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Abstract. We define an isotopy invariant of embeddings N → R
m of manifolds

into Euclidean space. This invariant together with the α-invariant of Haefliger–Wu is
complete in the dimension range where the α-invariant could be incomplete. We also define
parametric connected sum of certain embeddings (analogous to surgery). This allows us to
obtain new completeness results for the α-invariant and the following estimation of isotopy
classes of embeddings. In the piecewise-linear category, for a (3n− 2m+ 2)-connected n-
manifold N with (4n+ 5)/3 ≤ m ≤ (3n+ 2)/2, each preimage of the α-invariant injects
into a quotient of H3n−2m+3(N), where the coefficients are Z for m − n odd and Z2 for

m− n even.

1. INTRODUCTION AND MAIN RESULTS

This paper concerns the classical Knotting Problem: for an n-manifold N
and a number m describe the set Embm(N) of isotopy classes of embeddings
N → R

m. For recent surveys see [ReSk99, Sk07]; whenever possible we refer
to these surveys and not to original papers.
All known complete concrete classification results (except for the Hae-

fliger classification of links and smooth knots and recent results [KS05, Sk06,
Sk06′, CRS07, CRS]) can be obtained using the α-invariant of Haefliger–Wu
(defined below). For other approaches see [Br68, GW99, CRS04, We].
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We define an isotopy invariant of embeddings which, together with the
α-invariant, is complete in the dimension range where the α-invariant could
be incomplete (the β-Invariant Theorem of §2). We also define parametric
connected sum of certain embeddings (see the end of §2; this is a “surgery”
of an embedding preserving the embedded manifold). This leads to new
estimations of isotopy classes of embeddings and completeness results for
the α-invariant (the New Isotopy and Embedding Theorems of §1).
We work in the piecewise linear (PL) category [RS72]. (By [Bry72] for

m ≥ n + 3 the classification of embeddings of PL manifolds is the same in
the PL and TOP categories. Analogously to [Sk06′] our results give some
information for the smooth category.)
Let

Ñ = {(x, y) ∈ N ×N | x 6= y}

be the deleted product of N , i.e. the configuration space of ordered pairs of
distinct points of N . For an embedding f : N → R

m one can define a map
f̃ : Ñ → Sm−1 by the Gauss formula

f̃(x, y) =
fx− fy

|fx− fy|
.

This map is equivariant with respect to the “factors exchange” involution
t(x, y) = (y, x) on Ñ and the antipodal involution on Sm−1.

Define α(f) to be the equivariant homotopy class of f̃ (cf. [Gr86, 2.1.E]).
This is clearly an isotopy invariant.
Let πm−1eq (Ñ) be the set of equivariant maps Ñ → S

m−1 up to equivari-
ant homotopy. Thus the α-invariant is a map

α : Embm(N)→ πm−1eq (Ñ).

It is important that using algebraic topology methods one can explicitly

calculate the set πm−1eq (Ñ) in many cases [BG71, Bau75, Ya83, ReSk99, Sk02,
GS06, Sk07, §5]. So it is very interesting to know under which conditions
the α-invariant is bijective.

Isotopy Theorem.

(a) [Sk07, the Haefliger–Weber Theorem 5.4] The α-invariant is bijective
for embeddings N → R

m of an n-polyhedron N if

2m ≥ 3n+ 4.

(b) [Sk07, Theorem 5.5] The α-invariant is bijective for m ≥ n+ 3 and
embeddings N → R

m of a closed k-connected n-manifold N if

2m ≥ 3n+ 3− k.

These theorems have many specific corollaries [Sk07].
In this paper we study the case one dimension lower than in the Isotopy

Theorem (b).
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By Z(d) we denote Z for d even and Z2 for d odd.

New Isotopy Theorem. Let N be a closed k-connected orientable
n-manifold with

2m = 3n+ 2− k and n ≥ 3k + 6 ≥ 6.

(a) The α-invariant is surjective and each of its point preimages maps
injectively into a certain quotient of Hk+1(N ;Z(m−n−1)).

(b) The α-invariant is bijective if either (n, k,m) = (6, 0, 10), or N is
almost parallelizable and (n, k,m) = (n, n − 14, n + 8), where 14 ≤
n ≤ 18.

The new part of the New Isotopy Theorem is an estimation of point
preimages of the α-invariant (which is surjective by the Embedding The-
orem (b) below). These preimages could a priori be non-trivial by [Sk06′,
Example 1.6.b] stated below, and could depend on n, k, N and the element

of πm−1eq (Ñ) (whose preimage we take).
Form−n even the New Isotopy Theorem (a) implies that these preimages

are finite; the orientability assumption can be dropped.
The case (n, k,m) = (6, 0, 10) of the New Isotopy Theorem (b) shows

that [Bau75, Proposition 4] is true in the PL category for 6-manifolds.
Under the assumptions of the New Isotopy Theorem the α-invariant is

not always injective:

For each even n 6∈ {6, 14} and 2m = 3n + 2 the α-invariant is not
injective for embeddings S1 × Sn−1 → R

m [Sk06′, Example 1.6.b] (1).

Some classification results for (3n − 2m + 2)-connected manifold N =
Sp × Sq are obtained in [Sk06′, Theorems 1.3 and 1.4, CRS07, CRS]. It is
very surprising that something can be proved for general manifolds N .

Conjecture.

(a) If n ≥ 3k + 4 and N is a closed k-connected almost parallelizable
n-manifold , then there is an exact sequence of sets with an action w

Hk+1(N ;Z(m−n−1))
w
→ Embm(N)

α
→ πm−1eq (Ñ)→ 0.

(b) The Isotopy Theorem (a) holds for (n, k,m)=(7, 1, 11) and N a spin
manifold , as well as for (n, k,m)=(19, 5, 27) and N almost parallelizable (2).

The corresponding known and new surjectivity results are as follows (3).

(1) Other examples of non-injectivity of the α-invariant are recalled in [ReSk99, §4,
Sk02, §1, Sk07, §5].
(2) This follows from our proof of the Isotopy Theorem (a) (§2) and an improvement

[Sk06′, Standardization Lemma] of the Standardization Lemma of §2.
(3) Examples of non-surjectivity of the α-invariant are recalled in [ReSk99, §4,

Sk07, §5].
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Embedding Theorem.

(a) The α-invariant is surjective for embeddings N → R
m of an n-

polyhedron N if 2m ≥ 3n + 3 [Sk07, the Haefliger–Weber Theo-
rem 5.4].

(b) The α-invariant is surjective for embeddings N → R
m of a closed

k-connected n-manifold N when 2m ≥ 3n + 2 − k and m ≥ n + 3
[Sk07, Theorem 5.5].

New Embedding Theorem. Let N be a closed k-connected n-mani-
fold. The manifold N embeds into R

m if there is an equivariant map
Ñ → Sm−1 and either

• (n, k,m) = (7, 0, 11) and N is orientable, or
• (n, k,m) = (8, 1, 12) and N is a spin manifold , or
• (n, k,m) = (n, n − 15, n + 8) and N is almost parallelizable, where
15 ≤ n ≤ 20.

An n-manifold is p-parallelizable if any embedding Sp → N can be ex-
tended to an embedding Sp × Dn−p → N . Note that 1-parallelizability is
equivalent to orientability and 1&2-parallelizability is equivalent to being a
spin manifold (4). The almost parallelizability condition in the results of §1
can be relaxed to (k + 1)-parallelizability.

These results were presented at the Borsuk Centenary Conference (Będ-
lewo, 2005) and announced in [Sk05]. I would like to thank M. Skopenkov
and S. Melikhov for useful discussions.

2. PROOFS

Almost embeddings and almost concordances. An embedding
F : N × I → R

m × I is a concordance if N × 0 = F−1(Rm × 0) and
N × 1 = F−1(Rm × 1). We tacitly use the facts that in codimension at
least 3,

• concordance implies isotopy [Hu70, Li65],
• every concordance or isotopy is ambient [Hu66, Ak69].

Let N be a connected n-manifold and Bn ⊂ N̊ some n-ball. The self-
intersection set of a map F : N → R

m is

Σ(F ) := Cl{x ∈ N | #F−1Fx ≥ 1}.

A map F : N → R
m is an almost embedding of (N,Bn) if Σ(F ) ⊂ Bn, or

equivalently, if F |N−Bn is an embedding and F (N −B
n) ∩ F (Bn) = ∅.

(4) It would be interesting to reformulate the (k + 1)-parallelizability condition for
k-connected manifolds in terms of Stiefel–Whitney classes.
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A map F : N × I → R
m × I is an almost concordance of (N,Bn) if

N × 0 = F−1(Rm × 0), N × 1 = F−1(Rm × 1) and Σ(F ) ⊂ Bn × I.

Instead of the pair (N,Bn) we shall always write simply N (5)(6).

Almost Embedding Theorem. Suppose that N is a closed k-con-
nected n-manifold , k ≥ 0 and m ≥ n+ 2.

(a) If f, g :N→R
m are almost concordant embeddings, then α(f)=α(g)

[Sk02, Theorem 5.2.α].

(b) If 2m = 3n + 2 − k and f, g : N → R
m are embeddings such

that α(f) = α(g), then f and g are almost concordant [Sk02, The-
orem 2.2.q].

(c) If 2m = 3n + 1 − k and ϕ ∈ πm−1eq (Ñ), then there is an almost
embedding F : N → R

m such that α(F ) = ϕ [Sk02, Theorem 2.2.q].

Appendix: some results and conjectures on almost embeddings.
This section is not used in the proofs of the main results, but is perhaps of
independent interest.

A complete classification of embeddings of a given n-manifold N into
Sn+2 up to isotopy (or concordance) seems to be hopeless because it is so
for N = Sn. Therefore it is interesting to obtain a complete classification of
embeddings of a given n-manifold N into Sn+2 “modulo knots Sn → Sn+2”.
The notion of almost concordance is not only useful to study the initial
problem (of classification of embeddings up to concordance) for m ≥ n+ 3,
but also it is a good notion of “concordance modulo knots Sn → Sn+2”,
because any knot Sn → Sn+2 is almost concordant to the trivial knot (7)
(cf. [MR05]).

We conjecture that almost concordance is equivalent to another natural
equivalence relation of “concordance modulo knots Sn → Sn+2”, namely
that for a closed n-manifold N two embeddings N → Sn+2 are almost
concordant if and only if one can be obtained from an embedding concordant
to the other by connected summation with knots Sn → Sn+2.

(5) Almost embeddings and almost concordances were called quasi-embeddings and
quasi-concordances in [Sk02].

(6) Fix points x = +1 ∈ S0 ⊂ Sp and y = +1 ∈ S0 ⊂ Sn−p. By general position
for m ≥ n + p + 1 any map f : Sp × Sn−p → R

m such that Σ(f) ∩ x × Sn−p = ∅
is homotopic through such maps to a map f ′ whose self-intersection set is contained
in the ball Dp− × D

n−p
− . An analogous statement holds for m ≥ n + p + 2 and almost

concordances. In this sense for m ≥ n+ p+ 2 the above definition of almost concordance
for N = Sp × Sn−p and Bn = Dp− ×D

n−p
− agrees with that of [Sk06′, §2].

(7) For N = Sn1 ⊔ · · · ⊔ Snk the classification of embeddings N → R
n+2 up to

link homotopy is motivated by classification of embeddings N → R
n+2 “modulo knots

Sn → R
n+2”.
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Parts (a) and (b) of the following corollary follow from the Almost Em-
bedding Theorem (b) and [Sk02, Theorem 2.3.q], respectively.

Corollary.

(a) Let N be a sphere with g handles. Then the set of PL almost embed-
dings N → R

4 up to PL almost concordance is in 1-1 correspondence
with Z

2g
2
∼= H1(N ;Z2).

(b) For a closed simply-connected 4-manifold N, the set of smooth al-
most embeddings N → R

6 up to PL almost concordance is in 1-1
correspondence with π5eq(Ñ).

We conjecture that the set of PL embeddings S1 × S1 → R
4 up to

PL almost concordance consists of exactly three elements (i.e., the almost
embedding S1×S1 → R

4 corresponding by Corollary (a) to the class (1, 1) ∈
H1(S

1 × S1;Z2) is not almost concordant to a PL embedding) (
8).

The restriction k ≥ 0 is essential in the Almost Embedding Theo-
rem (b) (9).
We conjecture that the Almost Embedding Theorem (b) holds in the

smooth category, and that in [Sk02, Theorem 2.3.q] and in the injectivity
part of [Sk02, Theorem 2.3.α] we can replace the PL category by DIFF
(if N is a smooth manifold) (10).
We conjecture that for n even, m = (3n + 1 − k)/2 ≥ n + 3 and a

k-connected closed n-manifold N such that Hk+1(N) is free there is an

exact sequence of sets Embm(N)
α
→ πm−1eq (Ñ)

β
→ Hk+1(N) (cf. the New

Embedding Theorem (11)).

Definition of β-invariant. The Almost Embedding Theorem (b) sug-
gests the definition of an invariant, required for classification of embeddings
when 2m ≤ 3n + 2 − k. For each almost concordance F between embed-
dings, analogously to [Hu69, XI.4.iii, Hu70′, p. 408, Ha84, §1] we define an

(8) A related result states that any PL embedding S2⊔· · ·⊔S2 → S4 is link homotopic
to the trivial embedding [BT99, Ba01] (the case of two components was proved earlier by
Hosokawa–Suzuki).

(9) Indeed, for l 6∈ {3, 7} take a link f : S0 × S2l−1 → R
3l such that λ12(f) =

λ21(f) = [ιl, ιl]. Then α(f) = Σ
∞λ21(f) = 0 but f is not almost concordant to the

standard embedding.

(10) This could perhaps be proved analogously to the cited results using the relative
version of [Sk02, Disjunction Theorem 3.1].

(11) By [Sk02, Theorem 2.3.q] and the β-Invariant Theorem it suffices to prove that
for an almost embedding F : N → R

m the obstruction β(F ) does not depend on F |Bn
(but only on F |

N−B̊n
). This obstruction is a map b : πn(M)→ Hk+1(N). We can prove

that b is constant by checking that πn(M) is finite and for fixed ϕ0 ∈ πn(M) the map
ϕ 7→ b(ϕ)− b(ϕ0) is a homomorphism.
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obstruction β(F ) to modification of F to a concordance. Roughly speaking,
β(F ) measures the linking of Σ(F ) with F (N).

Analogous invariants are the Sato–Levine invariant of knots, the Hud-
son–Habegger obstruction to embedding disks and the Fenn–Rolfsen–Ko-
schorke–Kirk β-invariant of link maps (see references in [Sk06′]). In the
proof of the New Embedding and Isotopy Theorems we do not use the
definition but only use the properties of the β-invariant (they are stated in
the β-Invariant Theorem of the next subsection).

In this and the next subsections we omit the coefficients Z(m−n−1) of
chain groups in the notation.

Suppose that N is a connected orientable n-manifold (possibly with
boundary) and F : N → Bm is a proper general position almost embedding
whose restriction to the boundary is an embedding. (F could be an almost
concordance between embeddings.) Take a triangulation T of N such that
Bn is a subcomplex of T and F is linear on simplices of T . Then Σ(F )
is a subcomplex of T . Denote by [Σ(F )] ∈ C2n−m(B

n) the sum of the
top-dimensional simplices of Σ(F ).

For m − n odd the coefficient ±1 of an oriented simplex σ ⊂ Σ(F ) is
defined as follows (12). Fix in advance any orientation of N and of Bm. By
general position there is a unique simplex σ′ of T such that F (σ) = F (σ′).
The orientation on σ induces an orientation on Fσ and then on σ′. The
orientations on σ and σ′ induce orientations on the normal spaces in N
to these simplices. These two orientations (in this order) together with the
orientation on Fσ induce an orientation on Bm. If this orientation agrees
with the fixed orientation of Bm, then the coefficient of σ is +1, otherwise it
is −1. Clearly, a change of orientation of σ changes the sign of σ in [Σ(F )],
so the sign is well-defined (13).

By [Hu69, Lemma 11.4, Hu70′, Lemma 1], ∂[Σ(F )] = 0 (14). Hence

[Σ(F )] = ∂C for some C ∈ C2n−m+1(B
n).

By [Hu70′, Corollary 1.1], ∂FC = 0. Hence

F (C) = ∂D for some D ∈ C2n−m+2(B
m).

(12) For m− n even, this sign can also be defined but is not used.
(13) This definition of sign is equivalent to Hudson’s given as follows. The orientation

on σ induces an orientation on Fσ and on σ′, hence also on their links. Consider the
oriented (2m−2n−1)-sphere lkFσ, the link of Fσ in a triangulation of Bm, “compatible”
with T . This sphere contains disjoint oriented (m−n−1)-spheres F (lkT σ) and F (lkT σ

′).
Their linking coefficient linklkFσ(F (lkT σ), F (lkT σ

′)) ∈ Z(m−n−1) is the coefficient of σ

in [Σ(F )], which equals ±1.
(14) Here we use the fact that the coefficients are Z2 for m− n even.
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By general position

D̃ := (F |N−IntBn)
−1(D) ∈ C3n−2m+2(N).

Since the support of C is in Bn, the support of F (C) = ∂D is in F (Bn).

Hence D̃ is a cycle and we can define (15)

β(F ) := [D̃] ∈ H3n−2m+2(N ;Z(m−n−1)).

Proof that β(F ) is well-defined , i.e. independent of the choices of C
and D. The independence of the choice of D is standard. Let us prove the
independence of the choice of C. For an almost embedding F , if ∂C1 =
∂C2 = [Σ(F )] then ∂(C1 − C2) = 0. Hence

C1 − C2 = ∂X for some X ∈ C2n−m+1(B
n).

Thus FC1 − FC2 = ∂FX. Hence we can take chains D1 and D2 as above
and such that D1 − D2 = FX. Since the support of X is in B

n, we have
D̃1 = D̃2.

Properties of the β-invariant and proof of the New Isotopy
Theorem (a)

β-Invariant Theorem. Let N be a connected orientable n-manifold
(possibly with boundary) and m ≥ n + 3. To each proper general position
almost embedding F : N → Bm whose restriction to the boundary is an
embedding there corresponds an element

β(F ) ∈ H3n−2m+3(N ;Z(m−n−1))

with the following properties:

• (Obstruction) If F is an embedding , then β(F ) = 0.
• (Invariance) β(F ) is invariant under almost concordance of F relative
to the boundary.
• (Completeness) If β(F ) = 0 and N is homologically (3n − 2m + 1)-
connected , then F is almost concordant rel (N − B̊n) to an embedding.
• (Additivity) Suppose that N = X × I and F , F ′ are almost concor-
dances between f0 and f1, f1 and f2, respectively , Denote by F the
reversed F , i.e. F (x, t) = F (x, 1 − t). Define an almost concordance
F ∪ F ′ between f0 and f2 as the “union” (

16) of

F : X × [0, 1]→ R
m × [0, 1] and F ′ : X × [1, 2]→ R

m × [1, 2].

Then β(F ∪ F ′) = β(F ) + β(F ′) and β(F ) = −β(F ).

(15) This definition agrees with that for N = Sp × Sq [Sk06′, subsection “A new
embedding invariant” of §2] when m ≥ 2p+ q + 2.
(16) Observe that the union of almost concordances is associative up to ambient

isotopy.
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Here the orientability assumption can be dropped for m− n even.

The obstruction and additivity follow obviously from the definition of
β-invariant.

The invariance is analogous to [Hu70′, Lemma 2, cf. Hu69, Lemma 11.6].
The completeness is a non-trivial property, but it is an easy consequence of
known results [Hu70′, Theorem 2, Ha84, Theorem 4]. See the details be-
low.

Proof of the invariance. Let F0 and F1 be two almost concordances be-
tween embeddings f and g. Suppose that Φ : N × I → Bm × I is an
almost concordance between F0 and F1. As in the above definition of β(F0)
and β(F1), take chains

C0, C1 ∈ C2n−m+1(B
n) such that ∂Cj = [Σ(Fj)] for j ∈ {0, 1}.

Analogously to the above definition of β(F ) define

[Σ(Φ)] ∈ C2n−m+1(B
n × I).

Let ij : N ∼= N × j → N × I be the inclusions. Then

∂[Σ(Φ)] = i1[Σ(F1)]− i0[Σ(F0)], so ∂([Σ(Φ)] + C0 − C1) = 0.

Therefore there exists

C ∈ C2n−m+2(B
n × I) such that ∂C = [Σ(Φ)] + C1 − C0.

Analogously to [Hu70′, Lemma 2], ∂ΦC = i1(F1C1) − i0(F0C0). Let pr :
N × I → N be the projection. Hence ∂ prΦC = F1C1 − F0C0. Thus analo-
gously to the proof of the independence of β from the choice of C we obtain
β(F0) = β(F1).

Proof of the completeness. Write

M := Bm − IntRBm(F (N − B̊
n), F∂Bn).

Observe that F |Bn : B
n → M is a proper map whose restriction to the

boundary is an embedding.

Consider the following composition of Alexander and Poincaré duality
isomorphisms (with Z coefficients):

Hi(M) ∼= H
m−i−1(Bm −M,∂Bm −M) ∼= Hm−i−1(N − B̊n, ∂N)

∼= Hi+n−m+1(N − B̊
n, ∂Bn) ∼= Hi+n−m+1(N).

Since N is homologically (3n − 2m + 1)-connected, M is homologically
(2n−m)-connected. Since M is simply-connected, it follows that it is
(2n−m)-connected. Then by [Hu70′, Theorem 2, Ha84, Theorem 4] the
class [FC] ∈ H2n−m+1(M ;Z(m−n−1)) is the complete obstruction to the
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existence of a homotopy rel ∂Bn from F |Bn : B
n → M to an embedding.

This class goes to β(F ) = 0 under the composition of the above isomor-
phisms with Z(m−n−1) coefficients. Hence F |Bn is homotopic rel ∂B

n to an
embedding. Extending this embedding over N by F we obtain the required
embedding N → Bm.

Proof of the New Isotopy Theorem (a). Fix any ϕ ∈ πm−1eq (Ñ) and any
embedding f0 : N → R

m such that α(f0) = ϕ. Define

K := {β(F0) ∈ Hk+1(N ;Z(m−n−1)) |

F0 is an almost concordance from f0 to f0}.

By the additivity of the β-invariant, K is a subgroup (depending on n, k,
N, ϕ).
For any embedding f : N → R

m such that α(f) = α(f0), by the Almost
Embedding Theorem (b) there is an almost concordance F from f to f0.
(This together with the additivity of the β-invariant implies that K does
not depend on the choice of f0.) So we can define a map

B : α−1(ϕ)→ Hk+1(N ;Z(m−n−1))/K by B(f) := β(F ) +K.

If F and F ′ are two almost concordances from f to f0, then F
′ ∪ F is an

almost concordance from f0 to f0. Hence the map B is well-defined by the
additivity of the β-invariant.
If B(f) ∈ K, then β(F ) = β(F0) for some almost concordance F0 from

f0 to f0. Then F ∪ F 0 is an almost concordance from f to f0, and by the
additivity of the β-invariant, β(F ∪ F 0) = 0. Hence by the completeness of
the β-invariant, f is concordant to f0. Thus B is injective.

Parametric connected sum of embeddings. We denote by

Sp = Dp+ ∪
∂D

p
+=S

p−1=∂Dp
−

Dp−

the standard decomposition of Sp. Analogously define R
m
± and R

m−1. Iden-
tify Dp with Dp+.
For m ≥ n+ 2 denote by i the standard embedding which is the compo-

sition Sp × Sn−p → R
p+1 × R

n−p+1 ⊂ R
m ⊂ Sm.

Let N be a closed connected n-manifold. Let s : Sp ×Dn−p → N be an
embedding. For the ball Bn ⊂ N from the definition of an almost embedding
(concordance), assume that im s ∩Bn = ∅.
A map f : N → Sm is called s-standardized if

• f ◦ s : Sp ×Dn−p → Dm− is the restriction of the standard embedding,
• f(N − im s) ⊂ IntDm+ .

Roughly speaking, a map N → Dm is s-standardized if its image is put
on the hyperplane Dm−1 so that the image intersects the hyperplane in a
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standardly embedded Sp ×Dn−p (indeed, for such a map the set im s can
be pulled below the hyperplane to obtain an s-standardized embedding in
the above sense) (17).

A concordance F : N × I → Sm × I between s-standardized maps is
called s-standardized if

• F (im s× I) ⊂ Sm− × I is the identical concordance,

• F ((N − im s)× I) ⊂ IntSm+ × I.

Standardization Lemma.

(a) If m ≥ n + p + 2, then any (almost) embedding g : N → Sm is
isotopic to an s-standardized (almost) embedding.

(b) If m ≥ n + p + 3, then any (almost) concordance between s-stan-
dardized embeddings N → Sm is isotopic relative to the ends to an
s-standardized (almost) concordance.

Proof of (a). Fix a point y ∈ Dn−p− ⊂ Sn−p. Since m ≥ n + p + 2 ≥
2p+ 2, it follows that g|Sp×y is unknotted in S

m. So there is an embedding
ĝ : Dp+1 → Sm such that

(∗) ĝ|∂Dp+1 = g|Sp×y and ĝ IntD
p+1 ∩ gN = ∅.

(The second property holds by general position because m ≥ n+p+2.) The

regular neighborhood in Sm of ĝDp+1 is homeomorphic to the m-ball. Take
an isotopy moving this ball to Dm− and let f

′ : N → Sm be the embedding
obtained from g.

Now we are done since the embedding f ′ ◦ s is isotopic to the stan-
dard embedding by the following result (because m ≥ n + 3, the pair
(Sp×Dn−p, Sp×Sn−p−1) is (n−p−1)-connected and n−p−1 ≥ 2n−m+1).

Unknotting Theorem Moving the Boundary. Let N be a compact
n-dimensional PL manifold and f, g : N → Dm proper PL embeddings. If
m ≥ n+3 and (N, ∂N) is (2n−m+1)-connected , then f and g are properly
isotopic [Hu69, Theorem 10.2, p. 199].

Proof of (b). This is a relative version of the proof of (a). Take a con-
cordance G between standardized embeddings f0, f1 : N → S

m. There is a

level-preserving embedding Ĝ : Dp+1 × {0, 1} → Sm × {0, 1} whose com-
ponents satisfy (∗). Since m + 1 ≥ p + 1 + 3, by the Haefliger–Zeeman
Unknotting Theorem any concordance Sp × I → Sm × I standard on the

(17) Note that standardized in the sense of [Sk06′, §2] is i-standardized in the sense
of this paper.
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boundary is isotopic to the standard concordance. Hence the map Ĝ can be
extended to an embedding Ĝ : Dp+1 × I ⊂ Sm × I such that

Ĝ|∂Dp+1×I = G|Sp×y×I and Ĝ(IntD
p+1 × I) ∩G(N × I) = ∅.

(The second property holds by general position because m ≥ n + p + 3.)

Take a regular neighborhood Bm × I in Sm × I of ĜDp+1 such that

(Bm × I) ∩ (Sm × {0, 1}) = Dm− × {0, 1}.

Take an isotopy of Sm × I relSm × {0, 1} moving Bm × I to Dm− × I. Let
F ′ be the concordance obtained from G by this isotopy.

The embedding F ′|im s×I : im s× I → D
m
− × I is isotopic relD

m
− ×{0, 1}

to the identical concordance by the following Unknotting Theorem Moving
Part of the Boundary (which is proved analogously to [Hu69, Theorem 10.2
on p. 199]).

Let N be a compact n-dimensional PL manifold , A a codimension zero
submanifold of ∂N and f, g : N → Dm proper PL embeddings. If m ≥ n+3
and (N,A) is (2n −m + 1)-connected , then f and g are properly isotopic
rel ∂N −A.

Denote by Rk the symmetry of R
k with respect to the plane x1 = x2 = 0.

Definition (of parametric connected sum). (a) Let f : N → R
m and

g : Sp × Sn−p → R
m be (almost) embeddings. If m ≥ n + p + 2, then by

Standardization Lemma (a) we can make isotopies and assume that f and
g are s-standardized and i-standardized, respectively. Define an (almost)
embedding

f #s g : N → R
m by (f #s g)(a) =

{
f(a), a 6∈ im s,

Rmg(x,Rn−py), a = s(x, y).

(b) Take (almost) concordances

F : N × I → R
m × I and G : Sp × Sn−p × I → R

m × I.

If m ≥ n + p + 3, then by the Standardization Lemma (b) we can make
isotopies relative to the ends and assume that F and G are s-standardized
and i-standardized, respectively. Define an (almost) concordance F #s G :
N × I → R

m × I by

(F #s G)(a, t) =

{
F (a, t), a 6∈ im s,

(RmG(x,Rn−py, t), t), a = s(x, y).

We do not need parametric connected sum to be independent of the
choice of an almost concordance to a standardized almost embedding or
almost concordance: we denote by f #s g or F #sG the result for any such
choice.



A new invariant 265

Proof of the New Isotopy Theorem (b) and the New Embedding
Theorem

The Hopf Invariant Lemma. Take the standard embedding i :
Dp+1 × Sq → Sm. Represent ϕ ∈ πp+q(S

m−q−1) by a map (not necessarily
an embedding)

ϕ : Sp+q → Sm − i(Dp+1 × Sq) ≃ Sm−q−1.

If 2m = 3q + 2p+ 2, then β(i# ϕ) = ±HΣϕ (18).

Proof. We argue analogously to [Ko88, Theorem 4.8]. We may assume
that ϕ is a smooth general position framed immersion. Extend ϕ to a smooth
general position framed immersion ϕ̂ : B → R

m, where B := Bp+q+1. Then
by [Ko88, Theorem 1.3] and [Ke59, Lemma 5.1] the class ±Σϕ ∈ πSp+2q+1−m
is represented by the framed (p+ 2q + 1−m)-submanifold

∆ := {(u, z) ∈ B × Sq | ϕ̂(u) = i(a, z)} of B × Sq ⊂ Sp+2q+1−m

(with natural framing). For a 0-chain X with coefficients in Z(m−p−q−1) in
a connected manifold denote by [X] the number of points in X modulo 2
whenm−p−q is even (we need only this case for the Non-Triviality Lemma)
and the algebraic number of points when m − p − q is odd (That is, [X] is
the 0-dimensional homology class of X.) Then by [Ko88, p. 411],

±HΣϕ = [{(x, y) ∈ ∆×∆ | pr2 x = pr2 y}]

(this set is finite by general position). Thus

±HΣϕ = [{(u, v, z) ∈ B ×B × Sq | ϕ̂(u) = ϕ̂(v) = i(a, z)}]

= [i(a× Sq) ∩ ϕ̂pr2D] = β(i# ϕ),

where D := {(u, v) ∈ B × B | ϕ̂(u) = ϕ̂(v)}. Here the last equality holds
because

C := {(u, v) ∈ ∂B ×B | ϕ(u) = ϕ̂(v)}, D and D̃ := ϕ̂pr2D

are as in the definition of the β-invariant (C has the natural orientation for
m − p − q odd); the groups Hp(S

p × Sq;Z(m−p−q−1)) and Z(m−p−q−1) are
identified by the isomorphism γ 7→ γ∩ [a×Sq]. The definition of β-invariant
does make sense in the piecewise-smooth category (and hence in the smooth
category). Recall that the piecewise-smooth category is equivalent to the
PL category, i.e. the forgetful map from the set of PL embeddings up to
PL isotopy to the set of piecewise differentiable embeddings up to piecewise
differentiable isotopy is a 1-1 correspondence [Hae67].

Non-Triviality Lemma. For 1 ≤ p < l ∈ {3, 7} there exists an almost
embedding G : Sp × S2l → R

3l+p+1 such that β(G) = 1.

(18) Here i # ϕ is the embedded connected sum of linked embeddings but not the
parametrized connected sum as above; i# ϕ = µ(ϕ) in the notation of [Sk06′].
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Proof. Since p ≥ 1, the group π2l+p(S
l+p) is either stable or metastable,

so the stable suspension Σ∞ is epimorphic. Since l ∈ {3, 7}, the Hopf in-
variant H is epimorphic. Hence there is ϕ ∈ π2l+p(S

l+p) whose stable Hopf
invariant HΣ∞(ϕ) is 1 ∈ Z2. By the Hopf Invariant Lemma for q = 2l and
m = 3l + p+ 1 we obtain β(i# ϕ) = HΣ∞(ϕ) = 1.

Realization Lemma. Let N be an orientable (p − 1)-connected p-
parallelizable closed n-manifold and n ≥ 2p + 1. Then any homology class
x ∈ Hp(N ;Z or Z2) is realizable by an embedding x : S

p ×Dn−p → N .

Proof. Since N is (p − 1)-connected, any homology class in Hp(N ;Z)
can be realized by a map Sp → N . Hence the same holds for Z2 coefficients.
Since n ≥ 2p + 1 every such map is homotopic to an embedding Sp → N .
Since N is p-parallelizable, it follows that this embedding can be extended
to an embedding x : Sp ×Dn−p → N .

#-Additivity Lemma. If p = 3n − 2m + 3 ≥ 0, m ≥ n + p + 2 and
s : Sp × Dn−p → N is an embedding, then β(f #s g) = β(f) + β(g)[s] for
almost embeddings f : N → R

m and g : Sp × Sn−p → R
m, where β(g) is

considered as an element of Z(m−n−1).

Proof. Since m ≥ n+ p+ 2, by the Standardization Lemma (a) we may
assume that f and g are standardized. Since Rm and Rn−p are isotopic
to the identity maps of R

m and of Sn−p, they do not change orientations.
Hence

[Σ(f #s g)] = [Σ(f)] + s∗(idS
p ×Rn−p)∗[Σ(g)],

so we can take

Cf#sg := Cf + s∗(idS
p ×Rn−p)∗Cg and Df#sg := Df +RmDg.

We may assume that the supports of Df and Dg are in R
m
+ . Identify S

p ×

Dn−p with Sp ×Dn−p+ so that it would contain the support of D̃g. Then

β(f #s g) = [D̃f#sg]

= [(F #s G|N−IntBn)
−1Df ] + [(F #s G|N−IntBn)

−1RmDg]

= [D̃f ] + s∗[D̃g] = β(f) + [s]β(g).

Proof of the New Embedding Theorem. Take any ϕ ∈ πm−1eq (Ñ). Since

2m = 3n + 1 − k, by the Almost Embedding Theorem (c) there is an
almost embedding f : N → R

m such that α(f) = ϕ. By the Realiza-
tion Lemma there is an embedding s : Sk+1 × Dn−k−1 → N such that
[s] = −β(f). By the Non-Triviality Lemma there is an almost embed-
ding G : Sk+1× Sn−k−1→R

m such that β(G) = 1. By the #-Additivity
Lemma, β(f#sG) = β(f)+[s] = 0. By the completeness of the β-invariant,
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f#sG is almost concordant to an embedding N → R
m. (Note that possibly

α(f) 6= α(f #s G).)

Proof of the New Isotopy Theorem (b). Since 2m = 3n + 2 − k, the
surjectivity follows by the Embedding Theorem (b). The following proof
of the injectivity is a relative version of the proof of the New Embedding
Theorem.
Take two embeddings f, f ′ : N → R

m such that α(f) = α(f ′). By the Al-
most Embedding Theorem (b) there is an almost concordance F from f to f ′.
By the Realization Lemma there is an embedding s : Sk+1 ×Dn−k−1→ N
such that [s] = −β(F ).
Take an almost embedding G : Sk+1 × Sn−k → R

m+1 given by the
Non-Triviality Lemma. Analogously to the Standardization Lemma we may
assume that

• G(Sk+1 ×Dn−k− ) ⊂ Dm+1− is the standard embedding,

• G(Sk+1 × 12D
n−k
+ ) ⊂ 12D

m+1
+ is the standard embedding,

• G(Sk+1 × (Dn−k+ − 12D
n−k
+ )) ⊂ Dm+1+ − 12D

m+1
+ .

The last inclusion gives an almost concordance G0 between standard em-
beddings such that β(G0) = 1. Then F#sG0 is an almost concordance from
f to f ′.
Analogously to the #-Additivity Lemma one proves the following.

If p = 3n − 2m + 2 ≥ 0, m ≥ n + p + 3 and s : Sp × Dn−p → N is
an embedding , then β(F #sG0) = β(F ) + β(G0)[s] for almost concordances
F : N × I → R

m × I and G0 : S
p × Sn−p × I → R

m × I, where β(G0) is
considered as an element of Z(m−n−1).

So β(F #s G0) = β(F ) + [s] = 0. Hence by the completeness of the
β-invariant, f is isotopic to f ′.
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