
FUNDAMENTA

MATHEMATICAE

197 (2007)

Generalized universal covering spaces and the shape group

by

Hanspeter Fischer (Muncie, IN) and Andreas Zastrow (Gdańsk)

Abstract. If a paracompact Hausdorff space X admits a (classical) universal covering
space, then the natural homomorphism ϕ : π1(X)→ π̌1(X) from the fundamental group
to its first shape homotopy group is an isomorphism. We present a partial converse to
this result: a path-connected topological space X admits a generalized universal covering
space if ϕ : π1(X)→ π̌1(X) is injective.

This generalized notion of universal covering p : X̃ → X enjoys most of the usual
properties, with the possible exception of evenly covered neighborhoods: the space X̃ is
path-connected, locally path-connected and simply-connected and the continuous surjec-
tion p : X̃ → X is universally characterized by the usual general lifting properties. (If X is

first countable, then p : X̃ → X is already characterized by the unique lifting of paths and
their homotopies.) In particular, the group of covering transformations G = Aut(X̃

p
→ X)

is isomorphic to π1(X) and it acts freely and transitively on every fiber. If X is lo-

cally path-connected, then the quotient X̃/G is homeomorphic to X. If X is Hausdorff

or metrizable, then so is X̃, and in the latter case G can be made to act by isometry.
If X is path-connected, locally path-connected and semilocally simply-connected, then
p : X̃ → X agrees with the classical universal covering.

A necessary condition for the standard construction to yield a generalized universal
covering is that X be homotopically Hausdorff, which is also sufficient if π1(X) is count-
able. Spaces X for which ϕ : π1(X)→ π̌1(X) is known to be injective include all subsets
of closed surfaces, all 1-dimensional separable metric spaces (which we prove to be covered
by topological R-trees), as well as so-called trees of manifolds which arise, for example, as
boundaries of certain Coxeter groups.

We also obtain generalized regular coverings, relative to some special normal sub-
groups of π1(X), and provide the appropriate relative version of being homotopically
Hausdorff, along with its corresponding properties.

General Assumption. Throughout this article, we consider a path-
connected topological space X with base point x0 ∈ X.

2000 Mathematics Subject Classification: Primary 55R65; Secondary 57M10, 55Q07.
Key words and phrases: generalized universal covering, first shape homotopy group,

generalized regular covering.
The authors gratefully acknowledge the support of this research by the Faculty Inter-

nal Grants Program of Ball State University, the University of Gdańsk (BW UG 5100-5-
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1. Introduction. Recall that a continuous map p : X → X is called
a covering of X, and X is called a covering space of X, if for every x ∈ X
there is an open subset U of X with x ∈ U and such that U is evenly covered

by p, that is, p−1(U) is the disjoint union of open subsets of X each of which
is mapped homeomorphically onto U by p.

In the classical theory, one assumes that X is, in addition, locally path-
connected and wishes to classify all path-connected covering spaces of X and
to find among them a universal covering space, that is, a covering p : X̃ → X
with the property that for every covering q : X → X by a path-connected
space X there is a covering q : X̃ → X such that q◦q = p. If X is locally path-
connected, we have the following well-known result, which can be found, for
example, in [22] and [25]:

Every simply-connected covering space of X is a universal covering space.

Moreover, X admits a simply-connected covering space if and only if X
is semilocally simply-connected, in which case the coverings p : (X, x) →
(X, x0) with path-connected X are in direct correspondence with the conju-

gacy classes of subgroups of π1(X, x0), via the monomorphism p# : π1(X, x)
→ π1(X, x0).

Outside of semilocally simply-connected spaces, the theory is not as
pleasant. This is unfortunate, because non-semilocally simply-connected
spaces, such as the Pontryagin surface Π2, the 1-dimensional Menger uni-
versal curve, the Hawaiian Earring and other locally complicated planar
sets are routinely studied in various areas of topology, fractal geometry and
dynamical systems. Accordingly, one would like to generalize the notion of
universal covering space so as to include such spaces.

While it is possible, based on Fox’s concept of overlay, to classify spe-
cific types of (classical) covering spaces of non-semilocally simply-connected
spaces via the fundamental pro-group pro-π1(X, x0) [12–15, 19, 22], no uni-
versal covering space might be available.

An improved correspondence result was obtained in [19] by relaxing the
definitions of “space” and “fundamental group”. However, since the gen-
eralized notion of “covering space” in that paper is still modeled on a lo-
cal isomorphism of structures, not every planar, path-connected and locally
path-connected, topological space ends up having a “simply-connected” cov-
ering space [19, Ex. 9, §11].

Every attempt to generalize the notion of universal covering space is
invariably tied to a subjective list of those properties which are deemed
indispensable, and another list of properties, which must necessarily be dis-
carded. Of course, the proper balance between these two lists will always
depend on the task at hand. It seems, however, that for most applications
the particular usefulness of a simply-connected covering space does not lie
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in the evenly covered neighborhoods, but rather in the following properties:

(U1) The space X̃ is path-connected, locally path-connected and simply-
connected.

(U2) The map p : X̃ → X is a continuous surjection.
(U3) For every path-connected and locally path-connected topological

space Y , for every continuous function f : (Y, y) → (X, x) with

f#(π1(Y, y)) = 1, and for every x̃ in X̃ with p(x̃) = x, there exists

a unique continuous lift g : (Y, y)→ (X̃, x̃) with p ◦ g = f .

(U4) The group of covering transformations Aut(X̃
p
→ X) is isomor-

phic to π1(X, x0) and it acts freely and transitively on every fiber
p−1({x}) with x ∈ X.

(U5) The map p : X̃ → X is open so that X̃/G ≈ X, where G =

Aut(X̃
p
→ X).

In the absence of a classical universal covering, still certain Hurewicz
fibrations [25] and certain Serre fibrations [2], [10, §5] p : E → X are some-
times available, with simply-connected E and additional helpful properties.
However, these fibrations lack, in general, most of the properties on the
above list, notably the local path-connectivity of E, on which the other
properties hinge—even if X is locally path-connected.

The approach of this paper is fundamentally different from all of the
above. Seeking the middle ground between letting go of local homeomor-
phisms and considering very general fibrations, we examine the standard
construction of the classical universal covering and ask the question: under
what circumstances will it have Properties U1–U5? This approach is in the
spirit of [28] as well as [3].

1.1. On Properties U1–U5. Properties U1, U2 and U3 uniquely charac-
terize p : X̃ → X in the usual way: if any two maps p1 : (X̃1, x̃1) → (X, x)

and p2 : (X̃2, x̃2)→ (X, x) satisfy Properties U1–U3, then there are (unique)

lifts g1 : (X̃1, x̃1) → (X̃2, x̃2) and g2 : (X̃2, x̃2) → (X̃1, x̃1) with p2 ◦ g1 = p1

and p1 ◦ g2 = p2. Since both g2 ◦ g1 and id
X̃1

are lifts with p1 ◦ (g2 ◦ g1) = p1

and p1 ◦ id
X̃1

= p1, and since such lifts are assumed to be unique, we have

g2 ◦ g1 = id
X̃1

. Similarly, g2 ◦ g1 = id
X̃2

. Hence g1 : X̃1 → X̃2 is a homeo-

morphism with p2 ◦ g1 = p1. That is, p1 : X̃1 → X and p2 : X̃2 → X are
isomorphic.

Properties U1–U3 combined imply Property U4: firstly, if we take p1 =
p2 = p and X̃1 = X̃2 = X̃ in the previous paragraph, we see that the group of

covering transformations Aut(X̃
p
→ X) (i.e. the group of homeomorphisms

g : X̃ → X̃ with p ◦ g = p) acts freely and transitively on every fiber

p−1({x}). Moreover, for a fixed x̃0 ∈ X̃ with p(x̃0) = x0, an isomorphism
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Ψ : Aut(X̃
p
→ X) → π1(X, x0) is given by Ψ(f) = [p ◦ α], where α is any

path in X̃ from x̃0 to f(x̃0).
If X is first countable, then Property U3 is already captured by the

unique lifting of paths and their homotopies (see Proposition 5.1). Moreover,
Properties U1–U3 imply Property U5, provided X is locally path-connected
and first countable (see Remark 5.2). In turn, we cannot expect Property U5

to hold in the presence of local path-connectivity of X̃ in conjunction with
Property U2, unless X itself is locally path-connected. (See Remark 4.17 for
the non-locally path-connected case.) However, we will never assume X to
be locally path-connected without explicit mention, because several results
of this article apply to non-locally path-connected spaces as well.

We therefore make the following definition.

Definition. If a map p : X̃ → X satisfies Properties U1, U2 and U3,
then we call it the generalized universal covering of X and we call X̃ the
generalized universal covering space of X.

1.2. Fibrations and higher homotopy groups. Every generalized universal
covering p : X̃ → X is a Serre fibration with unique path lifting. (Recall

that p : X̃ → X is called a Serre fibration if it has the homotopy lifting
property with respect to Y = [0, 1]n for all n ≥ 0. That is, for every map

F : Y × [0, 1] → X and every partial lift g : Y × {0} → X̃ with p ◦ g =

F ◦ incl there is a map G : Y × [0, 1] → X̃ such that G ◦ incl = g and

p ◦ G = F ). Consequently, the homomorphisms p# : πi(X̃) → πi(X) are
isomorphisms for i > 1. However, a generalized universal covering need not
be a covering in the classical sense or even a Hurewicz fibration: although
Property U4 implies that the cardinality of every fiber p−1({x}) is that of
π1(X), Example 4.15 features non-homeomorphic fibers.

1.3. Summary of results. A necessary condition for the standard con-
struction to yield a generalized universal covering is that X be homotopically

Hausdorff, that is, for every x ∈ X only the trivial element of π1(X, x) can
be represented by arbitrarily small loops (Definition 2.9 and Lemma 2.11).
If π1(X, x0) is countable, then this property is also sufficient (Theorem 4.4).
This is not surprising, for if X is first countable and homotopically Hausdorff
with countable π1(X, x0), then X is actually semilocally simply-connected
(Proposition 4.6). In turn, it is well-known that every (connected) locally
path-connected, semilocally simply-connected, separable metric space has a
countable fundamental group (see also Theorem 4.1).

Therefore, this article is mainly concerned with finding a condition un-
der which spaces with uncountable fundamental group admit generalized
universal coverings. As we shall see, the only obstruction is the unique path
lifting property (Example 2.7 and Proposition 2.14).
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We begin our investigation with the observation that if X is locally path-
connected, semilocally simply-connected and paracompact Hausdorff, then
the natural homomorphism ϕ : π1(X, x0)→ π̌1(X, x0) from the fundamental
group of X to its first shape homotopy group is an isomorphism (Theo-
rem 4.1). Our main result (Theorem 4.10) is a partial converse, namely
that if the homomorphism ϕ : π1(X, x0)→ π̌1(X, x0) is injective, then the

standard construction of p : X̃ →X via homotopy classes of paths, when
given the correct topology, yields a generalized universal covering. Moreover,
p : X̃ → X is an open map whenever X is locally path-connected. Should
X be Hausdorff or metrizable, then X̃ inherits these properties, and in the
latter case there is a metric for X̃ such that the covering transformations
act by isometry.

Spaces X for which ϕ : π1(X, x0) → π̌1(X, x0) is known to be injective
include all planar sets and, more generally, all subsets of closed surfaces,
all 1-dimensional (Hausdorff) compacta and 1-dimensional separable metric
spaces, the above-mentioned Pontryagin surface and, more generally, trees
of manifolds which arise, for example, as boundaries of groups. (See Exam-
ples 4.13–4.16.) Our main theorem therefore equips all of these spaces with
a generalized universal covering. The generalized universal covering space of
a 1-dimensional (path-connected) separable metric space will turn out to be
(topologically) an R-tree. In the case of the Hawaiian Earring, we will give
an explicit combinatorial description of the generalized universal covering.

We show that injectivity of ϕ : π1(X) → π̌1(X) does not guarantee
the existence of all generalized intermediate coverings (Example 6.2). How-
ever, we obtain generalized regular coverings, relative to some special normal
subgroups of π1(X), and provide the appropriate relative version of being
homotopically Hausdorff, along with its corresponding properties. (Proposi-
tion 6.4 generalizes Lemma 2.11; Proposition 6.6 generalizes Proposition 4.6;
Theorem 6.10 generalizes Theorems 4.4 and 4.10.)

1.4. On the structure of this article. In Section 2, we examine the stan-
dard construction of a universal covering p : X̃→X when applied to a gen-
eral path-connected space X. We determine which topology to invoke for X̃
in order to ensure that it is locally path-connected. We also list some ele-
mentary properties of p : X̃ → X, the proofs of which can in many cases be
adapted from the standard theory (as found in [22] and [25]), since they do
not rely on semilocal simple-connectivity of X. While much of the introduc-
tory material in Section 2 was previously observed in [28] and [3], or belongs
to folklore, detailed proofs are provided as self-contained background.

Before we state and prove the main results along with our examples in
Section 4, we briefly recall the definition of the first shape homotopy group
in Section 3.
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In Section 5 we prove the above-mentioned properties of first countable
spaces. Finally, Section 6 is devoted to generalized regular coverings and
contains the relative versions of our main results.

2. The “standard” construction. Note that a generalized universal
covering space X̃ of X, if it exists, must be in one-to-one correspondence with
the homotopy classes of paths in X which emanate from x0. Accordingly,
there is only one way to define the set X̃: let P(X) be the set of all continuous
maps α : [0, 1]→ X such that α(0) = x0. On P(X), consider the equivalence
relation given by α ∼ β if and only if α(1) = β(1) and α is homotopic to β
within X, relative to their common endpoints. Let [α] denote the equivalence

class of α and let X̃ denote the set of all such equivalence classes.
If now p̂ : X̂ → X is a generalized universal covering and if p̂(x̂0) = x0,

then the function which assigns to a point x̂ of X̂ the homotopy class p̂#([α]),

where α is any path in X̂ from x̂0 to x̂, is a bijection from X̂ onto X̃.
Consequently, there is also no ambiguity as to what the projection function
p : X̃ → X ought to be: we define p([α]) = α(1).

Next, we need to decide on the correct topology for X̃. For each [α] ∈ X̃
and each open subset U of X containing α(1), let B([α], U) denote the set

of all [β] ∈ X̃ for which there exists a continuous map γ : [0, 1] → U such
that γ(0) = α(1), γ(1) = β(1) and [β] = [α · γ]; where α · γ denotes the

usual concatenation of the paths α and γ. Notice that B([α], X) = X̃ for all

[α] ∈ X̃ and that if [β] ∈ B([α], U), then B([β], U) = B([α], U). Moreover, if
U ⊆ V , then B([α], U) ⊆ B([α], V ). It follows that the collection of all such

sets B([α], U) forms a basis for a topology on X̃.
In the event that X is locally path-connected and semilocally simply-

connected, X̃ is the classical universal covering space of X and p : X̃ → X
is the classical universal covering of X as defined in [22] and [25]. However, as
the following lemma explains, there are two “standard” constructions, only

one of which leads to properties U1–U5. In [2] and [10, §5], for example, X̃
is equipped with the quotient topology, which it inherits from the compact-
open topology on P(X).

Lemma 2.1. The topology on X̃ generated by the basis elements B([α], U)
is, in general , finer than the quotient topology inherited from the compact-

open topology on P(X). If X is locally path-connected and semilocally simply-

connected , then the two topologies agree. However , the compact-open topol-

ogy does not , in general , render X̃ locally path-connected.

Proof. Consider P(X) in the compact-open topology and let q : P(X)→

X̃ be the quotient map. Let Ũ be a subset of X̃ which is open in the quotient
topology. Then q−1(Ũ) is open in P(X). Let [α] ∈ Ũ . Then α ∈ q−1(Ũ).
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Hence, there are compact subsets C1, . . . , Cn of [0, 1] and open subsets

U1, . . . , Un of X with α ∈ S(C1, U1) ∩ · · · ∩ S(Cn, Un) ⊆ q−1(Ũ), where
S(Ci, Ui) is the set of all continuous maps β : [0, 1] → X with β(0) = x0

and β(Ci) ⊆ Ui. Define V = X ∩
⋂
{Ui | 1 ∈ Ci}. Then α(1) ∈ V . We will

show that B([α], V ) ⊆ Ũ . To this end, let [β] ∈ B([α], V ). Then [β] = [α · γ]
for some continuous map γ : [0, 1] → V with γ(0) = α(1) and γ(1) = β(1).
Choose δ ∈ (0, 1) such that α([δ, 1]) ⊆ V and Ci ∩ [δ, 1] = ∅ whenever
1 6∈ Ci. Then we may assume that α(t) = β(t) for all t ∈ [0, δ] and
that β(t) ∈ V for all t ∈ [δ, 1]. Hence, β(Ci) = α(Ci) ⊆ Ui if 1 6∈ Ci.
If 1 ∈ Ci and t ∈ Ci, then either β(t) = α(t) ⊆ Ui (for t ≤ δ) or
β(t) ∈ V ⊆ Ui (for t ≥ δ). Therefore, β ∈ S(C1, U1) ∩ · · · ∩ S(Cn, Un)

so that [β] = q(β) ∈ q(S(C1, U1) ∩ · · · ∩ S(Cn, Un)) ⊆ Ũ .

Now assume that X is locally path-connected and semilocally simply-
connected. Let [α] ∈ X̃ and let U be an open subset of X containing α(1).
Let [β] ∈ B([α], U). As above, we may assume that there is a δ ∈ (0, 1)
such that α(t) = β(t) for all t ∈ [0, δ] and that β(t) ∈ U for all t ∈
[δ, 1]. Partition [0, δ] into {0 = t0 < t1 < · · · < tn = δ} such that each
α([tj, tj+1]) lies in some path-connected open subset Uj of X with π1(Uj)→
π1(X) trivial. Put Un+1 = U . Let Vj be the path-component of Uj−1 ∩ Uj

which contains α(tj). Then each Vj is open in X. Put W = S([t0, t1], U1) ∩
S({t1}, V1)∩S([t1, t2], U2)∩S({t2}, V2)∩S([t2, t3], U3)∩· · ·∩S({tn−1}, Vn)∩
S([tn−1, tn], Un) ∩ S({tn}, Vn) ∩ S([δ, 1], U). Then [β] ∈ q(W ) ⊆ B([α], U).
Moreover, q−1(q(W )) is open in P(X), which can be shown by a very similar
argument.

The next example shows that if X̃ is given the quotient topology inher-
ited from the compact-open topology on P(X), then X̃ might not be locally
path-connected.

Example 2.2. If X = {(x, y) ∈ R
2 | x2 + (y − 1/n)2 = (1/n)2 for some

n ∈ N} is the Hawaiian Earring with base point x0 = (0, 0) and if X̃ is
given the quotient topology inherited from the compact-open topology on
P(X), then X̃ is not locally path-connected. Indeed, if ln denotes the simple
closed loop of X of radius 1/n based at x0, then the sequence x̃n = [l1][ln][l1]
converges to x̃ = [l1][l1] in this topology, although there are no small paths
connecting x̃n and x̃.

Notation. From here on forward, we will endow X̃ with the topology
generated by the basis elements B([α], U), with [α]∈X̃ and U⊆X open, and

the projection function p : (X̃, x̃0)→ (X, x0) will be given by p([α]) = α(1),
where x̃0 denotes the equivalence class containing the constant path at x0.

Lemma 2.3. The projection p : X̃ → X is a continuous surjection; it is

open if and only if X is locally path-connected.
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Proof. The function p : X̃→X is surjective, because X is path-connected.
In order to show that p : X̃ → X is continuous, let [α] ∈ X̃ and let U be an
open subset of X with p([α]) = α(1) ∈ U . Then p(B([α], U)) ⊆ U .

Finally, observe that p(B([α], U)) equals the path-component of U which

contains α(1). Therefore, p : X̃ → X is open if and only if X is locally
path-connected.

The appropriate lifts always exist:

Lemma 2.4. Suppose that Y is path-connected and locally path-connected ,
that f : (Y, y)→ (X, x) is continuous with f#(π1(Y, y)) = 1, and that x̃ ∈ X̃

with p(x̃) = x. Then there is a continuous function g : (Y, y) → (X̃, x̃)

with p ◦ g = f . Specifically , if we write x̃ = [α], we can define g : Y → X̃
as follows: for w ∈ Y , choose any path τ : [0, 1] → Y from τ(0) = y to

τ(1) = w, and put g(w) = [α · (f ◦ τ)].

Definition. We will refer to the map g : (Y, y) → (X̃, x̃) defined in
Lemma 2.4 as the standard lift of f : (Y, y)→ (X, x) at x̃.

Proof. Notice that g is well-defined, because f#(π1(Y, y)) = 1. To verify

continuity, we let w ∈ Y , [β] ∈ X̃, and U an open set of X, containing
β(1), such that g(w) ∈ B([β], U). Say, g(w) = [γ] = [α · (f ◦ τ)] as in the
definition above. Since [γ] ∈ B([β], U), we have B([γ], U) = B([β], U). Since
f(w) = f(τ(1)) = γ(1) ∈ U , we may choose a path-connected open set V of
Y with w ∈ V such that f(V ) ⊆ U . We claim that g(V ) ⊆ B([β], U). To see
why, let v ∈ V and choose a continuous map δ : [0, 1] → V with δ(0) = w
and δ(1) = v. If we put η = α · (f ◦ τ) · (f ◦ δ), then [η] ∈ B([γ], U), so that
g(v) = [η] ∈ B([η], U) = B([γ], U) = B([β], U). The fact that g(y) = x̃ and
p ◦ g = f follows straight from the definition of g.

Lemma 2.5. The space X̃ is path-connected and locally path-connected ,
even if X is not locally path-connected. However , X̃ might not be simply-

connected.

Proof. Since B(x̃0, X) = X̃, it suffices to prove that B([α], U) is path-

connected whenever [α] ∈ X̃ and U is an open subset of X containing α(1).
To this end, let [β] ∈ B([α], U). Choose a continuous map γ : [0, 1]→ U with
γ(0) = α(1), γ(1) = β(1), and [β] = [α ·γ]. Put x̃ = [α] and x = p(x̃) = α(1).

Then the standard lift g : ([0, 1], 0) → (X̃, x̃) of γ : ([0, 1], 0) → (X, x)
is a continuous path from g(0) = [α] to g(1) = [α · γ] = [β]. Moreover,
for every t ∈ [0, 1], let τt : [0, 1] → [0, t] be defined by τt(s) = ts. Then
g(t) = [α · (γ ◦ τt)] ∈ B([α], U).

Example 2.7 shows that X̃ might not be simply-connected.
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The group of covering transformations always includes the standard

transformations, which are induced by the canonical action of π1(X, x0)

on X̃. This is true, whether or not X̃ is simply-connected:

Lemma 2.6. Let x̃1, x̃2 ∈ X̃ with p(x̃1) = p(x̃2). Then there is a homeo-

morphism g : (X̃, x̃1) → (X̃, x̃2) with p ◦ g = p. Indeed , for x̃ ∈ X̃ we may

define g(x̃) = [β ·α ·γ], where x̃1 = [α], x̃2 = [β], x̃ = [γ] and α(t) = α(1−t).

In particular , if we take x̃1 = x̃0, we see that the action of π1(X, x0) on X̃
given by [β].[γ] = [β · γ] yields an isomorphism of π1(X, x0) onto a subgroup

of Aut(X̃
p
→ X).

Proof. Continuity of g follows from the formula g(B([γ], U))=B(g([γ]),U)
and its inverse is given by g−1([γ]) = [α · β · γ]. If x̃1 = x̃0, then α can be
taken to be the constant path at x0.

Definition. We say that a map p̂ : X̂ → X has the unique path lifting

property if whenever we are given two continuous maps g1, g2 : [0, 1] → X̂
such that p̂ ◦ g1 = p̂ ◦ g2 and g1(0) = g2(0), we can conclude that g1 = g2.

Although the construction of X̃ appears to unwind every non-trivial loop
of X, the resulting space X̃ need not be simply-connected. The reason for
this is that continuous paths in X̃ might “jump between leaves”. This rather
counterintuitive phenomenon is exhibited by the following example.

Example 2.7. This example is adapted from [28]. Subdivide the interior
of an isosceles right triangle T into infinitely many squares, accumulating
along the hypotenuse, as shown in Figure 1 (left), change its embedding
into R

3 by elevating the centers of all squares to unit level as indicated and
denote the resulting “bumpy triangle” by B. Finally, let X either be the
closure of B in R

3, as in Figure 1 (right), or let X be the union of B and
the boundary of T . Then X is either compact or locally path-connected,
respectively.

Fig. 1. A space permitting different lifts of the same path

We claim that, either way, p : X̃ → X does not have the unique path
lifting property. Indeed, let f : [0, 1] → X be the path which runs along



176 H. Fischer and A. Zastrow

the hypotenuse of our triangle with unit speed from left to right. There is,
of course, the standard lift g1 : [0, 1] → X̃ given by g1(s) = [fs], where

fs(t) = f(st). However, another continuous lift g2 : [0, 1] → X̃ is given by
g2(t) = [αt], where [αt] is the unique homotopy class of a path αt which
begins at the upper left corner of our triangle, goes straight to the bottom
vertex, and then increases back up to f(t), only using the dotted boundary
lines of our squares. While p ◦ g1 = p ◦ g2 = f and g1(0) = g2(0), we have

g1(t) 6= g2(t) for all t > 0. Hence, X̃ is not simply-connected by the following
lemma.

Lemma 2.8. p : X̃ → X has the unique path lifting property if and only

if X̃ is simply-connected.

Proof. Suppose that p : X̃ → X has the unique path lifting property.
Recall that x̃0 = [δ] ∈ X̃, where δ : [0, 1] → X is given by δ(t) = x0 for all

t ∈ [0, 1], and that p(x̃0) = x0. Let h : [0, 1]→ X̃ be a continuous map with

h(0) = h(1) = x̃0. Define f = p ◦ h and let g : ([0, 1], 0) → (X̃, x̃0) be the
standard lift of f : ([0, 1], 0)→ (X, x0).

By assumption, we have g = h. In particular, [f ] = g(1) = h(1) =
h(0) = [δ]. Hence, there exists a continuous homotopy H : [0, 1]× [0, 1]→ X
which contracts f : [0, 1] → X to x0 relative to its endpoints, that is, such
that H({0, 1} × [0, 1]) = H([0, 1] × {1}) = {x0} and H(t, 0) = f(t) for all

t ∈ [0, 1]. By Lemma 2.4, there is a continuous map H̃ : [0, 1] × [0, 1] → X̃

with H̃(0, 0) = x̃0 and H = p ◦ H̃. Since the map q : [0, 1] → X̃ given

by q(t) = H̃(0, t) is such that q(0) = x̃0 and p ◦ q(t) = H(0, t) = x0 for
all t ∈ [0, 1], then q(t) = x̃0 for all t ∈ [0, 1], by the assumed uniqueness

of path lifting. Hence, H̃(0, t) = x̃0 for all t ∈ [0, 1]. Similarly, H̃(t, 1) =

H̃(1, t) = x̃0 for all t ∈ [0, 1]. Finally, h(t) = H̃(t, 0) for all t ∈ [0, 1], since

both are continuous lifts of f : [0, 1]→ X with h(0) = x̃0 = H̃(0, 0). Hence,

[h] = 1 ∈ π1(X̃, x̃0). We conclude that X̃ is simply-connected.

Now suppose that X̃ is simply-connected. Let g1, g2 : [0, 1]→ X̃ be two
continuous maps with p◦g1 = p◦g2 and g1(0) = g2(0). It will suffice to prove
that g1(1) = g2(1). Say, g1(0) = g2(0) = [α], g1(1) = [β], and g2(1) = [γ]. Let

u, v : ([0, 1], 0)→ (X̃, x̃0) be the standard lifts of β, γ : ([0, 1], 0)→ (X, x0),
respectively. Then u(1) = [β] = g1(1) and v(1) = [γ] = g2(1). If we define

gi(t) = gi(1−t), then [u·g1] = [v ·g2], since X̃ is simply-connected. Applying
p# to both sides of the previous equation, we get [β · f ] = [γ · f ] (where f =
p ◦ g1 = p ◦ g2), so that [β] = [γ]. Consequently, g1(1) = [β] = [γ] = g2(1).

Next, we address metrizability issues.

Definition 2.9. We call X homotopically Hausdorff at the point x ∈ X
if for every g ∈ π1(X, x)\{1} there is an open subset U ⊆ X with x ∈ U such
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that there is no loop δ : (S1, ∗)→ (U, x) with [δ] = g. If X is homotopically
Hausdorff at every one of its points, then X is said to be homotopically

Hausdorff.

This useful notion, which we have just defined, already appears in [28]
and [3]. We have adopted the terminology from [5], which is motivated by
the following lemma.

Lemma 2.10. Suppose X is Hausdorff. Then X̃ is Hausdorff if and only

if X is homotopically Hausdorff.

Proof. Suppose X is homotopically Hausdorff. Let [α], [β] ∈ X̃ with
[α] 6= [β]. We wish to find open subsets U, V ⊆ X such that [α] ∈ B([α], U),
[β] ∈ B([β], V ) and B([α], U) ∩ B([β], V ) = ∅. If α(1) 6= β(1), it clearly
suffices to take U and V such that α(1) ∈ U , β(1) ∈ V and U ∩ V = ∅. If
α(1) = β(1), then [α ·β] ∈ π1(X, α(1))\{1}, so that we can take U = V with
α(1) ∈ U such that there is no loop δ : (S1, ∗)→ (U, α(1)) with [δ] = [α · β].
This implies that [β] 6∈ B([α], U) so that B([β], U) ∩ B([α], U) = ∅. We

conclude that X̃ is Hausdorff.
Conversely, if X is not homotopically Hausdorff, then the proof of Lem-

ma 2.11 below shows how to find distinct elements x̃1 and x̃2 of X̃ which do
not have disjoint neighborhoods.

The property of being homotopically Hausdorff is a necessary condition
in our quest for a generalized universal covering:

Lemma 2.11. If p : X̃ → X has the unique path lifting property , then X
is homotopically Hausdorff.

Proof. Suppose, to the contrary, that there is an x ∈ X and a [γ] ∈
π1(X, x) \ {1} such that for every open subset U ⊆ X with x ∈ U , there is
a continuous map γ′ : [0, 1]→ U such that γ′(0) = γ′(1) = x and [γ] = [γ′].

Choose [α] ∈ X̃ with p([α]) = x. Put x̃1 = [α] and x̃2 = [α · γ]. Then
p(x̃1) = p(x̃2) = x and x̃1 6= x̃2. Let U be an open subset of X with x ∈ U .
Choose γ′ : [0, 1] → U such that γ′(0) = γ′(1) = x and [γ′] = [γ]. Then
x̃2 = [α · γ] = [α · γ′] ∈ B([α], U) and x̃1 = [α] = [α · γ′ · γ′] ∈ B([α · γ′], U).

That is, x̃1 ∈ B(x̃2, U) and x̃2 ∈ B(x̃1, U). Hence any function g : [0, 1]→ X̃
with g(t) ∈ {x̃1, x̃2} will be continuous and such that p ◦ g(t) = x for all

t ∈ [0, 1]. This contradicts the unique path lifting property of p : X̃ → X.

Lemma 2.12. Suppose X is metrizable. Then X̃ is metrizable if and

only if X is homotopically Hausdorff ; in which case there is a metric d̃ on

X̃, inducing the given topology , with respect to which the natural action of

π1(X, x0) on X̃ is by isometry.

Proof. Suppose (X, d) is a metric space and homotopically Hausdorff.

Following [3], for [α], [β] ∈ X̃, we declare d̃([α], [β]) to be the greatest lower
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bound of the set {diam γ([0, 1]) | γ : [0, 1] → X continuous, [γ] = [α · β]}.
Symmetry is built into this formula and the triangle inequality is verified
easily. In order to show that d̃ defines a metric on X̃, we suppose that
d̃([α], [β]) = 0 for some [α], [β] ∈ X̃. This forces d(α(1), β(1)) = 0 so that
α(1) = β(1). Put x = α(1). Let any ε > 0 be given and consider N(x, ε) =

{y ∈ X | d(x, y) < ε}. Since d̃([α], [β]) < ε, there is a loop γ : (S1, ∗) →
(N(x, ε), x) with [γ] = [α · β]. Since X is homotopically Hausdorff at x, we
conclude that [α · β] = 1, that is, [α] = [β].

The fact that d̃ induces the correct topology on X̃ follows from the
inclusions

Ñ([α], ε) ⊆ B([α], N(α(1), ε)) ⊆ Ñ([α], 2ε),

where Ñ([α], ε) = {[β] ∈ X̃ | d̃([α], [β]) < ε}. Finally, since the natural

action of π1(X, x0) on X̃ is given by [η].[α] = [η · α], the very definition of

d̃ implies that d̃([η].[α], [η].[β]) = d̃([α], [β]) for all [α], [β] ∈ X̃ and [η] ∈
π1(X, x0).

Remark 2.13 (The uniqueness of lifts). Suppose a map p̂ : X̂ → X
has the unique path lifting property. Let Y be any path-connected space,

f : (Y, y)→ (X, x) any continuous map, and x̂ ∈ X̂ with p̂(x̂) = x. If there

exists a continuous map g : (Y, y) → (X̂, x̂) such that p̂ ◦ g = f , then it is
unique.

We summarize all of these observations in the following proposition.

Proposition 2.14. Suppose p : X̃ → X has the unique path lifting

property. Then

(a) The map p : X̃ → X satisfies Properties U1, U2, U3 and U4.

(b) If X is locally path-connected , then p : X̃ → X also satisfies U5.

(c) If X is Hausdorff or metrizable, then so is X̃ (with π1(X, x0) acting

by isometry).

3. The first shape homotopy group. We briefly recall the definition
of the first shape homotopy group π̌1(X, x0) of X at x0 from [21]. For every
open cover U of X, designate one element ∗ ∈ U with x0 ∈ ∗. Let C be the
collection of all pointed normal covers (U , ∗) of X. (Recall that a normal

cover U of X is an open cover of X which admits a partition of unity sub-
ordinated to U . This partition of unity can always be chosen to be locally
finite.) Then C is naturally directed by refinement. Denote by (N(U), ∗) a
geometric realization of the pointed nerve of U , that is, a geometric real-
ization of the abstract simplicial complex {∆ | ∅ 6= ∆ ⊆ U ,

⋂
U∈∆ U 6= ∅}

with distinguished vertex ∗. For every (U , ∗), (V, ∗) ∈ C such that (V, ∗) re-
fines (U , ∗), choose a pointed simplicial map pUV : (N(V), ∗) → (N(U), ∗)
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with the property that the vertex corresponding to an element V ∈ V gets
mapped to a vertex corresponding to an element U ∈ U with V ⊆ U . (Any
assignment on the vertices which is induced by the refinement property will
extend linearly.) Then pUV is unique up to pointed homotopy and we de-
note its pointed homotopy class by [pUV ]. For each (U , ∗) ∈ C choose a
pointed map pU : (X, x0) → (N(U), ∗) such that p−1

U
(St(U, N(U))) ⊆ U for

all U ∈ U , where St(U, N(U)) denotes the open star of the vertex of N(U)
which corresponds to U . (For example, define pU based on a locally finite
partition of unity subordinated to U .) Again, such a map pU is unique up to
pointed homotopy and we denote its pointed homotopy class by [pU ]. Then
[pUV ◦ pV ] = [pU ]. The so-called (pointed) Čech expansion

(X, x0)
([pU ])
−→ ((N(U), ∗), [pUV ], C)

is an HPol∗-expansion, so that we can define the first shape homotopy group

of X, based at x0, by

π̌1(X, x0) = lim←− (π1(N(U), ∗), pUV#, C).

Since the maps pU induce homomorphisms pU# : π1(X, x0)→π1(N(U), ∗)
such that pU# = pUV# ◦ pV# whenever (V, ∗) refines (U , ∗), we obtain an
induced homomorphism

ϕ : π1(X, x0)→ π̌1(X, x0)

given by ϕ([α]) = ([αU ]) where αU = pU ◦ α.

4. Existence of generalized universal coverings. In search of crite-
ria which would guarantee the existence of a generalized universal covering,
we take our clues from the following theorem.

Theorem 4.1. Suppose X is paracompact Hausdorff. If X is locally

path-connected and semilocally simply-connected , then ϕ : π1(X, x0) →
π̌1(X, x0) is an isomorphism. If , in addition, X is second countable, then

π1(X, x0) is countable.

Remark. For a proof of the first assertion of Theorem 4.1 in the com-
pact metric case or in the locally simply-connected case see [18] or [17],
respectively. The second assertion is well known, but it also follows from
our proof below.

Proof. Since X is assumed to be paracompact Hausdorff, every open
cover of X is normal. It therefore suffices to show that every open cover
U of X is refined by an open cover V of X such that pV# : π1(X, x0) →
π1(N(V), ∗) is an isomorphism.

Let U be any open cover of X. As X is locally path-connected and semi-
locally simply-connected, there is a cover W of X by open path-connected
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sets which refines U and is such that for every W ∈ W , π1(W ) → π1(X)
is trivial. Since W is a normal cover of X, there is an open cover W ′ of X
which star-refines W [1, Definition 1.14 and Theorem 10.10]. That is, for
every W ′

1 ∈ W
′ there is a W ∈ W such that for every W ′

2 ∈ W
′ with

W ′
1 ∩W ′

2 6= ∅ we have W ′
2 ⊆ W . Since X is locally path-connected, there

is a cover V of X by path-connected open sets which refines W ′. (If X
is second countable, we can take V to be countable.) We conclude that V
is a cover of X by open path-connected sets such that every loop which
lies in the union of any two elements of V is contractible in X. Therefore,
pV# : π1(X, x0)→ π1(N(V), ∗) is an isomorphism [4, pp. 269–271]. Since V
refines U , the theorem follows.

Remark 4.2. Even if X is locally path-connected and ϕ : π1(X, x0) →
π̌1(X, x0) is an isomorphism, X need not be semilocally simply-connected
at any one of its points. Such is the case with the countable product X =
X1 ×X2 × · · · of circles Xi = S1. (Notice that the inverse sequence X1 ←
X1×X2 ← X1×X2×X3 ← · · · of compact ANR’s and bonding maps which
“forget” the last coordinate has limit X. It therefore yields an alternative
HPol∗ expansion for X [21, Ch. I, §5]. Consequently, ϕ : π1(X, ∗)→ π̌1(X, ∗)
reduces to the standard isomorphism between π1(

∏
i Xi, ∗) and

∏
i π1(Xi, ∗).

It also follows from this isomorphism that, for any open intervals Ii of Xi,
the inclusions I1 × · · · × Ii ×Xi+1 ×Xi+2 × · · · →֒ X do not induce trivial
maps on π1. Hence X is not semilocally simply-connected at any point.)

However, if pU# : π1(X, x0) → π1(N(U), ∗) is an isomorphism for some
normal open cover U of X, then X is semilocally simply-connected (cf. proof
of Proposition 4.8).

Spaces with countable fundamental group. Recall that a necessary con-
dition for p : X̃ → X to have the unique path lifting property is that X
be homotopically Hausdorff. In the case of a countable fundamental group,
this condition is also sufficient:

Proposition 4.3. If X is homotopically Hausdorff and π1(X, x0) is

countable, then p : X̃ → X has the unique path lifting property.

Proof. Let g1, g2 : [0, 1] → X̃ be continuous with p ◦ g1 = p ◦ g2. For
every t ∈ [0, 1], let αt, βt : ([0, 1], 0) → (X, x0) be continuous maps with
g1(t) = [αt] and g2(t) = [βt].

We claim that the function f : [0, 1]→ π1(X, x0) given by f(t) = [αt ·βt]
is continuous provided π1(X, x0) is given the finite complement topology.

First observe that αt(1) = p([αt]) = p◦ g1(t) = p◦ g2(t) = p([βt]) = βt(1) for
all t ∈ [0, 1], so that f is well defined. Now, let s ∈ [0, 1] and let a finite subset
K ⊆ π1(X, x0) be given with f(s) ∈ π1(X, x0)\K. Put x = αs(1). Define an
isomorphism ̺ : π1(X, x0) → π1(X, x) by the formula ̺([γ]) = [αs · γ · αs].
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Since X is homotopically Hausdorff at x and since K is finite, we may choose
an open subset U of X such that there is no loop η : (S1, ∗) → (U, x) with
[η] = ̺(kf(s)−1) and k ∈ K. By continuity of g1 and g2, we may choose
a δ > 0 such that [αt] ∈ B([αs], U) and [βt] ∈ B([βs], U) for all t ∈ [0, 1]
with |s− t| < δ. Now let t ∈ [0, 1] with |s− t| < δ. Then [αt] = [αs · τ ] and
[βt] = [βs · σ] for some continuous maps τ, σ : [0, 1] → U . So, η = τ · σ is a
loop in U based at x with [η] = [τ · σ] = [αs · αt · βt · βs] = ̺(f(t)f(s)−1).
Therefore, f(t) ∈ π1(X, x0) \K. This proves the claim.

Since the finite complement topology satisfies the T1-axiom, in order to
finish the proof, it suffices to show that every path-component of a countable
T1-space is a singleton. Suppose, to the contrary, that there is a non-constant

continuous function f : [0, 1] → N into the natural numbers N, endowed
with some T1-topology. For each n ∈ N, define An = f−1({n}). Since N is
a T1-space and f is continuous, {An | n ∈ N} is a countable collection of
pairwise disjoint closed subsets of [0, 1], at least two of which are non-empty,
with the property that [0, 1] =

⋃
n∈N

An. It is an elementary fact of point-set
topology that this is impossible.

Combining Proposition 4.3 with Proposition 2.14, we obtain

Theorem 4.4. Suppose X is homotopically Hausdorff and π1(X, x0) is

countable. Then p : X̃ → X is a generalized universal covering. If X is also

locally path-connected , then p : X̃ → X is an open map. If X is Hausdorff ,
then so is X̃.

Remark 4.5. If X is first countable, locally path-connected, homotopi-
cally Hausdorff and π1(X, x0) countable, then p : X̃ → X is actually a
(classical) universal covering. This follows from Proposition 4.6 below, whose
proof can be found in [6]. We include the short proof as a warm-up for its
generalization, Proposition 6.6.

Proposition 4.6. Suppose that X has a countable basis at x0, that X
is homotopically Hausdorff at x0, and that X is not semilocally simply-

connected at x0. Then the cardinality of π1(X, x0) is at least that of the

continuum.

Proof. As X is not semilocally simply-connected at x0 but homotopically
Hausdorff at x0, we can inductively find a countable basis U1 ⊇ U2 ⊇ · · ·
for the topology of X at x0 and continuous maps αi : [0, 1] → Ui such
that αi(0) = αi(1) = x0 with the following properties: [αi] 6= 1 ∈ π1(X, x0)
and [αi] 6= [β] ∈ π1(X, x0) for all continuous maps β : [0, 1] → Ui+1 with
β(0) = β(1) = x0. For each increasing sequence i1 < i2 < · · · of natural
numbers we can now define a continuous loop α : [0, 1]→ X by the formula
α(t) = αik(2−2k(1−t)) when 1−1/2k−1 ≤ t ≤ 1−1/2k and α(1) = x0. Then
distinct sequences i1 < i2 < · · · and i′1 < i′2 < · · · yield distinct elements
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[α] and [α′] of π1(X, x0), respectively. To see why, assume, without loss of
generality, that the sequences disagree already in the first entry and that
i1 < i′1. Then both [αi1 ]

−1[α] and [α′] can be represented by loops in Ui1+1,
but [αi1 ] cannot. Hence [α] 6= [α′] and the proposition is proved.

Fundamental groups of arbitrary cardinality. We now shift our attention
to fundamental groups of arbitrary cardinality.

Definition. For an open cover U of X let π(U , x0) be the subgroup of
π1(X, x0) which is generated by all elements of the form [α · τ ·α], where τ :

[0, 1]→ U is any loop in some U ∈ U and [α] ∈ X̃ with α(1) = τ(0) = τ(1).

Remark. The above definition of π(U , x0) follows [25]. Observe that
each π(U , x0) is a normal subgroup of π1(X, x0) and that π(V, x0) ≤ π(U , x0)
whenever V is an open cover of X which refines U . If π(U , x0) = 1 for some
open cover U of X, then X is semilocally simply-connected; the converse
holds for locally path-connected X, but not in general (cf. Remark 4.9).

Proposition 4.7. If
⋂

U∈C
π(U , x0) = 1 for some collection C of open

covers of X, then p : X̃ → X has the unique path lifting property.

Proof. We refer the reader to the proof of Proposition 6.7 below, which
establishes a more general result. The proof of Proposition 6.7 is easily
adapted to a proof of Proposition 4.7 and can be read at this point, upon
the following substitutions: replace H by {1} (so that [δ1] = [δ2] = 1),

replace X̃/H by X̃, replace H[α] by [α] when [α] ∈ X̃, and replace HB by

B when B ⊆ X̃.

Proposition 4.8. If U ranges over all open covers of X, then
⋂

U
π(U,x0)

is contained in the kernel of ϕ : π1(X, x0)→ π̌1(X, x0).

Proof. Let [α] ∈
⋂

U
π(U , x0). Let U be a normal cover of X. As in Sec-

tion 3, choose a map pU : (X, x0)→ (N(U), ∗) such that p−1
U

(St(U, N(U))) ⊆

U for all U ∈ U . Then the collection V = {p−1
U

(St(U, N(U))) | U ∈ U} is
an open cover of X which refines U . By assumption, [α] ∈ π(V, x0). There-
fore, we can write [α] = [α1τ1α1] · · · [αnτnαn] with loops τi : [0, 1] → Vi in

some Vi = p−1
U

(St(Ui, N(U))) ∈ V and [αi] ∈ X̃ with αi(1) = τi(0) = τi(1).
Since pU ◦ τi is a loop in the open star of the vertex of N(U) which corre-
sponds to Ui, it can be homotoped to that vertex, for each i. Consequently,
pU#([α]) = pU#([α1τ1α1] · · · [αnτnαn]) = pU#([α1α1] · · · [αnαn]) = 1.

Remark 4.9. We now present two examples, demonstrating that

(i)
⋂

U
π(U , x0) need not equal the kernel of ϕ : π1(X, x0)→ π̌1(X, x0);

(ii) X might be semilocally simply-connected while
⋂

U
π(U , x0) 6= 1.
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Following [7], first consider

Y =

{
(x, y, z) ∈ R

3

∣∣∣∣ z = 0, 0 ≤ x < 1, y = sin

(
1

1− x

)}

∪ ({1} × [−1, 1]× {0}).

Let Z be the subset of R
3 obtained by revolving Y about the y-axis, with

base point x0 = (0, sin 1, 0). Choose any arc a in R
3 with Z ∩ a = ∂a =

{x0, (1, 1, 0)} and put X = Z ∪ a. Clearly, for sufficiently small ε > 0, any
cover U of X by open metric balls of radius ε will have the property that
π(U , x0) = 1. Therefore,

⋂
U

π(U , x0) = 1.
The above example is an “inside-out” version of [11, Example 2.4], where

the role of Y is played by the union of the curve 0 < x ≤ 1, y = sin 1/x with
{0} × [−1, 1] × {0} and a similar arc a connects the two path-components.
In each version of this example, both π1(X, x0) and π̌1(X, x0) are infinite
cyclic, while the kernel of the homomorphism ϕ : π1(X, x0) → π̌1(X, x0)
equals π1(X, x0). Both examples are semilocally simply-connected. However,
in the original example from [11], we have π(U , x0) = π1(X, x0) for every
open cover U of X, because the loop generating π1(X, x0) can be homotoped
(freely) arbitrarily closely to the origin.

We have arrived at the main theorem of this article:

Theorem 4.10. Suppose ϕ : π1(X, x0)→ π̌1(X, x0) is injective. Then

(a) The map p : X̃ → X is a generalized universal covering.

(b) The group G = Aut(X̃
p
→ X) of covering transformations is iso-

morphic to π1(X, x0) and acts freely and transitively on every fiber

p−1({x}) with x ∈ X.

(c) If X is locally path-connected , then p : X̃ → X is an open map and

X̃/G ≈ X.

(d) If X is Hausdorff or metrizable, then so is X̃.

(e) If X is metrizable, then there is a metric for X̃ such that G acts by

isometry.

Proof. This follows from Propositions 4.8, 4.7 and 2.14.

Example 4.11 (Manifolds and CW-complexes). If X is locally path-
connected and semilocally simply-connected, then X has a classical simply
connected covering. Since this classical universal covering satisfies Properties
U1–U3, it agrees with the generalized universal covering (see Section 1.1).
For example, if X is a manifold or a CW-complex, Theorem 4.10, whose
assumption is satisfied by Theorem 4.1, reduces to the classical theory.

Example 4.12 (The countably infinite product of circles). From Re-
mark 4.2 we know that the countably infinite product of circles X = S1 ×
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S1× · · · does not have a classical universal covering, although ϕ : π1(X, x0)
→ π̌1(X, x0) is an isomorphism. However, by Theorem 4.10, there is a metriz-

able generalized universal covering p : X̃ → X whose group of covering
transformations is isomorphic to π1(X, x0) and which acts by isometry with
quotient X. This generalized universal covering is easily identified as the
product p = (pi)i of the classical universal coverings pi : R → S1, because
(pi)i :

∏
i R→

∏
i S1 clearly satisfies Properties U1–U3.

Example 4.13 (Subsets of closed surfaces). It is proved in [12] that if X
is any subset of a closed surface, then ϕ : π1(X, x0)→ π̌1(X, x0) is injective.

Remark (Topological R-trees). The classical universal covering of a
(connected) 1-dimensional simplicial complex is by a tree. Below, we will
generalize this situation. The natural generalization of a tree is an R-tree,
that is, a metric space in which every pair of points is connected by a unique
arc and that arc is the image of an isometric embedding of a closed interval
of the real line.

In what follows, we are mainly interested in the topological properties
of R-trees, namely that they are uniquely arcwise connected, locally arcwise
connected, metrizable, 1-dimensional and contractible. For reasons that will
become apparent in Example 4.15, we often wish to de-emphasize the specific
metric of the R-tree.

Recall that every uniquely arcwise connected and locally arcwise con-
nected metrizable space admits a compatible metric which makes it an R-
tree [24, Theorem 5.1]. We will therefore call a uniquely arcwise connected
and locally arcwise connected metrizable space a topological R-tree.

Example 4.14 (1-dimensional path-connected separable metric spaces
are covered by topological R-trees). If X is 1-dimensional, compact and
Hausdorff, or if X is 1-dimensional, separable and metrizable, then ϕ :
π1(X, x0) → π̌1(X, x0) is injective by [9, Corollary 1.2 and Final Remark],

so that we have a generalized universal covering p : X̃ → X by Theorem 4.10.
We claim that, in either case, X̃ is uniquely arcwise connected.

Since X̃ is path-connected and Hausdorff, it is arcwise connected. Sup-
pose, to the contrary, that X̃ is not uniquely arcwise connected. Then X̃
contains a simple closed curve α̃ : S1 → X̃ which contracts in X̃ by some
map f̃ : B2 → X̃ such that f̃ ◦ i = α̃, where i : S1 →֒ B2 denotes inclusion.
Consider the projections α = p ◦ α̃ : S1 → X and f = p ◦ f̃ : B2 → X. Since
f(B2) is a 1-dimensional compact metric space, the map f : B2 → X factors
through a dendrite, i.e. it factors through a compact, path-connected and
locally path-connected metric space D which does not contain any simple
closed curve (see [8] or [5, Theorem 3.7]). Specifically, we have f = g ◦ h
with maps h : B2 → D and g : D → X. Considering the loop h◦ i : S1 → D,
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there must be x, y ∈ S1 and d ∈ D such that h ◦ i(x) = d = h ◦ i(y).

Since dendrites are contractible, there is a lift g̃ : (D, d) → (X̃, α̃(x)) of
g : (D, d)→ (X, α(x)) with p◦ g̃ = g. Then p◦ g̃ ◦h◦ i = g ◦h◦ i = f ◦ i = α,

so that g̃ ◦h◦ i : (S1, x)→ (X̃, α̃(x)) is another lift of α, and hence equals α̃.
Thus, α̃(x) = g̃ ◦ h ◦ i(x) = g̃(d) = g̃ ◦ h ◦ i(y) = α̃(y), contradicting the fact
that α̃ is a simple closed curve.

If X is 1-dimensional, separable and metrizable, it follows that X̃ is a
topological R-tree. Note that the group of covering transformations π1(X, x0)

≈ Aut(X̃
p
→ X) acts on X̃ by homeomorphism and that, by Theorem 4.10,

we can metrize X̃ so that this action is by isometry. However, as the next
example shows, it might happen that no R-tree metric of X̃ allows for an
action by isometry.

Example 4.15 (The Hawaiian Earring). By the above, Theorem 4.10

applies to the Hawaiian Earring (X, x0) of Example 2.2. However, p : X̃ →
X is not a classical covering. Indeed, it is not even a Hurewicz fibration,
since it does not have the homotopy lifting property with respect to every
space: if Y = p−1({x0}) ⊆ X̃ is the fiber over the origin and α is a simple
closed curve around any one of the loops of X based at x0, then the partial

lift g : Y × {0} → X̃ given by g(y, 0) = y of F : Y × I → X given
by F (y, t) = α(t) cannot be extended to a full lift. (Otherwise, for every

0 < t < 1, the map h : Y → X̃ given by h(y) = g(y, t) would map the
non-discrete fiber Y homeomorphically onto the discrete fiber p−1({α(t)}).)

While X̃ is not a CW-complex, it is, by construction, the union of (un-
countably many) open arcs and the set Y of “branch points”, which cor-

responds bijectively to π1(X, x0). However, the action of Aut(X̃
p
→ X) on

the R-tree X̃, when metrized by an R-tree metric, cannot possibly be by
isometry. For if ln : ([0, 1], 0) → (X, x0) is the simple closed loop given by

ln(t) =
(

1
n

sin(2πt), 1
n
− 1

n
cos(2πt)

)
, then every lift l̃n : ([0, 1], 0) → (X̃, x̃)

of ln with p(x̃) = x0 can be translated to any other such lift by an element

of Aut(X̃
p
→ X). If all such lifts had the same length, we would be able to

construct an arc l̃∞ in X̃ of infinite length by lifting the continuous function
l∞ : ([0, 1], 0) → (X, x0) which iteratively traverses each ln a sufficiently
large number of times, i.e., l∞ = (l1)

i1(l2)
i2 · · · . Since the length of an arc

in an R-tree equals the distance between its endpoints, this is not possible.

As indicated in [27, Remark 3.8], it is possible to give an explicit combi-

natorial description of X̃ and of the action of π1(X, x0) on X̃. In [26, The-
orem 1.12], the group π1(X, x0) is described in terms of sequences of words
in the letters l±1

1 , l±1
2 , . . . [26, Definition 1.1], along with a set of rules for

how to multiply these “word sequences”, i.e., how to concatenate and cancel
appropriately [26, Definition 1.11]. (This group should not be mistaken for
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the inverse limit of free groups [27, Definition 2.2], as was erroneously done

in [2, §8].) By construction, an element x̃ of X̃ can then be thought of as a
triple (ω, l±1

n , t), which indicates that x̃ lies over the point l±1
n (t) of the loop

ln : [0, 1]→ X on the leaf corresponding to the word sequence ω, where for
the branch points we use t = 0 but no specific second coordinate. In order to
uniquely parametrize X̃, only consider reduced triples (ω, lεi , t), where ω does
not have a “last letter” l−ε

i , and identify each terminal point (ω, lεi , 1) with
every initial point of the form (ω · lεi , l

δ
j , 0), for all permitted second coordi-

nates. Then p : X̃ → X is given by p(ω, lεn, t) =
(

ε
n

sin(2πt), 1
n
− 1

n
cos(2πt)

)

and the action of π1(X, x0) on X̃ is given by η.(ω, lεn, t) = (η ·ω · lεn, l−ε
n , 1− t)

if the product of the word sequences η and ω has a last letter l−ε
n , and

η.(ω, lεn, t) = (η · ω, lεn, t) otherwise.

Example 4.16 (Trees of manifolds). If X is the limit of an inverse
system of closed PL-manifolds of some fixed dimension, whose consecutive
terms are obtained by connect summing with closed PL-manifolds, which
in turn are trivialized by the bonding maps, then X is called a tree of

manifolds. For example, the Pontryagin surface Π2 is a tree of manifolds,
namely a tree of real projective planes. Every tree of manifolds is path-
connected and locally path-connected, but it need not be semilocally simply-
connected at any one of its points. Trees of manifolds arise as boundaries
of certain Coxeter groups and as boundaries of certain negatively curved
geodesic spaces [11]. It is shown in [11] that if X is a tree of manifolds,
then ϕ : π1(X, x0) → π̌1(X, x0) is injective, provided the attachments are
sufficiently dense in the case of surfaces (which they are for Π2).

Remark 4.17 (The non-locally path-connected case). For a non-locally

path-connected space X, the quotient space X̃/G of X̃ by the automor-

phism group G = Aut(X̃
p
→ X) is homeomorphic to its natural “local

path-connectification”: the smallest topology on X which contains the given
topology and is locally path-connected, that is, the topology which is gen-
erated by all path-components of all open subsets of X. For example, if X
is the suspension of {1, 1/2, 1/3, . . .}∪{0} ⊆ R, then X̃/G is homeomorphic
to the suspension of a discrete countable space.

5. First countable spaces. If X is first countable, then Property U3

(as well as Property R3 of Section 6) reduces to the unique lifting of paths
and their homotopies:

Proposition 5.1. Let X̂ be any topological space and p̂ : X̂ → X any

continuous function. Suppose p̂ : X̂ → X has the homotopy lifting property

with respect to points as well as [0, 1] and that p̂ : X̂ → X has the unique
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path lifting property. If X is first countable, then p̂ : X̂ → X satisfies the

following general lifting property :
For every path-connected and locally path-connected space Y , every con-

tinuous map f : (Y, y) → (X, x) and every x̂ ∈ X̂ with p̂(x̂) = x, there is

a unique continuous function g : (Y, y) → (X̂, x̂) with p̂ ◦ g = f , provided

f#(π1(Y, y)) ≤ p̂#(π1(X̂, x̂)).

Remark. Note that every Hurewicz fibration p̂ : X̂ → X which has the
unique path lifting property automatically satisfies this lifting property [25,
Theorem 2.4.5].

Proof. Let Y be path-connected and locally path-connected, f : (Y, y)→

(X, x) a continuous map with f#(π1(Y, y)) ≤ p̂#(π1(X̂, x̂)), and let x̂ ∈ X̂
be such that p̂(x̂) = x. By Remark 2.13, we only have to prove the existence
of g.

We define a function g : Y → X̂ as follows: for w ∈ Y choose any path
α : [0, 1]→ Y with α(0) = y and α(1) = w. Let β : [0, 1]→ X̂ be the unique
continuous map with f ◦ α = p̂ ◦ β and β(0) = x̂. Define g(w) = β(1).

Since f#(π1(Y, y)) ≤ p̂#(π1(X̂, x̂)), the assumed lifting properties of p̂ :

X̂ → X imply that the definition of g does not depend on the choice of α.
By definition, f(w) = f(α(1)) = p̂(β(1)) = p̂(g(w)) for all w ∈ Y , so that
f = p̂ ◦ g.

In order to show that g : Y → X̂ is continuous, let w ∈ Y and an open
subset V ⊆ X̂ with g(w) ∈ V be given. Let U1 ⊇ U2 ⊇ · · · be a count-
able basis for the topology of X at f(w). By continuity of f : Y → X,
for each i, there is an open subset Wi ⊆ Y with w ∈ Wi and f(Wi) ⊆ Ui.
By assumption, we may choose each Wi path-connected. It suffices to prove
that g(Wi) ⊆ V for some i. Suppose, to the contrary, that for every i there
is a wi ∈Wi with g(wi) 6∈ V . For each i, choose a continuous path αi : [0, 1]

→Wi with αi(0) = w and αi(1) = wi. Let βi : [0, 1]→ X̂ be the unique con-
tinuous map with f ◦ αi = p̂ ◦ βi and βi(0) = g(w). Then βi(1) = g(wi) 6∈ V

for every i, by definition of g : Y → X̂. Define a function α : [0, 1] → Y
(not necessarily continuous at 1) which runs through α1 in 1/3 of the time
and then traverses α1 in reverse in 1/3 of the time, then runs through α2

in 1/9 of the time and then traverses α2 in reverse in 1/9 of the time, etc.
Specifically, for 1 − 3/3i ≤ t ≤ 1 − 2/3i put α(t) = αi(3

i(t − 1) + 3); for
1 − 2/3i ≤ t ≤ 1 − 1/3i put α(t) = αi(3

i(1 − t) − 1); and put α(1) = w.
Since f ◦ α([1 − 3/3i, 1 − 1/3i]) = f ◦ αi([0, 1]) ⊆ f(Wi) ⊆ Ui, we see that

f ◦α : [0, 1]→ X is continuous. Let β : [0, 1]→ X̂ be the unique continuous
map with f ◦α = p̂ ◦ β and β(0) = g(w) ∈ V . By uniqueness of path lifting,
we have β(1 − 2/3i) = βi(1) = g(wi) 6∈ V for all i. This contradicts the

continuity of β : [0, 1]→ X̂ at 1.
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Remark 5.2. It follows from the next proposition that, for locally path-
connected and first countable X, Properties U1–U3 imply Property U5.

Proposition 5.3. Let X̂ be any topological space and p̂ : X̂ → X any

continuous function. Suppose p̂ : X̂ → X has the homotopy lifting property

with respect to points. If X is locally path-connected and first countable, then

p̂ : X̂ → X is open.

Proof. Let U be an open subset of X̂ and put V = p̂(U). In order to
show that V is open in X, we let x ∈ V and choose a countable basis
U1 ⊇ U2 ⊇ · · · for the topology of X at x consisting of path-connected open
sets. Choose x̂ ∈ U with p̂(x̂) = x. It suffices to show that there is an i with
Ui ⊆ V . Suppose, to the contrary, that for each i there is a ui ∈ Ui \ V .
For each i, choose a continuous path αi : [0, 1] → Ui with αi(0) = ui+1

and αi(1) = ui. Define a function α : [0, 1] → X by α(t) = αi(2
it − 1) for

1/2i ≤ t ≤ 1/2i−1 and put α(0) = x. Since α([1/2i, 1/2i−1]) ⊆ Ui for all i,
α : [0, 1] → X is continuous. By assumption, there is a continuous map

β : [0, 1]→ X̂ such that α = p̂ ◦ β and β(0) = x̂ ∈ U . Then p̂(β(1/2i−1)) =
α(1/2i−1) = ui 6∈ V so that β(1/2i−1) 6∈ U for all i. This contradicts the
continuity of β at 0.

Remark 5.4. We cannot drop the assumption of first countability in
Proposition 5.3. For example, let X be a wedge of uncountably many circles
joined at the common point x0, with the CW-topology, and let p : X̃ → X
be its (classical) universal covering. Let X ′ be the same point-set as X
but with slightly coarser topology: eliminate all those open subsets U ⊆ X
from the topology which contain x0 but miss points from uncountably many

circles. Then p : X̃ → X ′ is still continuous. Observe that every sequentially
compact subset of X ′ is contained in the union of finitely many circles.
Consequently, a function f : [0, 1]n → X ′ is continuous if and only if f :
[0, 1]n → X is continuous. It follows that X ′ is still locally path-connected

and that p : X̃ → X ′ is still a Serre fibration with the unique path lifting
property. However, p : X̃ → X ′ is no longer an open map: while p : X̃ → X
is a local homeomorphism, the new map p : X̃ → X ′ fails to map many
elements of the local neighborhood system of a point in p−1({x0}) to open
subsets of X ′.

6. Generalized regular coverings. By Lemma 2.6, every subgroup

H ≤ π1(X, x0) is a subgroup of the automorphism group of X̃
p
→ X, where

its natural action is given by [α].[β] = [α·β] for [α] ∈ H and [β] ∈ X̃. We will

denote by X̃/H the quotient space of X̃ by the action of H, and use again the

notation X̃/H
p
→ X for the continuous endpoint projection (which is a quo-

tient map if and only if the endpoint projection X̃ → X is a quotient map).
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For x̃ ∈ X̃, we will also use the notation Hx̃ = {ỹ ∈ X̃ | ỹ = h.x̃ for some

h ∈ H} ∈ X̃/H. Moreover, for B ⊆ X̃, we will write HB = {Hx̃ | x̃ ∈ B}

⊆ X̃/H.

Since a basis for the topology of X̃ is given by {B([α], U) | [α] ∈ X̃, U ⊆

X open}, the collection {HB([α], U) | [α] ∈ X̃, U ⊆ X open} forms a basis

for the quotient space X̃/H. We also note that if H[β] ∈ HB([α], U), then
HB([β], U) = HB([α], U).

Recall that, regarding the map p : X̃/H → X, we have the following
classical theorem [25, Theorem 2.5.13].

Theorem 6.1. Suppose X is locally path-connected. Let U be any open

cover of X. If π(U , x0) ≤ H ≤ π1(X, x0), then p : X̃/H → X is a (classical)
covering space.

The general situation is more complicated, as the next example illus-
trates.

Example 6.2. Let X be the Hawaiian Earring and let H be the (free)
subgroup of π1(X, x0) which is generated by {[ln] | n ∈ N}, where ln is the

simple closed loop of X of radius 1/n based at x0. Then p : X̃/H → X does

not have the unique path lifting property, although p : X̃ → X does. To
see why, define a continuous loop f : [0, 1]→ X as follows: let C ⊆ [0, 1] be
the standard middle third Cantor set. For each component (a, b) of [0, 1]\C
with b− a = 1/3n and t ∈ [a, b] define f(t) = ln

(
t−a
b−a

)
and put f(t) = x0 for

t ∈ C. We will construct two different lifts of f .
Let g1 : ([0, 1], 0)→ (X̃/H, Hx̃0) be the standard lift of f : ([0, 1], 0)→

(X, x0) to (X̃, x̃0) followed by the quotient map X̃ → X̃/H, so that f =
p ◦ g1. Specifically, g1(t) = H[f ◦ τt], where τt : [0, 1] → [0, t] is defined by
τt(s) = ts.

Fig. 2. Two different lifts of f : [0, 1]→ X to X̃/H

A second continuous lift g2 : ([0, 1], 0) → (X̃/H, Hx̃0) with f = p ◦ g2

can be constructed by lifting the loops individually to the same base point.

Specifically, let Ln : ([0, 1], 0) → (X̃/H, Hx̃0) be the standard lift of ln :

([0, 1], 0) → (X, x0) to (X̃, x̃0) followed by the quotient map X̃ → X̃/H.
Then Ln(1) = H[ln◦τ1] = H[ln] = Hx̃0. So, each Ln is a loop based at Hx̃0.
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Define g2(t) = Ln

(
t−a
b−a

)
if (a, b) is a component of X \ C with b− a = 1/3n

and t ∈ [a, b], and set g2(t) = Hx̃0 for t ∈ C.
Notice that g2 is a loop, while g1 is not. On one hand, g2(1) = Hx̃0 by

definition. On the other hand, [f ] ∈ π1(X, x0)\H so that g1(1) = H[f ◦τ1] =
H[f ] 6= Hx̃0. We conclude that p ◦ g1 = p ◦ g2 with g1(0) = Hx̃0 = g2(0)
but g1(1) 6= g2(1). In fact, g1(t) 6= g2(t) for all t > 0. Figure 2 shows a
schematic sketch of g1 (upper row) and g2. A more detailed analysis of this
phenomenon can be found in [3].

The following relative version of being homotopically Hausdorff will turn
out to be necessary for p : X̃/H → X to have the unique path lifting
property.

Definition. Let H ≤ π1(X, x0). We will call X homotopically Haus-

dorff relative to H if for every x ∈ X, for every [α] ∈ X̃ with α(1) = x, and
for every g ∈ π1(X, x0) \H there is an open subset U ⊆ X with x ∈ U such
that there is no loop δ : (S1, ∗)→ (U, x) with [α · δ · α] ∈ Hg.

Note that X is homotopically Hausdorff if and only if X is homotopically
Hausdorff relative to H = {1}. The significance of this relative notion is the
same:

Proposition 6.3. Suppose X is Hausdorff and H ≤ π1(X, x0). Then

X̃/H is Hausdorff if and only if X is homotopically Hausdorff relative to H.

Proof. The proof is a generalization of the proof of Lemma 2.10: suppose
X is homotopically Hausdorff relative to H. Let H[α], H[β] ∈ X̃/H with
H[α] 6= H[β]. As in the proof of Lemma 2.10, we may assume without loss of
generality that α(1) = β(1). Then [β ·α] ∈ π1(X, x0) \H. Hence, there is an
open subset U ⊆ X with α(1) ∈ U such that there is no loop δ : (S1, ∗) →
(U, α(1)) with [α · δ · α] ∈ H[β · α]. This implies that H[β] 6∈ HB([α], U) so

that HB([β], U) ∩HB([α], U) = ∅. We conclude that X̃/H is Hausdorff.
Conversely, if X is not homotopically Hausdorff relative to H, then the

proof of Proposition 6.4 below shows how to find distinct elements Hx̃1 and
Hx̃2 of X̃/H which do not have disjoint neighborhoods.

Proposition 6.4. Let H ≤ π1(X, x0). If p : X̃/H → X has the unique

path lifting property , then X is homotopically Hausdorff relative to H.

Proof. The proof is a generalization of the proof of Lemma 2.11: suppose,
to the contrary, that there are x ∈ X, [α] ∈ X̃ with α(1) = x, and [β] ∈
π1(X, x0) \H such that for every open subset U ⊆ X with x ∈ U there is a
loop δ : (S1, ∗)→ (U, x) with [α·δ·α] ∈ H[β]. Then p(H[α]) = p(H[β·α]) = x
and H[α] 6= H[β · α]. Let U be an open subset of X with x ∈ U . Choose
a loop δ : (S1, ∗) → (U, x) with [α · δ · α] = [γ · β] for some [γ] ∈ H.
Then H[α] = H[α · δ · δ] = H[γ · β · α · δ] = H[β · α · δ] ∈ HB([β · α], U)
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and H[β · α] = H[γ · β · α] = H[α · δ] ∈ HB([α], U). Hence, any function

g : [0, 1] → X̃/H with g(t) ∈ {H[α], H[β · α]} will be continuous and such
that p ◦ g(t) = x for all t ∈ [0, 1]. This contradicts the unique path lifting

property of p : X̃/H → X.

Remark. We note, without proof, that Lemma 2.12 generalizes simi-
larly. The other items compiled in Proposition 2.14 have their relative ana-
logues as well. We state them in Proposition 6.9 below and (implicitly) in
our final Theorem 6.10.

What follows are relative versions of the results of Section 4.

Normal subgroups of countable index

Proposition 6.5. Let H E π1(X, x0) be a normal subgroup. If X is

homotopically Hausdorff relative to H and if the group π(X, x0)/H is count-

able, then p : X̃/H → X has the unique path lifting property.

Proof. Let g1, g2 : [0, 1]→ X̃/H be two continuous functions with p◦g1 =
p◦g2. Say, g1(t) = H[αt] and g2(t) = H[βt]. As in Proposition 4.3, it suffices
to show that the function f : [0, 1]→ π1(X, x0)/H given by f(t) = H[αt ·βt]
is continuous provided π1(X, x0)/H is given the finite complement topology.
The proof is very similar: let s ∈ [0, 1] and {k1, . . . , kn} ⊆ π1(X, x0) be
given with f(s) = H[αs · βs] 6∈ {Hk1, . . . , Hkn}. Since X is homotopically
Hausdorff relative to H, there is an open subset U ⊆ X with αs(1) ∈ U
such that there is no loop λ in U with [αs · λ · αs] ∈ Hki[βs · αs] and
i ∈ {1, . . . , n}. By continuity of g1 and g2, we may choose a δ > 0 such
that H[αt] ∈ HB([αs], U) and H[βt] ∈ HB([βs], U) for all t ∈ [0, 1] with
|s − t| < δ. Now let t ∈ [0, 1] with |s − t| < δ. Then [αt] = [γ · αs · τ ] and
[βt] = [σ ·βs ·η] for some [γ], [η] ∈ H and τ, σ : [0, 1]→ U . Then τ ·σ is a loop
in U based at αs(1). Hence, [αs ·(τ ·σ)·αs] 6∈ Hki[βs ·αs] for all i ∈ {1, . . . , n}.
Since [γ], [η] ∈ H, and since H is a normal subgroup of π1(X, x0), it follows
that f(t) = H[αt · βt] = H[γ][αs · (τ · σ) ·αs][αs · βs][η] 6∈ {Hk1, . . . , Hkn}.

Proposition 6.6. Let H E π1(X, x0) be a normal subgroup. If X is

first countable, locally path-connected and homotopically Hausdorff relative

to H, and if the group π1(X, x0)/H is countable, then p : X̃/H → X is the

(classical) regular covering with p#(π1(X̃/H)) = H.

Proof. In view of Theorem 6.1, it suffices to show that there is an open
cover U of X such that π(U , x0) ≤ H. Indeed, it suffices to show that for
every x ∈ X there is an open path-connected subset U ⊆ X such that x ∈ U
and [α · τ · α] ∈ H for every [α] ∈ X̃ and every loop τ : [0, 1] → U with

α(1) = τ(0) = τ(1) = x (because then [α · τ · α] ∈ H for every [α] ∈ X̃ and
every loop τ : [0, 1]→ U with α(1) = τ(0) = τ(1), regardless of where in U
the path α terminates). Suppose, to the contrary, that there is an x ∈ X



192 H. Fischer and A. Zastrow

for which this is not so. Let V1 ⊇ V2 ⊇ · · · be a basis for the topology of X
at x. Fix any path-connected open subset U1 ⊆ V1 with x ∈ U1. Then there

is an [α1] ∈ X̃ and a loop τ1 : [0, 1] → U1 with α1(1) = τ1(0) = τ1(1) = x
such that [α1 · τ1 · α1] 6∈ H. Put g1 = [α1 · τ1 · α1]. Since X is homotopically
Hausdorff relative to H and since g1 ∈ π1(X, x0) \ H, we can find a path-
connected open subset U2 ⊆ V2 with x ∈ U2 ⊆ U1 such that there is no
loop δ in U2 with [α1 · δ · α1] ∈ Hg1. That is, there is no loop δ in U2 with
[α1·τ1·δ·α1] ∈ H. Equivalently, there is no loop δ in U2 with [α1·τ1·δ·α1] ∈ H.
Inductively, we find a basis U1 ⊇ U2 ⊇ · · · for the topology of X at x of
path-connected open sets Ui along with [αi] ∈ X̃ and loops τi : [0, 1]→ Ui,
with αi(1) = τi(0) = τi(1) = x, such that there is no loop δ in Ui+1 with
[αi · τi · δ · αi] ∈ H. Since H is a normal subgroup of π1(X, x0) we see that
[α1 · τi · δ · α1] = [α1 · αi][αi · τi · δ · αi][α1 · αi]

−1 6∈ H for any loop δ in Ui+1.

As in the proof of Proposition 4.6, for each increasing sequence i1 < i2
< · · · of natural numbers we can now define a continuous loop τ : [0, 1]→ X
by the formula τ(t) = τik(2 − 2k(1 − t)) when 1 − 1/2k−1 ≤ t ≤ 1 − 1/2k

and τ(1) = x. Then distinct sequences i1 < i2 < · · · and i′1 < i′2 < · · · yield
distinct cosets H[α1 · τ · α1] and H[α1 · τ

′ ·α1] of π1(X, x0)/H, respectively.
To see why, assume, without loss of generality, that i1 < i′1. If we had
H[α1 · τ

′ · α1] = H[α1 · τ · α1], then [α1 · τ · τ
′ · α1] ∈ H. This would imply

that there is a loop δ in Ui1+1 such that [α1 · τi1 · δ · α1] ∈ H, which was
ruled out.

Since π1(X, x0)/H was assumed to be countable, we have arrived at our
desired contradiction.

Special normal subgroups of arbitrary index

Proposition 6.7. Let C be some collection of open covers of X and H =⋂
U∈C

π(U , x0). Then p : X̃/H → X has the unique path lifting property.

Proof. We will show that for any two continuous maps g1 : [0, 1] →

X̃/H and g2 : [0, 1] → X̃/H such that p ◦ g1 = p ◦ g2, the set {t ∈
[0, 1] | g1(t) = g2(t)} is either empty or all of [0, 1]. For every t ∈ [0, 1]
choose continuous maps αt, βt : [0, 1] → X with g1(t) = H[αt] and g2(t) =
H[βt]. Suppose, to the contrary, that there are r, s ∈ [0, 1] with H[αr] 6=
H[βr] and H[αs] = H[βs]. Moreover, assume, without loss of generality,
that r < s.

Since [αr · βr] 6∈ H, then by assumption, there is an open cover U ∈ C
of X such that [αr · βr] 6∈ π(U , x0). Let v be the greatest lower bound for
the set A = {t ∈ [r, s] | [αt · βt] ∈ π(U , x0)}. Let x = αv(1) = βv(1). Choose
U ∈ U with x ∈ U . By continuity of g1 and g2, there is a δ > 0 such
that H[αt] ∈ HB([αv], U) and H[βt] ∈ HB([βv], U) for all t ∈ [0, 1] with
|t− v| < δ.
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(i) Suppose [αv · βv] ∈ π(U , x0). Then r < v ≤ s. Choose t ∈ (r, v)
such that |t − v| < δ. By definition of B([αv], U) and B([βv], U), there
are continuous maps τ1, τ2 : [0, 1] → U such that H[αt] = H[αv · τ1] and
H[βt] = H[βv · τ2]. So, [αt] = [δ1 · αv · τ1] and [βt] = [τ2 · βv · δ2] for some
[δi] ∈ H ≤ π(U , x0).

Since τ1 · τ2 is a loop in U , we have [αv · (τ1 · τ2) · αv] ∈ π(U , x0).
Consequently, [αt ·βt] = [δ1][αv ·(τ1 ·τ2) ·αv][αv ·βv][δ2] ∈ π(U , x0). However,
t < v, so that v is not a lower bound for the set A; a contradiction.

(ii) Now suppose [αv ·βv] 6∈ π(U , x0). Then r ≤ v < s. Using an argument
similar to part (i), we see that [αt · βt] 6∈ π(U , x0) for all t ∈ [v, s) with
|t− v| < δ. Choose u ∈ (v, s) with |u− v| < δ. Then u is a lower bound for
the set A, which is greater than v; a contradiction.

Proposition 6.8. Let K be the kernel of ϕ : π1(X, x0) → π̌1(X, x0).

Then p : X̃/K → X has the unique path lifting property.

Proof. The proof is very similar to that of Proposition 6.7 and we use
the same setup of the first paragraph upon replacing H by K.

However, this time, [αr · βr] 6∈ K implies that there is a normal cover
U of X such that pU#([αr · βr]) 6= 1 ∈ π1(N(U), ∗), and we let v be
the greatest lower bound of the set A = {t ∈ [r, s] | pU#([αt · βt])] =
1 ∈ π1(N(U), ∗)}. Again, we put x = αv(1) = βv(1). Since the collection
{p−1

U
(St(U, N(U))) | U ∈ U} is an open cover of X, we may choose U ∈ U

so that x ∈ V = p−1
U

(St(U, N(U))). Accordingly, we choose δ > 0 such
that K[αt] ∈ KB([αv], V ) and K[βt] ∈ KB([βv], V ) for all t ∈ [0, 1] with
|t− v| < δ.

(i) Suppose pU#([αv · βv]) = 1 ∈ π1(N(U), ∗). Then r < v ≤ s. Choose
t ∈ (r, v) such that |t− v| < δ. As before, there are paths τ1, τ2 : [0, 1]→ V
such that [αt] = [δ1·αv ·τ1] and [βt] = [τ2·βv ·δ2] for some [δi] ∈ K. Since τ1·τ2

is a loop in V , the loop (pU ◦ τ1) · (pU ◦ τ2) lies in the open star of the vertex
corresponding to U in N(U), where it can be homotoped to that vertex.
Also, because both [δ1] and [δ2] lie in the kernel of π1(X, x0) → π̌1(X, x0),
we have pU#([δ1]) = pU#([δ2]) = 1 ∈ π1(N(U), ∗). Consequently,

pU#([αt · βt]) = pU#([δ1 · αv · τ1 · τ2 · βv · δ2])

= pU#([αv · βv]) = 1 ∈ π1(N(U), ∗).

However, t < v, so that v is not a lower bound for the set A and we have
the desired contradiction.

(ii) As was the case in the proof of Proposition 6.7, a similar contradiction
occurs when pU#([αv · βv]) 6= 1 ∈ π1(N(U), ∗).

The following proposition (whose proof can be found in [3]) shows that,
as before, all relevant properties depend only on unique path lifting.
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Proposition 6.9. Let H ≤ π1(X, x0) be a subgroup such that p : X̃/H
→ X has the unique path lifting property. Then

(a) X̃/H is path-connected and locally path-connected.

(b) p# : π1(X̃/H, Hx̃0)→ π1(X, x0) is a monomorphism onto H.

(c) For every path-connected and locally path-connected space Y , for

every continuous f : (Y, y) → (X, x) and every Hx̃ ∈ X̃/H with

p(Hx̃) = x, there is a unique continuous g : (Y, y) → (X̃/H, Hx̃)

with p ◦ g = f , provided f#(π1(Y, y)) ≤ p#(π1(X̃/H, Hx̃)).

We sketch the short proof for completeness.

Proof. (a) Note that the quotient map q : X̃ → X̃/H is open.
(b) Injectivity of p# follows from Proposition 2.4 and the unique path

lifting property of p : X̃/H → X. Now, let [α] ∈ H be given and let

α̃ : ([0, 1], 0) → (X̃, x̃0) be the standard lift of α : ([0, 1], 0) → (X, x0).

Then [q ◦ α̃] ∈ π1(X̃/H, Hx̃0), because q ◦ α̃(0) = Hx̃0 = H[α] = q ◦ α̃(1),

and [α] = p#([q ◦ α̃]). Conversely, let [γ] ∈ π1(X̃/H, Hx̃0) be given and let

γ̃ : ([0, 1], 0)→ (X̃, x̃0) be the standard lift of γ = p◦γ : ([0, 1], 0)→ (X, x0).

Then γ = q ◦ γ̃, since p : X̃/H → X has the unique path lifting property.
Hence, Hx̃0 = γ(1) = Hγ̃(1) = H[γ], so that p#([γ]) = [γ] ∈ H.

(c) As in Proposition 2.4, define g(w) = H[α · (f ◦τ)], where x̃ = [α] ∈ X̃
and τ : [0, 1] → Y is any path from τ(0) = y to τ(1) = w. Then g is well-

defined, because we have [α]f#(π1(Y, y))[α] ⊆ [α]p#(π1(X̃/H, H[α]))[α] =

[p◦q◦α̃]p#(π1(X̃/H, H[α]))[p◦q◦α̃] = p#(π1(X̃/H, Hx̃0)) = H, by part (b).
All remaining properties of g are verified as before.

In order to summarize the results of this section, we make the following
definition.

Definition. Let H E π1(X, x0) be a normal subgroup. We call a map
p : X → X a generalized regular covering of X with respect to H if the
following three properties are satisfied, which uniquely characterize p : X
→ X (as in Section 1.1):

(R1) X is path-connected and locally path-connected.
(R2) p : X → X is a continuous surjection and p# : π1(X) → π1(X) is

a monomorphism onto H.
(R3) For every path-connected and locally path-connected space Y , for

every continuous f : (Y, y)→ (X, x) and every x∈X with p(x)=x,
there is a unique continuous g : (Y, y) → (X, x) with p ◦ g = f ,
provided f#(π1(Y, y)) ≤ p#(π1(X, x)).

Combining Propositions 6.7, 6.8 and 6.5 with Proposition 6.9, we obtain
the following generalization of Theorems 4.4 and 4.10:
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Theorem 6.10. Let H E π1(X, x0) be a normal subgroup and suppose

that one of the following holds:

(i) H =
⋂

U∈C
π(U , x0) for some collection C of open covers of X, or

(ii) H is the kernel of ϕ : π1(X, x0)→ π̌1(X, x0), or

(iii) X is homotopically Hausdorff relative to H and π1(X, x0)/H is

countable.

Then

(a) The map p : X̃/H → X is a generalized regular covering with respect

to H.

(b) The group G = Aut(X̃/H
p
→ X) of covering transformations is iso-

morphic to π1(X, x0)/H and it acts freely and transitively on every

fiber p−1({x}) with x ∈ X.

(c) If X is locally path-connected , then p : X̃/H → X is an open map.

(d) If X is Hausdorff or metrizable, then so is X̃/H.

(e) If X is metrizable, then there is a metric for X̃/H such that G acts

by isometry.
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Wita Stwosza 57
80-952 Gdańsk, Poland
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