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Borsuk’s quasi-equivalence is not transitive

by

Andrzej Kadlof (Warszawa), Nikola Koceić Bilan (Split)
and Nikica Uglešić (Split)

Abstract. Borsuk’s quasi-equivalence relation on the class of all compacta is consid-
ered. The open problem concerning transitivity of this relation is solved in the negative.
Namely, three continua X, Y and Z lying in R

3 are constructed such that X is quasi-
equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.

1. Introduction. In [2] K. Borsuk defined a certain relation on the class

cM of all (metrizable) compacta, called quasi-equivalence and denoted by
q
≃.

Let us recall its definition (in the original terms of fundamental sequences;
see [1]).

Consider any two compacta X and Y lying in AR-spaces M and N re-
spectively, and a neighbourhood V of Y in N. Two fundamental sequences
f = {fk, X, Y }M,N , f ′ = {f ′

k, X, Y }M,N are said to be V -homotopic (no-
tation: f ≃

V
f ′) if there exists a neighbourhood U0 of X in M such that

fk|U0 ≃ f ′
k|U0 in V for almost all k. (If V is open, then the condition re-

duces to fk|X ≃ f ′
k|X in V for almost all k.)

Let, in addition, U be a neighbourhood of X in M . Then X and Y are
said to be (U, V )-equivalent in M , N (notation: X ≃

(U,V )
Y ) if there exist

two fundamental sequences f = {fk, X, Y }M,N , g = {gk, Y, X}N,M such
that gf ≃

U
iX,M and fg ≃

V
iY,N , where iX,M (resp. iY,N ) is the fundamental

identity sequence for X in M (resp. Y in N).

Further, Borsuk defined X and Y to be quasi-equivalent in M, N (no-

tation: X
q
≃ Y in M, N) if X ≃

(U,V )
Y for every neighbourhood U of X in

M and every neighbourhood V of Y in N . After proving that the choice of
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the ambient AR-spaces M and N is immaterial, he defined X and Y to be

quasi-equivalent (notation: X
q
≃ Y ) if X

q
≃ Y in some M, N .

Borsuk proved that quasi-equivalence is a shape invariant relation and
that it is strictly coarser than shape type, i.e.

(X
q
≃ Y ) ∧ (h(X) = h(X ′)) ∧ (Sh(Y ) = Sh(Y ′))⇒ X ′ q

≃ Y ′;

Sh(X) = Sh(Y )⇒ X
q
≃ Y ;

(∃X, Y ) (X
q
≃ Y ) ∧ (Sh(X) 6= Sh(Y )).

For instance, all infinite 0-dimensional compacta are quasi-equivalent ([2,
Theorem (6.3)]), while their shape types coincide with the topological types
([4, Theorem 20]). Further, in the case of compact ANR’s, quasi-equivalence
reduces to shape type, and hence to homotopy type. One should also men-
tion that quasi-equivalence preserves some important shape invariants (Betti
numbers, movability; [2, Theorems (10.3), (11.1)]). However, it has remained
unknown whether quasi-equivalence is indeed an equivalence relation. Specif-
ically, Borsuk stated the following question ([2, Problem (7.13)]): “Is the
relation of quasi-equivalence transitive?”.

A few months ago, the third named author found by chance an old
unpublished manuscript of the first named author, containing a certain ex-
ample intended to show that quasi-equivalence is not transitive. Unfortu-
nately, an analysis by the second named author showed that the proof was
incorrect. However, there was a strong feeling that the example might be
appropriate. In this paper we provide a correct proof by using the same
example (only the notation is slightly changed).

Thus, Borsuk’s quasi-equivalence relation is not transitive because there
exist continua X, Y and Z, lying in the Euclidian space R

3, such that X
is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not
quasi-equivalent to Z.

2. Preliminaries. The preliminary step in our considerations is to char-

acterize
q
≃ in terms of the Mardešić–Segal shape category (see [8]).

Recall the inv-category HTopN (see [6]). The objects are all inverse se-
quences X = (Xi, [pii′ ]), Y = (Yj, [qjj′ ]), . . . of topological spaces with the
homotopy classes of mappings as bonding arrows, while the morphisms f :
X → Y are of the form f = (f, [fj ]), where f : N→ N and fj : Xf(j) → Yj,
j ∈ N, are such that for every pair j ≤ j′ there exists an i ≥ f(j), f(j′)
satisfying

[fj ][pf(j)i] = [qjj′ ][fj′ ][pf(j′)i].

The composition of f : X → Y and g = (g, [gk]) : Y → Z is the morphism

h ≡ gf = (fg, [gkfg(k)]) : X → Z,
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while the identity morphism on X is 1X = (1N, [1Xi
]). With the natural

equivalence relation f ≃ f ′, i.e. for every j there exists an i ≥ f(j), f ′(j)
such that

[fj ][pf(j)i] = [f ′
j ][pf ′(j)i],

one obtains the corresponding quotient category HTopN/≃, i.e. the pro-
category tow-HTop. The class of a morphism f is denoted by [f ]. Recall
that every class [f ] admits a special representative f ′, which means that for
every pair j ≤ j′,

[f ′
j ][pf ′(j)f ′(j′)] = [qjj′ ][f

′
j′ ].

The quotient (sub)category HcANRN/≃ is the full subcategory tow-HcANR
of tow-HTop (the terms Xi, Yj , . . . of its inverse sequences are compact
ANR’s). It represents the Mardešić–Segal shape category Sh of compact
metrizable spaces (see [6, Chap. I]). Namely,

Ob(Sh) = Ob(cM), Sh(X, Y ) ≈ tow-HcANR(X, Y ),

where X, Y are any compact ANR-sequences associated with X, Y respec-
tively, i.e. X = HX and Y = HY , where limX = X and limY = Y , and
H denotes the passage from an inverse sequence to the inverse sequence
consisting of the same terms and of the homotopy classes of the given bond-
ing mappings. For such a pair X, Y , the set tow-HcANR(X, Y ) represents
Sh(X, Y ).

It is a well-known fact ([5]; [1, Chap. IX]) that the Borsuk and Mardešić–
Segal shape theories for compacta are equivalent. The following definitions
and facts can be found in [8].

Definition 1. Let f = (f, [fj ]), f
′ = (f ′, [f ′

j ]) : X → Y be morphisms
of inverse sequences, and let s ∈ N. Then f is said to be s-homotopic to
f ′, denoted by f ≃s f ′, provided for every j ∈ [1, s]N there exists an ij ≥
f(j), f ′(j) such that

[fj ][pf(j)ij ] = [f ′
j ][pf ′(j)ij ].

Observe that f ≃ f ′ if and only if f ≃s f ′ for every s ∈ N.

Lemma 1.

(i) For every s ∈ N, the relation ≃s is an equivalence relation on each

set HTopN(X, Y ).
(ii) For every pair s ≤ s′, f ≃s′ f ′ implies f ≃s f ′. Moreover , for

every s ∈ N, the relation ≃s is natural from the right in the category

HTopN, i.e. for every h : W → X, f ≃s f ′ implies fh ≃s f ′h.
On the other hand , if g : Y → Z, then f ≃s f ′ implies gf ≃t gf ′

whenever g[[1, t]N] ⊆ [1, s]N.
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Definition 2. Let X and Y be compact ANR-sequences. Then X is

said to be quasi-equivalent to Y , denoted by X
q
≃ Y , provided, for every

n ∈ N, there exist morphisms f : X → Y and g : Y → X such that
gf ≃n 1X and fg ≃n 1Y .

Lemma 2. The relation
q
≃ is isomorphism (i.e. shape) invariant in tow-

HcANR.

Proof. Let X
q
≃ Y and let X ∼= X ′ in tow-HcANR. By definition,

there exist sequences of maps fn : X → Y and gn : Y → X satisfying
gnfn ≃n 1X and fngn ≃n 1Y , n ∈ N. Further, there exist morphisms
u : X → X ′ and v : X ′ → X such that vu ≃ 1X and uv ≃ 1X

′ . Notice
that

(∀m ∈ N)(∃sm ≥ m) u[[1, m]N] ⊆ [1, sm]N.

For each m, let

vm ≡ f smv : X ′ → Y and um ≡ ugsm : Y →X ′.

Now, according to Lemma 1,

gsmf sm ≃sm 1X ⇒ gsmf smv ≃sm v ⇒

ugsmf smv ≃m uv ≃ 1X
′ ⇒ umvm ≃m 1X

′ ;

vu ≃ 1X ⇒ vugsm ≃ gsm ⇒

f smvugsm ≃ f smgsm ≃sm 1Y ⇒ vmum ≃m 1Y .

Thus, X ′ q
≃ Y . In the same way one proves that X

q
≃ Y and Y ∼= Y ′ imply

X
q
≃ Y ′. Therefore,

q
≃ is an isomorphism invariant relation in the category

tow-HcANR.

In order to compare Borsuk’s quasi-equivalence on compacta to the new

relation
q
≃ on Ob(tow-HcANR), we shall prove the following lemma:

Lemma 3. Let X and Y be compacta in the Hilbert cube Q, and let

X = (Xi, pii′) and Y = (Yj , qjj′) be any associated inclusion compact ANR-

sequences respectively. Let g = {gk, X, Y } and g′ = {g′k, X, Y } be fundamen-

tal sequences (in Q) and let f = (f, [fj ]) and f ′ = (f ′, [f ′
j ]) be morphisms

of HcANRN(X, Y ), where X = HX and Y = HY . If g = {gk, X, Y } and

f = (f, [fj]) as well as g′ = {g′k, X, Y } and f ′ = (f ′, [f ′
j]) are related , then

(i) for every n ∈ N there exists a neighbourhood V of Y in Q such that

g ≃
V

g′ implies f ≃n f ′;

(ii) for every neighbourhood V of Y in Q there exists an n ∈ N such

that f ≃n f ′ implies g ≃
V

g′.
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Proof. In this case “to be related” means (see [5] or [1, IX.4])

fj = gf(j)|Xf(j) : Xf(j) → Yj , j ∈ N,

gi|Xf(j) ≃ gf(j)|Xf(j) in Yj , i ≥ f(j),

and, similarly,

f ′
j = g′f ′(j)|Xf ′(j) : Xf ′(j) → Yj , j ∈ N,

g′i|Xf ′(j) ≃ g′f ′(j)|Xf ′(j) in Yj, i ≥ f ′(j).

Moreover, we may assume that the index functions f and f ′ are increasing.
Now, for (i), if an n ∈ N is given, choose V = Yn. Then choose a U0 ⊇ X
in Q coming from g ≃

V
g′, and an i0 ∈ N such that Xi0 ⊆ U0. Let in =

max{f(n), f ′(n), i0}. By choosing ij = in for every j ∈ [1, n]N, the relation
f ≃n f ′ is established. Further, for (ii), if a V ⊇ Y in Q is given, choose
the minimal n ∈ N such that Yn ⊆ V . Let i0 ∈ N be the maximum of all ij
coming from f ≃n f ′. Then g ≃

V
g′ is realized via U0 = Xi0 .

Theorem 1. Let X and Y be compacta and let X and Y be compact

ANR-sequences associated with X and Y respectively. Then

X
q
≃ Y ⇔ X

q
≃ Y .

Consequently , X and Y are quasi-equivalent , X
q
≃ Y , if and only if , for

every n ∈ N, there exist morphisms fn : X → Y and gn : Y → X such

that gnfn ≃n 1X and fngn ≃n 1Y .

Proof. Recall that every compact metrizable space is, up to homeo-
morphism, the intersection of a decreasing sequence of compact ANR-neigh-
bourhoods in the Hilbert cube. Further, recall (see [5] or [1, IX.4]) that
every fundamental sequence g = {gk, X, Y } admits a related morphism
f : X → Y and vice versa. According to Lemma 3, since Borsuk’s quasi-

equivalence is shape invariant, X
q
≃ Y implies that there exist countable

families (f (n,n′)) and (g(n,n′)), (n, n′) ∈ N×N, of morphisms f (n,n′) : X → Y

and g(n,n′) : Y →X such that

g(n,n′)f (n,n′) ≃n′ 1X and f (n,n′)g(n,n′) ≃n 1Y .

Clearly, by Lemma 1, both homotopies hold up to min{n, n′}. Thus, by

Definition 2 and Lemma 2, the necessity part follows. Conversely, let X
q
≃ Y ,

i.e. let there exist morphisms fn : X → Y and gn : Y → X, n ∈ N, such
that

gnfn ≃n 1X and fngn ≃n 1Y .

Given an ordered pair (n, n′) ∈ N× N, put

f (n,n′) = fm and g(n,n′) = gm, where m = max{n, n′}.

Then X
q
≃ Y according to Lemmata 3 and 1.
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Remark 1. We may assume, without loss of generality, that all the mor-

phisms realizing the relations X
q
≃ Y are special with (strictly) increasing

index functions. We may also assume that n′ ≥ n implies fn′

≥ fn, and sim-
ilarly for all other index functions. Further, the conditions gnfn ≃n 1X etc.
may be relaxed to gnfn ≃sn 1X etc., where (sn) is an unbounded sequence
in N ∪ {0}.

To end this section we give a useful sufficient condition for a pair of
compacta to be quasi-equivalent; it was formulated and proved earlier in
the above mentioned manuscript.

Lemma 4. Let X, Y be a pair of compacta satisfying the following con-

dition: For every ε > 0 there exist mappings f : X → Y and g : Y → X
such that

(∀x ∈ X) dX(gf(x), x) < ε and (∀y ∈ Y ) dY (fg(y), y) < ε.

Then X and Y are quasi-equivalent.

Proof. Without loss of generality, we may assume that X and Y lie in
the Hilbert cube Q. Let U , V be any pair of neighbourhoods of X, Y in Q
respectively. There exist compact ANR’s U ′, V ′ such that X ⊆ U ′ ⊆ IntU
and Y ⊆ V ′ ⊆ IntV . Let i : X →֒ U ′ and j : Y →֒ V ′ be the inclusion
mappings. It is well known that there exists an ε > 0 such that each pair of
ε-near mappings of a metrizable space into U ′ (or into V ′) is homotopic. By
assumption, there exist mappings f : X → Y and g : Y → X such that gf
and 1X as well as fg and 1Y are ε-near. Consequently, gfi, i : X →֒ U ′ as well
as fgj, j : Y →֒ V ′ are ε-near. Therefore, gfi ≃ i and fgj ≃ j. This means
gf ≃ 1X in U ′ ⊆ IntU and fg ≃ 1Y in V ′ ⊆ IntV . Let f = {fk, X, Y } and
g = {gk, Y, X} be fundamental sequences generated by f and g respectively.

Now, apply the following fact (mentioned in the introduction):

Let A and B be compacta lying in Q, let W be an open neighbourhood
of B in Q and let h = {hk, A, B}, h′ = {h′

k, A, B} be fundamental sequences.
Then h ≃

W
h′ if and only if hk|A ≃ h′

k|A in W for almost all k ∈ N.

Consequently, gf ≃
U

iX and fg ≃
V

iY , where iX and iY are the iden-

tity fundamental sequences for X in Q and Y in Q respectively. Therefore,

X
q
≃ Y .

3. The example. Let X be an infinite countable one-point union of
pointed tori converging to the limit torus. Further, let Y be an infinite
countable one-point union of pointed tori converging to the base point. Fi-
nally, let Z be the one-point union of X and a pointed circle. An explicit
construction is given below.
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For every k ∈ N, let Ak = S1
k ∪ Σ1

k ⊆ R
3, where S1

k and Σ1
k are the

following circles:

S1
k =

{

(ξ, η, 0)

∣

∣

∣

∣

(

ξ −
2k + 3

2k + 2

)2

+ η2 =

(

2k + 3

2k + 2

)2}

,

Σ1
k =

{

(ξ, η, 0)

∣

∣

∣

∣

(

ξ −
2k + 3

2k + 2

)2

+ η2 =

(

6k + 1

8k + 8

)2}

.

Further, let

S1
∞ = {(ξ, η, 0) | (ξ − 1)2 + η2 = 1} ⊆ R

3,

Σ1
∞ = {(ξ, η, 0) | (ξ − 1)2 + η2 = 9/16} ⊆ R

3.

Notice that Ak ∩ Ak′ = S1
k ∩ S1

k′ = {(0, 0, 0)} whenever k 6= k′ ∈ N ∪ {∞},

lim(S1
k) = S1

∞ and lim(Σ1
k) = Σ1

∞. For every k ∈ N ∪ {∞}, let Tk ⊆ R
3

be a torus, symmetric with the respect to the (ξ, η)-plane R
2, such that

Tk ∩ (R2 × {0}) = Ak. One can easily achieve that Tk ∩ Tk′ = {(0, 0, 0)}
whenever k 6= k′ ∈ N ∪ {∞}, and lim(Tk) = T∞. Let

X =
⋃

k∈N∪{∞}

Tk.

Similarly, for every k ∈ N, let A′
k = S′1

k ∪Σ′1
k ⊆ R

3, where

S′1
k =

{

(ξ, η, 0)

∣

∣

∣

∣

(

ξ −
1

23k−3

)2

+ η2 =

(

1

23k−3

)2}

,

Σ′1
k =

{

(ξ, η, 0)

∣

∣

∣

∣

(

ξ −
1

23k−3

)2

+ η2 =

(

1

23k−2

)2}

.

Notice that A′
k ∩ A′

k′ = S′1
k ∩ S′1

k′ = {(0, 0, 0)} whenever k 6= k′ ∈ N, and
lim(S′1

k ) = lim(Σ′1
k ) = {(0, 0, 0)}. For every k ∈ N, let T ′

k ⊆ R
3 be a torus,

symmetric with respect to the (ξ, η)-plane R
2, such that T ′

k∩(R2×{0}) = A′
k,

T ′
k ∩ T ′

k′ = {(0, 0, 0)} whenever k 6= k′, and lim(T ′
k) = {(0, 0, 0)}. Let

Y =
⋃

k∈N

T ′
k.

Finally, let

Z = X ∪ S1, where S1 = {(ξ, η, 0) | (ξ + 1)2 + η2 = 1}.

Clearly, the subspaces X, Y and Z of R
3 are compact and path connected.

Theorem 2. Borsuk’s quasi-equivalence relation is not transitive.

Proof. Consider the continua X, Y and Z defined above. It suffices to

prove that X
q
≃ Y and Y

q
≃ Z, and that X is not quasi-equivalent to Z. Fix

ε > 0. Then there exists an n′
ε ∈ N such that 9/(8(n′

ε + 1)) < ε. Given any
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n′ ≥ max{8, n′
ε}, set Xn′ =

⋃

k≤n′ Tk ⊆ X, which is a closed subspace. Let
rn′ : X → Xn′ be defined by

rn′(x) =

{

x, x ∈ Xn′ ,

̺n′(x), x ∈ X \Xn′ ,

where ̺n′ :
⋃

k>n′ Tk → Tn′ is the radial mapping (“blowing up”) from
the circle passing through the middle of the bounded component of R

3 \T∞.
Clearly, for every k ∈ {n′+1, n′+2, . . .}∪{∞}, ̺n′ |Tk : Tk → Tn′ is a homeo-
morphism, ̺n′ [Sk] = Sn′ , ̺n′ [Σk] = Σn′ and ̺n′(0, 0, 0) = (0, 0, 0). Observe
that rn′ is a retraction. Further, the distance between rn′(x) and x reaches
its maximum for some x = (ξ, η, ζ) ∈ {(1/4, 0, 0), (7/4, 0, 0), (2, 0, 0)} ⊆ A0.
Since

̺n′

(

1

4
, 0, 0

)

=
9

8(n′ + 1)
, ̺n′

(

7

4
, 0, 0

)

=
1

8(n′ + 1)
, ̺n′(2, 0, 0) =

1

n′
,

and n′ ≥ 8, the maximal distance is 9/(8(n′ + 1)). Thus, for every x ∈ X,

d(rn′(x), x) ≤
9

8(n′ + 1)
≤

9

8(n′
ε + 1)

< ε

whenever n′ ≥ max{8, n′
ε}.

Similarly, there exists an n′′
ε ∈ N such that T ′

k ⊆ B((0, 0, 0), ε) for every
k ≥ n′′

ε , where B((0, 0, 0), ε) is the ε-ball at the origin in R
3. Given any

n′′ ≥ n′′
ε , set Yn′′ =

⋃

k≤n′′ T ′
k ⊆ Y , which is a closed subspace. Let sn′′ :

Y → Yn′′ be defined by

sn′′(y) =

{

y, y ∈ Yn′′ ,

(0, 0, 0), y ∈ Y \ Yn′′ .

It is obvious that sn′′ is a retraction and that

d(sn′′(y), y) < ε holds for every y ∈ Y .

Consider now an n ≥ max{8, n′
ε, n

′′
ε} and observe that the subspaces Xn

and Yn are homeomorphic. Let h : Xn → Yn be a homeomorphism, and let
r : X → Xn and s : Y → Yn be defined as above, i.e. r = rn and s = sn. Put

f = jhr : X → Y and g = ih−1s : Y → X,

where i : Xn →֒ X and j : Yn →֒ Y are the inclusion mappings. Let x ∈ X.
If x ∈ Xn, then r(x) = x and hr(x) = h(x) ∈ Yn, and thus jhr(x) = h(x)
and sjhr(x) = sh(x) = h(x). Therefore,

gf(x) = ih−1sjhr(x) = ih−1h(x) = x = r(x).

If x ∈ X \Xn, then r(x) = ̺(x) and hr(x) = h̺(x) ∈ Yn, and thus jhr(x) =
h̺(x) and sjhr(x) = sh̺(x) = h̺(x). Therefore,

gf(x) = ih−1sjhr(x) = ih−1h̺(x) = i̺(x) = ̺(x) = r(x).
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Consequently,

d(gf(x), x) = d(r(x), x) < ε for every x ∈ X.

In a similar way one can verify that

d(fg(y), y) = d(s(y), y) < ε for every y ∈ Y .

According to Lemma 4, X is quasi-equivalent to Y .
Let us now prove that Y is quasi-equivalent to Z. Fix ε > 0. Choose an

n ≥ max{8, n′
ε, n

′′
ε}, where n′

ε and n′′
ε are as in the first part of the proof.

Observe that Yn∪S′1
n+1 ⊆ Y is a closed subspace. Define s′ : Y → Yn∪S′1

n+1

by putting

s′(y) =







y, y ∈ Yn,

̺′(y), y ∈ T ′
n+1,

(0, 0, 0), y ∈ Y \ Y ′
n+1,

where ̺′ : T ′
n+1 → S′1

n+1 is a retraction of the torus onto the circle. It is clear
that s′ is a retraction satisfying

d(s′(y), y) < ε for every y ∈ Y .

Further, Xn∪S1 ⊆ Z = X∪S1 is a closed subspace. Define r′ : Z → Xn∪S1

by putting

r′(z) =

{

r(z), z ∈ X,

z, z ∈ S1,

where r : X → Xn is the retraction defined in the first part of the proof.
Consequently, r′ is a retraction satisfying

d(r′(z), z) < ε for every z ∈ Z.

Observe that Yn, S1
n+1 and Yn ∪ S1

n+1 are homeomorphic to Xn, S1 and
Xn ∪ S1 respectively, and that Yn ∩ S1

n+1 = {(0, 0, 0)} = Xn ∩ S1. Let

h′ : Yn ∪ S1
n+1 → Xn ∪ S1

be a homeomorphism (also on each summand, and keeping (0, 0, 0) fixed),
and let

j′ : Yn ∪ S1
n+1 →֒ Y and i′ : Xn ∪ S1 →֒ Z

be the inclusion mappings. Put

f ′ = i′h′s′ : Y → Z and g′ = j′h′−1r′ : Z → Y.

Let y ∈ Y . If y ∈ Yn, then s′(y) = y and h′s′(y) = h′(y) ∈ Xn, and thus
i′h′s′(y) = h′(y) and r′i′h′s′(y) = r′h′(y) = h′(y). Therefore,

g′f ′(y) = j′h′−1r′i′h′s′(y) = j′h′−1h′(y) = j′(y) = y = s′(y).

If y ∈ T ′
n+1, then s′(y) = ̺′(y) ∈ S1

n+1 and h′s′(y) = h′̺′(y) ∈ S1, and thus
i′h′s′(y) = h′̺′(y) ∈ S1 and r′i′h′s′(y) = h′̺′(y). Therefore,

g′f ′(y) = j′h′−1r′i′h′s′(y) = j′h′−1h′̺′(y) = j′̺′(y) = ̺′(y) = s′(y).
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If y ∈ Y \ Yn+1, then s′(y) = (0, 0, 0) and h′s′(y) = (0, 0, 0), and thus
i′h′s′(y) = (0, 0, 0) and r′i′h′s′(y) = (0, 0, 0). Therefore,

g′f ′(y) = j′h′−1r′i′h′s′(y) = j′h′−1(0, 0, 0) = j(0, 0, 0) = (0, 0, 0) = s′(y).

Consequently,

d(g′f ′(y), y) = d(s′(y), y) < ε for every y ∈ Y .

In a similar way one can verify that

d(f ′g′(z), z) = d(r′(z), z) < ε for every z ∈ Z.

By Lemma 4, Y is quasi-equivalent to Z.
It remains to prove that X is not quasi-equivalent to Z. For every i ∈ N

and every j ∈ N, let (T j
i , ti) be a copy of a pointed torus (T, ∗). For every

i ∈ N, let
(X ′

i, x
′
i) = (T 1

i , ti) ∨ · · · ∨ (T i
i , ti).

We may assume that (X ′
i+1, x

′
i+1) = (X ′

i, x
′
i) ∨ (T i+1

i+1 , ti+1), i ∈ N. Let

pi,i+1 : X ′
i+1 → X ′

i, i ∈ N,

be defined by requiring that the restrictions

pi,i+1|X
′
i : X ′

i → X ′
i and pi,i+1|T

i+1
i+1 : T i+1

i+1 → T i
i ⊆ X ′

i

be the identities. Notice that pi,i+1 : (X ′
i+1, x

′
i+1)→ (X ′

i, x
′
i) is a base point

preserving map.
Consider the pointed (compact ANR) inverse sequence (X, ∗) =

((X ′
i, x

′
i), pi,i+1) and its limit p

∗
= (pi) : (X ′, ∗) = lim(X, ∗) → (X, ∗).

Further, for every j ∈ N, let

(Z ′
j , z

′
j) = (X ′

j , x
′
j) ∨ (Zj , zj),

where (Zj , zj) is a copy of a pointed circle (S1, ∗). Let

qj,j+1 : (Z ′
j+1, z

′
j+1)→ (Z ′

j , z
′
j), j ∈ N,

be pj,j+1 on X ′
j+1 and the identity on the copy of S

1. Consider the pointed

(compact ANR) inverse sequence (Z, ∗) = ((Z ′
j , z

′
j), qj,j+1) and its limit

q
∗

= (qj) : (Z ′, ∗) = lim(Z, ∗)→ (Z, ∗).

Claim. (X ′, ∗) is homeomorphic to (X, (0, 0, 0)), and (Z ′, ∗) is homeo-

morphic to (Z, (0, 0, 0)).

By construction,

Z = X ∪ S1, (Z, (0, 0, 0))≈ (X, (0, 0, 0)) ∨ (S1, ∗), (Z ′, ∗)≈ (X ′, ∗) ∨ (S1, ∗).

Further, all the mappings preserve base points. Thus, it suffices to prove
that X ′ ≈ X. Let p′ = (p′i) : X → X be defined by

p′i = hiri : X → X ′
i, i ∈ N,
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where hi is determined by the obvious homeomorphisms on the correspond-
ing tori. Then p′ distinguishes points and every p′i is surjective. By applying
Theorem 6 of [6, I.5.2], we infer that p′ : X → X is the limit. Therefore, X
and X ′ are homeomorphic.

Set

HX = (X ′
i, [pi,i+1]) ≡X and HZ = (Z ′

j , [qj,j+1]) ≡ Z.

According to Theorem 1, it remains to prove that X is not quasi-equivalent

to Z. Suppose, on the contrary, that X
q
≃ Z. Then, by Definition 2 and

Remark 1, for every n ∈ N, there exist special morphisms fn : X → Z

and gn : Z → X such that gnfn ≃n 1X and fngn ≃n 1Z. Let n = 1, and
write f1 ≡ f = (f, [fj]) and g1 ≡ g = (g, [gi]). Since all X ′

i and Z ′
j are

ANR-continua, one may assume that all the mappings fj and gi preserve
the base points. Since gf ≃1 1X, the diagram

(⋆)

X ′
1 · · ·oo X ′

fg(1)
oo

fg(1)||xxxxxxxx

· · ·oo X ′
f(j)

oo

fj}}||
||

||
||

Z ′
g(1)

g1

``BBBBBBBB

· · ·oo Z ′
j

oo

commutes up to homotopy. Let us apply the fundamental group functor π1

to the left triangle of (⋆) (the choice of base points is irrelevant):

π1(T
1
1 ) π1(T

1
fg(1)) ∗ · · · ∗ π1(T

fg(1)
fg(1) )

oo

fg(1)#ttiiiiiiiiiiiiiiiii

π1(T
1
g(1)) ∗ · · · ∗ π1(T

g(1)
g(1)

) ∗ π1(S
1)

g1#

OO

Recall that the fundamental group of a finite wedge is the corresponding
free product (by van Kampen’s theorem, [3, Theorem 3.1, p. 122]), and that
the fundamental groups of a circle and of a torus are Z and Z × Z ≡ Z

2

respectively. Observe that fg(1)#|π1(T
i
fg(1)) is a monomorphism of Z

2 into

Z
2 ∗ · · · ∗ Z

2 ∗ Z, for every i = 1, . . . , fg(1). Thus,

Z
2 ∼= (fg(1)#|π1(T

i
fg(1)))(Z

2) ≤ Z
2 ∗ · · · ∗ Z

2 ∗ Z.

From the Kurosh subgroup theorem ([7, Theorem 1.10, p. 178]) it follows
that if H ≤ G = G1 ∗ · · · ∗ Gn, then H ∼= F ∗Hσ1

1 ∗ · · · ∗Hσn
n , where every

Hi is a subgroup of some Gj, every σi ∈ G and F is a free group.
Recall also that Z

2 is not decomposable into a free product (see [7, Propo-
sition 15.14, p. 107]). Since Z

2 is not a free group, the Kurosh subgroup the-

orem implies that Z
2∼=(fg(1)#|π1(T

i
fg(1)))(Z

2) ∼= Hσi

i , Hi ≤ π1(T
j

g(1))
∼= Z

2,

for some j ∈ {1, . . . , g(1)}, and σi ∈ π1(T
1
g(1)) ∗ · · · ∗ π1(T

g(1)
g(1) ) ∗ π1(S

1) ∼=
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Z
2 ∗ · · · ∗ Z

2 ∗ Z. Let a∈π1(T
i
fg(1)), i∈{1, . . . , fg(1)}. Then

fg(1)#(a) = σbσ−1, σ ∈ Z
2 ∗ · · · ∗ Z

2 ∗ Z, b ∈ π1(T
j

g(1)),

for some j ∈ {1, . . . , g(1)}. Since fg(1)#|π1(T
i
fg(1)) is a monomorphism, its

image in Z
2 ∗ · · · ∗ Z

2 ∗ Z must be isomorphic to π1(T
j

g(1))
∼= Z

2 for some

j ∈ {1, . . . , g(1)}. Consequently, if a1 · · · am ∈ π1(T
1
fg(1)) ∗ · · · ∗ π1(T

fg(1)
fg(1) ),

where ak ∈ π1(T
ik
fg(1)

), then

fg(1)#(a1 · · · am) = σ1b1σ
−1
1 · · ·σmbmσ−1

m ,

for some σk ∈ Z
2 ∗ · · · ∗ Z

2 ∗ Z and bk ∈ π1(T
jk

g(1)), k = 1, . . . , m, jk ∈
{1, . . . , g(1)}.

Further, the right rectangle of (⋆) yields the commutative diagram

π1(T
1
fg(1)) ∗ · · · ∗ π1(T

fg(1)
fg(1) )

fg(1)#

��

π1(T
1
f(j)) ∗ · · · ∗ π1(T

f(j)
f(j) )

oo

fj#

��

π1(T
1
g(1)) ∗ · · · ∗ π1(T

g(1)
g(1) ) ∗ π1(S

1) π1(T
1
j ) ∗ · · · ∗ π1(T

j
j ) ∗ π1(S

1)oo

which means fg(1)#pfg(1)f(j)# = qg(1)j#fj#. Since pii′ and qjj′ are defined in
a special way (by the identity mappings on the corresponding copies), one
readily sees that, for every j ≥ g(1), the restriction fj#|π1(T

i
f(j)) is also a

monomorphism. Therefore, by following the same arguments, one can find
that fj# acts via a formula analogous to that for fg(1)#.

Consider now the relation fg ≃1 1Z inducing the retraction

r : Z ′
1 = T 1

1 ∨ S1 → S1, r[T 1
1 ] = {∗},

i.e. the following diagram:

X ′
f(1)

f1

��

· · ·oo X ′
fgf(1)

oo

fgf(1)

��

S1 Z ′
1

roo Z ′
gf(1)

oo

gf(1)

hhQQQQQQQQQQQQQQQQ

(Caution: The right triangle might not homotopy commute, though the rect-
angle and the left triangle must homotopy commute!) Applying π1 to the
left triangle and to the rectangle yields the commutative diagrams

π1(T
1
f(1)) ∗ · · · ∗ π1(T

f(1)
f(1) )

f1#

sshhhhhhhhhhhhhhhhhhhh

π1(S
1)

r#
← π1(T

1
1 ) ∗ π1(S

1) π1(T
1
gf(1)) ∗ · · · ∗ π1(T

gf(1)
gf(1) ) ∗ π1(S

1)oo

gf(1)#

OO
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π1(T
1
f(1)) ∗ · · · ∗ π1(T

f(1)
f(1) )

f1#

��

π1(T
1
fgf(1)) ∗ · · · ∗ π1(T

fgf(1)
fgf(1) )

oo

fgf(1)#

��

π1(S
1) π1(T

1
1 ) ∗ π1(S

1)
r#oo π1(T

1
gf(1)) ∗ · · · ∗ π1(T

gf(1)
gf(1) ) ∗ π1(S

1)oo

Now, the composition

r#f1#gf(1)# : Z
2 ∗ · · · ∗ Z

2 ∗ Z→ Z

is the trivial homomorphism because r#f1# is trivial. Namely, the restric-
tions of the bonding homomorphisms are the identities on the corresponding
copies, f1#pf(1)fgf(1)# = q1gf(1)#fgf(1)#, gf(1) ≥ g(1) and we have already

proved how fgf(1)# acts. Thus, for every a ∈ π1(T
i
f(1)), i ∈ {1, . . . , f(1)},

we have f1#(a) = σbσ−1 for some b ∈ π1(T
1
1 ), σ ∈ π1(T

1
1 ) ∗ π1(S

1). There-
fore, r#f1#(a) = r#(σbσ−1) = r#(σ)r#(σ−1), and hence r#f1# must be
trivial. On the other hand, by the definitions of the relevant mappings, the
composition

r#q1gf(1)# : Z
2 ∗ · · · ∗ Z

2 ∗ Z→ Z

preserves the free factor π1(S
1) ∼= Z, so it is not trivial. Therefore, the two

displayed compositions cannot be equal.
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