Borsuk's quasi-equivalence is not transitive

by

Andrzej Kadlof (Warszawa), Nikola Koceić Bilan (Split) and Nikica Uglešić (Split)

Abstract. Borsuk's quasi-equivalence relation on the class of all compacta is considered. The open problem concerning transitivity of this relation is solved in the negative. Namely, three continua X, Y and Z lying in \mathbb{R}^3 are constructed such that X is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.

1. Introduction. In [2] K. Borsuk defined a certain relation on the class $c\mathcal{M}$ of all (metrizable) compacta, called quasi-equivalence and denoted by $\stackrel{q}{\simeq}$. Let us recall its definition (in the original terms of fundamental sequences; see [1]).

Consider any two compacta X and Y lying in AR-spaces M and N respectively, and a neighbourhood V of Y in N. Two fundamental sequences $\underline{f} = \{f_k, X, Y\}_{M,N}, \ \underline{f}' = \{f'_k, X, Y\}_{M,N}$ are said to be V-homotopic (notation: $\underline{f} \simeq \underline{f}'$) if there exists a neighbourhood U_0 of X in M such that $f_k|U_0 \simeq f'_k|U_0$ in V for almost all k. (If V is open, then the condition reduces to $f_k|X \simeq f'_k|X$ in V for almost all k.)

Let, in addition, U be a neighbourhood of X in M. Then X and Y are said to be (U, V)-equivalent in M, N (notation: $X \simeq U_{(U,V)} Y$) if there exist two fundamental sequences $\underline{f} = \{f_k, X, Y\}_{M,N}, \underline{g} = \{g_k, Y, X\}_{N,M}$ such that $\underline{gf} \simeq \underline{i}_{X,M}$ and $\underline{fg} \simeq \underline{i}_{Y,N}$, where $\underline{i}_{X,M}$ (resp. $\underline{i}_{Y,N}$) is the fundamental identity sequence for X in M (resp. Y in N).

Further, Borsuk defined X and Y to be *quasi-equivalent in* M, N (notation: $X \stackrel{q}{\simeq} Y$ in M, N) if $X \underset{(U,V)}{\simeq} Y$ for every neighbourhood U of X in M and every neighbourhood V of Y in N. After proving that the choice of

²⁰⁰⁰ Mathematics Subject Classification: Primary 54C99; Secondary 55P55.

Key words and phrases: continuum, ANR, inverse sequence, shape, quasi-equivalence, free product of groups.

the ambient AR-spaces M and N is immaterial, he defined X and Y to be *quasi-equivalent* (notation: $X \stackrel{q}{\simeq} Y$) if $X \stackrel{q}{\simeq} Y$ in some M, N.

Borsuk proved that quasi-equivalence is a shape invariant relation and that it is strictly coarser than shape type, i.e.

$$(X \stackrel{q}{\simeq} Y) \land (h(X) = h(X')) \land (\operatorname{Sh}(Y) = \operatorname{Sh}(Y')) \Rightarrow X' \stackrel{q}{\simeq} Y';$$

$$\operatorname{Sh}(X) = \operatorname{Sh}(Y) \Rightarrow X \stackrel{q}{\simeq} Y;$$

$$(\exists X, Y) \ (X \stackrel{q}{\simeq} Y) \land (\operatorname{Sh}(X) \neq \operatorname{Sh}(Y)).$$

For instance, all infinite 0-dimensional compacta are quasi-equivalent ([2, Theorem (6.3)]), while their shape types coincide with the topological types ([4, Theorem 20]). Further, in the case of compact ANR's, quasi-equivalence reduces to shape type, and hence to homotopy type. One should also mention that quasi-equivalence preserves some important shape invariants (Betti numbers, movability; [2, Theorems (10.3), (11.1)]). However, it has remained unknown whether quasi-equivalence is indeed an equivalence relation. Specifically, Borsuk stated the following question ([2, Problem (7.13)]): "Is the relation of quasi-equivalence transitive?".

A few months ago, the third named author found by chance an old unpublished manuscript of the first named author, containing a certain example intended to show that quasi-equivalence is not transitive. Unfortunately, an analysis by the second named author showed that the proof was incorrect. However, there was a strong feeling that the example might be appropriate. In this paper we provide a correct proof by using the same example (only the notation is slightly changed).

Thus, Borsuk's quasi-equivalence relation is not transitive because there exist continua X, Y and Z, lying in the Euclidian space \mathbb{R}^3 , such that X is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.

2. Preliminaries. The preliminary step in our considerations is to characterize $\stackrel{q}{\simeq}$ in terms of the Mardešić–Segal shape category (see [8]).

Recall the inv-category $\operatorname{HTop}^{\mathbb{N}}$ (see [6]). The objects are all inverse sequences $\boldsymbol{X} = (X_i, [p_{ii'}]), \, \boldsymbol{Y} = (Y_j, [q_{jj'}]), \ldots$ of topological spaces with the homotopy classes of mappings as bonding arrows, while the morphisms $\boldsymbol{f} :$ $\boldsymbol{X} \to \boldsymbol{Y}$ are of the form $\boldsymbol{f} = (f, [f_j])$, where $f : \mathbb{N} \to \mathbb{N}$ and $f_j : X_{f(j)} \to Y_j$, $j \in \mathbb{N}$, are such that for every pair $j \leq j'$ there exists an $i \geq f(j), f(j')$ satisfying

$$[f_j][p_{f(j)i}] = [q_{jj'}][f_{j'}][p_{f(j')i}].$$

The composition of $f: X \to Y$ and $g = (g, [g_k]): Y \to Z$ is the morphism

$$\boldsymbol{h} \equiv \boldsymbol{g}\boldsymbol{f} = (fg, [g_k f_{g(k)}]) : \boldsymbol{X} \to \boldsymbol{Z},$$

while the identity morphism on X is $1_X = (1_N, [1_{X_i}])$. With the natural equivalence relation $f \simeq f'$, i.e. for every j there exists an $i \ge f(j), f'(j)$ such that

$$[f_j][p_{f(j)i}] = [f'_j][p_{f'(j)i}],$$

one obtains the corresponding quotient category $\operatorname{HTop}^{\mathbb{N}}/\simeq$, i.e. the procategory tow-HTop. The class of a morphism \boldsymbol{f} is denoted by $[\boldsymbol{f}]$. Recall that every class $[\boldsymbol{f}]$ admits a *special* representative \boldsymbol{f}' , which means that for every pair $j \leq j'$,

$$[f'_j][p_{f'(j)f'(j')}] = [q_{jj'}][f'_{j'}].$$

The quotient (sub)category HcANR^N/ \simeq is the full subcategory tow-HcANR of tow-HTop (the terms X_i, Y_j, \ldots of its inverse sequences are compact ANR's). It represents the Mardešić–Segal shape category Sh of compact metrizable spaces (see [6, Chap. I]). Namely,

$$Ob(Sh) = Ob(c\mathcal{M}), \quad Sh(X,Y) \approx tow-HcANR(X,Y),$$

where X, Y are any compact ANR-sequences associated with X, Y respectively, i.e. $X = H\underline{X}$ and $Y = H\underline{Y}$, where $\lim \underline{X} = X$ and $\lim \underline{Y} = Y$, and H denotes the passage from an inverse sequence to the inverse sequence consisting of the same terms and of the homotopy classes of the given bonding mappings. For such a pair X, Y, the set tow-HcANR(X, Y) represents Sh(X, Y).

It is a well-known fact ([5]; [1, Chap. IX]) that the Borsuk and Mardešić– Segal shape theories for compact are equivalent. The following definitions and facts can be found in [8].

DEFINITION 1. Let $\boldsymbol{f} = (f, [f_j]), \boldsymbol{f}' = (f', [f'_j]) : \boldsymbol{X} \to \boldsymbol{Y}$ be morphisms of inverse sequences, and let $s \in \mathbb{N}$. Then \boldsymbol{f} is said to be *s*-homotopic to \boldsymbol{f}' , denoted by $\boldsymbol{f} \simeq_s \boldsymbol{f}'$, provided for every $j \in [1, s]_{\mathbb{N}}$ there exists an $i_j \geq f(j), f'(j)$ such that

$$[f_j][p_{f(j)i_j}] = [f'_j][p_{f'(j)i_j}].$$

Observe that $\boldsymbol{f} \simeq \boldsymbol{f}'$ if and only if $\boldsymbol{f} \simeq_s \boldsymbol{f}'$ for every $s \in \mathbb{N}$.

Lemma 1.

- (i) For every $s \in \mathbb{N}$, the relation \simeq_s is an equivalence relation on each set $\operatorname{HTop}^{\mathbb{N}}(\boldsymbol{X}, \boldsymbol{Y})$.
- (ii) For every pair s ≤ s', f ≃_{s'} f' implies f ≃_s f'. Moreover, for every s ∈ N, the relation ≃_s is natural from the right in the category HTop^N, i.e. for every h : W → X, f ≃_s f' implies fh ≃_s f'h. On the other hand, if g : Y → Z, then f ≃_s f' implies gf ≃_t gf' whenever g[[1,t]_N] ⊆ [1,s]_N.

DEFINITION 2. Let X and Y be compact ANR-sequences. Then X is said to be *quasi-equivalent* to Y, denoted by $X \stackrel{q}{\simeq} Y$, provided, for every $n \in \mathbb{N}$, there exist morphisms $f : X \to Y$ and $g : Y \to X$ such that $gf \simeq_n 1_X$ and $fg \simeq_n 1_Y$.

LEMMA 2. The relation $\stackrel{q}{\simeq}$ is isomorphism (i.e. shape) invariant in tow-HcANR.

Proof. Let $X \stackrel{q}{\simeq} Y$ and let $X \cong X'$ in tow-HcANR. By definition, there exist sequences of maps $f^n : X \to Y$ and $g^n : Y \to X$ satisfying $g^n f^n \simeq_n 1_X$ and $f^n g^n \simeq_n 1_Y$, $n \in \mathbb{N}$. Further, there exist morphisms $u : X \to X'$ and $v : X' \to X$ such that $vu \simeq 1_X$ and $uv \simeq 1_{X'}$. Notice that

$$(\forall m \in \mathbb{N})(\exists s_m \ge m) \quad u[[1,m]_{\mathbb{N}}] \subseteq [1,s_m]_{\mathbb{N}}.$$

For each m, let

 $oldsymbol{v}^m\equivoldsymbol{f}^{s_m}oldsymbol{v}:oldsymbol{X}' ooldsymbol{Y}$ and $oldsymbol{u}^m\equivoldsymbol{u}oldsymbol{g}^{s_m}:oldsymbol{Y} ooldsymbol{X}'.$

Now, according to Lemma 1,

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Thus, $\mathbf{X}' \stackrel{q}{\simeq} \mathbf{Y}$. In the same way one proves that $\mathbf{X} \stackrel{q}{\simeq} \mathbf{Y}$ and $\mathbf{Y} \cong \mathbf{Y}'$ imply $\mathbf{X} \stackrel{q}{\simeq} \mathbf{Y}'$. Therefore, $\stackrel{q}{\simeq}$ is an isomorphism invariant relation in the category tow-HcANR.

In order to compare Borsuk's quasi-equivalence on compact to the new relation $\stackrel{q}{\simeq}$ on Ob(tow-HcANR), we shall prove the following lemma:

LEMMA 3. Let X and Y be compact in the Hilbert cube Q, and let $\underline{X} = (X_i, p_{ii'})$ and $\underline{Y} = (Y_j, q_{jj'})$ be any associated inclusion compact ANR-sequences respectively. Let $\underline{g} = \{g_k, X, Y\}$ and $\underline{g}' = \{g'_k, X, Y\}$ be fundamental sequences (in Q) and let $\mathbf{f} = (f, [f_j])$ and $\mathbf{f}' = (f', [f'_j])$ be morphisms of HcANR^N(\mathbf{X}, \mathbf{Y}), where $\mathbf{X} = H\underline{X}$ and $\mathbf{Y} = H\underline{Y}$. If $\underline{g} = \{g_k, X, Y\}$ and $\mathbf{f} = (f, [f_j])$ as well as $\underline{g}' = \{g'_k, X, Y\}$ and $\mathbf{f}' = (f', [f'_j])$ are related, then

- (i) for every $n \in \mathbb{N}$ there exists a neighbourhood V of Y in Q such that $\underline{g} \simeq \underline{g}'$ implies $\mathbf{f} \simeq_n \mathbf{f}'$;
- (ii) for every neighbourhood V of Y in Q there exists an $n \in \mathbb{N}$ such that $\mathbf{f} \simeq_n \mathbf{f}'$ implies $\underline{g} \simeq \underline{g}'$.

Proof. In this case "to be related" means (see [5] or [1, IX.4])

$$\begin{split} f_j &= g_{f(j)} | X_{f(j)} : X_{f(j)} \to Y_j, \quad j \in \mathbb{N}, \\ g_i | X_{f(j)} &\simeq g_{f(j)} | X_{f(j)} \quad \text{in } Y_j, \, i \geq f(j), \end{split}$$

and, similarly,

$$\begin{aligned} f'_{j} &= g'_{f'(j)} | X_{f'(j)} : X_{f'(j)} \to Y_{j}, \quad j \in \mathbb{N}, \\ g'_{i} | X_{f'(j)} &\simeq g'_{f'(j)} | X_{f'(j)} \quad \text{in } Y_{j}, \, i \geq f'(j). \end{aligned}$$

Moreover, we may assume that the index functions f and f' are increasing. Now, for (i), if an $n \in \mathbb{N}$ is given, choose $V = Y_n$. Then choose a $U_0 \supseteq X$ in Q coming from $\underline{g} \simeq \underline{g}'$, and an $i_0 \in \mathbb{N}$ such that $X_{i_0} \subseteq U_0$. Let $i_n = \max\{f(n), f'(n), i_0\}$. By choosing $i_j = i_n$ for every $j \in [1, n]_{\mathbb{N}}$, the relation $\boldsymbol{f} \simeq_n \boldsymbol{f}'$ is established. Further, for (ii), if a $V \supseteq Y$ in Q is given, choose the minimal $n \in \mathbb{N}$ such that $Y_n \subseteq V$. Let $i_0 \in \mathbb{N}$ be the maximum of all i_j coming from $\boldsymbol{f} \simeq_n \boldsymbol{f}'$. Then $\underline{g} \simeq \underline{g}'$ is realized via $U_0 = X_{i_0}$.

THEOREM 1. Let X and Y be compact and let X and Y be compact ANR-sequences associated with X and Y respectively. Then

$$X \stackrel{q}{\simeq} Y \Leftrightarrow \boldsymbol{X} \stackrel{q}{\simeq} \boldsymbol{Y}.$$

Consequently, X and Y are quasi-equivalent, $X \stackrel{q}{\simeq} Y$, if and only if, for every $n \in \mathbb{N}$, there exist morphisms $f^n : X \to Y$ and $g^n : Y \to X$ such that $g^n f^n \simeq_n 1_X$ and $f^n g^n \simeq_n 1_Y$.

Proof. Recall that every compact metrizable space is, up to homeomorphism, the intersection of a decreasing sequence of compact ANR-neighbourhoods in the Hilbert cube. Further, recall (see [5] or [1, IX.4]) that every fundamental sequence $\underline{g} = \{g_k, X, Y\}$ admits a related morphism $f: X \to Y$ and vice versa. According to Lemma 3, since Borsuk's quasiequivalence is shape invariant, $X \stackrel{q}{\simeq} Y$ implies that there exist countable families $(f^{(n,n')})$ and $(g^{(n,n')}), (n,n') \in \mathbb{N} \times \mathbb{N}$, of morphisms $f^{(n,n')}: X \to Y$ and $g^{(n,n')}: Y \to X$ such that

$$\boldsymbol{g}^{(n,n')} \boldsymbol{f}^{(n,n')} \simeq_{n'} 1_{\boldsymbol{X}} \quad ext{and} \quad \boldsymbol{f}^{(n,n')} \boldsymbol{g}^{(n,n')} \simeq_{n} 1_{\boldsymbol{Y}}.$$

Clearly, by Lemma 1, both homotopies hold up to $\min\{n, n'\}$. Thus, by Definition 2 and Lemma 2, the necessity part follows. Conversely, let $\mathbf{X} \stackrel{q}{\simeq} \mathbf{Y}$, i.e. let there exist morphisms $\mathbf{f}^n : \mathbf{X} \to \mathbf{Y}$ and $\mathbf{g}^n : \mathbf{Y} \to \mathbf{X}, n \in \mathbb{N}$, such that

 $\boldsymbol{g}^n \boldsymbol{f}^n \simeq_n 1_{\boldsymbol{X}} \quad \text{and} \quad \boldsymbol{f}^n \boldsymbol{g}^n \simeq_n 1_{\boldsymbol{Y}}.$

Given an ordered pair $(n, n') \in \mathbb{N} \times \mathbb{N}$, put

$$f^{(n,n')} = f^m$$
 and $g^{(n,n')} = g^m$, where $m = \max\{n, n'\}$.

Then $X \stackrel{*}{\simeq} Y$ according to Lemmata 3 and 1.

REMARK 1. We may assume, without loss of generality, that all the morphisms realizing the relations $\mathbf{X} \stackrel{q}{\simeq} \mathbf{Y}$ are special with (strictly) increasing index functions. We may also assume that $n' \geq n$ implies $f^{n'} \geq f^n$, and similarly for all other index functions. Further, the conditions $\mathbf{g}^n \mathbf{f}^n \simeq_n \mathbf{1}_{\mathbf{X}}$ etc. may be relaxed to $\mathbf{g}^n \mathbf{f}^n \simeq_{s_n} \mathbf{1}_{\mathbf{X}}$ etc., where (s_n) is an unbounded sequence in $\mathbb{N} \cup \{0\}$.

To end this section we give a useful sufficient condition for a pair of compacta to be quasi-equivalent; it was formulated and proved earlier in the above mentioned manuscript.

LEMMA 4. Let X, Y be a pair of compact satisfying the following condition: For every $\varepsilon > 0$ there exist mappings $f : X \to Y$ and $g : Y \to X$ such that

$$(\forall x \in X) \ d_X(gf(x), x) < \varepsilon \quad and \quad (\forall y \in Y) \ d_Y(fg(y), y) < \varepsilon.$$

Then X and Y are quasi-equivalent.

Proof. Without loss of generality, we may assume that X and Y lie in the Hilbert cube Q. Let U, V be any pair of neighbourhoods of X, Y in Q respectively. There exist compact ANR's U', V' such that $X \subseteq U' \subseteq \operatorname{Int} U$ and $Y \subseteq V' \subseteq \operatorname{Int} V$. Let $i: X \hookrightarrow U'$ and $j: Y \hookrightarrow V'$ be the inclusion mappings. It is well known that there exists an $\varepsilon > 0$ such that each pair of ε -near mappings of a metrizable space into U' (or into V') is homotopic. By assumption, there exist mappings $f: X \to Y$ and $g: Y \to X$ such that gfand 1_X as well as fg and 1_Y are ε -near. Consequently, $gfi, i: X \hookrightarrow U'$ as well as $fgj, j: Y \hookrightarrow V'$ are ε -near. Therefore, $gfi \simeq i$ and $fgj \simeq j$. This means $gf \simeq 1_X$ in $U' \subseteq \operatorname{Int} U$ and $fg \simeq 1_Y$ in $V' \subseteq \operatorname{Int} V$. Let $\underline{f} = \{f_k, X, Y\}$ and $\underline{g} = \{g_k, Y, X\}$ be fundamental sequences generated by f and g respectively. Now, apply the following fact (mentioned in the introduction):

Let A and B be compacta lying in Q, let W be an open neighbourhood of B in Q and let $\underline{h} = \{h_k, A, B\}, \underline{h}' = \{h'_k, A, B\}$ be fundamental sequences. Then $\underline{h} \simeq \underline{h}'$ if and only if $h_k | A \simeq h'_k | A$ in W for almost all $k \in \mathbb{N}$.

Consequently, $\underline{gf} \simeq \underline{i}_X$ and $\underline{fg} \simeq \underline{i}_Y$, where \underline{i}_X and \underline{i}_Y are the identity fundamental sequences for X in Q and Y in Q respectively. Therefore, $X \simeq Y$.

3. The example. Let X be an infinite countable one-point union of pointed tori converging to the limit torus. Further, let Y be an infinite countable one-point union of pointed tori converging to the base point. Finally, let Z be the one-point union of X and a pointed circle. An explicit construction is given below.

220

For every $k \in \mathbb{N}$, let $A_k = S_k^1 \cup \Sigma_k^1 \subseteq \mathbb{R}^3$, where S_k^1 and Σ_k^1 are the following circles:

$$S_{k}^{1} = \left\{ (\xi, \eta, 0) \mid \left(\xi - \frac{2k+3}{2k+2} \right)^{2} + \eta^{2} = \left(\frac{2k+3}{2k+2} \right)^{2} \right\},\$$
$$\Sigma_{k}^{1} = \left\{ (\xi, \eta, 0) \mid \left(\xi - \frac{2k+3}{2k+2} \right)^{2} + \eta^{2} = \left(\frac{6k+1}{8k+8} \right)^{2} \right\}.$$

Further, let

$$S_{\infty}^{1} = \{ (\xi, \eta, 0) \mid (\xi - 1)^{2} + \eta^{2} = 1 \} \subseteq \mathbb{R}^{3},$$

$$\Sigma_{\infty}^{1} = \{ (\xi, \eta, 0) \mid (\xi - 1)^{2} + \eta^{2} = 9/16 \} \subseteq \mathbb{R}^{3}.$$

Notice that $A_k \cap A_{k'} = S_k^1 \cap S_{k'}^1 = \{(0,0,0)\}$ whenever $k \neq k' \in \mathbb{N} \cup \{\infty\}$, $\lim(S_k^1) = S_\infty^1$ and $\lim(\Sigma_k^1) = \Sigma_\infty^1$. For every $k \in \mathbb{N} \cup \{\infty\}$, let $T_k \subseteq \mathbb{R}^3$ be a torus, symmetric with the respect to the (ξ, η) -plane \mathbb{R}^2 , such that $T_k \cap (\mathbb{R}^2 \times \{0\}) = A_k$. One can easily achieve that $T_k \cap T_{k'} = \{(0,0,0)\}$ whenever $k \neq k' \in \mathbb{N} \cup \{\infty\}$, and $\lim(T_k) = T_\infty$. Let

$$X = \bigcup_{k \in \mathbb{N} \cup \{\infty\}} T_k.$$

Similarly, for every $k \in \mathbb{N}$, let $A'_k = S'^1_k \cup \Sigma'^1_k \subseteq \mathbb{R}^3$, where

$$S_{k}^{\prime 1} = \left\{ (\xi, \eta, 0) \mid \left(\xi - \frac{1}{2^{3k-3}} \right)^{2} + \eta^{2} = \left(\frac{1}{2^{3k-3}} \right)^{2} \right\},\$$

$$\Sigma_{k}^{\prime 1} = \left\{ (\xi, \eta, 0) \mid \left(\xi - \frac{1}{2^{3k-3}} \right)^{2} + \eta^{2} = \left(\frac{1}{2^{3k-2}} \right)^{2} \right\}.$$

Notice that $A'_k \cap A'_{k'} = S'^1_k \cap S'^1_{k'} = \{(0,0,0)\}$ whenever $k \neq k' \in \mathbb{N}$, and $\lim(S'^1_k) = \lim(\Sigma'^1_k) = \{(0,0,0)\}$. For every $k \in \mathbb{N}$, let $T'_k \subseteq \mathbb{R}^3$ be a torus, symmetric with respect to the (ξ, η) -plane \mathbb{R}^2 , such that $T'_k \cap (\mathbb{R}^2 \times \{0\}) = A'_k$, $T'_k \cap T'_{k'} = \{(0,0,0)\}$ whenever $k \neq k'$, and $\lim(T'_k) = \{(0,0,0)\}$. Let

$$Y = \bigcup_{k \in \mathbb{N}} T'_k.$$

Finally, let

$$Z = X \cup S^1$$
, where $S^1 = \{(\xi, \eta, 0) \mid (\xi + 1)^2 + \eta^2 = 1\}.$

Clearly, the subspaces X, Y and Z of \mathbb{R}^3 are compact and path connected.

THEOREM 2. Borsuk's quasi-equivalence relation is not transitive.

Proof. Consider the continua X, Y and Z defined above. It suffices to prove that $X \stackrel{q}{\simeq} Y$ and $Y \stackrel{q}{\simeq} Z$, and that X is not quasi-equivalent to Z. Fix $\varepsilon > 0$. Then there exists an $n'_{\varepsilon} \in \mathbb{N}$ such that $9/(8(n'_{\varepsilon} + 1)) < \varepsilon$. Given any

 $n' \ge \max\{8, n'_{\varepsilon}\}$, set $X_{n'} = \bigcup_{k \le n'} T_k \subseteq X$, which is a closed subspace. Let $r_{n'}: X \to X_{n'}$ be defined by

$$r_{n'}(x) = \begin{cases} x, & x \in X_{n'}, \\ \varrho_{n'}(x), & x \in X \setminus X_{n'}, \end{cases}$$

where $\rho_{n'}: \bigcup_{k>n'} T_k \to T_{n'}$ is the radial mapping ("blowing up") from the circle passing through the middle of the bounded component of $\mathbb{R}^3 \setminus T_\infty$. Clearly, for every $k \in \{n'+1, n'+2, \ldots\} \cup \{\infty\}, \rho_{n'}|T_k: T_k \to T_{n'}$ is a homeomorphism, $\rho_{n'}[S_k] = S_{n'}, \rho_{n'}[\Sigma_k] = \Sigma_{n'}$ and $\rho_{n'}(0,0,0) = (0,0,0)$. Observe that $r_{n'}$ is a retraction. Further, the distance between $r_{n'}(x)$ and x reaches its maximum for some $x = (\xi, \eta, \zeta) \in \{(1/4, 0, 0), (7/4, 0, 0), (2, 0, 0)\} \subseteq A_0$. Since

$$\varrho_{n'}\left(\frac{1}{4},0,0\right) = \frac{9}{8(n'+1)}, \quad \varrho_{n'}\left(\frac{7}{4},0,0\right) = \frac{1}{8(n'+1)}, \quad \varrho_{n'}(2,0,0) = \frac{1}{n'},$$

and $n' \ge 8$, the maximal distance is 9/(8(n'+1)). Thus, for every $x \in X$,

$$d(r_{n'}(x), x) \le \frac{9}{8(n'+1)} \le \frac{9}{8(n'_{\varepsilon}+1)} < \varepsilon$$

whenever $n' \ge \max\{8, n'_{\varepsilon}\}.$

Similarly, there exists an $n_{\varepsilon}'' \in \mathbb{N}$ such that $T_k' \subseteq B((0,0,0),\varepsilon)$ for every $k \geq n_{\varepsilon}''$, where $B((0,0,0),\varepsilon)$ is the ε -ball at the origin in \mathbb{R}^3 . Given any $n'' \geq n_{\varepsilon}''$, set $Y_{n''} = \bigcup_{k \leq n''} T_k' \subseteq Y$, which is a closed subspace. Let $s_{n''} : Y \to Y_{n''}$ be defined by

$$s_{n''}(y) = \begin{cases} y, & y \in Y_{n''}, \\ (0,0,0), & y \in Y \setminus Y_{n''}. \end{cases}$$

It is obvious that $s_{n''}$ is a retraction and that

 $d(s_{n''}(y), y) < \varepsilon$ holds for every $y \in Y$.

Consider now an $n \ge \max\{8, n'_{\varepsilon}, n''_{\varepsilon}\}$ and observe that the subspaces X_n and Y_n are homeomorphic. Let $h: X_n \to Y_n$ be a homeomorphism, and let $r: X \to X_n$ and $s: Y \to Y_n$ be defined as above, i.e. $r = r_n$ and $s = s_n$. Put

$$f = jhr : X \to Y$$
 and $g = ih^{-1}s : Y \to X$,

where $i: X_n \hookrightarrow X$ and $j: Y_n \hookrightarrow Y$ are the inclusion mappings. Let $x \in X$. If $x \in X_n$, then r(x) = x and $hr(x) = h(x) \in Y_n$, and thus jhr(x) = h(x)and sjhr(x) = sh(x) = h(x). Therefore,

$$gf(x) = ih^{-1}sjhr(x) = ih^{-1}h(x) = x = r(x).$$

If $x \in X \setminus X_n$, then $r(x) = \varrho(x)$ and $hr(x) = h\varrho(x) \in Y_n$, and thus $jhr(x) = h\varrho(x)$ and $sjhr(x) = sh\varrho(x) = h\varrho(x)$. Therefore,

$$gf(x) = ih^{-1}sjhr(x) = ih^{-1}h\varrho(x) = i\varrho(x) = \varrho(x) = r(x).$$

Consequently,

$$d(gf(x), x) = d(r(x), x) < \varepsilon$$
 for every $x \in X$.

In a similar way one can verify that

$$d(fg(y), y) = d(s(y), y) < \varepsilon$$
 for every $y \in Y$.

According to Lemma 4, X is quasi-equivalent to Y.

Let us now prove that Y is quasi-equivalent to Z. Fix $\varepsilon > 0$. Choose an $n \ge \max\{8, n'_{\varepsilon}, n''_{\varepsilon}\}$, where n'_{ε} and n''_{ε} are as in the first part of the proof. Observe that $Y_n \cup S'^{1}_{n+1} \subseteq Y$ is a closed subspace. Define $s' : Y \to Y_n \cup S'^{1}_{n+1}$ by putting

$$s'(y) = \begin{cases} y, & y \in Y_n, \\ \varrho'(y), & y \in T'_{n+1}, \\ (0,0,0), & y \in Y \setminus Y'_{n+1}. \end{cases}$$

where $\varrho': T'_{n+1} \to S'^{1}_{n+1}$ is a retraction of the torus onto the circle. It is clear that s' is a retraction satisfying

$$d(s'(y), y) < \varepsilon$$
 for every $y \in Y$.

Further, $X_n \cup S^1 \subseteq Z = X \cup S^1$ is a closed subspace. Define $r' : Z \to X_n \cup S^1$ by putting

$$r'(z) = \begin{cases} r(z), & z \in X, \\ z, & z \in S^1, \end{cases}$$

where $r: X \to X_n$ is the retraction defined in the first part of the proof. Consequently, r' is a retraction satisfying

 $d(r'(z), z) < \varepsilon$ for every $z \in Z$.

Observe that Y_n , S_{n+1}^1 and $Y_n \cup S_{n+1}^1$ are homeomorphic to X_n , S^1 and $X_n \cup S^1$ respectively, and that $Y_n \cap S_{n+1}^1 = \{(0,0,0)\} = X_n \cap S^1$. Let

$$h': Y_n \cup S_{n+1}^1 \to X_n \cup S^1$$

be a homeomorphism (also on each summand, and keeping (0, 0, 0) fixed), and let

$$j': Y_n \cup S_{n+1}^1 \hookrightarrow Y \text{ and } i': X_n \cup S^1 \hookrightarrow Z$$

be the inclusion mappings. Put

$$f' = i'h's' : Y \to Z$$
 and $g' = j'h'^{-1}r' : Z \to Y.$

Let $y \in Y$. If $y \in Y_n$, then s'(y) = y and $h's'(y) = h'(y) \in X_n$, and thus i'h's'(y) = h'(y) and r'i'h's'(y) = r'h'(y) = h'(y). Therefore,

$$f'(y) = j'h'^{-1}r'i'h's'(y) = j'h'^{-1}h'(y) = j'(y) = y = s'(y).$$

If $y \in T'_{n+1}$, then $s'(y) = \varrho'(y) \in S^1_{n+1}$ and $h's'(y) = h'\varrho'(y) \in S^1$, and thus $i'h's'(y) = h'\varrho'(y) \in S^1$ and $r'i'h's'(y) = h'\varrho'(y)$. Therefore,

$$g'f'(y) = j'h'^{-1}r'i'h's'(y) = j'h'^{-1}h'\varrho'(y) = j'\varrho'(y) = \varrho'(y) = s'(y).$$

If $y \in Y \setminus Y_{n+1}$, then s'(y) = (0,0,0) and h's'(y) = (0,0,0), and thus i'h's'(y) = (0,0,0) and r'i'h's'(y) = (0,0,0). Therefore,

 $g'f'(y) = j'h'^{-1}r'i'h's'(y) = j'h'^{-1}(0,0,0) = j(0,0,0) = (0,0,0) = s'(y).$ Concernently,

Consequently,

$$d(g'f'(y), y) = d(s'(y), y) < \varepsilon$$
 for every $y \in Y$.

In a similar way one can verify that

$$d(f'g'(z), z) = d(r'(z), z) < \varepsilon$$
 for every $z \in Z$.

By Lemma 4, Y is quasi-equivalent to Z.

It remains to prove that X is not quasi-equivalent to Z. For every $i \in \mathbb{N}$ and every $j \in \mathbb{N}$, let (T_i^j, t_i) be a copy of a pointed torus $(\mathbb{T}, *)$. For every $i \in \mathbb{N}$, let

$$(X'_i, x'_i) = (T^1_i, t_i) \lor \cdots \lor (T^i_i, t_i).$$

We may assume that $(X'_{i+1}, x'_{i+1}) = (X'_i, x'_i) \lor (T^{i+1}_{i+1}, t_{i+1}), i \in \mathbb{N}$. Let

$$p_{i,i+1}: X'_{i+1} \to X'_i, \quad i \in \mathbb{N},$$

be defined by requiring that the restrictions

 $p_{i,i+1}|X'_i:X'_i \to X'_i \text{ and } p_{i,i+1}|T^{i+1}_{i+1}:T^{i+1}_{i+1} \to T^i_i \subseteq X'_i$

be the identities. Notice that $p_{i,i+1}: (X'_{i+1}, x'_{i+1}) \to (X'_i, x'_i)$ is a base point preserving map.

Consider the pointed (compact ANR) inverse sequence $(\underline{X}, \underline{*}) = ((X'_i, x'_i), p_{i,i+1})$ and its limit $\underline{p}_* = (p_i) : (X', *) = \lim(\underline{X}, \underline{*}) \to (\underline{X}, \underline{*})$. Further, for every $j \in \mathbb{N}$, let

$$(Z'_j, z'_j) = (X'_j, x'_j) \lor (Z_j, z_j),$$

where (Z_j, z_j) is a copy of a pointed circle $(\mathbb{S}^1, *)$. Let

$$q_{j,j+1}: (Z'_{j+1}, z'_{j+1}) \to (Z'_j, z'_j), \quad j \in \mathbb{N},$$

be $p_{j,j+1}$ on X'_{j+1} and the identity on the copy of \mathbb{S}^1 . Consider the pointed (compact ANR) inverse sequence $(\underline{Z}, \underline{*}) = ((Z'_j, z'_j), q_{j,j+1})$ and its limit $\underline{q}_* = (q_j) : (Z', *) = \lim(\underline{Z}, \underline{*}) \to (\underline{Z}, \underline{*}).$

CLAIM. (X', *) is homeomorphic to (X, (0, 0, 0)), and (Z', *) is homeomorphic to (Z, (0, 0, 0)).

By construction,

$$Z = X \cup S^1, \ (Z, (0, 0, 0)) \approx (X, (0, 0, 0)) \lor (\mathbb{S}^1, *), \ (Z', *) \approx (X', *) \lor (\mathbb{S}^1, *).$$

Further, all the mappings preserve base points. Thus, it suffices to prove that $X' \approx X$. Let $\underline{p}' = (p'_i) : X \to \underline{X}$ be defined by

$$p'_i = h_i r_i : X \to X'_i, \quad i \in \mathbb{N},$$

where h_i is determined by the obvious homeomorphisms on the corresponding tori. Then \underline{p}' distinguishes points and every p'_i is surjective. By applying Theorem 6 of [6, I.5.2], we infer that $\underline{p}': X \to \underline{X}$ is the limit. Therefore, Xand X' are homeomorphic.

 Set

$$H\underline{X} = (X'_i, [p_{i,i+1}]) \equiv \mathbf{X} \text{ and } H\underline{Z} = (Z'_j, [q_{j,j+1}]) \equiv \mathbf{Z}$$

According to Theorem 1, it remains to prove that X is not quasi-equivalent to Z. Suppose, on the contrary, that $X \stackrel{q}{\simeq} Z$. Then, by Definition 2 and Remark 1, for every $n \in \mathbb{N}$, there exist special morphisms $f^n : X \to Z$ and $g^n : Z \to X$ such that $g^n f^n \simeq_n 1_X$ and $f^n g^n \simeq_n 1_Z$. Let n = 1, and write $f^1 \equiv f = (f, [f_j])$ and $g^1 \equiv g = (g, [g_i])$. Since all X'_i and Z'_j are ANR-continua, one may assume that all the mappings f_j and g_i preserve the base points. Since $gf \simeq_1 1_X$, the diagram

commutes up to homotopy. Let us apply the fundamental group functor π_1 to the left triangle of (\star) (the choice of base points is irrelevant):

$$\pi_{1}(T_{1}^{1}) \underbrace{\qquad} \\ \pi_{1}(T_{fg(1)}^{1}) * \cdots * \pi_{1}(T_{fg(1)}^{fg(1)}) \\ \underbrace{\qquad} \\ g_{1\#} \underbrace{\qquad} \\ \pi_{1}(T_{g(1)}^{1}) * \cdots * \pi_{1}(T_{g(1)}^{g(1)}) * \pi_{1}(S^{1}) \\ \end{array}$$

Recall that the fundamental group of a finite wedge is the corresponding free product (by van Kampen's theorem, [3, Theorem 3.1, p. 122]), and that the fundamental groups of a circle and of a torus are \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z} \equiv \mathbb{Z}^2$ respectively. Observe that $f_{g(1)\#}|\pi_1(T^i_{fg(1)})$ is a monomorphism of \mathbb{Z}^2 into $\mathbb{Z}^2 * \cdots * \mathbb{Z}^2 * \mathbb{Z}$, for every $i = 1, \ldots, fg(1)$. Thus,

$$\mathbb{Z}^2 \cong (f_{g(1)\#} | \pi_1(T^i_{fg(1)}))(\mathbb{Z}^2) \le \mathbb{Z}^2 * \cdots * \mathbb{Z}^2 * \mathbb{Z}.$$

From the Kurosh subgroup theorem ([7, Theorem 1.10, p. 178]) it follows that if $H \leq G = G_1 * \cdots * G_n$, then $H \cong F * H_1^{\sigma_1} * \cdots * H_n^{\sigma_n}$, where every H_i is a subgroup of some G_j , every $\sigma_i \in G$ and F is a free group.

Recall also that \mathbb{Z}^2 is not decomposable into a free product (see [7, Proposition 15.14, p. 107]). Since \mathbb{Z}^2 is not a free group, the Kurosh subgroup theorem implies that $\mathbb{Z}^2 \cong (f_{g(1)\#} | \pi_1(T^i_{fg(1)}))(\mathbb{Z}^2) \cong H^{\sigma_i}_i, H_i \leq \pi_1(T^j_{g(1)}) \cong \mathbb{Z}^2$, for some $j \in \{1, \ldots, g(1)\}$, and $\sigma_i \in \pi_1(T^1_{g(1)}) * \cdots * \pi_1(T^{g(1)}_{g(1)}) * \pi_1(S^1) \cong$

A. Kadlof et al.

$$\mathbb{Z}^2 * \cdots * \mathbb{Z}^2 * \mathbb{Z}. \text{ Let } a \in \pi_1(T^i_{fg(1)}), i \in \{1, \dots, fg(1)\}. \text{ Then}$$
$$f_{g(1)\#}(a) = \sigma b \sigma^{-1}, \quad \sigma \in \mathbb{Z}^2 * \cdots * \mathbb{Z}^2 * \mathbb{Z}, b \in \pi_1(T^j_{g(1)})$$

for some $j \in \{1, \ldots, g(1)\}$. Since $f_{g(1)\#}|\pi_1(T^i_{fg(1)})$ is a monomorphism, its image in $\mathbb{Z}^2 * \cdots * \mathbb{Z}^2 * \mathbb{Z}$ must be isomorphic to $\pi_1(T^j_{g(1)}) \cong \mathbb{Z}^2$ for some $j \in \{1, \ldots, g(1)\}$. Consequently, if $a_1 \cdots a_m \in \pi_1(T^1_{fg(1)}) * \cdots * \pi_1(T^{fg(1)}_{fg(1)})$, where $a_k \in \pi_1(T^{i_k}_{fg(1)})$, then

$$f_{g(1)\#}(a_1\cdots a_m) = \sigma_1 b_1 \sigma_1^{-1} \cdots \sigma_m b_m \sigma_m^{-1},$$

for some $\sigma_k \in \mathbb{Z}^2 * \cdots * \mathbb{Z}^2 * \mathbb{Z}$ and $b_k \in \pi_1(T_{g(1)}^{j_k}), k = 1, \dots, m, j_k \in \{1, \dots, g(1)\}.$

Further, the right rectangle of (\star) yields the commutative diagram

which means $f_{g(1)\#}p_{fg(1)f(j)\#} = q_{g(1)j\#}f_{j\#}$. Since $p_{ii'}$ and $q_{jj'}$ are defined in a special way (by the identity mappings on the corresponding copies), one readily sees that, for every $j \ge g(1)$, the restriction $f_{j\#}|\pi_1(T^i_{f(j)})$ is also a monomorphism. Therefore, by following the same arguments, one can find that $f_{j\#}$ acts via a formula analogous to that for $f_{g(1)\#}$.

Consider now the relation $fg \simeq_1 1_{\mathbf{Z}}$ inducing the retraction

$$r: Z'_1 = T^1_1 \lor S^1 \to S^1, \quad r[T^1_1] = \{*\},$$

i.e. the following diagram:

(Caution: The right triangle might not homotopy commute, though the rectangle and the left triangle must homotopy commute!) Applying π_1 to the left triangle and to the rectangle yields the commutative diagrams

226

 π

Now, the composition

$$r_{\#}f_{1\#}g_{f(1)\#}:\mathbb{Z}^2*\cdots*\mathbb{Z}^2*\mathbb{Z}\to\mathbb{Z}$$

is the trivial homomorphism because $r_{\#}f_{1\#}$ is trivial. Namely, the restrictions of the bonding homomorphisms are the identities on the corresponding copies, $f_{1\#}p_{f(1)fgf(1)\#} = q_{1gf(1)\#}f_{gf(1)\#}, gf(1) \ge g(1)$ and we have already proved how $f_{gf(1)\#}$ acts. Thus, for every $a \in \pi_1(T_{f(1)}^i), i \in \{1, \ldots, f(1)\}$, we have $f_{1\#}(a) = \sigma b \sigma^{-1}$ for some $b \in \pi_1(T_1^1), \sigma \in \pi_1(T_1^1) * \pi_1(S^1)$. Therefore, $r_{\#}f_{1\#}(a) = r_{\#}(\sigma b \sigma^{-1}) = r_{\#}(\sigma)r_{\#}(\sigma^{-1})$, and hence $r_{\#}f_{1\#}$ must be trivial. On the other hand, by the definitions of the relevant mappings, the composition

$$r_{\#}q_{1gf(1)\#}:\mathbb{Z}^2*\cdots*\mathbb{Z}^2*\mathbb{Z}\to\mathbb{Z}$$

preserves the free factor $\pi_1(S^1) \cong \mathbb{Z}$, so it is not trivial. Therefore, the two displayed compositions cannot be equal.

References

- [1] K. Borsuk, Theory of Shape, Monografie Mat. 59, Polish Sci. Publ., Warszawa, 1975.
- [2] —, Some quantitative properties of shapes, Fund. Math. 93 (1976), 197–212.
- [3] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.
- [4] S. Mardešić and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41–59.
- [5] —, —, Equivalence of the Borsuk and the ANR-system approach to shape, ibid. 72 (1971), 61–78.
- [6] —, —, Shape Theory, North-Holland, Amsterdam, 1982.
- [7] W. S. Massey, Algebraic Topology: An Introduction, Springer, New York, 1977.
- [8] N. Uglešić, A note on the Borsuk quasi-equivalence, submitted.

Warsaw University, Poland E-mail: akadlof@mks.com.pl Department of Mathematics University of Split Teslina 12/III, 21000 Split, Croatia E-mail: koceic@pmfst.hr uglesic@pmfst.hr

Received 12 September 2005; in revised form 26 October 2007