. Halves and quarters of spheri
al buildings. In this subse
tion,
Y is a �nite right-angled W -building. Su
h buildings are spheri
al, in thefollowing sense. Let ∆ be a simplex of dimension |S| − 1, and let ∆s bedistin
t 
odimension-one fa
es of ∆, for s ∈ S (the Davis 
hamber of Wwould be isomorphi
 to a 
one over the �rst bary
entri
 subdivision of ∆).Then the apartments in Y∆ are triangulated spheres. One equipsW∆ = Sn−1with the standard CAT(1) metri
, in su
h a way that ea
h simplex of thetriangulation is isometri
 to a right-angled spheri
al simplex. Then one pullsthis metri
 ba
k by a folding map to a pie
ewise spheri
al metri
 on Y∆.Thus one obtains the standard CAT(1) metri
 on Y∆. In this subse
tion weabbreviate Y∆ to Y .Buildings as above appear as small spheres around verti
es (or, moregenerally, as small normal spheres of 
ells) in right-angled hyperboli
 build-ings. When dealing with 
omplements of balls in a hyperboli
 building or ina standard open neighbourhood it is natural to 
onsider 
ertain subsets ofspheri
al buildings. In this subse
tion we de�ne su
h subsets and prove theirhigher 
onne
tedness in the right-angled 
ase.
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hamber, and let π : Y → Sn−1 be the B-based foldingmap. We 
hoose π so as to have π(B) = {(xi) ∈ Sn−1 | x1, . . . , xn ≤ 0}. Then
π is a simpli
ial map for the following triangulation of Sn−1: any simplex
σ ⊆ Sn−1 is de�ned by a 
onjun
tion of n 
onditions of the form xi ≤ 0,
xi = 0, xi ≥ 0, one for ea
h i. Let C be the (n− 1)-simplex in Sn−1 whi
h isantipodal to π(B), i.e., C = {(xi) ∈ Sn−1 | x1, . . . , xn ≥ 0}. We 
hoose any
v ∈ int(π(B)); in other words, v is a unit ve
tor in R

n+1 with all 
oordinatesnegative. We denote by E+ the hemisphere {x ∈ Sn−1 | 〈x, v〉 ≤ 0}, and weput Y + = π−1(E+).Lemma 2.14. π−1(C) is a deformation retra
t of Y +.Proof. We �rst 
onstru
t a deformation retra
tion rt from E+ to C. Theidea is as follows. If e ∈ C then put rt(e) = e. If e 6∈ C∪π(B) then there existsa minimal simplex in our triangulation of Sn−1 
ontaining e; this simplexis a join of some fa
e of π(B) and some fa
e of C. There exists a uniquegreat 
ir
le 
ontaining e and interse
ting those two fa
es; our retra
tionmoves e along that 
ir
le towards C. In other words, let e = e− + e+, where
(e−)i = min(ei, 0) and (e+)i = max(ei, 0). We put

rt(e) = te− +

√
t2 +

1 − t2

|e+|2
e+;noti
e that this expression is 
ontinuous in (t, e) ∈ [0, 1]× (Sn−1 \π(B)). Wehave

d

dt
〈v, rt(e)〉 = 〈e−, v〉 +

t√
t2 + 1−t2

|e+|2

(
1 −

1

|e+|2

)
〈e+, v〉.

This expression is non-negative for e ∈ Sn−1\π(B), therefore e ∈ E+ implies
rt(e) ∈ E+. For x ∈ Y + we de�ne Rt(x) as follows: 
hoose any simplex Σof Y , 
ontaining x; then Rt(x) ∈ Σ, π(Rt(x)) = rt(π(x)). Note that if e ∈ E+and e ∈ σ for some fa
e σ of Sn−1, then rt(e) ∈ σ; therefore the de�nitionof Rt(x) does not depend on the 
hoi
e of Σ.It is well known (a self-
ontained proof is found in Se
tion 4.1) that a�nite right-angled building is a join. More spe
i�
ally, let Yi = {x ∈ Y |
(∀j 6= i)(π(x)j = 0)}. Then Y is isomorphi
 as a simpli
ial 
omplex andhomeomorphi
 as a topologi
al spa
e to the join of the sets Yi, i = 1, . . . , n.Observe that π−1(C) is isomorphi
 to the join of the sets Yi \ B. It followsthat π−1(C) is (n−2)-
onne
ted (being a join, it is a �nite building, and thushas the homotopy type of a bouquet of (n − 1)-spheres). Now Lemma 2.14implies the following.Lemma 2.15. Y + is (n− 2)-
onne
ted.
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i = {x ∈ Y + | π(x)i ≥ 0}. It is 
lear that Y +

i is Rt-invariantso it retra
ts to π−1(C). In parti
ular, we get as before:Lemma 2.16. Y +
i is (n− 2)-
onne
ted.
3. LOCAL CONNECTEDNESSIn this se
tion we prove higher 
onne
tedness (lo
al and global) of theboundary of a hyperboli
 building. The general strategy is Morse-theoreti
,à la [BB℄ and [BCM℄. Let us �x our notational 
onventions.

• W denotes a right-angled hyperboli
 Coxeter group a
ting on H
n withfundamental domain P .

• X is a lo
ally �nite W -building (meaning the Davis realisation withthe CAT(−1) metri
).
• B is some �xed 
hamber of X (to be 
alled the base 
hamber).
• π = πB : X → H

n is the B-based folding map su
h that π(B) = P .
• x0 is some �xed generi
 point in the interior of B (the generi
ity 
on-ditions will be spe
i�ed later).
• SR(x, Y ) and BR(x, Y ) are the sphere and the open ball of radius R and
entre x in a metri
 spa
e Y . If Y = X, then we use the abbreviations
SR(x) and BR(x). If, additionally, x = x0, then we write simply SRand BR.

• pR : X ∪ ∂X → X is the geodesi
 retra
tion onto BR, i.e., pR(x) isthe interse
tion point of xx0 and SR if d(x, x0) ≥ R, and pR(x) = xotherwise.Lemma 3.1. ∂X is an (n− 1)-dimensional 
ompa
tum.Proof. Consider an inverse system {(Sk, pk)}
∞
k=1 of spheres 
entred at x0with pk : Sk+1 → Sk being the geodesi
 proje
tions onto Sk. Then ∂X =

inv lim{(Sk, pk)}. As every Sk is an (n− 1)-dimensional 
ompa
tum, ∂X isan at most (n− 1)-dimensional 
ompa
tum. But sin
e it 
ontains Sn−1 (theboundary of an apartment isometri
 to H
n) it has dimension n− 1.Lemma 3.2. Let U be a standard neighbourhood of a point of ∂X and let

R > d(x0, U). Then U ∩ SR is a deformation retra
t of U \BR.Proof. Roughly speaking, the retra
tion is exe
uted by the gradient �owof the restri
tion of the fun
tion d(x0, ·) to U \BR. The 
ase U = X is easy:the retra
tion is (pt)t∈[R,+∞], where p+∞ = IdX .Let U be a 
onne
ted 
omponent of π−1(H+ ∪ ∂H+), for some wall
H ⊆ H

n. We identify H
n with the Poin
aré dis
 D

n in su
h a way that
π(x0) 
orresponds to 0. Then let Z(x) = −x be the ve
tor �eld on D

npointing towards 0. We de�ne a ve
tor �eld V on H+ \ BR(π(x0),H
n) asfollows. If x ∈ H+ ∪ ∂H+ ∪ ∂H then we put V (x) = Z(x). If x ∈ H then
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V (x) is proportional to the orthogonal proje
tion of Z(x) onto TxH; theproportionality 
onstant is 
hosen so that the radial 
omponent of V (x) isequal to Z(x). The ve
tor �eld V is not 
ontinuous; nevertheless, it de�nes a
ontinuous �ow ϕt

V . The traje
tory ϕt
V (x) follows the geodesi
 xπ(x0) untilit hits H; then it moves inside H along a geodesi
 towards the proje
tionof π(x0) onto H. The traje
tory stops when it hits SR(π(x0),H

n) (this mayhappen before it rea
hes H). Observe that if a traje
tory interse
ts somewall H ′ 6= H, then it moves from (H ′)+ to (H ′)−. Therefore, the �ow ϕt
Vlifts to a �ow ψt

V on U \ BR. This lift de�nes a retra
tion of U \ BR onto
U ∩ SR.Lemma 3.3. Let U be a standard neighbourhood of a point of ∂X. Then
U ∩ SR is (n− 2)-
onne
ted for every R > 0.Proof. Let U be a 
omponent of π−1(H+ ∪ ∂H+) for some wall H. (The
ase U = X ∪∂X is very similar.) It follows from Propositions 2.12 and 2.13that for t slightly greater than d(π(x0), H) the interse
tion U∩St is 
ontainedin a single 
hamber. This interse
tion is then a dis
, hen
e is 
ontra
tible.Next we would like to understand how the topology of U ∩St 
hanges as
t grows. The pi
ture is somewhat reminis
ent of Morse theory: the topology
hanges only at some 
riti
al radii. Suppose that St(π(x0),H

n) interse
ts a(
losed) fa
e σ ⊆ H ∪H+ of our polyhedral stru
ture at some point p ∈ σ.We say that the interse
tion is 
riti
al if σ is perpendi
ular to π(x0)p at p;
t is then 
alled a 
riti
al radius. We make a generi
 
hoi
e of x0 to ensure that
riti
al interse
tions o

ur only at interior points of the 
orresponding fa
es(p ∈ int(σ)), and that to ea
h 
riti
al t there 
orresponds a unique 
riti
alinterse
tion. Noti
e that σ 
an be a vertex of our polyhedral stru
ture. Let
d(π(x0), H) = t0 < t1 < t2 < · · · be the sequen
e of all 
riti
al radii. It is
lear that for t, t′ ∈ (ti, ti+1) the spa
es St∩U and St′ ∩U are homeomorphi
(
f. [BCM℄). We will show that for every i and every su�
iently small positive
ε the spa
e Sti+ε ∩ U is (n − 2)-
onne
ted provided Sti−ε ∩ U is (n − 2)-
onne
ted.We will �rst deal with the simplest 
ase: the fa
e σ 
orresponding to tiis a vertex p ∈ H+. Let Res(p) be the union of all fa
es in H

n whi
h 
on-tain p. We 
hoose δ > 0 su
h that the sphere D : = Sδ(p,H
n) is 
on-tained in int(Res(p)). Let Hp be the hyperplane passing through p and or-thogonal to π(x0)p. This hyperplane divides D into two hemispheres, D−(the one 
loser to π(x0)) and D+. There exists an ε ∈ (0, δ) su
h that

D ∩ Hp = D ∩ Sti+ε(π(x0),H
n); if ne
essary, we de
rease δ so as to have

ε < min{ti+1 − ti, ti − ti−1}. The sphere D inherits a triangulation from thepolyhedral stru
ture on H
n. We want Sti+ε(π(x0),H

n) and Sti−ε(π(x0),H
n)to interse
t this triangulation �in the same way�. More pre
isely, we requirethat there be a homeomorphism of D mapping ea
h simplex into itself and
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n) into D∩Sti−ε(π(x0),H

n). This 
ondition
an be a
hieved by further de
reasing δ (and 
onsequently ε).Next we pass to the building. By Lemma 3.2, U∩Sti±ε is homotopy equiv-alent to U \Bti±ε. Let π−1(p) = {p1, . . . , pk}, and let Dj = π−1(D)∩Bδ(pj),
D+

j = π−1(D+) ∩ Bδ(pj). We have D+
j = Dj \ Bti+ε. Put Kj = Bδ(pj),and let Y + be the 
losure of (U \ Bti+ε) \

⋃k
j=1Kj . Furthermore, let Y +

j =

Y +∪K1∪· · ·∪Kj for j = 0, 1, . . . , k. We will prove, by downward indu
tionon j, that Y +
j is (n−2)-
onne
ted. The spa
e Y +

k is homotopy equivalent to
U \ Bti−ε (here we need the 
ondition that Sti±ε(π(x0),H

n) interse
t D �inthe same way�), hen
e it is (n− 2)-
onne
ted; (n− 2)-
onne
tedness of Y +will imply the same property for the homotopy equivalent spa
e U \ Bti+ε.Observe that the sets Kj are pairwise disjoint, and that Y +
j is obtained from

Y +
j−1 by gluing Kj along D+

j . By Lemma 2.15, D+
j is (n−2)-
onne
ted, while

Kj is 
learly 
ontra
tible. Therefore:1. Conne
tedness of Y +
j implies that of Y +

j−1.2. (n > 2) By van Kampen's theorem,
π1(Y

+
j ) = π1(Y

+
j−1) ∗π1(D

+
j ) π1(Kj).Sin
e π1(Kj) = π1(D

+
j ) = 0 this implies π1(Y

+
j−1) = π1(Y

+
j ) = 0.3. (n > 3) From the Mayer�Vietoris sequen
e

· · · → Hl(D
+
j ) → Hl(Kj) ⊕Hl(Y

+
j−1) → Hl(Y

+
j ) → Hl−1(D

+
j ) → · · ·we get Hl(Y

+
j−1) = Hl(Y

+
j ) for l ≤ n− 2.The 
on
lusion now follows from the Hurewi
z theorem.Now we dis
uss the general 
ase: ti is a 
riti
al radius, σ the 
orrespondingfa
e, p the interse
tion point of Sti(π(x0),H

n) and σ. We 
hoose δ so that
Sδ(p,H

n) ⊆ int(Res(p)), and we 
hoose ε so that Sδ(p,H
n)∩Hp = Sδ(p,H

n)∩
Sti+ε(π(x0),H

n). Let σ⊥p be the maximal hyperplane orthogonal to σ at p.We put D = σ⊥p ∩Sδ(p,H
n)∩H+ (interse
ting with H+ is only ne
essary if

p ∈ H) and D+ = D \ Bti+ε(π(x0),H
n). Again, by de
reasing δ we ensurethat ε < min{ti+1 − ti, ti − ti−1} and that the spheres Sti±ε(π(x0),H

n)interse
t D �in the same way�. We also set K = Bδ(p,Hn) ∩ H+ and L =
σ ∩ Sδ(p,H

n).We pass to the building. Let π−1(p) = {p1, . . . , pk}. We have 
hosen δso small that π−1
(
Bδ(p,Hn)

) is the disjoint union of the Bδ(pj). We put
Dj = π−1(D) ∩ Bδ(pj), D+

j = π−1(D+) ∩ Bδ(pj), Kj = π−1(K) ∩ Bδ(pj),
Lj = π−1(L)∩Bδ(pj). Then we de�ne Y + and Y +

j exa
tly as before. Noti
ethat Kj is homeomorphi
 to a 
one over the join Lj ∗Dj , and is atta
hed to
Y +

j−1 along a subset of the base of that 
one homeomorphi
 to Lj ∗D
+
j . By
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j is (n − d − 2)-
onne
ted, where d = dim(σ). Then Lj ∗ D

+
j is (n − 2)-
onne
ted by thesuspension theorem (Lj is a (d − 1)-dimensional sphere). Moreover, Kj is
ontra
tible. In the remaining part of the argument (1.�3.) we just repla
e

D+
j by (a homeomorphi
 
opy of) Lj ∗D

+
j .Lemma 3.4. Let U be a standard neighbourhood of x ∈ ∂X in X ∪ ∂X.Then for every standard neighbourhood V of x whose 
losure is 
ontainedin U and every map f : {0, 1} → V ∩ ∂X there exists an extension g : I =

[0, 1] → U ∩ ∂X of f .Proof. We will 
onstru
t the desired map g as the limit of a sequen
e
(gi)

∞
i=0 of maps gi : I → SNi

∩ U , for an in
reasing sequen
e of integers Ni.Assume that we have de�ned a natural number Ni, a map gi : I →
SNi

∩ U , and additionally �nite families Vi and Ui of standard open neigh-bourhoods of points of ∂X, and a triangulation Ti of I of mesh at most 2−itogether with a map hi : |T
(0)

i | → U ∩ ∂X and a map si : T
(1)

i → Ui. (Notethat by T (j) we denote the set of j-simpli
es of a triangulation T , and |T (j)|denotes a geometri
 realization of the j-skeleton of T .) Assume that theysatisfy the following 
onditions:(i) hi|{0,1} = f ,(ii) gi||T (0)
i |

= pNi
◦ hi,(iii) (∀τ ∈ T

(1)
i )(∃B ∈ Vi)(B ⊂ si(τ), gi(∂τ) ⊂ B and gi(τ) ⊂ B),(iv) (∀B ∈ Vi) B ⊂ U .We will show how to �nd a natural Ni+1, a map gi+1 et
. For everyD ∈ Vione 
an �nd �nite families UD

i+1 and V D
i+1 of standard open neighbourhoodsof points of ∂X su
h that(a) D ∩ ∂X ⊂

⋃
V D

i+1 ,(b) (∀C ∈ UD
i+1)(∀A ∈ Ui) if D ⊂ A then C ⊂ A,(
) (∀A ∈ UD
i+1) A ⊂ U \BNi

,(d) (∀B ∈ V D
i+1)(∃A ∈ UD

i+1) B ⊂ A.De�ne �nite families Vi+1 and Ui+1 by Vi+1 =
⋃

D∈Vi
V D

i+1 and Ui+1 =⋃
D∈Vi

UD
i+1. Find a natural Ni+1 > Ni su
h that for every D ∈ Vi we have

SNi+1 ∩D ⊂
⋃
V D

i+1. Given a 1-simplex τ of Ti, by (iii) we �nd Dτ ∈ Vi with
Dτ ⊂ si(τ), gi(∂τ) ⊂ Dτ and gi(τ) ⊂ Dτ . Every standard open neighbour-hood D has the following property: for any R > 0 and any y ∈ X ∪ ∂X, if
pR(y) ∈ D then y ∈ D. Observe that pNi

(pNi+1 ◦ hi(∂τ)) = gi(∂τ) ⊂ Dτ ;therefore pNi+1 ◦hi|∂τ maps ∂τ into SNi+1∩Dτ . By Lemma 3.3 we 
an extendthis map to gτ
i+1 : τ → SNi+1 ∩Dτ . De�ne gi+1 as the union of gτ

i+1 over all
τ ∈ T

(1)
i . By 
ontinuity of gi+1 one 
an 
hoose a subdivision Ti+1 of the
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es of diameter at most 2−i−1, so �ne thatfor every 1-simplex σ of Ti+1 
ontained in a 1-simplex τ of Ti there exists
B ∈ V Dτ

i+1 su
h that gτ
i+1(σ) ⊂ B. Then, by (d), for any σ, τ and B as inthe previous senten
e there exists an si+1(σ) ∈ UDτ

i+1 satisfying B ⊂ si+1(σ).Observe that, by (b), si+1(σ) ⊂ si(τ). Finally, we de�ne hi+1 as follows: for
v ∈ T

(0)
i we put hi+1(v) = hi(v); for v ∈ T

(0)
i+1 \ T

(0)
i we 
hoose any point

hi+1(v) ∈ ∂X su
h that pNi+1(hi+1(v)) = gi+1(v).To start the 
onstru
tion of gi's one has to de�ne: N0, g0, V0 and U0, T0,
h0 and s0. Let N0 be a natural number su
h that SN0 ∩ V ⊃ pN0 ◦ f(S0).By Lemma 3.3 one 
an �nd a map g0 : I → SN0 ∩ V extending the map
pN0 ◦ f : {0, 1} → SN0 . Then set V0 = {V }, U0 = {U}, T0 the triangulationof B1 
onsisting of one 1-simplex, h0 = f and s0(v) = U for every v ∈ T

(0)
0 .Then it is obvious that 
onditions (i)�(iv) are satis�ed.We will now show some properties of the sequen
e (gi)

∞
i=1 of maps whi
hwill imply that its limit is a 
ontinuous map extending f .

Claim 0. gi(τ) ⊂ sL(τ) for τ ∈ T
(1)

L and i ≥ L.Proof. First we show that for i, j = 0, 1, 2, . . . and for any two simpli
es
σ ∈ T

(1)
i and ̺ ∈ T

(1)
i+j su
h that ̺ ⊂ σ we have si+j(̺) ⊂ si(σ). We pro
eedby indu
tion on j. For j = 0 the in
lusion is obvious, and for j = 1 itfollows from the 
onstru
tion of si. Assume we have proved that si+j(̺) ⊂

si(σ). Let κ ∈ T
(1)

i+j+1 be a simplex 
ontained in a simplex ̺ ∈ T
(1)

i+j that isitself 
ontained in σ ∈ T
(1)

i . Then, by the indu
tion assumptions, we have
si+j+1(κ) ⊂ si+j(̺) ⊂ si(σ). This �nishes the indu
tion.Let A = {σ ∈ T

(1)
i | σ ⊂ τ}. Then τ =

⋃
σ∈A σ, and

gi(τ) = gi

( ⋃

σ∈A

σ
)

=
⋃

σ∈A

gi(σ) ⊂
⋃

σ∈A

si(σ) ⊂ sL(τ).

Here the last in
lusion follows from what we proved above, and the �rst oneholds by (iii). Claim0

Claim 1. For every y ∈ I the limit limi→∞gi(y) exists.Proof. Take an arbitrary open (in X∪∂X) �nite 
over W of U ∩∂X. Forevery j ≥ i > 0 and every A ∈ Uj we have A ⊂ U \ BNi−1 . Therefore thereexists a natural L > 0 su
h that for every i ≥ L every neighbourhood A ∈ Uiis 
ontained in some member of W . Take an arbitrary y ∈ I. Let τ ∈ TL bea maximal simplex 
ontaining y. Then, by Claim 0, gi(τ) ⊂ sL(τ) ⊂ W forevery i ≥ L and someW ∈ W . This implies the existen
e of the limit. Claim1
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Claim 2. limi→∞ gi(y) ∈ U ∩ ∂X.Proof. This follows from: gi(y) ∈

⋃
U1 for every i; A ⊂ U for every

A ∈ U1. Claim2

Claim 3. The formula g(x) = limi→∞gi(x) de�nes a 
ontinuous map
g : I → U ∩ ∂X.Proof. As in the proof of Claim 1, for every �nite open 
over W thereexists L > 0 su
h that for every i ≥ L and any A ∈ Ui the star ⋃

St(A) of Ain Ui is 
ontained in some member of W . Take an arbitrary y ∈ I. Let τ ∈ TLbe a maximal simplex 
ontaining y. As in Claim 1, we have gi(σ) ⊂ sL(σ) forevery i ≥ L and every 1-simplex σ of TL whi
h has non-empty interse
tionwith τ ; hen
e, gi(
⋃

St(τ)) ⊂
⋃
{sL(σ) | σ ∈ St(τ)} ⊂

⋃
St(sL(τ)) ⊂ W forsome W ∈ W . In other words, for every open 
over W as above and anygiven y ∈ I there exists a natural L, W ∈ W , and an open neighbourhood

E ⊂ I of y su
h that for every i ≥ L we have gi(E) ⊂ W . This implies thatthe limit of gi's is 
ontinuous. Claim3

Claim 4. The map g : I → U ∩ ∂X extends f .Proof. This follows from the fa
t that gi|{0,1} = pNi
◦ hi|{0,1} = pNi

◦ fand limi→∞pNi
◦ f(y) = f(y) for every y ∈ {0, 1}. Claim4 Lemma3.4Lemma 3.5. Let U be a standard neighbourhood of x ∈ ∂X in X ∪ ∂X.Then for every standard neighbourhood V of x whose 
losure is 
ontainedin U , every k ∈ {0, 1, . . . , n−2} and every map f : Sk → V ∩∂X there existsan extension g : Bk+1 → U ∩ ∂X of f .Proof. We will pro
eed by indu
tion on k.1. The 
ase of k = 0 was proved in Lemma 3.4 above.2. Indu
tion step. Assume we have proved the lemma for k = 0, 1, . . . ,

M − 1. Let V and f : SM → V ∪ ∂X be given. Again, we will 
onstru
tthe desired g : BM+1 → U ∩ ∂X as the limit of a sequen
e (gi)
∞
i=0 of maps

gi : B
M+1 → SNi

∩ U , where Ni is an in
reasing sequen
e of integers.Assume that we have de�ned a natural number Ni, a map gi : B
M+1 →

SNi
∩U , �nite families V 1

i and U1
i of standard open neighbourhoods of pointsof ∂X, and a triangulation Ti of BM+1 of mesh at most 2−i together with amap hi : |T

(M)
i | → U ∩ ∂X and a map si : T

(M+1)
i → U1

i . Assume that theysatisfy the following 
onditions:(i) hi|SM = f ,(ii) gi||T (M)
i |

= pNi
◦ hi,(iii) (∀τ ∈ T

(M+1)
i )(∃B ∈ V 1

i )(B ⊂ si(τ), gi(∂τ) ⊂ B and gi(τ) ⊂ B),(iv) (∀B ∈ V 1
i ) B ⊂ U .
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. For every
D ∈ V 1

i and every p = 1, . . . ,M + 1 one 
an �nd �nite families UD,p
i+1 and

V D,p
i+1 of standard open neighbourhoods of points of ∂X su
h that:(a) D ∩ ∂X ⊂

⋃
V D,p

i+1 ,(b) (∀C ∈ UD,p
i+1 )(∀A ∈ U1

i ) if D ⊂ A then C ⊂ A,(
) (∀A ∈ UD,1
i+1 ) A ⊂ U \BNi

,(d) (∀B ∈ V D,p
i+1 )(∃A ∈ UD,p

i+1 ) B ⊂ A,(e) (∀p ≥ 2)(∀A ∈ UD,p
i+1 )(∃C ∈ V D,p−1

i+1 )
⋃

St(A,UD,p
i+1 ) ⊂ C.De�ne �nite families V p

r+1 and Up
r+1 by V p

r+1 =
⋃

D∈V 1
r
V D,p

r+1 and Up
r+1 =

⋃
D∈V 1

r
UD,p

r+1. Find a natural N ′
i+1 > Ni su
h that for every D ∈ V 1

i wehave SN ′

i+1
∩D ⊂

⋃
V D,M+1

i+1 . Given an (M + 1)-simplex τ of Ti, by (iii) we�nd Dτ ∈ V 1
i with Dτ ⊂ si(τ), gi(∂τ) ⊂ Dτ and gi(τ) ⊂ Dτ . Observe thatthen hi(∂τ) ⊂ Dτ ∩ ∂X and that, by (b), B ⊂ si(τ) for every B ∈ V Dτ ,p

i+1 ,
p = 1, . . . ,M+1. Using Lemma 3.3 one 
an �nd a map g′τi+1 : τ → SN ′

i+1
∩Dτextending pN ′

i+1
◦hi|∂τ : ∂τ → SN ′

i+1
∩Dτ . By 
ontinuity of (every) g′τi+1, one
an 
hoose a subdivision Ti+1 of the triangulation Ti of BM+1 with simpli
esof diameter at most 2−i−1, so �ne that for every 1-simplex σ of Ti+1 
ontainedin suitable τ there exists B ∈ V Dτ ,M+1

i+1 su
h that g′τi+1(∂σ) ⊂ B . For everyvertex v of Ti+1 not belonging to |T
(M)

i | one 
an 
hoose a point ṽ ∈ ∂X su
hthat pN ′

i+1
(ṽ) = g′i+1(v), where g′i+1 is the union of the maps g′τi+1 over allmaximal simpli
es τ of Ti. For a vertex v ∈ |T

(M)
i | we put ṽ = hi(v). Again,by indu
tion assumptions, for any two verti
es v, w of Ti+1 joined by an edge

〈v, w〉 
ontained in τ and not in |T
(M)

i |, and for the 
orresponding points
ṽ, w̃ ∈ ∂X, one 
an �nd A ∈ UDτ ,M+1

i+1 and a map q : 〈v, w〉 → A ∩ ∂X su
hthat q(v) = ṽ and q(w) = w̃.Assume we have proved that for any l-simplex σ of Ti+1 
ontained in
τ and not in |T

(M)
i | there exist A0, A1, . . . , Al ∈ UDτ ,M+3−l

i+1 and maps
q0, q1, . . . , ql : ∂σ → (A0 ∪ A1 ∪ · · · ∪ Al) ∩ ∂X sending (l − 1)-fa
es of σinto distin
t Ai's and 
oherent on their interse
tions (we have just 
he
kedthis for l = 2). Sin
e ∂σ ⊂

⋃
St(κ) for every (l − 1)-simplex κ of ∂σ,we have ⋃l

i=0Ai ⊂
⋃

St(A0). Thus there exists B ∈ V Dτ ,M+2−l
i+1 su
h that

(
⋃l

i=0 qi)(∂σ) ⊂ B. Hen
e, if l ≤ M , by indu
tion assumptions there exists
A ∈ UDτ ,M+2−l

i+1 and a map q : σ → A∩∂X extending ⋃l
i=0 qi. If l = M+1, we
on
lude that for every (M+1)-simplex σ of Ti+1 
ontained in τ there exists

B ∈ V Dτ ,1
i+1 and a map q : ∂σ → B ∩ ∂X su
h that q(v) = ṽ for every vertex

v of σ and q 
oin
ides with hi on ∂τ ∩ ∂σ. By (d), there exists A ∈ UDτ ,1
i+1
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h that B ⊂ A. De�ne si+1 : T
(M+1)

i+1 → U1
i+1 setting si+1(σ) = A. Observethat sin
e Dτ ⊂ si(τ), by (b) we have A ⊂ si(τ). In other words, for every

(M + 1)-simplex τ of Ti and an (M + 1)-simplex σ ⊂ τ of Ti+1 we have
si+1(σ) ⊂ si(τ).Be
ause maps of the form q by de�nition 
oin
ide on interse
tions of theirdomains, their union is a well-de�ned 
ontinuous map hτ

i+1 : |T
(M)

i+1 | ∩ τ →
∂X. Note that hτ

i+1|∂τ = hi|∂τ , and that for every (M + 1)-simplex σ ⊂ τ of
Ti+1 there exists B ∈ V Dτ ,1

i+1 satisfying hτ
i+1(∂σ) ⊂ B∩∂X and B ⊂ si+1(σ).Be
ause maps of the form hτ

i+1 for di�erent 
hoi
es of τ 
oin
ide oninterse
tions of their domains, we 
an de�ne hi+1 : |T
(M)

i+1 | → U ∩ ∂X asthe union of all those maps. One 
an �nd a natural Ni+1 > N ′
i+1 su
hthat for every τ and every (M + 1)-simplex σ of Ti+1 
ontained in τ thereexists B ∈ V Dτ ,1

i+1 with pNi+1 ◦ hi+1(∂σ) ⊂ B ∩ SNi+1 and B ⊂ si+1(σ). ByLemma 3.3, for every su
h σ and B there exists a map gσ
i+1 : σ → SNi+1 ∩Bextending pNi+1 ◦ hi+1|∂σ : ∂σ → SNi+1 ∩ B. The union of su
h maps overall maximal simpli
es de�nes a map gτ

i+1 : τ → SNi+1 ∩ Cτ , whi
h extends
pNi+1 ◦ hi+1 : ∂τ → SNi+1 ∩ U . We de�ne gi+1 : BM+1 → SNi+1 ∩ U asthe union of the maps gτ

i+1 over all maximal simpli
es τ of Ti. Observe thatby 
onstru
tion hi+1, gi+1, Ti+1, V
1
i+1, U

1
i+1 satisfy indu
tion assumptions (i)�(iv) so that one 
an pro
eed with the following steps of the 
onstru
tion.To start the 
onstru
tion of gi's one has to de�ne: N0, g0, V 1

0 and U1
0 , T0,

h0 and s0. Let N0 be a natural number su
h that SN0 ∩ V ⊃ pN0 ◦ f(SM ).By Lemma 3.3 one 
an �nd a map g0 : BM → SN0 ∩ V extending the map
pN0 ◦ f : SM → SN0 . Then set V 1

0 = {V }, U1
0 = {U}, T0 the triangulation of

BM+1 
onsisting of one (M + 1)-simplex, h0 = f and s0(σ) = U for every
σ ∈ T

(M)
0 . It is obvious that 
onditions (i)�(iv) are satis�ed.The rest of the proof mimi
s the proof of Lemma 3.4 with ne
essary
hanges (repla
e T

(1)
k by T

(M+1)
k , I by BM+1, {0, 1} by SM , and Uk by U1

k ,for all k). We limit ourselves to listing the analogues of the 
laims of thepre
eding proof.
Claim 0. gi(τ) ⊂ sL(τ) for τ ∈ T

(M+1)
L and i ≥ L.

Claim 1. For every y ∈ BM+1 the limit limi→∞ gi(y) exists.
Claim 2. limi→∞ gi(y) ∈ U ∩ ∂X.
Claim 3. The formula g(x) = limi→∞gi(x) de�nes a 
ontinuous map

g : BM+1 → U ∩ ∂X.
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Claim 4. The map g : BM+1 → U ∩ ∂X extends f .This 
ompletes the proof of Lemma 3.5.Proposition 3.6. ∂X is (n−2)-
onne
ted and lo
ally (n−2)-
onne
ted.Proof. For the lo
al statement let x ∈ ∂X and let W ∋ x be its open(in X ∪ ∂X) neighbourhood. By Lemma 2.1 one 
an �nd standard neigh-bourhoods U and V of x 
ontained in W and su
h that V ⊂ U . Then byLemma 3.5 for every k ∈ {0, 1, . . . , n − 2} every map f : Sk = ∂Bk+1 → Vhas an extension g : Bk+1 → U ⊂ W . For the global 
ase apply Lemma 3.5setting V = U = X ∪ ∂X.

4. RIGHT-ANGLED BUILDINGSThroughout this se
tion (W,S) is a �nitely generated right-angled Cox-eter system, not ne
essarily hyperboli
. In Subse
tion 4.A we assume it tobe �nite, i.e. W ≃ (Z/2)n, S = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.4.A. Finite right-angled buildings. We will analyse the stru
tureof �nite W -buildings, as well as maps between su
h buildings. This willbe needed later for the 
onstru
tions of in�nite right-angled buildings andof maps between them. A typi
al step of those 
onstru
tions 
onsists ofextending a map de�ned on a subset of a �nite residue to the whole residue.We will treat a building 
ombinatorially, as a set (of 
hambers) equippedwith a family (∼s)s∈S of equivalen
e relations (the adja
en
y relations). Thestandard example of a �nite W -building is a produ
t building : the set of
hambers Y is a produ
t ∏
s∈S Ys, where ea
h Ys is a �nite set of 
ardinalityat least 2 (at least 3 if one wants a thi
k building). Two 
hambers (ys), (y

′
s)are t-adja
ent if ys = y′s for all s 6= t. Apartments are of the form A =∏

s∈S As, where ea
h As is a two-element subset of Ys.It is easy to see that any (Z/2)2-building X is a produ
t building (wewill frequently apply this fa
t to residues in larger buildings). Indeed, let
S = {s, t} and let Ys = X/∼s, Yt = X/∼t. Sin
e any two 
hambers x, x′ ∈ Xare 
ontained in some apartment, [x]∼s and [x′]∼t always have a 
ommon
hamber. Therefore, the map X ∋ x 7→ ([x]∼s, [x]∼t) ∈ Ys × Yt is onto. Asno two 
hambers 
an be simultaneously s- and t-adja
ent, this map is alsoinje
tive.By a morphism between two W -buildings (or subsets of su
h buildings)we mean a map of the sets of 
hambers preserving the relations. A subset Eof a W -building X is 
alled star-like (with respe
t to a 
hamber B ∈ X) iffor every x ∈ E every minimal gallery from B to x is 
ontained in E. Noti
ethat E = ∅ is star-like.
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 buildings 145Lemma 4.1. Let X be any �nite W -building , and let Y be a produ
t W -building des
ribed above. Let E ⊆ X be star-like with respe
t to a 
hamber B,and let ψ : E → Y be a morphism. Then ψ extends to a morphism φ : X → Y .Moreover :(i) If two su
h extensions 
oin
ide on ea
h 
lass [B]∼s , then they areequal.(ii) If φ is inje
tive on ea
h 
lass [B]∼s , then φ is a monomorphism.(iii) If φ maps ea
h 
lass [B]∼s onto [φ(B)]∼s , then φ is an epimorphism.Proof. Let π : X → W be the B-based folding map. Put Xk =
π−1({w ∈ W | ℓ(w) ≤ k}); in parti
ular, X0 = {B}. Let C = ψ(B) if
B ∈ E, or let C be an arbitrary 
hamber of Y if E = ∅. Put φ(B) = C.De�ne φ on [B]∼s \ (E ∪ {B}) to be an arbitrary map to [C]∼s ; de�ne φ on
[B]∼s ∩ E to 
oin
ide with the restri
tion of ψ; do this for ea
h s. Thus wehave de�ned φ on ⋃

s∈S [B]∼s = X1 so that it 
oin
ides with ψ on X1 ∩ E.Indu
tively on k we will extend φ to Xk, and 
he
k that the extension 
o-in
ides with ψ on Xk ∩ E. Suppose this has been done for Xk−1, for some
k − 1 ≥ 1. Let x ∈ X, π(x) = w, ℓ(w) = k. For t ∈ In(w) we denote by xtthe 
hamber in the t-residue of x whi
h is 
losest to B. Sin
e x ∼t x

t, φ(x)has to be t-adja
ent to φ(xt) for every t ∈ In(w).Let φ(xt) = (yt
s)s∈S . Let t, t′ ∈ In(w) be distin
t, and let s ∈ S, s 6= t, t′.We 
laim that yt

s = yt′

s . Indeed, let xt,t′ be the 
hamber in the {t, t′}-residueof x whi
h is 
losest to B. Sin
e W is right-angled, we have xt,t′ = (xt)t′ =
(xt′)t; 
onsequently, xt,t′ ∼t x

t′ , xt,t′ ∼t′ x
t. Therefore yt

s = φ(xt,t′)s = yt′

s .Denote by ys the 
ommon value of yt
s, t 6= s. Clearly, y = (ys)s∈S is the unique
hamber in Y whi
h is t-adja
ent to φ(xt) for ea
h t ∈ In(w). Therefore, wehave to put φ(x) = y. Noti
e that if x ∈ E, then xt ∈ E for all t ∈ In(w).Therefore ψ(x) is t-adja
ent to ψ(xt) = φ(xt) for all t ∈ In(w), hen
e ψ(x) =

y = φ(x). We apply the above pro
edure to every x ∈ Xk \ Xk−1, and getthe required extension.Now, (i) follows from the 
onstru
tion: after de�ning φ on X1 we madeno 
hoi
es.(ii) Let πC : Y → W be the C-based folding map. This map is given by
πC(y) = Π{s∈S|Cs 6=ys}s. We �rst show that φ is π-πC-equivariant. Again, thisis done by indu
tion on k. We have πC(φ(B)) = πC(C) = 1 = π(B). Then
φ([B]∼s \ {B}) ⊆ [C]∼s \ {C}, π([B]∼s \ {B}) = {s} = πC([C]∼s \ {C}),whi
h 
he
ks π-equivarian
e on X1. Let now x ∈ X, y = φ(x), w = π(x),
ℓ(w) = k ≥ 2. For t ∈ In(w) we have π(xt) = wt, and, by the indu
tiveassumption, πC(φ(xt)) = wt. It follows that {s ∈ S | yt

s 6= Cs} = In(w)\{t}.Hen
e {s ∈ S | ys 6= Cs} = In(w) and πC(φ(x)) = w.Consequently, if φ(x) = φ(z), then π(x) = π(z). Let x, z be su
h a pairwith the shortest possible w = π(x), and let t ∈ In(w). Then φ(xt) = φ(zt),
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e both are the 
hamber in the t-residue of φ(x) = φ(z) whi
h is 
losestto C. Sin
e our 
ounterexample to inje
tivity has shortest w, we dedu
e
xt = zt for all t ∈ In(w). Noti
e that ℓ(w) ≥ 2 (π-equivarian
e and inje
-tivity on all [B]∼s imply that φ is inje
tive on X1). Let t, t′ be two distin
telements of In(w). Then x ∼t x

t = zt ∼t z and x ∼t′ x
t′ = zt′ ∼t′ z, sothat x is both t- and t′-adja
ent to z. This is possible in a building only if

x = z.(iii) By indu
tion on k we will prove that for any (x, u) ∈ Xk × S themap φ : [x]∼u → [φ(x)]∼u is surje
tive. The statement is true for k = 0 byassumption. Let x ∈ Xk, π(x) = w, ℓ(w) = k, and let u ∈ S. We 
anassume that ℓ(wu) = k + 1�otherwise xu ∈ Xk−1, [x]∼u = [xu]∼u and thestatement for (x, u) is true by the indu
tive assumption applied to (xu, u).Pi
k a t ∈ In(w). Let y = (ys) ∈ [φ(x)]∼u. We then have φ(x)s = ys for
s 6= u, and φ(xt)s = ys for s 6= u, t. Let zs = ys for s 6= t, zt = φ(xt)t. Then
z = (zs) ∼t φ(xt), hen
e (by the indu
tive assumption for (xt, u)) thereexists x′ ∈ [xt]∼u su
h that φ(x′) = z. Observe that in the {u, t}-residueof xt there is a unique element x′′ whi
h is u-adja
ent to x and t-adja
entto x′, while y is the unique 
hamber in Y whi
h is u-adja
ent to φ(x) and
t-adja
ent to z. Hen
e, φ(x′′) = y, where x′′ ∈ [x]∼u .It follows that the image of φ is 
losed under all adja
en
y relations,hen
e it is equal to Y .
Corollaries1. One 
an take E =

⋃
s∈S [B]∼s, 
hoose an arbitrary 
hamber ψ(B) ∈ Yand for ea
h x ∈ [B]∼s pi
k an arbitrary ψ(x) ∈ [ψ(B)]∼s ; every su
h

ψ extends to a unique morphism.2. Let E =
⋃

s∈S [B]∼s , let Ys = [B]∼s . Put ψ(B) = (B)s∈S . For x ∼s Bput ψ(x)t = B for t 6= s, ψ(x)s = x. Then the extension φ : X → Yis an isomorphism. Thus, any �nite W -building is isomorphi
 to aprodu
t building. Therefore, Lemma 4.1 holds with Y repla
ed by any�nite W -building.3. A 
orollary of the proof: every monomorphism of �nite W -buildings
φ : X → Y is π-equivariant (where π : X →W is a folding map basedat an arbitrary 
hamber x ∈ X, and π : Y →W the φ(x)-based foldingmap).4.B. Maps of in�nite right-angled buildings

Definition. A standard W -building is a set X (of 
hambers) equippedwith: (a) a family (∼s)s∈S of equivalen
e relations with �nite equivalen
e
lasses; (b) a morphism π : X → W , 
alled the folding map, su
h that thefollowing are satis�ed:
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 buildings 147(i) (∀x ∈ X)(∀s ∈ S)(∃x′ ∈ X)(x ∼s x
′ ∧ x 6= x′).(ii) π−1(1) has one element (denoted B and 
alled the base 
hamber).(iii) Let x ∈ X, T = In(π(x)), w = π(x). Then Res(x, T ) is a �nite right-angled building and the map Res(x, T ) ∋ x′ 7→ (wwT )−1π(x′) ∈WTis a folding map of that building (where wT is the longest elementin WT ).It is pretty 
lear that any lo
ally �nite W -building with any folding mapis a standard W -building. In parti
ular, 
ondition (iii) follows from property(F3) stated in Se
tion 1. More spe
i�
ally, Res(x, T ) is mapped by π onto the
oset wWT of WT ; w = π(x) is the longest element of wWT , therefore wwTis the shortest element of wWT . Let y be the shortest 
hamber in Res(x, T )(as in (F3)); then π(y) = wwT . The y-based folding map of Res(x, T ) is the
omposition of (restri
ted) π and the left multipli
ation in W that movesthe 
oset wWT to WT and the element π(y) to 1. This left multipli
ation isthe left multipli
ation by π(y)−1 = (wwT )−1.

Remarks1. Later we will prove that a standard building is in fa
t a building.2. The residue Res(x, T ) in 
ondition (iii) interse
ts π−1(wwT ) in one
hamber, to be 
alled the shortest 
hamber of Res(x, T ). The foldingmap in 
ondition (iii) is based at that 
hamber.3. Conditions (i) and (iii) together imply that for every x ∈ X and everyspheri
al T ⊆ S the residue Res(x, T ) is a �nite WT -building, and therestri
tion of π 
omposed with left multipli
ation by the inverse of theshortest element of π(Res(x, T )) is a folding map of that building.4. It follows from the previous remark that if t ∈ In(π(x)) then theinterse
tion π−1(π(x)t) ∩ [x]∼t 
onsists of a unique element (to bedenoted xt).
Definition. A lo
al W -building is a set Y (of 
hambers) equipped witha family (∼s)s∈S of equivalen
e relations, su
h that:(a) for every y ∈ Y and every spheri
al T ⊆ S, Res(y, T ) is a �nite

WT -building;(b) Y is gallery 
onne
ted, i.e., for every y, y′ ∈ Y there exists a galleryfrom y to y′: a sequen
e y0 = y, y1, . . . , yk, yk+1 = y′ su
h that yi ∼si

yi+1 for some si ∈ S, where i = 0, 1, . . . , k.
Remark. A standard W -building is a lo
al W -building. Condition (a)follows from the third remark above. To 
he
k 
ondition (b), we show thatthere exists a gallery from an arbitrary 
hamber x to B. Let π(x) = w.It follows from the fourth remark above that a minimal gallery in W from

w to 1 
an be lifted to a gallery in X from x to some 
hamber in π−1(1);however, π−1(1) = {B}.



148 J. Dymara and D. OsajdaThe following theorem is rather weak. The proof will give us an idea ofwhat should really be done.Theorem 4.2. Let X be a standard W -building , and let Y be a lo
al
W -building. Then there exists a morphism φ : X → Y .Proof. Choose a well-ordering < on X su
h that ea
h initial segment
X<x is star-like (with respe
t to B). We de�ne φ indu
tively. To start, wepi
k any y ∈ Y and de
lare φ(B) = y. Suppose φ : X<x → Y has alreadybeen de�ned. Let T = In(π(x)). Sin
e X<x is star-like, so is X<x∩Res(x, T )(in Res(x, T ), with respe
t to the shortest element x0 of that residue). Sin
e
φ is a morphism, it mapsX<x∩Res(x0, T ) into Res(φ(x0), T ); this restri
tion
an, by Lemma 4.1, be extended to η : Res(x0, T ) → Res(φ(x0), T ) (sin
e Yis a lo
al building, Res(φ(x0), T ) is a �nite WT -building; therefore, Lemma4.1 
an indeed be applied). We put φ(x) = η(x). Sin
e all 
hambers in X<xwhi
h are adja
ent to x belong to Res(x0, T ) (where φ 
oin
ides with η), theextended φ : X<x ∪ {x} → Y is a morphism.Noti
e that, in the 
onstru
tion of φ des
ribed in the proof, if In(π(x))has at least two elements, then φ(x) is uniquely determined by φ|X<x

. Infa
t, if u, t ∈ In(π(x)), then φ(x) is uniquely determined by φ(xt) and φ(xu):it is the unique 
hamber u-adja
ent to φ(xt) and t-adja
ent to φ(xu) (as inthe proof of Lemma 4.1). If, on the other hand, In(π(x)) = {s}, then φ(x)
an be freely 
hosen in [φ(x0)]∼s. These observations are basi
 for the nexttheorem.Let X be a standard W -building, and let Y be a lo
al W -building. Wesay that a morphism φ : X → Y is a lo
al monomorphism (resp. lo
al epi-morphism, 
overing map) if for every x ∈ X and every spheri
al T ⊆ S theresidue Res(x, T ) is inje
tively (resp. surje
tively, bije
tively) mapped by φto Res(φ(x), T ).
Definition. The root set of a standard W -building X is

R(X) = {(x, s) ∈ X × S | In(π(x)s) = {s}}.Theorem 4.3. Let X be a standard W -building , let Y be a lo
al W -building , and let φ : X → Y be a morphism. Let R = R(X) be the root setof X.(i) The map φ is uniquely determined by φ(B) and the restri
tions of φto [x]∼s, over all (x, s) ∈ R.(ii) If all the above restri
tions are inje
tive, then φ is a lo
al monomor-phism.(iii) If , for ea
h (x, s) ∈ R, φ maps [x]∼s onto [φ(x)]∼s, then φ is a lo
alepimorphism and a surje
tion.
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 buildings 149(iv) If , for ea
h (x, s) ∈ R, φ maps [x]∼s bije
tively onto [φ(x)]∼s, then
φ is a 
overing map.Proof. (i) Let φ1, φ2 : X → Y 
oin
ide on B and on ea
h [x]∼s , (x, s) ∈ R.Suppose that x ∈ X is a 
hamber with shortest w = π(x) su
h that φ1(x)

6= φ2(x). If In(w) = ∅, then w = 1 and x = B, a 
ontradi
tion. If In(w)
= {s}, then (xs, s) ∈ R, x ∈ [xs]∼s , a 
ontradi
tion again. If T = In(w) hasat least two elements, then, by Lemma 4.1(i) applied to Res(x, T ), φ1(x) and
φ2(x) are uniquely determined by φ1|Xk

= φ2|Xk
(where k = ℓ(w) − 1), sothat they 
oin
ide.(ii) Suppose not. Let x0 ∈ X be an element of X with the shortestpossible w = π(x0), su
h that for some spheri
al T the restri
tion of φ to

Res(x0, T ) is not inje
tive. By Lemma 4.1(ii), there exists t ∈ T and 
ham-bers x, x′ ∼t x0 su
h that φ(x) = φ(x′). If In(wt) 6= {t}, then Res(x, In(wt))is a residue on whi
h φ is inje
tive, and whose shortest 
hamber is shorterthan x0, a 
ontradi
tion. In the 
ase In(wt) = {t} we have (x0, t) ∈ R and
x, x′ ∈ [x0]∼t , so that φ(x) 6= φ(x′), a 
ontradi
tion.(iii) Suppose that φ is not a lo
al epimorphism. Let Res(x0, T ) be a
ounterexample with shortest w = π(x0). Then, by Lemma 4.1(iii), there isa t ∈ T su
h that φ : [x0]∼t → [φ(x0)]∼t is not onto. As in the proof of (ii)we see that In(wt) = {t}. Therefore (x0, t) ∈ R, a 
ontradi
tion.Sin
e the image of a lo
al epimorphism is 
losed under the adja
en
yrelations, and sin
e Y is gallery 
onne
ted, we have φ(X) = Y .Finally, (iv) follows from (ii) and (iii).4.C. Constru
tion. In this subse
tion we present a 
onstru
tion of ageneral standard W -building. Let W = {w1 = 1, w2, . . .} be a numbering ofelements of W su
h that ea
h Wk = {w1, . . . , wk} is a star-like subset of W(with respe
t to 1). The pro
ess of building X is indu
tive. At the kth stepwe 
onstru
t the part Xk of X whi
h is going to be the preimage ofWk underthe folding map. To get Xk from Xk−1 we need to atta
h the 
hambers thatfold to wk. Su
h a 
hamber x is 
ontained in a �nite residue Res(x, In(wk))whi
h is isomorphi
 to a produ
t building and whose large part is 
ontainedin Xk−1. Thus, Xk is obtained from Xk−1 by gluing to it produ
t buildingsthat will be
ome Res(x, In(wk)) for x ∈ π−1(wk).We now pro
eed to the details. We would like to 
onstru
t, by indu
tionon k, sets Xk with equivalen
e relations (∼k

s)s∈S , together with morphisms
πk : Xk →Wk, su
h that:(i) Xk−1 ⊆ Xk.(ii) Restri
ting ∼k

s fromXk×Xk toXk−1×Xk−1 yields ∼k−1
s . (Therefore,we simply use ∼s.)(iii) πk|Xk−1

= πk−1. (Again, we often denote πk simply by π.)
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k (Wk−1) = Xk−1.(v) Let x ∈ Xk, T = In(π(x)), w = π(x). Then Resk(x, T ) is a �niteright-angled building and the map Resk(x, T ) ∋ x′ 7→ (wwT )−1π(x′)

∈ WT is a folding map of that building. Here Resk stands for theresidue in Xk.Finally, we will obtain a standard W -building X =
⋃

k Xk with the foldingmap π =
⋃

k πk. In fa
t, at the kth step we will 
onstru
t not onlyXk and πk,but also the following additional data:(a) an integer qx,s ≥ 1 for ea
h (x, s) ∈ Xk × S;(b) for ea
h u ∈ W su
h that uwU ∈ Wk (where U = In(u)) andea
h y ∈ π−1(uwU ): a (uwU )−1πk-πy,U -equivariant monomorphism
φy,U : Resk(y, U) → Yy,U . Here Yy,U is a produ
t WU -building withthe s-fa
tor Yy,s of 
ardinality qy,s + 1, and πy,U : Yy,U → WU is the
φy,U (y)-based folding map. We will usually brie�y say that φy,U is
π-equivariant.The numbers qx,s are subje
t to extra 
onditions:(vi) If qz,s and qz′,s are de�ned and z ∈ Resk(z

′, T ) for a spheri
al T ⊆ S
ontaining s, then qz,s = qz′,s.(vii) If y ∈ Xk and {π(y), π(y)s} ⊆ Wk, then Resk(y, s) has qy,s + 1elements.In the �rst step, X1 = {B}, and we 
hoose the numbers qB,s and themaps φB,T : {B} → YB,T arbitrarily.Suppose that we have already 
onstru
ted everything promised for k−1.Let w = wk, let T = In(w). The setXk is obtained fromXk−1 by gluing Yx,T ,for all x ∈ π−1(wwT ), via the maps φx,T . Throughout the proof, x will be ageneri
 notation for an element of π−1(wwT ).
Lemma. Let x1, x2 ∈ π−1(wwT ), x1 6= x2. Then

Resk−1(x1, T ) ∩ Resk−1(x2, T ) = ∅.Proof. Suppose not; then x2 ∈ Resk−1(x1, T ). The map φx1,T being π-equivariant, we have φx1,T (x2) = φx1,T (x1). However, φx1,T is inje
tive; hen
e
x1 = x2, 
ontradi
tion. LemmaNow, (i) follows from the fa
t that the gluing maps are inje
tive.(ii) We have
Claim. If y, z ∈ Resk−1(x, T ) and φx,T (y) ∼t φx,T (z), then y ∼t z.Proof. We 
an assume that t ∈ T , for otherwise y = z. Let φ = φx,T ,

Y = Yx,T . There are two 
ases.(a) {π(y), π(y)t} ⊆ Wk−1. In that 
ase, due to (vii), Resk−1(y, t) has
qy,t + 1 elements; ResY (φ(y), t) has qx,t + 1 elements. However, (vi)
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 buildings 151implies that qx,t = qy,t (y ∈ Resk−1(x, T )); therefore φ restri
ts to abije
tion between these residues. Sin
e φ is an inje
tion, this impliesthat z ∈ Resk−1(y, t).(b) π(y)t = w. Then ResY (φ(y), t) 
onsists of φ(y) and 
hambers whi
hmap to wT under πx,T . Hen
e either φ(z) = φ(y) (and, φ being in-je
tive, we get z = y) or πx,T (φ(z)) = wT . In the latter 
ase π-equi-varian
e of φ implies π(z) = w, whi
h 
ontradi
ts z ∈ Xk−1. ClaimBy the Claim, the following de�nition makes sense: y ∼k
s z if either

y, z ∈ Xk−1 and y ∼k−1
s z, or y, z ∈ Yx,T for some x and y ∼s z in Yx,T .Finally, we need to 
he
k that ∼k

s is an equivalen
e relation, the only non-trivial 
ondition being transitivity: (a ∼s b ∧ b ∼s c) ⇒ a ∼s c. The 
ases
a, b, c ∈ Xk−1 and a, b, c ∈ Yx,T are 
lear. Thus, we 
an assume that at leastone of a, b, c is in Yx,T \Xk−1 (for some x). Then we 
an assume that s ∈ T(otherwise a = b = c). If b ∈ Yx,T \Xk−1, then a, c ∈ Yx,T and a ∼s c follows.If not, we 
an assume a ∈ Yx,T \ Xk−1, b ∈ Yx,T ∩ Xk−1 = Resk−1(x, T ).Now if c ∈ Xk−1, then c ∼s b implies c ∈ Resk−1(x, T ) ⊆ Yx,T , and a ∼s cfollows. If c 6∈ Xk−1, then c ∈ Yx′,T (for some x′ ∈ π−1(w)). It follows that
b ∈ Yx′,T ∩ Yx,T , hen
e, in view of the Lemma, x = x′ and a, b, c ∈ Yx,T .(iii) We de�ne πk as follows: if y ∈ Xk−1, then πk(y) = πk−1(y); if
y ∈ Yx,T we put πk(y) = wwTπx,T (y). This de�nition is 
orre
t be
ause ofthe π-equivarian
e of φx,T . Condition (iii) is 
lear.(iv) Suppose that y ∈ Y = Yx,T , but y is not in the image of φ = φx,T .We 
laim that π(y) = w, or equivalently, that πx,T (y) = wT . Suppose not;let y be a 
ounterexample with shortest u = πx,T (y). Noti
e that u 6= 1,be
ause π−1

x,T (1) = {φ(x)}. Let t ∈ In(u), and let yt = φ(z). As in (ii), wehave qx,t = qz,t. Moreover, π(z) = wwTut and π(z)t = wwTu belong to
Wk−1, so that Resk−1(z, t) has 
ardinality qz,t + 1, the same as ResY (yt, t).Therefore φ maps Resk−1(z, t) bije
tively onto ResY (yt, t), and y is in theimage of φ, a 
ontradi
tion.(v) The new residues to be 
he
ked are Resk(y, T ), for y ∈ Yx,T , π(y) = w.But in this 
ase Resk(y, T ) = Yx,T , and (wwT )−1π = πx,T .(vi) Let y ∈ Yx,T \ Xk−1, s ∈ S. If s ∈ T , we put qy,s = qys,s. If
s 6∈ T , but there exists t ∈ T su
h that {t, s} is spheri
al, then we put
qy,s = qyt,s. This does not lead to 
ontradi
tions: if t′ ∈ T and {s, t′} isspheri
al, then {s, t, t′} is also spheri
al, and yt′ ∈ Resk−1(y

t, {s, t, t′}), sothat qyt′ ,s = qyt,s by (vi) . Finally, if s 6∈ T and no t ∈ T 
ommutes with s,then we 
hoose qy,s arbitrarily. Observe that this last 
ase o

urs exa
tlywhen In(ws) = {s}.Now suppose that z, z′ ∈ Xk, z ∈ Resk(z
′, U) where U is spheri
al and

s ∈ U . We will show that qz,s = qz′,s. Let z = z1, z2, . . . , zm = z′ be a gallery
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zi+1, ui ∈ U . Suppose that some two 
onse
utive 
hambers

zi, zi+1 do not belong to Xk−1. Then they are both in Yx,T for some x, and
ui ∈ T . We insert zui

i between zi and zi+1. Repeating the pro
ess we ensurethat if zi 6∈ Xk−1, then zi−1, zi+1 ∈ Xk−1 (ex
ept i = 0,m). Then we repla
eea
h triple zi−1, zi, zi+1 with zi 6∈ Xk−1 by zi−1, z
ui

i−1 = z
ui−1

i+1 , zi+1. We obtaina U -gallery from z to z′ whose all but external 
hambers lie in Xk−1. We
on
lude that qz,s = qz1,s = qzm−1,s = qz′,s.(vii) The new residues to be 
he
ked are Resk(y, s) for y su
h that π(y) =
w or π(y) = ws (where s ∈ T and y ∈ Yx,T for some x). In either 
ase,
Resk(y, s) = ResY (y, s) has qx,s + 1 elements. However, y ∈ Resk(x, T ) sothat, by (vi), qx,s = qy,s.Finally, we need to 
onstru
t or extend some of the maps φy,U .Some 
ases are easy. If u = w, then U = T and y ∈ π−1(wwT ). Then
Resk(y, T ) = Yy,T and we put φy,T = IdYy,T

. If uwU = w, then we 
hoose
φy,U : {y} → Yy,U arbitrarily. If w 6∈ uWU , then we do not 
hange φy,T .Thus, we 
an assume that w∈uWU , but w 6=uwU . Then w=uwUu1 . . . ukfor some pairwise di�erent u1, . . . , uk ∈ U . We have ui ∈ In(w) = T , so that
w ∈ uwUWU∩T , or equivalently, uwU ∈ wWU∩T . Sin
e uwU is the shortestelement in uWU = wWU , it is also the shortest element in wWU∩T .
Claim. There is an x ∈ π−1(wwT ) su
h that y ∈ Yx,T .Proof. Sin
e uwU ∈ wWU∩T ⊆ wWT = wwTWT , there is a T ′ ⊆ Tsu
h that uwU = wwTwT ′ . Moreover, T ′ ⊆ In(uwU ), therefore wwT ∈

uwUWT ′ ⊆ uwUWIn(uwU ) = π(y)WIn(π(y)). By (v), there is an x ∈ π−1(wwT )
∩Resk−1(y, T

′) (the folding map, when restri
ted to a residue, is onto a suit-able 
oset of the 
orresponding spe
ial subgroup of the Coxeter group). Then
y ∈ Resk(x, T

′) ⊆ Resk(x, T ) = Yx,T . ClaimLet Yy,U∩T = ResYx,T
(y, U ∩ T ). Sin
e Resk−1(y, U)∩ Yy,U∩T = Yy,U∩T \

π−1(w), it is a star-like set in the building Yy,U∩T (with respe
t to y), there-fore φy,U extends to a monomorphism ψ : Yy,U∩T → Yy,U . Gluing φy,U with
ψ we get an extended map φy,U : Resk−1(y, U) ∪ Yy,U∩T → Yy,U . We 
laimthat this map is inje
tive: indeed, ψ is π-equivariant as a monomorphismof buildings, and hen
e the extended map is π-equivariant. Furthermore, if
z ∈ Resk−1(y, U) and z′ ∈ Yy,U∩T \ Resk−1(y, U), then π(z) 6= w = π(z′),therefore φy,U (z) 6= φy,U (z′). Now it is enough to observe that φy,U is inje
-tive on Resk−1(y, U) and that ψ is inje
tive.Finally, we 
laim that Resk−1(y, U) ∪ Yy,U∩T = Resk(y, U). Sin
e π is amorphism, we know that Resk(y, U) ⊆ π−1(uwUWU ∩Wk). Any U -galleryin Xk starting at y and ending at z 6∈ π−1(w) 
an be modi�ed, using thete
hnique from the proof of (vi), to a U -gallery not 
ontaining 
hambersfrom π−1(w). This means that Resk(y, U) ∩Xk−1 = Resk−1(y, U). Suppose
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 buildings 153now that z ∈ π−1(w) ∩ Resk(y, U). Then Resk(z, U ∩ T ) ⊆ Resk(y, U),
Resk(z, U ∩ T ) \ π−1(w) ⊆ Resk−1(y, U). In parti
ular, Resk(z, U ∩ T ) hasa unique shortest element, lying in π−1(uwU ) ∩ Resk−1(y, U). But the lat-ter set equals {y}, be
ause φy,U : Resk−1(y, U) → Yy,U is a π-equivariantmonomorphism. Therefore y ∈ Resk(z, U ∩ T ), z ∈ Yy,U∩T .
Remark. Noti
e that we were free to 
hoose qx,s exa
tly for (x, s) in theroot set of X.4.D. Uniqueness and latti
esTheorem 4.4. For every lo
al W -building Y and any 
hamber y ∈ Ythere exists a standard W -building X and a 
overing map φ : X → Y with

φ(B) = y.Proof. We perform the 
onstru
tion of X as in Subse
tion 4.C, togetherwith the 
onstru
tion of φ as in the proof of Theorem 4.2. We put X1 = {B}and φ(B) = y. Whenever we 
onstru
t a 
hamber x su
h that a 
hoi
e of
qx,s is needed for some s, we 
hoose qx,s = |[φ(x)]∼s| − 1. The pair (x, s)will belong to the root set of X. Later, when π−1(π(x)s) is 
onstru
ted, weare free to 
hoose φ : [x]∼s → [φ(x)]∼s (extending x 7→ φ(x)); we 
hoose abije
tion. By Theorem 4.3(iv) we obtain a 
overing map.To talk about universal 
overs it is 
onvenient to swit
h to the topologi
al
ategory (and ba
k). The geometri
 realisation |X| of a lo
al W -building Xis the geometri
 realisation of the poset of �nite type residues in X (i.e.
T -residues for all spheri
al T ). One 
an label ea
h vertex in |X| with thetype of the 
orresponding residue. Let us give another des
ription of |X|.Let L be the �nite simpli
ial 
omplex with vertex set L(0) = S, a set ofgenerators spanning a simplex in L if and only if they pairwise 
ommute.We denote by L′ the �rst bary
entri
 subdivision of L, and by CL′ the 
oneover L′. Then |X| is X × CL′/∼, where (x, p) ∼ (x′, p′) ⇔ p = p′ and
x′ ∈ Res(x, S(p)); here S(p) = {s ∈ L(0) | ∃σ ∈ L′, s ∈ σ, p ∈ |σ|}. If
p : |̃X| → |X| is any 
overing of X, then |̃X| is in fa
t a geometri
 realisationof a lo
al W -building X̃: X̃ is the preimage under p of the set of ∅-labelledverti
es of |X|; x̃ ∼s x̃

′ ⇔ there exists a vertex v ∈ |̃X|, joined by edges to
x̃ and to x̃′, and su
h that p(v) is of type {s}. Noti
e that for any spheri
al
U ⊆ S, and any residue R in X of type U , the set |X≤R| is 
ontra
tible (asa 
one with apex R), hen
e its preimage under p is a disjoint union of itshomeomorphi
 
opies. Therefore, X̃ is indeed a lo
al W -building. We saythat X̃ is the universal 
over of X if |̃X| is the universal 
over of |X|. It is
lear that morphisms of lo
al W -buildings indu
e simpli
ial label-preservingmaps, and 
overing maps of lo
al W -buildings indu
e simpli
ial 
overingmaps.



154 J. Dymara and D. OsajdaTheorem 4.5. A standard W -building is a building.Proof. We begin withLemma 4.6. The geometri
 realisation of a standard W -building is 
on-tra
tible.Proof. The argument follows Serre's proof for buildings [Se℄. Let W =
{w1 = 1, w2, . . .} be a numbering of elements of W su
h that ea
h set Wk =
{w1, . . . , wk} is star-like. Let Xk = π−1(Wk). The strategy is to show that
|Xk| deformation retra
ts onto |Xk−1|. To do this, it is enough to 
he
k thatea
h 
hamber |x| in |Xk \Xk−1| deformation retra
ts onto |x| ∩ |Xk−1|. Let
T = In(wk); then the pair (|x|, |x| ∩ |Xk−1|) is isomorphi
 to (K,KT ), where
KT =

⋃
t∈T Kt. Sin
e K is a 
one over KS , it is 
ontra
tible. It is 
he
ked in[D1℄ thatKT is 
ontra
tible for all spheri
al T . It follows thatK deformationretra
ts onto KT . Lemma4.6Let now X be a standard W -building.Lemma 4.7. Suppose that σ : W → X is a lo
al monomorphism su
hthat σ(1) = B. Then σ is a se
tion of π (i.e., π ◦ σ = IdW ).Proof. We argue by 
ontradi
tion. Let w ∈ W be the shortest elementsu
h that π(σ(w)) 6= w. Noti
e that w 6= 1, be
ause π(σ(1)) = π(B) = 1;
onsequently, In(w) 6= ∅. Let s ∈ In(w); then π(σ(ws)) = ws. The map

(ws)−1π : Res(σ(ws), s) → W{s} is a folding map (
f. Remark 3 after thede�nition of a standard building), so that π(σ(ws)) = ws while for any
x ∈ Res(σ(ws), s)\{σ(ws)}we have π(x) = w. Sin
e w ∈ Res(ws, s), we have
σ(w) ∈ Res(σ(ws), s); but σ is inje
tive on Res(ws, s) so that σ(w) 6= σ(ws).Therefore π(σ(w)) = w, a 
ontradi
tion. Lemma4.7We de�ne an apartment in X as the image of any monomorphism σ :
W → X. Noti
e that if B ∈ σ(W ), then we 
an modify σ by pre
omposingit with left multipli
ation by σ−1(B), so as to have σ(1) = B. Therefore,every apartment 
ontaining B is the image of a se
tion of π.Let us make two observations that will be used for 
he
king (B2) and (B3).First, observe that if σ, σ′ are se
tions of π, and σ(W ), σ′(W ) are twoapartments 
ontaining B and a 
hamber x, then σ′ ◦ π : σ(W ) → σ′(W ) isan isomorphism �xing B and x. Next, if σ, σ′ are se
tions of π, and σ(W ),
σ′(W ) are apartments 
ontaining B and interse
ting an s-residue R, then
σ′ ◦ π : σ(W ) → σ′(W ) is an isomorphism �xing B and mapping R ∩ σ(W )to R ∩ σ′(W ). Indeed, π(R) = π(R ∩ σ(W )) = π(R ∩ σ′(W )) = {w,ws} forsome w ∈W ; 
onsequently, R∩σ(W ) = {σ(w), σ(ws)}, and (σ′◦π)(σ(w)) =
σ′(w) ∈ R ∩ σ′(W ), (σ′ ◦ π)(σ(ws)) = σ′(ws) ∈ R ∩ σ′(W ).Re
all that xt denotes the shortest element in Res(x, t) (we use thisnotation only if t ∈ In(π(x))). De�ne indu
tively xt1...titi+1 = (xt1...ti)ti+1 .
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 buildings 155Noti
e that if st = ts then xst = xts, sin
e both 
hambers are equal to theshortest element in Res(x, {s, t}). We will also use the fa
t that if σ(w) = xfor a se
tion σ of π, then σ(wt) = xt (assuming t ∈ In(w)).Lemma 4.8. For any x ∈ X there exists a morphism σ : W → X whi
his a se
tion of π and satis�es σ(π(x)) = x.Proof. Indu
tion on the length k of π(x). For k = 0 we have x = B, andwe just have to show the existen
e of a se
tion of π. A morphism σ : W → Xsu
h that σ(1) = B 
an be 
onstru
ted as in Theorem 4.2. Moreover, sin
e
[x]∼s has at least two elements for ea
h x ∈ X, s ∈ S, there exists σ whi
his inje
tive on [x]∼s for ea
h (x, s) ∈ R(W ), hen
e (by Theorem 4.3(ii)) is alo
al monomorphism. Then, by Lemma 4.7, σ is a se
tion.Now let k > 0. Then we 
an �nd w of length k−1 su
h that π(x) = ws forsome s ∈ T = In(ws), and a se
tion ξ : W → X of π su
h that ξ(w) = xs. Let
us be the shortest element in H(w, s), and let ws,wst1, . . . , wst1 . . . tk = usbe a minimal gallery with ti ∈ {s}′ (
f. Lemma 2.5). We 
hoose a well-ordering on W with star-like initial segments su
h that all elements of
H(w, s) are larger than all other elements. If {g, gt} ∩ H(w, s) = ∅ and
(g, t) ∈ R(W ) then we put σ(gt) = ξ(gt) (so that σ and ξ 
oin
ide on
W \ H(w, s)). Then we put σ(us) = xt1...tk , and afterwards we only 
areabout making inje
tive 
hoi
es, so as to keep σ a lo
al monomorphism (andhen
e, as in the 
ase k = 0, a se
tion of π).We 
laim that σ(ws) = x. To 
he
k this we prove by des
ending in-du
tion on i that σ(wst1 . . . ti) = xt1...ti . Indeed, observe that σ(wt1 . . . ti)
= ξ(wt1 . . . ti) = xst1...ti = xt1...tis, while by the indu
tive assumption
σ(wst1 . . . ti+1) = xt1...ti+1 . Sin
e xt1...ti is the unique 
hamber whi
h is re-spe
tively s- and ti+1-adja
ent to the above two 
hambers, it has to be equalto σ(wst1 . . . ti). Lemma4.8For x ∈ X we 
an �nd a standard W -building X ′ and a 
overing map
φ : X ′ → X with φ(B′) = x (Theorem 4.4; re
all that a standard W -buildingis a lo
alW -building). The 
orresponding 
overing map of topologi
al spa
es
|φ| : |X ′| → |X| is a homeomorphism, be
ause, by Lemma 4.6, its base spa
e
|X| is 
ontra
tible, hen
e simply 
onne
ted. It follows that φ itself is anisomorphism. We will now prove that X satis�es the 
onditions (B1�3). Let
y ∈ X, and let φ−1(y) = y′. By Lemma 4.8 there exists an apartment
A in X ′ 
ontaining B′ and y′. The φ-image of A is an apartment in X
ontaining x and y, whi
h proves (B1). If two apartments σ(W ), σ′(W )
ontain x and y, then (φ−1 ◦σ)(W ) and (φ−1 ◦σ′)(W ) 
ontain B′ and y′ andthus are isomorphi
 by an isomorphism η �xing B′ and y′. Then φ ◦ η ◦ φ−1is an isomorphism between σ(W ), σ′(W ) �xing x and y, whi
h proves (B2).The proof of (B3) is analogous to the proof of (B2). Theorem4.5



156 J. Dymara and D. OsajdaTheorem 4.9. For any 
olle
tion (qs)s∈S of positive integers there existsa unique W -building with s-residues of 
ardinality qs + 1.Proof. The 
onstru
tion of the previous subse
tion with qx,s = qs for all
x yields a standardW -building X whose residues have required 
ardinalities.By Theorem 4.5, X is a building. If Y is another building as in the theorem,then as in the proof of Theorem 4.2 one 
an 
onstru
t a morphism φ : X → Y .Moreover, sin
e the residue 
ardinalities agree, we 
an 
hoose φ so that it isbije
tive on ea
h [x]∼s for (x, s) ∈ R(X). By Theorem 4.3(iv), φ is a 
overingmap, and hen
e, by 
ontra
tibility of |Y |, an isomorphism.One might 
all the building from Theorem 4.9 a regular W -building,with notation X(W,q) (where q = (qs)s∈S). We will now present another
onstru
tion of X(W,q). First, we de�ne an auxiliary lo
al building Y . Theset of 
hambers of Y is a produ
t ∏

s∈S Ys, where ea
h Ys is a �nite set of
ardinality qs + 1 greater than 1. Two 
hambers (ys), (y
′
s) are t-adja
ent if

ys = y′s for all s 6= t. If T is spheri
al then ResY ((ys), T ) is isomorphi
 tothe produ
t building ∏
t∈T Yt (via dropping 
oordinates indexed by S \ T ).Therefore Y is a lo
alW -building with the required residue 
ardinalities, and

Ỹ = X(W,q). It follows that |X(W,q)| 
arries a free and 
o
ompa
t a
tionof Γ = π1(|Y |). If W is a hyperboli
 group, then |X(W,q)| is CAT(−1) andis quasi-isometri
 to Γ ; therefore, Γ is Gromov-hyperboli
 (in fa
t, any groupa
ting 
o
ompa
tly and properly dis
ontinuously on |X(W,q)| is Gromov-hyperboli
).Proposition 4.10. The building |X(W,q)| 
arries a free and 
o
ompa
ta
tion of some group Γ . If W is hyperboli
, then Γ is Gromov-hyperboli
.Both the proposition and the method of proof (the identi�
ation of
X(W,q) with the universal 
over of Y ) are well known (
f. [D2℄, [GP℄).4.E. Small maps with disjoint images. A (standard or lo
al) W -building is thi
k if ea
h adja
en
y 
lass has at least three elements.Theorem 4.11. Let X be a thi
k standard W -building , and let N ⊆ Xbe a �nite set. Then there exists a �nite set M with N ⊆ M ⊆ X andtwo π-equivariant maps φ, ψ : X → X su
h that φ|M = ψ|M = IdM and
φ(X \M) ∩ ψ(X \M) = ∅.Proof. PutM = π−1(conv(π(N)∪{1})). We 
laim that conv(π(N)∪{1}),hen
eM , is �nite. Indeed, letm be the number of walls inW separating someelement of π(N) from 1. Let ℓ(w) = p > m, and let w0 = 1, w1, . . . , wp = wbe a minimal gallery. Then one of the p walls between wi and wi+1 does notseparate any element of π(N) from 1, while it separates w from 1; hen
e, itseparates w from π(N) ∪ {1}, and w 6∈ conv(N ∪ {1}).
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 buildings 157Now let R = R(X) be the root set of X. For ea
h (x, s) ∈ R 
hoose twodistin
t elements a(x,s), b(x,s) ∈ Res(x, s) \ {x}. Let A = {ar | r ∈ R}, B =
{br | r ∈ R}. We now 
onstru
t φ : X → X as in the proof of Theorem 4.2.Let x ∈ X be su
h that In(π(x)) = {s} (i.e., we have a 
hoi
e for φ(x)). Let
x0 be the shortest element of Res(x, s); then (x0, s) ∈ R. If x ∈ M we put
φ(x) = x (this is allowed, for by indu
tion φ(x0) = x0). If x 6∈ M , we put
φ(x) = a(φ(x0),s). Similarly we de�ne ψ using b's instead of a's.Suppose now that y ∈ φ(X)∩ψ(X), y 6∈M , and w = π(y) is the shortestpossible. Let y = φ(x) = ψ(z). We have φ(xt) = ψ(zt) for all t ∈ In(w), hen
e
xt = zt ∈ M for all su
h t. Now y 6∈ M is possible only if In(w) has oneelement, say t. But then (xt, t) ∈ R, (zt, t) ∈ R, φ(x) ∈ A, ψ(z) ∈ B, a
ontradi
tion.Let

|M | = {[x, p] | x ∈M, p ∈ CL′}, |φ|([x, p]) = [φ(x), p].Corollary 4.12. Let φ, ψ be as in Theorem 4.11. Then
|φ|(|X| \ |M |) ∩ |ψ|(|X| \ |M |) = ∅.Proof. Suppose not; let [x, p] = |φ|([x1, p]) = |ψ|([x2, p]). Re
all that

S(p) = {s ∈ S | ∃σ ∈ L′, s ∈ σ, p ∈ |σ|}. Let y be the shortest elementof Res(x, S(p)), and let y1 be the shortest element of Res(x1, S(p)); then
[x, p] = [y, p] and [x1, p] = [y1, p]. Sin
e Res(x, S(p)) is the unique residue Rof type S(p) in X su
h that |X≤R| 
ontains [x, p] (for two di�erent residues Rof the same type the sets |X≤R| are disjoint), we have |φ|(|X≤Res(x1,S(p))|) ⊆
|X≤Res(x,S(p))|, and hen
e φ(Res(x1, S(p))) ⊆ Res(x, S(p)). Now π-equivar-ian
e of φ implies that φ(y1) = y. Similarly, ψ(y2) = y. It follows that y ∈Mand [x, p] = [y, p] ∈ |M |.If X is a right-angled hyperboli
 building with a folding map π, then any
π-equivariant map θ : X → X �xes the base 
hamber B = π−1(1). Therefore
|θ| : |X| → |X| �xes all points in B. Re
all that we de�ned ∂|X| as thespa
e of geodesi
 rays starting at some base point x0 ∈ B. Thus, the map
|θ| indu
es a 
ontinuous map ∂|θ| : ∂|X| → ∂|X|.Corollary 4.13. Let X be a right-angled hyperboli
 building , and let
φ, ψ be as in Theorem 4.11. Then

∂|φ|(∂|X|) ∩ ∂|ψ|(∂|X|) = ∅.Proof. Suppose not; let ∂|X| ∋ z = ∂|φ|(z1) = ∂|ψ|(z2). For y ∈ ∂|X|let γy : [0,∞) → |X| be the geodesi
 from the base point to y. We have γz =
|φ| ◦ γz1 = |ψ| ◦ γz2 . Let t ∈ [0,∞) be so large that γz1(t), γz2(t) 6∈ |M |; then
γz(t) = |φ|(γz1(t)) = |ψ|(γz2(t)), 
ontradi
ting Corollary 4.12.



158 J. Dymara and D. OsajdaAPPENDIXIn this appendix we prove an analogue of Lemma 2.15 for arbitrary �-nite spheri
al buildings (Theorem A.2). As a 
orollary, we dedu
e that an
n-dimensional lo
ally �nite hyperboli
 or Eu
lidean building (not ne
essarilyright-angled) is (n − 2)-
onne
ted at in�nity. Note that in [GP℄ even moreis 
laimed, but their proof does not 
onvin
e us. First, it is not true that
V ∩S(x, si + ε) (here we refer to the proof of Proposition 4.1 in [GP℄ and weuse the notation used there) is of the same homotopy type as the pointed
onne
ted sum of S(x, si−ε) with a bouquet of spheres�one for ea
h 
ham-ber opposite to c in Lk(y). This 
an be seen by 
onsidering a 2-dimensionalright-angled building. Se
ond, to 
laim that V ∩S(x, si+ε) has the homotopytype of a bouquet of spheres, one needs to show that S+ is (n−2)-
onne
ted(in the notation of [GP℄). This is, in our opinion, a non-trivial fa
t�see The-orem A.2 below. A similar problem appears in [DM℄. Again, as 
onsiderationof a 2-dimensional right-angled building shows, Lemma 5.5 in [DM℄ is false(
f. [DM′℄). We do not know how to 
orre
t this approa
h.Kai-Uwe Bux informs us that variants of Theorem A.2 and CorollaryA.10 have been independently established by B. S
hulz in his thesis (
f.[S
h℄).Let X be a �nite spheri
al building of dimension n ≥ 1, equipped withthe standard CAT(1) metri
 (ea
h apartment is a sphere of diameter π).Let B ∈ X be a 
hamber, and let π : X → Sn be the B-based folding map.We equip Sn with the standard round metri
 su
h that the restri
tion of
π to any apartment A 
ontaining B isometri
ally identi�es A and Sn. Thetriangulation of A transported by π is a triangulation of Sn; π : X → Sn isthen a simpli
ial map. Images of 
hambers under π will be 
alled 
hambers.
Lemma A.1. Let S1, . . . , Sk ⊆ Sn be a �nite 
olle
tion of great spheres

(of arbitrary dimensions). The set of points x satisfying:
• for every i, the fun
tion Si ∋ y 7→ d(x, y) ∈ R has a unique minimum;
• for every i 6= j, d(x, Si) 6= d(x, Sj);is open and dense in Sn.For every simplex σ in our triangulation of Sn there exists a unique small-est great sphere S ⊆ Sn 
ontaining σ. Apply Lemma A.1 to the 
olle
tionof all spheres thus obtained; pi
k a point x ∈ Sn in the dense open set givenby the lemma and inside int(π(B)). Let E0 = x⊥ ∩ Sn be the equator of Snfor whi
h x is a pole; let E− be the 
losed hemisphere with boundary E0
ontaining x, and let E+ be the other 
losed hemisphere with boundary E0.Also, let

X0 = π−1(E0), X− = π−1(E−), X+ = π−1(E+).
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 buildings 159For a subset U or point p of X we put
U = π(U), p = π(p).We will often pi
k U or p �rst, and spe
ify U or p later (if at all). For example,

x is the unique point in π−1(x). To avoid a notational 
lash, 
losures will bedenoted by cl.
Theorem A.2. Let X be a �nite spheri
al building of dimension n ≥ 1.Then X+ is (n− 1)-
onne
ted.Proof. If a set G ⊆ X is isomorphi
ally mapped by π onto H ⊆ Sn, wesay that G folds onto H. The following lemma will often be used:
Lemma A.3.(a) For every 
hamber C ∈ X there exists an apartment A 
ontaining Csu
h that A folds onto Sn.(b) Let C1, C2 be two 
hambers in X su
h that π(C2) = −π(C1). Thenthere exists a unique apartment A 
ontaining C1 and C2. This Afolds onto Sn.Proof. (a) An apartment 
ontaining C and B is good. (b) C1, C2 areopposite in X�otherwise C1, C2 would not be opposite in Sn. Consequently,

conv(C1 ∪ C2) is the desired apartment.
Remark. One 
an repla
e the 
hamber C in part (a) by a point; sim-ilarly, one 
an repla
e 
hambers C1, C2 in part (b) by points p, q su
h that

q = −p and p is in the interior of some 
hamber. (Choose 
hamber/pair ofopposite 
hambers 
ontaining the point/points, and apply the lemma.)
Lemma A.4. Let n ≥ 1. Then X+ is path-
onne
ted.Proof. Let p, q ∈ X+. Choose apartments Ap, Aq that fold onto Sn and
ontain p, q, respe
tively. Pi
k a point p′ ∈ X0 ∩Ap whi
h lies in the interiorof some 
hamber Cp (this is possible due to generi
ity of x). Let q′ ∈ X0∩Aqbe su
h that q′ = −p′; let Cq be the 
hamber whi
h 
ontains q′. Then p 
anbe 
onne
ted to p′ by a path in X+ ∩ Ap, and q 
an be 
onne
ted to q′ bya path in X+ ∩ Aq. Furthermore, π(Cq) = −π(Cp) so that, by Lemma A.3,there exists an apartment A ∋ Cp, Cq whi
h folds onto Sn. Now p′ and q′
an be 
onne
ted by a path in X+ ∩A. Thus, p and q 
an be 
onne
ted bya path in X+.
Proposition A.5. Let n = 2. Then π1(X

+) = 0.Proof. By a general position argument, any loop in X+ 
an be homo-toped to a loop in X+\π−1(−x). The latter set deformation retra
ts onto X0(the deformation retra
tion moves a point along the unique shortest geodesi
towards x, until it hits X0). Consequently, any loop inX+ 
an be homotopedto a loop in X0. Now X0 has a natural graph stru
ture, inherited from the
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ial stru
ture ofX. Therefore, a loop inX0 is homotopi
 to a simpli
ialloop σ = (e1, . . . , ek = e0) (ea
h ei is an oriented edge and the endpoint of eiis the origin of ei+1). A pair (ei, ei+1) will be 
alled a ba
ktra
king pair (b.p.)if ei = e−i+1 (we use f− to denote f with reversed orientation). Now 
hoose anedge e in E0. A b.p. (ei, ei+1) is 
alled a

eptable if ei = ±e± (one of the fourpossibilities). If (ei, ei+1) is a b.p., we 
hoose an apartment A that 
ontains
ei and folds onto Sn. Then A∩X0 is a loop (ei, f2, f3, . . . , f2s). There exists asmallest j ≥ 2 su
h that f j = ±e±; we deform the loop σ = (. . . , ei, ei+1, . . .)to σ′ = (. . . , ei, f2, . . . , fj , f

−
j , . . . , f

−
2 , ei+1, . . .). The new loop has the sameba
ktra
king pairs as σ, with the ex
eption of (ei, ei+1), instead of whi
h ana

eptable b.p. (fj , f

−
j ) appears. Noti
e that the b.p. (fj , f

−
j ) is separated,in the sense that neither (fj−1, fj) nor (f−j , f

−
j−1) is a b.p. (if j = 2, nei-ther (ei, f2) nor (f−2 , ei+1) is a b.p.). Repeating the pro
ess, we deform σto a loop with a

eptable separated ba
ktra
king pairs only. We keep thenotation σ = (e1, . . . , ek = e0) for this new loop.Now suppose that ei = ±e±, but neither (ei, ei+1) nor (ei−1, ei) is a b.p.Then ei+s = −ei so that, by Lemma A.3 and the subsequent remark, thereexists an apartment A ∋ ei, ei+s. We 
laim that ei+1, . . . , ei+s−1 ∈ A.

Lemma A.6. Let τ = (d1, . . . , ds+1) be a path in X0 su
h that d1 =
−ds+1, and let A be the apartment in X 
ontaining d1 and ds+1. Then τ is
ontained in A.Proof. The path τ ′ = (d2, . . . , ds) from the endpoint y of d1 to the ori-gin z of ds+1 has geometri
 length d(y, z). Sin
e d(y, z) ≤ d(y, z), τ ′ is ashortest geodesi
. Now y, z ∈ A, and A is 
onvex, therefore τ is 
ontainedin A. Lemma A.6In A∩X+, the path (ei+1, ei+2, . . . , ei+s−1) is homotopi
 (with endpoints�xed) to a path (e−i , fi+1, . . . , fi+s−1, e

−
i+s), where f i+j = −e−i+s−j . The e�e
tof this 
hange on σ is

(. . . , ei, ei+1, . . . , ei+s−1, ei+s, . . .)

→ (. . . , ei, e
−
i , fi+2, . . . , fi+s−1, e

−
i+s, ei+s, . . .).It may happen that (ei+s, ei+s+1) is a b.p.; if this is the 
ase, we furthermodify the loop:

(. . . , fi+s−1, e
−
i+s, ei+s, ei+s+1, . . .) → (. . . , fi+s−1, ei+s+1, . . .).Travelling along the loop and repeating the pro
ess if ne
essary, we �nallyarrive at a loop σ = σ1 . . . σ2l, where ea
h σi is a path of length s + 1 withno b.p., and (last edge of σi, �rst edge of σi+1) is an a

eptable separatedb.p. (for i = 0, 1, . . . , 2l − 1, where σ0 = σ2l).Suppose now that τ is a path of length s+1 
ontaining no b.p. Let A bethe apartment 
ontaining the extreme edges of τ . Then τ is homotopi
 (with
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 buildings 161endpoints �xed) in A ∩X+ to a path τ̂ ⊆ A ∩X0 of length s − 1. Now wemodify σ by homotopy inside X+, 
hanging σj and σ2l−j+1 to σ̂j , σ̂2l−j+1(resp.), for all positive even j ≤ l. We obtain a loop σ = ηξ with exa
tly twoba
ktra
king pairs, where η, ξ are paths of equal length, say u, and none ofthem 
ontains a b.p. A loop of this form will be 
alled a u-moon.
Lemma A.7. An (s+ 1)-moon is 
ontra
tible in X+.Proof. An (s + 1)-moon ηξ is homotopi
 (in X+) to ηξ̂; the latter is
ontained, by Lemma A.6, in the apartment A spanned by the extremeedges of η. The apartment A folds onto Sn, therefore ηξ̂ is null-homotopi
in A ∩X+. LemmaA.7

Lemma A.8. If u > s+1, then a u-moon is homotopi
 to a 
on
atenationof an (s+ 1)-moon and a (u− 1)-moon.Proof. Let η = (η1, . . . , ηu) and ξ = (ξ1, . . . , ξu). Let A be the apartmentspanned by η1 and ξu−s, and let τ be the path of length s − 1 in A ∩ X0from the endpoint of η1 to the endpoint of ξu−s. Then ηξ is homotopi
to the 
on
atenation of the (s + 1)-moon τξ−u−sξu−sξu−s+1 . . . ξuη1 and the
(u− 1)-moon η2η3 . . . ηuξ1ξ2 . . . ξu−sτ

−. LemmaA.8Repeated appli
ation of Lemmas A.8 and A.7 �nishes the proof of Propo-sition A.5. PropositionA.5Thus, the assertion of Theorem A.2 is true for n = 1, 2. We will pro
eedwith the proof of the general 
ase by indu
tion on n. Suppose that n > 2, andthat the assertion of Theorem A.2 is true for all �nite buildings of dimensionless than n. Let X be a �nite building of dimension n.Let σ1, . . . , σl be all the simpli
es of our triangulation of Sn that havethe following property: there exists a minimal unit-speed geodesi
 γi issuedfrom x whi
h orthogonally interse
ts the interior of σi at pi = γi(ti). By the
hoi
e of x, γi is unique, all the ti are distin
t and none of them equals π/2.We 
an assume that t1 < · · · < tl. Let
X+

r = {y ∈ X | d(π(y), x) ≥ r}.Our strategy is to show, by indu
tion on i, that X+
r is (n − 1)-
onne
tedfor ti < r < ti+1, r ≤ π/2. To this end, we need to prove that X+

ε is
(n− 1)-
onne
ted for small positive ε, and then we need to understand how
X+

r 
hanges when r swit
hes from the interval (ti−1, ti) to (ti, ti+1).If ε is su�
iently 
lose to 0, then X+
ε is homotopy equivalent to X \ {x},whi
h homotopi
ally is a bouquet of n-spheres with one sphere pun
tured,and so is (n− 1)-
onne
ted.Now we will 
losely follow the proof of Lemma 3.3. Put t = ti, σ = σi,

γ = γi, p = pi. We 
hoose a small δ > 0 su
h that the sphere Sδ(p) is
ontained in int(Resσ), where Resσ =
⋃
{τ | σ ⊆ τ}. Then there exists
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h that St+ε(x) ∩ σ ⊆ Sδ(p). The interse
tion St+ε(x) ∩ σ is asphere of dimension d = dimσ− 1 
ontained in the interior of σ. De
reasing
δ we ensure that ε < min{ti+1 − t, t− ti−1} and t+ ε < π/2. Let D denote
Sδ(p) ∩ σ

⊥
p (where η⊥p denotes the largest great sphere in Sn orthogonal to

η at p). The interse
tion D ∩ γ⊥p divides D into two 
losed hemispheres:
D

− (the one 
loser to x) and D
+. Observe that D+

= D \ Bt+ε(x). Thesphere D inherits a triangulation from Sn. We want the spheres St±ε(x) tointerse
t this triangulation �in the same way�. This 
ondition 
an be a
hievedby further de
reasing δ (and 
onsequently ε).Now we pass to X. Let
π−1(σ) = {σ1, . . . , σk}, {ps} = σs ∩ π

−1(p),

Ks = {y ∈ X | d(y, ps) ≤ δ}, K =
∐

s

Ks, Y + = cl(X+
t+ε \K),

Ds = π−1(D) ∩Ks, D+
s = Ds ∩X

+
t+ε, Sd

s = σs ∩ Sδ(ps).The �rst two de�nitions override our previous 
onvention. Observe that:X+
t+εis homotopy equivalent to Y +; X+

t−ε is homotopy equivalent to Y + ∪K; Ksis homeomorphi
 to a 
one over the join Sd
s ∗Ds, and is atta
hed to Y + alonga subset homeomorphi
 to Sd

s ∗D+
s .Ea
h Ds is a spheri
al building of dimension n− d− 2. By the indu
tiveassumption D+

s is (n−d−3)-
onne
ted, whi
h implies that Sd
s ∗D

+
s is (n−2)-
onne
ted. Moreover, Ks is 
ontra
tible. Van Kampen's theorem, Mayer�Vietoris sequen
e and the indu
tive assumption that the union Y + ∪ K is

(n−1)-
onne
ted imply (n−2)-
onne
tedness of Y +. It remains to prove that
Hn−1(Y

+) = 0 (here we depart from the proof of Lemma 3.3). It follows fromthe Mayer�Vietoris sequen
e that Hn−1(Y
+) is generated by the images of

Hn−1(S
d
s ∗D

+
s ) (s = 1, . . . , k). We will show that any (n−1)-
y
le in Sd

s ∗D
+
sis null-homologous in Y +.Let us subdivide the usual triangulation of Sn to a minimal 
ellulationin whi
h St+ε(x) \ Bδ(p) and Sδ(p) are sub
omplexes. Pull this 
ellulationba
k to X via π. An (n− 1)-
y
le z in Sd

s ∗D+
s is a join of the fundamental
lass of Sd

s and an (n − d − 2)-
y
le z̃ in D+
s . The 
y
le z̃ 
an be regardedas a 
y
le in Ds vanishing outside D+

s . Now every (n − d − 2)-
y
le in Ds
an be expressed as a 
ombination of fundamental 
lasses of apartments.More spe
i�
ally, let c0 be the 
hamber in Ds whi
h is 
losest to x, and let
c1, . . . , cm be all the 
hambers in Ds opposite to c0. Let ai be the apartmentin Ds 
ontaining c0 and ci; then z̃ =

∑m
i=1 αi[ai] for some integers αi. Let

Ci be the 
hamber of X 
ontaining ci. Let C−1 be a 
hamber in X su
h that
C−1 = −C1 (note that C1 = · · · = Cm), and let Ai be the apartment in X
ontaining C−1 and Ci. Let Z =

∑m
i=0 αi[Ai] ∈ Zn(X). Split Z into Z1 +Z2,
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 buildings 163where Z1 ∈ Cn(Ks), Z2 ∈ Cn(cl(X \Ks)). Clearly, Z1 is the 
one over z sothat ∂Z1 = z. Therefore, ∂(−Z2) = z.We 
laim that Z2 ∈ Cn(Y +). First, noti
e that if u 6= s then for all
i we have Ku ∩ Ai = ∅: sin
e Ai folds onto Sn, it 
an interse
t only one
omponent of K, and it does interse
t Ks. Next, let C be a 
hamber of X
ontained in Ai but not 
ontained in Y +∪K. Choose a point y ∈ int(C) su
hthat y 6∈ X+

t ∪K (in parti
ular, y 6= −p). The unique minimal geodesi
 γfrom ps to y is 
ontained in (Ai∩ (X \X+
t ))∪{ps}, be
ause both extremitiesbelong to this 
onvex set. In parti
ular, γ interse
ts Sδ(ps) outside X+

t , hen
eoutside Y +. It follows that γ leaves ps through the interior of a 
hamber C ′ onwhi
h Z is zero. The 
hamber C ′ is the 
losest to C (in the gallery distan
e)among all 
hambers in the residue of σ.Now all apartments Aj 
ontain σ; therefore, if an apartment Aj 
ontains
C, it also 
ontains C ′. Conversely, we 
laim that if C ′ ∈ Aj , then C ∈ Aj . Tosee this extend the geodesi
 γ to γ : [0, π] → Ai (so that γ(π) is opposite to
γ(0) = ps in Ai). Now slightly rotate γ inside Ai, so as to obtain a geodesi

η whi
h still passes through the interiors of C ′ and C (η(a) ∈ int(C ′), η(b) ∈
int(C), a < b), but η(0) ∈ int(Ci), η(π) ∈ int(C−1). Then η|[a,π] is a minimalgeodesi
. Suppose that C ′ ∈ Aj . Then η(a), η(π) ∈ Aj so that η(b) ∈ Aj ,hen
e C ∈ Aj .Thus, we have veri�ed that {j | C ∈ Aj} = {j | C ′ ∈ Aj}. The 
oe�
ientof C in Z is equal to ∑

j|C∈Aj
αj =

∑
j|C′∈Aj

αj ; the latter is the 
oe�
ientof C ′ in Z, i.e. zero. TheoremA.2A non-
ompa
t spa
e X is k-
onne
ted at in�nity if for every 
ompa
t
K ⊆ X there exists a 
ompa
t set L with K ⊆ L ⊆ X su
h that any map
Si → X \ L extends to a map Bi+1 → X \K (for i = 0, 1, . . . , k).
Corollary A.9. An n-dimensional lo
ally �nite hyperboli
 or Eu
li-dean building is (n− 2)-
onne
ted at in�nity.Proof. It is enough to 
he
k that the 
omplements of balls Br are (n−2)-
onne
ted, for r > 0 arbitrarily large. By the geodesi
 retra
tion su
h a 
om-plement is homotopi
ally equivalent to Sr. Then the proof of Lemma 3.3, for

U = X ∪ ∂X, goes through, with Theorem A.2 used instead of Lemma 2.15.Lemma 2.16 is never needed for this 
hoi
e of U .Finally, let us remark that in Theorem A.2 the assumptions on x 
an berelaxed.
Corollary A.10. The 
on
lusion of Theorem A.2 is true for all x inthe 
losed 
hamber π(B).Proof. For any x ∈ π(B) and any positive ε one 
an �nd a generi
 ε-approximation of x: a point xε in int(π(B)), belonging to the dense open set
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lose to x. Then
V +

ε := {y ∈ X | d(π(y), xε) ≥ π/2 − ε}
ontains X+ and is 
ontained in the ε-neighbourhood of X+. Sin
e X+ hasa (spheri
al) �nite polyhedral stru
ture, it is an ANR; hen
e, for ε smallenough, V +
ε retra
ts onto X+. By the proof of Theorem A.2, V +

ε is (n− 1)-
onne
ted. Therefore, its retra
t X+ is also (n− 1)-
onne
ted.
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