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Polyhedra with virtually polycyclic

fundamental groups have finite depth
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Danuta Kołodziejczyk (Warszawa)

Abstract. The notions of capacity and depth of compacta were introduced by K.
Borsuk in the seventies together with some open questions. In a previous paper, in con-
nection with one of them, we proved that there exist polyhedra with polycyclic funda-
mental groups and infinite capacity, i.e. dominating infinitely many different homotopy
types (or equivalently, shapes). In this paper we show that every polyhedron with virtually
polycyclic fundamental group has finite depth, i.e., there is a bound on the lengths of all
descending sequences of different homotopy types (or shapes) dominated by this polyhe-
dron. As a corollary, we deduce that for two ANR’s with virtually polycyclic fundamental
groups the so-called index of h-proximity, introduced by K. Borsuk in his monograph on
retract theory, is finite. We also obtain an answer to some question of K. Borsuk concerning
homotopy (or shape) decompositions of polyhedra into simple constituents.

1. Introduction. In 1979, at the International Topological Conference
in Moscow, K. Borsuk introduced the capacity and depth in the shape
category of compacta, together with some relevant questions (see [B1]).
(The basic notions and results of shape theory can be found in [B4], [DS],
[MS].)

Recall that a domination in a given category C is a morphism f : X → Y ,
X, Y ∈ Ob C, for which there exists a morphism g : Y → X of C such that
fg = idY . Then we say that Y is dominated by X, and we write Y ≤ X or
X ≥ Y ; moreover, X < Y will denote that X ≤ Y holds but Y ≤ X fails.

In the following, C is the homotopy category of CW-complexes and ho-
motopy classes of cellular maps between them or the shape category of
compacta (pointed or unpointed).

2000 Mathematics Subject Classification: 55P15, 55P55, 55P10.
Key words and phrases: polyhedron, ANR, CW-complex, compactum, homotopy dom-

ination, homotopy type, shape domination, shape, depth, index of h-proximity, simple
constituent.

Research partially supported by the Ministry of Sciences and Higher Education grant
# 1 P03A 005 30.

[229] c© Instytut Matematyczny PAN, 2007



230 D. Kołodziejczyk

Following K. Borsuk (cf. [B1]), define the capacity C(A) of an A ∈ Ob C
as the cardinality of the class of isomorphism classes of all the X ∈ Ob C
such that X ≤ A.

A system X1 < · · · < Xk ≤ A, where Xi ∈ Ob C for i = 1, . . . , k, is called
a chain of length k for A ∈ Ob C. The depth D(A) of A is the least upper
bound of the lengths of all chains for A. If this upper bound is infinite, we
write D(A) = ℵ0 (cf. [B1]).

In other words, A ∈ Ob C has finite depth if and only if there exists an
integer k such that each sequence · · · ≤ Xi ≤ · · · ≤ X1 ≤ A contains at
most k different objects (up to isomorphism).

It is clear that D(A) ≤ C(A) for each A ∈ Ob C.

In the following, we will assume (without loss of generality) that every
polyhedron, ANR, and CW-complex considered is connected.

Note that for a polyhedron, the capacity and depth in the shape category
of compacta are the same as in the homotopy category of CW-complexes
and homotopy classes of cellular maps between them. Indeed, there is a 1-1
functorial correspondence between the shapes of compacta shape dominated
by a given polyhedron and the homotopy types of CW-complexes homotopy
dominated by it (see [DS, Theorem 2.2.6], [HaHe1] or [HaHe2], [EG]). Sim-
ilarly, the capacity (and depth) of a given polyhedron is the same in both
pointed and unpointed cases. This follows from [D, Theorem 5.1].

In 1968 at the Topological Conference in Herceg-Novi K. Borsuk stated
the question: Is the capacity of each polyhedron finite? (see, for example,
[B1, Question 4]).

By the classical results of shape theory, this was known to be the case for
1-dimensional polyhedra (see [Tr] and [B4, Theorem 7.1, p. 221]). In gene-
ral the answer to Borsuk’s question is negative: there exist polyhedra (even
of dimension 2) homotopy dominating infinitely many different homotopy
types, and equivalently, shapes ([K6], see also [K7]). Furthermore, there
exist polyhedra with polycyclic (and even nilpotent) fundamental groups
dominating infinitely many different homotopy types or shapes ([K1]).

On the other hand, all the simply-connected polyhedra, polyhedra with
finite fundamental groups and nilpotent polyhedra have finite capacity, hence
also finite depth ([K5], [K4], [K3]).

The main result of this paper is that although there exist polyhedra with
polycyclic fundamental groups with infinite capacity, every polyhedron with
virtually polycyclic fundamental group has finite depth.

This result, together with the previous ones from [K1], will enable us to
give a positive answer to a question of Borsuk from [B2]: Does there exist a

polyhedron with infinitely many simple constituents? Recall that X and Y
are said to be constituents of the wedge (one-point union) X ∨ Y (cf. [B2]).



Polyhedra with virtually polycyclic fundamental groups 231

X is called simple if each of its constituents is either trivial or coincides with
X in C.

In his monograph [B3] on retract theory, K. Borsuk introduced the no-
tions of h-neighbors and the index of h-proximity of two ANR’s.

The homotopy type of X is a left h-neighbor of the homotopy type of Y
if X < Y and for every Z such that X ≤ Z ≤ Y , X ≃ Z or Y ≃ Z (see [B3,
p. 349]). In the same manner we define a right h-neighbor of the homotopy
type of Y .

We say that the index of h-proximity of two ANR’s P and Q, h(P, Q),
is equal to n if there exists a sequence P = X0, X1, . . . , Xn = Q such that
Xi and Xi+1 are h-neighbors. If no such finite sequence exists then we say
that h(P, Q) is infinite (see [B3, Ch. IX, 12]).

Concerning these notions, Borsuk asked (1967, [B3, Ch. IX, Problem
(12.8)]): Do there exist two ANR’s, P and Q, for which h(P, Q) is infinite?

This question remains open. In the second part of this paper we will
show, as another corollary to the main result, that the index of h-proximity
of two ANR’s with virtually polycyclic fundamental groups is finite.

2. Algebraic preliminaries

Definition. Recall that a group G is polycyclic if it has a finite series
of subgroups G = G0⊲G1⊲ · · ·⊲Gl = 1 for which each factor Gi−1/Gi (where
i = 1, . . . , l) is finite cyclic or infinite cyclic (see, for example, [S, p. 2]).

We say that G is a poly-Z-group if it has such a series with factors Z.

Definition. A group G is called virtually polycyclic if there exists a
polycyclic group H ⊳ G such that G/H is finite.

Definition. The number h(G) of infinite cyclic factors in a series G =
G0 ⊲G1 ⊲ · · ·⊲Gl = 1 with cyclic or finite factors is an invariant of a virtually
polycyclic group G (independent of the series), known as the Hirsch number

of G (see [S, p. 16]).

Definition. Suppose that P is a property of groups. A group G is called
poly-P if it has a finite series of subgroups G = G0⊲G1⊲· · ·⊲Gl = 1 for which
each factor Gi−1/Gi (where i = 1, . . . , l) has the property P ([S, p. 2]).

Definition. Let R be a ring. A right R-module M is said to be noethe-

rian if every R-submodule of M is finitely generated, equivalently, M sat-
isfies the ascending chain condition, i.e., every ascending sequence M1 (

M2 ( · · · of submodules of M is finite (cf. [Pa, p. 419], or [La]).

We call a ring R noetherian if it is a noetherian module as a module over
itself.

Definition. Let R be a ring and M be a right R-module. The Krull

dimension of M , denoted by KdimM , is defined by transfinite recursion as



232 D. Kołodziejczyk

follows: if M = 0, then KdimM = −1; if α is an ordinal and KdimM 6< α,
then KdimM = α provided there is no infinite descending chain M = M0 ⊃
M1 ⊃ · · · of submodules Mi such that KdimMi−1/Mi 6< α for i = 1, 2, . . . .
If there is no ordinal α such that KdimM = α, we say that M has no Krull

dimension (see [GR, p. 5] or [Br]).

Definition. If a module contains no infinite direct sum of nonzero sub-
modules, then there is a fixed bound on the number of summands in finite
sums it can contain; and the module is said to have finite uniform dimension

(see [GR, p. 7]).

Definition. Recall that in the category of groups or modules with ho-
momorphisms, a homomorphism f : A→B is said to be an r-homomorphism

if there exists a homomorphism g : B → A such that fg = idB (see, for ex-
ample, [B3, Ch. 2]).

3. Polyhedra with virtually polycyclic fundamental groups have

finite depth. To prove that every polyhedron with virtually polycyclic fun-
damental group has finite depth, we will use properties of finitely generated
noetherian modules over the integral group rings ZG, where G is virtually
polycyclic, and the concept of Krull dimension of modules. We begin with
some algebraic lemmas.

Lemma 1 (cf. Lemma 1 from [K1]). Let G be a virtually polycyclic group.

There exists an integer kG such that any sequence G = G0 ⊇ G1 ⊇ · · · ⊇ Gl

of subgroups of G with r-homomorphisms ri : Gi−1 → Gi for i = 1, . . . , l
contains no more than kG distinct subgroups.

Proof. Note that every subgroup of a virtually polycyclic group is also
virtually polycyclic (cf. [S, Ex. 3, p. 2]). If h(G) is the Hirsch number of the
virtually polycyclic group G, H ⊆ G and N ⊳G is such that H ∼= G/N , then
h(G) = h(N) + h(H) (see, for example, [S, Ex. 8, p. 16]).

Let Ni be the kernel of ri : Gi−1 → Gi. Then Ni is a normal subgroup of
Gi−1 which satisfies Gi−1 = GiNi and Gi ∩Ni = 1 for i = 1, . . . , l. It follows
that h(Gi−1) = h(Ni) + h(Gi) for i = 1, . . . , l. Therefore h(Gi−1) = h(Gi),
hence h(Ni) = 0, for all i except at most h(G).

Assume, without loss of generality, that h(Ni) = 0 for all i ≥ 2. It follows
that the Ni are all finite. Indeed, if a virtually polycyclic group has Hirsch
number 0, then it is finite (for example by [S, p. 16], h(H) = h(K) if and
only if |K : H| < ∞).

There are only at most lG, where lG is an integer depending only on G,
possible different finite subgroups Ni in G. This follows from the fact that for
each integer l ≥ 2, Nl ·Nl−1 · . . . ·N2 is a finite subgroup of G (apply [Hu, Ch.
I, Theorem 5.3, p. 42]) of rank |Nl| · |Nl−1| · . . . · |N2| (by [Hu, Ch. I, Theorem
4.7, p. 39]). On the other hand, a given virtually polycyclic group has only
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finitely many finite subgroups up to isomorphism (hence the ranks of finite
subgroups are bounded). This can be deduced, for example, from the fact
that a group is virtually polycyclic if and only if it is (poly-Z)-by-finite (see
[S, Proposition 2, p. 2]).

Thus there exists an integer kG such that Gi = Gi−1 for all i except at
most kG. This finishes the proof.

The next lemma is an analog of Lemma 1 for finitely generated modules
over the integral group ring ZG of a virtually polycyclic group G.

Lemma 2. Let M be a finitely generated module over the integral group

ring ZG, where G is a virtually polycyclic group. Then there exists an integer

kM such that any sequence M = M0 ⊇ M1 ⊇ · · · ⊇ Ml of ZG-submodules

of M with r-homomorphisms Ri : Mi−1 → Mi for i = 1, . . . , l contains no

more than kM distinct modules.

Proof. If G is a virtually polycyclic group then the group ring ZG is right
noetherian, by the result of P. Hall (see [R, (15.3.3), p. 446]). Therefore,
every finitely generated module over ZG is noetherian (see [La, Ch. VI] and
Introduction). Thus M is noetherian.

Consider a sequence M = M0 ⊇ M1 ⊇ · · · ⊇ Ml of ZG-modules with
r-homomorphisms Ri : Mi−1 → Mi for i = 1, . . . , l.

Let Ni = ker Ri. We have Mi−1
∼= Mi ⊕ Ni for i = 1, . . . , l. Thus

M0
∼= N1 ⊕ · · · ⊕ Nl ⊕ Ml.

It was proved by Gabriel ([Ga], see also [GR, Proposition 1.3, p. 7]) that
every noetherian module has Krull dimension. It was also shown by Krause
[Kr] and Michler [Mi] that a module with Krull dimension has finite uniform
dimension (see [GR, Proposition 1.4, p. 7]). Therefore, there is a fixed bound
on the number of possible direct summands of M = M0. It follows that
there exists an integer kM such that Ni = 0 for all except no more than kM

integers i. This means that Mi−1 = Mi for such i, and the proof is finished.

In this paper X̃ denotes, as usual, the universal covering space of X.
Let f : X → Y be a cellular map of CW-complexes such that f(x) = y

for some vertices x ∈ X, y ∈ Y . Choose x̃ ∈ p−1(x), ỹ ∈ p−1(y) (where p

denotes the covering projections). There exists a unique map f̃ : X̃ → Ỹ

such that pf̃ = fp and f̃(x̃) = ỹ. The map f̃ induces homomorphisms

f̃r : Hr(X̃) → Hr(Ỹ ) for all r ≥ 1. We then say that f̃r is induced by f (see
[Hl, p. 107]).

Applying the above algebraic results we obtain (cf. [K2, Theorem 1])

Theorem 1. Let P be a polyhedron with virtually polycyclic fundamental

group. There exists an integer kP such that each sequence

P ≥ X1 ≥ · · · ≥ Xl
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of spaces contains at most kP homotopy dominations which are not homo-

topy equivalences.

Proof. Recall that by the classical result of J. H. C. Whitehead, each
space homotopy dominated by a finite CW-complex has the homotopy type
of a CW-complex, not necessarily finite (see also [Wa]). Thus assume Xi for
i = 1, . . . , l to be CW-complexes.

We will prove that if P is a polyhedron with virtually polycyclic fun-
damental group, then there exists an integer kP such that for each se-
quence P = X0 ≥ X1 ≥ · · · ≥ Xl of CW-complexes, with dominations
di : Xi−1 → Xi and inverse maps ui : Xi → Xi−1 (i.e. diui ≃ idXi

) for
i = 1, . . . , l, all except at most kP dominations (and their inverses) are
homotopy equivalences.

Let π1(P ) ∼= G. By Lemma 1, there exists an integer kG such that for
each sequence P ≥ X1 ≥ · · · ≥ Xl all except at most kG dominations
di : Xi−1 → Xi (and their inverses ui : Xi → Xi−1) induce isomorphisms of
π1(Xi).

Let d̃i : X̃i−1 → X̃i and ũi : X̃i → X̃i−1 be the liftings of di and ui to

the universal covers. Then d̃i is a domination.
For each 2 ≤ r ≤ dimP , we will apply Lemma 2 to the ZG-module

M = Hr(P̃ ).
From [Wa, Theorems A and B], if ZH is a noetherian ring, then for

every CW-complex X with π1(X) ∼= H which is dominated by a finite

CW-complex, the ZH-modules Hr(X̃) for r ≥ 2 are all finitely generated.
Since ZG is noetherian (cf. the proof of Lemma 2), M is a finitely gen-

erated ZG-module. Consider the sequence M = M0 ⊇ M1 ⊇ · · · ⊇ Ml of
ZG-modules in which

Mi = ũ1∗ũ2∗ · · · ũi∗(Hr(X̃i)) for i = 1, . . . , l,

where ũi∗ : Hr(X̃i) → Hr(X̃i−1) is induced by ũi : X̃i → X̃i−1 (with obvious
r-homomorphisms between them).

By Lemma 2, there exists an integer kr (depending only on P and r)
such that Mi = Mi−1 for all except at most kr integers i. It follows that in
each sequence

Hr(P̃ ) = Hr(X̃0) → Hr(X̃1) → · · · → Hr(X̃l)

with r-homomorphisms d̃i∗ : Hr(X̃i−1)→Hr(X̃i) induced by d̃i : X̃i−1→X̃i,
the homomorphisms are all isomorphisms except at most kr (and the same

is true for ũi∗ : Hr(X̃i) → Hr(X̃i−1) induced by ũi : X̃i → X̃i−1).
Hence, for a given polyhedron P with virtually polycyclic fundamental

group, there exists an integer kP such that, for each sequence

P = X0 ≥ X1 ≥ · · · ≥ Xl
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of CW-complexes with dominations di : Xi−1 → Xi, di induce isomorphisms
π1(Xi−1) → π1(Xi) and Hr(X̃i−1) → Hr(X̃i) (for all r ≥ 2) for all i =
1, . . . , l except at most kP .

Recall that, by the Whitehead theorem, if X and Y are CW-complexes,
then a map f : X → Y which induces an isomorphism π1(X) → π1(Y ) and

isomorphisms Hr(X̃) → Hr(Ỹ ) for all r ≥ 2 is a homotopy equivalence (see,
for example, [Hl, Theorem 3.1, p. 107]).

Thus, for a polyhedron P with virtually polycyclic fundamental group,
there exists an integer kP such that each sequence P ≥ X1 ≥ · · · ≥ Xl of
CW-complexes contains at most kP homotopy dominations which are not
homotopy equivalences, which is the desired conclusion.

Theorem 2. Every polyhedron with virtually polycyclic fundamental

group has finite depth.

Proof. This follows from Theorem 1.

Corollary 1. Let P be a polyhedron with virtually polycyclic funda-

mental group. There exists an integer kP such that each sequence P ≥ X1 ≥
X2 ≥ · · · contains at most kP homotopy dominations which are not homo-

topy equivalences.

Corollary 2. Let P be a polyhedron with virtually polycyclic funda-

mental group. There exists an integer kP such that each sequence X1 ≤
X2 ≤ · · · with Xi ≤ P for each i contains at most kP homotopy domina-

tions which are not homotopy equivalences.

4. The index of h-proximity of two ANR’s with virtually poly-

cyclic fundamental groups is finite. In [B3] K. Borsuk introduced the
notions of h-neighbor, left h-neighbor, right h-neighbor, h-minorant, h-maj-
orant, and the index of h-proximity of two ANR’s. Some results concern-
ing these notions can be found in [M]. In [K7] we gave an example of a
polyhedron with infinitely many left neighbors (in the shape or homotopy
category), which answers Borsuk’s question from [B4, p. 349].

The following problem of K. Borsuk (1967) is still open:

Problem [B3, Ch. IX, Problem (12.8)]. Do there exist two ANR’s, P
and Q, for which the index of h-proximity h(P, Q) is infinite?

As a corollary to Theorem 1, we find that if the fundamental groups of
two ANR’s are virtually polycyclic, then their index of h-proximity is finite.

Theorem 3. Assume that P, Q ∈ ANR have π1(P ) and π1(Q) virtually

polycyclic. Then h(P, Q) is finite.

Proof. Set W = P × Q ∈ ANR. Obviously P ≤ W and Q ≤ W .
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Since a group is poly-(cyclic or finite) if and only if it is virtually poly-
cyclic [S, Proposition 2, p. 2], π1(W ) ∼= π1(P )×π1(Q) is virtually polycyclic.

Note that if X, Y ≤ W , where W is a polyhedron and π1(W ) is virtually
polycyclic, then X ≥ Y and Y ≥ X imply that X ≃ Y (by Corollary 1).

To prove the theorem, it suffices to show that there exist finite sequences
P = X0 ≤ X1 ≤ · · · ≤ Xs = W and Q = Y0 ≤ Y1 ≤ · · · ≤ Yt = W such
that Xi ≤ Z ≤ Xi+1 implies Z ≃ Xi or Z ≃ Xi+1, where i = 0, . . . , s − 1,
and Yi ≤ Z ≤ Yi+1 implies Z ≃ Yi or Z ≃ Yi+1, where i = 0, . . . , t − 1,
respectively.

From Theorem 1 we infer that there exists an integer kP such that each
sequence P ≤ X1 ≤ · · · ≤ Xs ≤ W contains at most kP different homotopy
types. We also have an analog of this assertion for Q in place of P . This
completes the proof.

5. There exist polyhedra with infinitely many simple consti-

tuents. In 1970 K. Borsuk asked:

Problem ([B2, Problem 7]). Is it true that for every P ∈ ANR, the

shape Sh(P, p) has only a finite number of simple constituents?

Applying the main result of this paper, we can answer this question:

Theorem 4. There exists a polyhedron (with polycyclic fundamental

group) with infinitely many simple constituents.

The proof is based on the following corollary to Theorem 2:

Lemma 3. Let P be a polyhedron with virtually polycyclic fundamental

group. Then there exists an integer lP such that P cannot be decomposed

into more than lP constituents.

Proof. Let P ≃ Y1∨· · ·∨Yl, where each Yi has nontrivial homotopy type.
Set Xi = Y1 ∨ · · · ∨ Yi for i = 1, . . . , l. Then X1 ≤ · · · ≤ Xl. By Theorem 1,
there exists an integer kP such that all except at most kP dominations in
this sequence are homotopy equivalences. On the other hand, Xi ≃ Xi+1

would imply that there exists a domination of Xi over itself which is not a
homotopy equivalence. But this is impossible (see Corollary 1). Therefore
lP = kP + 1, which ends the proof.

Proof of Theorem 4. In [K1] we proved that there exist polyhedra P
with polycyclic fundamental groups such that P ≃ Ki ∨ S3 for infinitely
many polyhedra Ki of different homotopy types.

By Lemma 3, there exists an integer lP such that no Ki can be decom-
posed into more than lP simple constituents. Since the Ki, for i = 1, 2, . . . ,
represent infinitely many different homotopy types, it is easily seen that P
has infinitely many simple constituents with different homotopy types, and
the proof is finished.
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6. Final remarks. Let us state the following:

Problem 1. Does there exist a polyhedron with infinite depth?

We suspect that the answer to this question is positive and that the
example is possible even with soluble fundamental group. One may ask
about other classes of polyhedra with finite depth. It is worth pointing out
that the following questions of a similar nature, included in known lists of
open problems, also remain unsolved:

Problem 2 (Y. Rong, [RWZ]). Let M and Mi be closed , orientable, as-

pherical 3-manifolds. Does there exist an integer NM such that any sequence

π1(M) → π1(M1) → π1(M2) → · · · → π1(Mn)

of epimorphisms with n ≥ NM contains an isomorphism?

Problem 3 (Y. Rong, [Kb, Problem 3.100]). Let M and Mi be closed ,
orientable 3-manifolds. Does there exist an integer NM such that any se-

quence
M → M1 → M2 → · · · → Mn

of degree 1 maps with n ≥ NM contains a homotopy equivalence?

Problem 4 (J. Simon, [Kb, Problem 1.12]). For a knot K in S3, let

GK = π1(S
3 \ K). Given K, does there exist an integer NK such that any

sequence
GK → GK1

→ GK2
→ · · · → GKn

of epimorphisms of knot groups with n ≥ NK contains an isomorphism?
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