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Measure-preserving homeomorphisms
of noncompact manifolds and mass flow toward ends

by

Tatsuhiko Yagasaki (Kyoto)

Abstract. Suppose M is a noncompact connected n-manifold and w is a good Radon
measure of M with w(OM) = 0. Let H(M,w) denote the group of w-preserving homeo-
morphisms of M equipped with the compact-open topology, and Hg (M, w) the subgroup
consisting of all h € H(M,w) which fix the ends of M. S. R. Alpern and V. S. Prasad
introduced the topological vector space S(M,w) of end charges of M and the end charge
homomorphism ¢* : Hg(M,w) — S(M,w), which measures for each h € Hg(M,w) the
mass flow toward ends induced by h. We show that the map ¢ has a continuous section.
This induces the factorization Hg(M,w) = Ker ¢* x S(M,w) and implies that Kerc” is a
strong deformation retract of Hg(M,w).

1. Introduction. This article is a continuation of the study of groups of
measure-preserving homeomorphisms of noncompact topological manifolds
[2, 3, 4, 8]. Suppose M is a noncompact connected n-manifold and w is a
good Radon measure of M with w(9M) = 0. Let H(M, w) denote the group
of w-preserving homeomorphisms of M equipped with the compact-open
topology. In the study of this group, the space Ej; of ends of M plays
a significant role. Let EY, denote the open subset of E)y; consisting of w-
finite ends of M and let Hp,,(M,w) denote the subgroup consisting of all
h € H(M,w) which fix the ends of M.

In [1] S. R. Alpern and V. S. Prasad introduced the end charge homo-
morphism

¢ Hpgy, (M,w) - S(M,w).

An end charge of M is a finitely additive signed measure on the algebra of
clopen subsets of Ejys. Let S(E)s) denote the topological linear space of all
end charges of M with the weak topology and let S(M,w) denote the linear
subspace of S(E)s) consisting of end charges ¢ of M with ¢(Ey) = 0 and
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c|gy, = 0. For each h € Hp,,(M,w) an end charge ¢/ € S(M,w) is defined
by
c¢h(Ec) = w(C = h(C)) —w(h(C) = C),

where C is any Borel subset of M such that Fr C'is compact and Ec C Ejy is
the set of ends of C'. This quantity is the total w-volume (or mass) transferred
by h into C' and into E¢ at the last. Hence, the end charge c; measures mass
flow toward ends induced by h.

In [3] R. Berlanga showed that the group H(M,w) is a strong deforma-
tion retract of the group H (M, w-e-reg) consisting of w-end-regular homeo-
morphisms of M. The group H (M, w-e-reg) acts continuously on the space
Mg(M, w-e-reg) s, of good Radon measures p on M such that u(M) =w(M),
E]’\} = E%; and p and w have the same null sets, equipped with the finite-
end weak topology. He showed that the orbit map 7 : H(M,w-e-reg) —
Mg(M ,w-e-reg)ew : h — h,w has a continuous section. This section induces
the factorization H(M,w-e-reg) = H(M,w) X Mg(M, w-e-reg)’. and this
yields a strong deformation retraction of H(M,w-e-reg) onto H(M,w).

In this article we use a similar strategy and investigate the internal struc-
ture of the group H(M,w). The group Hg,,(M,w) acts continuously on
S(M,w) by h-a =¢ +a (h € Hg,,(M,w), a € S(M,w)), and the end
charge homomorphism ¢ : Hg,,(M,w) — S(M,w) coincides with the orbit
map at 0 € S(M,w). We extend the argument in [3] and show that the map
¢¥ admits a continuous (nonhomomorphic) section.

Suppose M" is a noncompact connected separable metrizable n-manifold
and w € Mg(M ).

THEOREM 1.1. There exists a continuous map s : S(M,w) — Ho(M,w);
such that ¢“s = id and s(0) = idy;.

THEOREM 1.2. Suppose that P is any topological space and that p :
P — Mg(M,w—reg) and a : P — S(Ey) are continuous maps such that
ap € S(M,p,) (p € P). Then there exists a continuous map h
P — Hy(M,w-reg); such that for each p € P,

(1) hp € Ha(M, :up)lv

(2) Cl];; = Qp,

(3) if ap =0, then hy, = idy.

Theorem 1.2 is a slight generalization of Theorem 1.1. The existence of

a section for the map ¢ and the contractibility of the base space S(M,w)
imply the following consequences.

COROLLARY 1.1.

(1) Hg,,(M,w) = Kerc” x S(M,w).
(2) Kerc¥ is a strong deformation retract of Hg,,(M,w).
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The group Ker ¢* contains the subgroup H¢(M,w) consisting of w-pre-
serving homeomorphisms with compact support. The condition ¢j =0 means
that any compact part of h can be separated from the “remaining part” of h.
From the argument in [1] it follows that for any f € Kerc” N'H(M); and
any compact subset K of M there exists a compact connected n-submanifold
N of M with K C N and h € Hy—n(M,w); with h|x = f|k. This implies
that the subgroup H¢(M,w); is dense in Kerc¢” N H(M);. In a succeed-
ing work we will show that in n = 2 the subgroup H°(M,w)7 is homotopy
dense in Kerc¢® N'H(M);. In [9] we have obtained some versions of Theo-
rem 1.1 and [3, Theorem 4.1] for smooth manifolds and volume-preserving
diffeomorphisms.

This paper is organized as follows. Section 2 contains fundamentals on
end compactifications, spaces of Radon measures and groups of measure-
preserving homeomorphisms. Section 3 is devoted to basics on end charge
homomorphisms and related notions. This section also includes generalities
on morphisms induced from proper maps. Section 4 contains the proof of
Theorem 1.2 in the cube case. The general case is treated in Section 5.

2. Spaces of Radon measures and groups of homeomorphisms.
Throughout this section X is a connected, locally connected, locally com-
pact, separable metrizable space. We use the notations F(X), K£(X) and
C(X) for the sets of closed subsets, compact subsets, and connected compo-
nents of X; B(X) and Q(X) denote the o-algebra of Borel subsets and the
algebra of clopen subsets of X respectively.

When A is a subset of X, the symbols Frx A, clx A and Intx A denote
the frontier, closure and interior of A relative to X. When M is a manifold,
0 = OM and Int M denote the boundary and interior of M as a manifold.

2.1. Groups of homeomorphisms. For a space X and a subset A C X the
symbol H 4(X) denotes the group of homeomorphisms h of X onto itself with
hla = id 4, equipped with the compact-open topology. The group H4(X) is
a topological group (since X is locally compact and locally connected).

The support of h € H(X) is defined by Supp h = clx{z € X | h(x) # z}.
We set HG(X) = {h € Ha(X) | Supph compact}. For any subgroup G
of H(X), the symbol G; denotes the path-component of idy; in G. When
G C H%(X), we denote by Gf the subgroup of G; consisting of those h € G
which admit an isotopy h: € G (¢ € [0, 1]) such that hg = idx, h1 = h and
there exists K € K(X) with Supph: C K (¢t € [0, 1]).

2.2. End compactifications (cf. [1, 3]). Suppose X is a noncompact, con-
nected, locally connected, locally compact, separable metrizable space. An
end of X is a function e which assigns an e(K) € C(X—K) toeach K € K(X)
so that e(K1) D e(K2) if K; C K». The set of ends of X is denoted by Ex.
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The end compactification of X is the space X = X U Ex equipped with
the topology defined by the following conditions: (i) X is an open subspace
of X, (ii) the fundamental open neighborhoods of e € Ex are given by

N(e,K)=e(K)U{e' € Ex | €(K)=¢(K)} (K €K(X)).

Then X is a connected, locally connected, compact, metrizable space, X is
a dense open subset of X, and Ex is a compact 0-dimensional subset of X.

Let B.(X) ={C € B(X) | Frx C compact}. For each C' € B.(X) let
Ec={ec€ Ex |e(K)CC forsome K € K(X)}, C=CUEcCX.

Then Ec € Q(Ex) and C is a neighborhood of E¢ in X with CNEx = Ec¢.
For C,D € B.(X), Ec = Ep it CA D = (C — D) U (D — C) is relatively
compact (i.e., has compact closure) in X.

For h € H(X) and e € Ex we define h(e) € Ex by h(e)(K) =
h(e(h"Y(K))) (K € K(X)). Each h € H(X) has a unique extension h €
H(X) defined by h(e) = h(e) (e € Ex). The map H(X) — H(X) : h— h
is a continuous group homomorphism. We set Haupy (X) = {h € Ha(X) |
hlgy = idgy }. Note that Haup, (X)1 = Ha(X); and if C € B.(X) and
h € Hpy (X), then h(C) € B.(X) and Ej ) = Ec.

2.3. Space of Radon measures. Next we recall general facts on spaces of
Radon measures (cf. [1, 3, 6]). Suppose X is a connected, locally connected,
locally compact, separable metrizable space. A Radon measure on X is a
measure g on (X, B(X)) such that u(K) < oo for any K € K£(X). A Radon
measure g on X is said to be good if u(p) = 0 for any point p € X and
w(U) > 0 for any nonempty open subset U of X.

Let M(X) denote the space of Radon measures p on X equipped with
the weak topology. This topology is the weakest topology such that the
function

By M(X) =R, Bp(u)= | fdu,
e
is continuous for any continuous function f : X — R with compact support.
Let Mg (X) denote the subspace of good Radon measures p on X and for
A € B(X) we set MA(X) = {u € M(X) | u(A) = 0} and /\/lgA(X) =
Mg(X) N MA(X).

For u € /\/l( ) and A € B(X) the restriction p|a € M(A) is defined by

(kla)(B) = u(B) (B € B(4)).

LeEMMA 2.1 ([3, Lemma 2.2]). Let A € F(X) and K € K(X).

(i) The restriction map MY A(X) — M(A) : > p|a is continuous.
(i) The evaluation map MK (X) — Ry u(K) is continuous.
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Let w € Mg(X). We say that an end e € Ex is w-finite if w(e(K)) < oo
for some K € K(X). Let EY = {e € Ex | e is w-finite}. This is an open
subset of Ex and for C' € B.(X) we have Ec C EY iff w(C) < 0.

DEFINITION 2.1.
(1) p € Mg(X) is said to be
(i) w-regular if p has the same null sets as w (i.e., u(B) = 0 iff
w(B) =0 for any B € B(X)),
(ii) w-end-regular if p is w-regular and EY = E¥.
(2) M’;(X,w(—e)—reg) ={ue /\/lg‘(X) | pis w(-end)-regular} (with the
weak topology).

The group H(X) acts continuously on M(X) by h-p = hyp, where hypu
is defined by (hyu)(B) = p(h™'(B)) (B € B(X)).

DEFINITION 2.2.
(1) h € H(X) is said to be

(i) w-preserving if hyw =w (i.e.,w(h(B)) = w(B) for any Be B(X)),
(ii) w-regular if h preserves w-null sets (i.e., w(h(B)) = 0 iff
w(B) =0 for any B € B(X)),
(iii) w-end-regular if h is w-regular and h(E%) = E%.

(2) H(X,w) = {h € H(X) | h is w-preserving} and H(X,w(-e)-reg) =
{h € H(X) | h is w(-end)-regular}.

Suppose M is a compact connected n-manifold. The von Neumann—
Oxtoby—Ulam theorem [7] asserts that if u,v € Mg(M) and u(M) =v(M),
then there exists h € Hy(M )1 such that hou = v. A. Fathi [6] obtained a
parameter version of this theorem.

THEOREM 2.1. Suppose that M is a compact connected n-manifold and
w € Mg(M) Suppose that p,v, P — Mg(M, w-reg) are continuous maps
with py(M) = vp(M) (p € P). Then there exists a continuous map h :
P — Hy(M,w-reg)1 such that for each p € P,

(1) (hp)spp = vp,
(ii) if pp = vp then hy =idps.

In [3] R. Berlanga obtained a similar theorem for a noncompact con-
nected n-manifold M. We use the following consequence of [3, Proposi-
tion 5.1(2)].

LEMMA 2.2. Suppose that M is a noncompact connected n-manifold and
we Mg(M). Then Ho(M,w) N Hy(M,w-reg)1 = Ho(M,w);.
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3. End charge homomorphism

3.1. End charge homomorphism. We recall the basic properties of the
end charge homomorphism defined in [1, Section 14]. Suppose X is a con-
nected, locally connected, locally compact, separable metrizable space and
w e M(X).

An end charge of X is a finitely additive signed measure ¢ on Q(FEx),
that is, a function ¢ : Q(Ex) — R which satisfies the following condition:

c(FUG)=c(F)+c¢(G) for F,G € Q(Ex) with FNG = 0.

Let S(Ex) denote the space of end charges ¢ of X with the weak topology
(or the product topology). This topology is the weakest topology such that
the function

Up:S(Ex) =R, Wp(c)=c(F),
is continuous for any F' € Q(Fx). For a subset U C Ex let
(i) ¢(F) =0 for F € Q(Ex) with F C U,}

(ii) ¢(Ex) =0
(with the weak topology). Then S(Ex) is a topological linear space and
So(Ex, U) is a linear subspace. For w € M(X) we set S(X,w) =So(Ex, EY).

For h € Hpy (X,w) the end charge ¢} € S(X,w) is defined as follows:
For any F' € Q(FEx) there exists C' € B.(X) with E¢ = F'. Since h|g, = id,
it follows that E¢ = Ejcy and C A h(C) is relatively compact in X. Thus
w(C = h(C)),w(h(C) - C) < oo and we can define

F(F)=w(C—-"h(C)) —w(h(C)—-C) eR.

This quantity is independent of the choice of C.

So(Ex,U) = {c € S(Ex) ‘

PROPOSITION 3.1. The map ¢ : Hg, (X,w) — S(X,w) is a continuous
group homomorphism ([1, Section 14.9, Lemma 14.21(iv)]).

3.2. Related notions. In the proof of Theorem 1.2 it is necessary to mea-
sure volumes transferred into various regions by homeomorphisms (which are
not measure-preserving). For this purpose we introduce some notation.

For A, B € B(X) we write A ~. B if A A B is relatively compact in X.
This is an equivalence relation and for A, B € B.(X) we have

(i) A~ B iff E4 = Ep,
(ii) A ~¢ h(A) for any h € Hg, (X).
Similarly, for 4 € M(X) and A,B € B(X) we write A ~, B if

u(A A B) < oo. This is also an equivalence relation and A ~. B implies
A~, B.1If A~, B, then we can consider the following quantity:

JMA,B) = u(A— B) — u(B — A) € R,
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It measures the difference of py-volumes of A and B when A and B differ only
in a finite volume part. If C € B.(X) and h € Hp, (X), then J*(h=1(C),C)
is just the total p- mass transferred into C' by h. If h € Hg, (X, ), then
JH(hH(C),C) = JH(C, h(C)) = ¢, (Ec).

This quantity has the following formal properties:

LEMMA 3.1. Suppose p € M(X) and A,B,C,D € B(X).
(1) If A~y B and p(A) < oo, then u(B) < oo and
(A, B) = p(A) - u(B).
(2) If A~, B~ C, then J*(A,B) 4+ JH(B,C) = JH(A,C).
(3) IfA~, C, B~, D, then
(i) AUB ~, CUD since (AUB)A(CUD) C (AAC)U(BAD),
(ii) if ANB=CND =0, then
JH(AUB,CUD)=J"AC)+ JYB,D).
(4) If h € H(X) and A ~y,, B, then h™'(A) ~, h™'(B) and
JMH(A, B) = JH(h~'(A),h~1(B)).
LEMMA 3.2. Suppose w € M(X) and A, B € B.(X) with A ~. B and
w(Fr A) = w(Fr B) = 0. Then the function
D : M(X,w-reg) x Hpy (X,wreg)® = R,  &(u, f,g) = J*(f(A),9(B)),
18 continuous.

Proof. Since J*(f(A),g(B)) = J*(f(A), A) + J"(A, B) + J*(B,g(B))
and u(A — f(A)) = (f71u)(f~H(A) — A), it suffices to verify the continuity
of the following function:

M(X, w-reg) x Hpy (X, w-reg) — R : (i, f) = p(f(A) — A).

Fix (u, f) and ¢ > 0. Since f(FrA) is a compact p-null set, it has a
compact neighborhood K such that u(K) < € . There exists a neighborhood
U of fin Hg, (X, w-reg) such that f(A) Ag(A) C K (g €U).

The function v(f(A) — A) is continuous in v. In fact, Fr(f(4) — A) C
Fr AUFr f(A) and the latter is a v-null set since v is w-regular. Thus, we
have v(Fr(f(A) — A)) = 0 and the claim follows from Lemma 2.1(ii). Also
note that the function M(X) — R : v — v(K) is upper semicontinuous
([3, Lemma 2.1]). Therefore, there exists a neighborhood V of p in
M(X,w-reg) such that

lv(f(A) —A) —pu(f(A) —A)|<e and v(K)<e (veV).
Take any (v,g) € VxU. Since (f(A)—A)A(g(A)—A) C f(A)Ag(A) C K,
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we have
v(9(A) — A) —v(f(A) — A)| <v(K) <e.

(In general, [v(A) —v(B)| <v(A A B).) It follows that
w(g(A) — A) — pu(f(A) — A)] < 2. =

Following [3] we say that continuous maps u,v : P — M(X) are com-
pactly related and write p ~. v if each p € P admits a neighborhood U
in P and K, € K(X) such that gy = v, on M — K, (¢ € U). (If Pis a
singleton, this is just a condition on pu,v € M(X).) This is an equivalence
relation and if p ~¢ v, then for any C' € B(X) we can define a function
(bw—v)(C): P—Rby

(= )(C)p = up(C N Kp) — 1p(C N Kp).

This definition is independent of the choice of K. If w € M(X), p,v: P —
M(X,w-reg), i ~c v and C € B(X) with w(FrC) = 0, then the function
(p—v)(C): P — R is continuous.

Suppose a continuous map h : P — H¢(X) has locally common compact
support (i.e., for each p € P there exists a neighborhood U of p in P and
K € K(X) such that Supphy, C K (¢ € U)). Then p ~¢ hyp for any
continuous map p : P — M(X).

If pe M(X), Ae B(X) and f,g € H°(X), then

(fure = gap)(A) = JH(f71(A), g7 (A)).

In the proof of Theorem 1.2 we frequently use the quantity on the right
hand side. The above means that this quantity can be translated to a quan-
tity prescribed in terms of measures and that the calculations on this quan-
tity in the proof of Theorem 1.2 and the statements in Lemma 3.1 reduce to
calculations on measures. However, J*(f~1(A),g 1(A)) has the advantage
that it is defined for A € B.(X) and f,g € Hg, (X). For example, we can
take f and g to be the limits of sequences fi, gr € H(X). This is convenient
in our situation.

3.3. Morphisms induced from proper maps. Suppose X and Y are con-
nected, locally connected, locally compact, separable metrizable spaces and
f:X — Y is a proper continuous map (that is, f~!(K) is compact for any
K € K(Y)). The map f induces various continuous morphisms.

(1) fuo : M(X) — M(Y): For p € M(X) the induced measure
fept € M(Y) is defined by (fiu)(B) = u(f~%B)) (B € B(Y)). The
map f. is continuous. If A,B € B(Y) and A ~y,, B, then J/*¥(A,B) =
JH(f7YH(A), f71(B)) (cf. Lemma 3.1(4)).
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(2) f: X — Y: This is the unique continuous extension of f. For each
e € Ex the end f(e) € Ey is defined by assigning to each K € K(Y) the
unique component f(e)(K) € C(Y — K) which contains f(e(f~(K))). The
map f is defined by f(e) = f(e) (e € Ex). For any C € B.(Y) we have
f_l(C) S BC(X) and Effl(C) = f__l(EC).

(3) f« : S(Ex) — S(Ey): This is a continuous linear map induced
by the map f : Ex — Ey. For each ¢ € S(Ex) the end charge f.c €
S(Ey) is defined by (f.c)(F) = c(f~1(F)) (F € Q(Ey)). It induces the
restriction f, : So(Ex,U) — So(Ey,V) for any V C Ey and U C Ex
with f=3(V) C U. Let w € M(X). Since f‘l(E{i*“) C E¥, we obtain the
restriction f, : S(X,w) — S(Y, fuw). If f : Ex — FEy is injective, then
f‘l(E{;*w) = E%. Therefore, if f : Ex — FEy is a homeomorphism, then
fe:S(X,w) — S(Y, fuw) is also a homeomorphism.

Below we assume that the map f : X — Y satisfies the following addi-
tional conditions:

(x)1 Ce F(X),Intx C =0 and D € F(Y),
(¥)2 f(C)= D and f maps X — C homeomorphically onto Y — D.

4) f* : MP(Y) — MCY(X): For each v € MP(Y) the measure
fv € MY(X) is defined by (f*v)(B) = v(f(B — C)) (B € B(X)). The
map f* is a homeomorphism, whose inverse is the map f, : M%(X) —

MP(Y). For any w € Mg (Y') these maps induce the reciprocal homeomor-
phisms

f* : Mg(Xa f*w'reg) - Mé)(Y, w'reg)v
fre M?(Y, w-reg) — /\/lg(X, ffw-reg).

(5) fe : Ho(X) — Hp(Y): For each h € Ho(X) there exists a unique
h € Hp(Y) such that hf = fh. The map f,. is defined by f.h = h. This

map is a continuous injection and induces the restrictions

f« t Houpy (X) = Hpur, (Y),  f«: Ho(X, ffw-reg) — Hp(Y,w-reg),
fr: Ho(X, f*w) — Hp(Y,w), for any w € MP(Y).

LEMMA 3.3. Under the condition (x), for any w € MP(Y) we have the
following commutative diagram:

Hoomy (X, [*w) 5 S(X, frw)
f*l lf*

HDUEY (Y)w) i’ S(Y, u})
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4. Proof of Theorem 1.2 in the cube case. In this section we
prove Theorem 1.2 in the cube case. Following [3, Section 4] we use the fol-
lowing notations: I = [0,1], I" is the n-fold product of I, I} = [1/3,2/3] x
{(1/2,...,1/2,1)} C I"™, m is the Lebesgue measure on R", d is the standard
Euclidean distance in R” (d(x,y) = |[|[x—y||), E is a 0-dimensional compact
subset of OI" (E C I for n > 2), My = I" — E and mg = m/|yy,. The pair
(Mo, E ) is canonically identified with (I, E). An n-cubic balloon in I™
is a cube A of the form [0,a]™ + v for some o > 0 and v € R" such that
A CI"and ANOI™ = ([0,a]" ! x {a})+v. Let D(Mp) denote the set of PL
n-disks K in My such that clyn (Mo — K) is a finite disjoint union of n-cubic
balloons A in I" with AN E # (). For convenience, we add the empty set ()
as a member of D(My).

THEOREM 1.2". Suppose i : P — Mg(Mo,mo—reg) anda : P — S(Ey,)
are continuous maps such that a, € S(My, p1p) (p € P). Then there exists a
continuous map h : P — Hg(My, mo-reg); such that for each p € P,

(1) hy € Ho(Mo, 1p)1,
(2) Cz; = apv
(3) ifap =0, then hy = iday,.

Theorem 1.2" is proved in a series of lemmas. For the sake of notational
simplicity, we write fuu = gip and JH(f(A),g(A)) = a(E4) instead of
fprtp = Gpspip (p € P) and JH*(f,(A), gp(A)) = ap(Ea) (p € P).

Below we assume that p: P — Mg(Mo,mo—reg) and a : P — S(E,)
are continuous maps such that a, € S(My, i1p) (p € P). We consider the
case n > 2. (The modification for n = 1 is obvious.)

LEMMA 4.1. Suppose that K,L € D(My), K C Intpy;, L and f,g: P —
Hs(Moy, mo-reg)1 are continuous maps such that

(i) ferr = gepr on K,
(it) JH(f~1(A), g7 (A)) = a(Ea) (A € Ccly, (Mo — K))).

Then there exists a continuous map h : P — H§ (Mo, mo-reg)] such that

(1) (hf)sp = et om L,

(2) J* (( HHB), 9*1(3)) = a(EB) (B € C(cla (Mo — L)),

(3) {h, W oep is equicontinuous on cly, (Mo — L) with respect to d|pp,
(4) if pe P, a, =0 and fp, = gp = idpg,, then hy, = idpy,.

Proof. For each A € C(clp, (M — K)) we construct a continuous map
0 =104s: P — HG(A, m|s-reg)] such that
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(1)
(2) JH(fH7H(B), g7 (B)) = a(Ep) (B € Clcly, (A — L)),

(3) {E;l}pep is equicontinuous on clyz, (A — L) with respect to d|a,
(4)" if pe P, ap =0 and f, = g, = idp,, then £, =id 4.

Then h is defined by h|x = idg and h|a = €4 (A € C(clpy, (Mo — K))).
The map ¢ = {4 is constructed as follows. Let C(clpy; (A — L)) =
{B4i,...,By}. This is a disjoint family of n-cubic balloons with ends and we
have A = (ANL)UU,~, Br and E4 = |J;-, Ep, . Set Ny, = (ANL)UU;~, B;
(k=1,...,m)and Ny41 =ANL.
We inductively construct continuous maps ¢¥ : P — HG(A, m|4-reg)}
(k=1,...,m) such that

(2k) JH(fHE)H(By), 971 (By)) = a(Ep,) (7 =1,....k),
(3k) {(E’;)_l}p is equicontinuous with respect to d|4,
(4g) if pe P, ap =0 and f, = g, = idp,, then E’; =idg.

Suppose ¢¢~! has been constructed. (For k = 1 we put £ = idyy,.)
Consider the PL n-disk Ny, = By U Ny (recall that Ny = Ny U Ey, =
clyn Ni,). Since BN Ny is a PL (n — 1)-disk, we can find a one-parameter
family of PL-maps ¢; : Ny — Ny, (t € [—1,1]) such that

(a) po = id, p1(Bk) = Nk, p-1(Ngt1) = Ny and ¢¢ = id on ONy

<t € [_17 1])7
(b) ¢t|n, (t € (—1,1)) is an isotopy on Ny, ¢s(Bi) € ¢e(Br) (-1 < s
<t <1)and ¢|n, (t € (—1,1)) has locally common compact sup-
port.
The map ¢; is obtained by enlarging By, for ¢t > 0 (engulfing Ny at t = 1)
and shrinking By, for ¢ < 0 (collapsing at t = —1). The family ¢y (t € [~1,1])
is equicontinuous with respect to d, since it is a compact family. Thus
ot|n, (t € (—1,1)) is also equicontinuous with respect to d. The maps ¢
(t € (—1,1)) are m-regular since any PL-homeomorphism between subpoly-
hedra in R"™ is m-regular.

The map ¢* is defined as £¥ = ¢¥~1 where
¢ P — H%UBlLJ“-UBk_l(A’ m|A—reg)>f
is defined by
Uy = cpt_(;) on N, 1, =id on ByU---UBy_.

The parameter function ¢ = t(p) : P — (—1,1) is determined by the condi-
tion (2) (j = k). We set

oyt = (0 )u((fputtp)]a) € MG(A,m|s-reg).
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Then the identity for j = k in the condition (24) is equivalent to:
ap(Ep,) — J* (f, (051" (By), g, ' (Br))
= I, (0) 7 (B, fy () T (Br))
= Je(f N (B, f, 0 T (Be))
= J% (¢1(Bw), Br)
{Uﬁ_l(SOt(Bk) — By) € 0,05 (Nipy1))  (t€[0,1)),
—oy (B — ¢i(By)) € (—op ' (By), 0] (t € (~1,0).

(Note that a,(Ep,) = 0 does not imply ¢(p) = 0.) This equation in ¢ is
uniquely solved, once we check the next inequality'

ap(Ep,) — I (f, (6571 " (Br). g, ' (Br) € (=0 H(Br)s oy (Ni1)).
This is verified by the following observatlons.
If ok U(B) = uplf, (65)U(BY) < oo, then py(By) < oo and
ap(Ep,) = 0 since a, € S(My, p1p). Thus
ap(Ep,) — " (f, (6571 " (Br), g, ' (Br))
~(up(fy (6 7H(BR)) — mplg, ' (Br)) > —o3~(By).
If b1 (Njs) = up<f;<e’f—1>—1<zvk+1>> < 50, then j1,(Ngs1) < o0 and
ap(Ep;) =0 (j=k+1,...,m). Since

it follows that

k—1 m

EBk Zap EB (Z —I— Z ap )
Jj=1 i=k+1

-1

= I (T THA) g () =D T (F (G T (B gy (B))

?TQ

I
—

J
=J (£ 1D T (NG), g, L (NR)),

ap(Ep,) — " (£ (65" (Br), g, (Br))
= J8 (fy (G T (Nikgr), g (Nir))
= wp(fy (6 T (Nis1)) = (9 (Nie1)) < 0™ (N
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The continuity of the function ¢ = ¢(p) follows from the continuity of
ap(Bs,), T (£ (0511 (By), gy L (By)) in pand J " (o1(By), By) in (p.1)
(cf. Lemma 3.2).

These observations justify the definition of the map £, and it is readily
seen to satisfy the required conditions. This completes the inductive step
and we obtain the map ¢.

This map satisfies the conditions on £ except (1)’. On the n-disk ANL we
compare the two maps c™|anr, T|anL : P — Mg(A N L, m|anr-reg), where

o™ =L ((fur)|a), T =gap: P — MI(A,m|a-reg).

Since
c™(ANL)—7(ANL) =JMf (™Y (ANL),g7 (ANL))
= JE(fFH ™) T (A) ZJ“ ~H(Br), 9~ (By))
=1
Za EBk =0,
k=1

Theorem 2.1 yields a map
§: P — Ho(AN L,m|anr-reg) = Hoya—r)(A, m|a-reg)

such that (£x0™)|ant = T|anr and &, = ida if oplanr, = 7p|lanr. Finally,
the composition £ = &£ satisfies all of the required conditions, and this
completes the proof. (We note that since the maps ¢¢|n, (t € (—1,1)) have
locally common compact support, the map h also has locally common com-
pact support.) =

Let L° = 0 and f° = idpy,, ¢° = iday,-

LEMMA 4.2. There exists a sequence (Ky, Ly, fk7gk) (k=1,2,...) which
satisfies the following conditions:

(1) Ky, Ly € D(Mp) and L1 C Int g, K, Ky C Intpyg, L.

(2k) () fFg":P— HE (Mo, mo-reg); are continuous maps,
(i) f* = pF =1 and gF = YFgF=1 for some continuous maps " :
P—Hg ,p, (Mo, mo-reg)] and Yk P— H ke, (Mo, mo-reg)y.

(3k) (i) diam A<27F diam (g~ (A) <27 (A € C(clag, (Mo — Ky))),
(ii) diam B <27* dlam(fk) L(B)<27% (BeC(clpy (Mo — Ly))).

)
)
(4) () fip =g on Ky and gin = fiu on Ly,
3 “E(f )M (A), (¢F 1)1 '(A)) = a(Ea) (A € C(cla, (Mo—Ky))),
i B

M) HB), (6%)71(B)) = a(Ep) (B € C(cluy (Mo — Li))).-
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(5%) (1) {(flf)_l}p is equicontinuous on clyg, (Mo — K},) with respect to
d|p,-
(ii) {(g]’;)_l}p is equicontinuous on clyg, (Mo — Ly) with respect to
d| M -
(6r) If p€ P and ap =0, then flf = g;; = idpy, -

Proof. Suppose we have constructed (Kj_1, Ly_1, f*1, g*=1).

Since {(g{;_l)_l}p is equicontinuous on clyg, (Mo — Li—1), we can find
K}, € D(My) which satisfies (1;) and (3;). By applying Lemma 4.1 to the
data (Lg_q, Kp, f¥=1, g1, p, a), we obtain ¢ and f* which satisfy (2;),
(4%)~(6)-

Since {(fF)~'}, is equicontinuous on clys, (Mo — Kj), we can find
L € D(My) which satisfies (1;) and (3j). By applying Lemma 4.1 to
the data (Kj, Li, ¢° 1, f*, p, —a), we obtain % and ¢g* which satisfy (2;),
(4%)—(6g). This completes the inductive step. m

LEMMA 4.3. Suppose (Ky, Ly, f*,¢%) (k = 1,2,...) is the sequence of
Lemma 4.2.

(1) The maps f*: P — Hy(Mo, mo-reg)1 (k =1,2,...) converge d|py, -
uniformly to a continuous map f : P — Ha(My, mo-reg);.

(2) The maps g~ : P — Hay(Moy, mo-reg); (k= 1,2,...) converge d|p, -
uniformly to a continuous map g : P — Hg(My, mo-reg);.

(3) £y = () s, and gk, = (@) e, (k=1,2,...),

(4) fen = gepss

(5) If pe P and ap =0, then f, = g, = idpy, -

Proof. This follows from the same argument as in [3, Proof of Lem-
ma 4.8]. m

Proof of Theorem 1.2'. We show that the continuous map h = g~ f :
P — Hp(My, mo-reg)1, hy = 9p 1 [p, satisfies the required conditions.

(1) By Lemma 4.3(4) we have h,p = p and from Lemma 2.2 it follows
that

hy € Ho(Mo, pp-reg)1 N Ho(Mo, p) = Ho(Mo, pip)1-

(2) For each F € Q(E),) there exist & > 1 and Aj,..., A, €
C(CIMO(M() — Kk)) (Az #* Aj (Z #* _])) such that F' = E4, U---U Ey,
(disjoint). Thus, it suffices to show that CZZ(EA) =ay(E,) for all k > 1 and
Ae€ C(CIMO(MO — Kk))

Since f, ! € HEy, (Mo), we have By =Ea. Since f, |k, = (j‘“]f)_1|K,C
and g, 'k, = (957) 7|k, (Lemma 4.3(3)), we have

£ (A) = (£)7H(A) and g1 (A) = (957 1) 7 (A).
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Then from Lemma 4.2(4y) it follows that
G (Ba) = 6 (Bprg) = T (£ (A) by 1 (A) = TH (£, (A), g, ' (A))
= T ((f;) (A, (g5 D) 7H(A) = ap(Ba).
(3) Lemma 4.3(5) yields hy, = idag,. =

5. Proof of Theorem 1.2 in the general case. In this final section
we prove Theorem 1.2 in the general case. According to the usual strategy
(cf. [5]), the mapping theorem in [4, 3] is used to reduce the noncompact
n-manifold case to the case of n-cube with ends (Theorem 1.2"). The corre-
spondence between these cases under the proper map given by the mapping
theorem has been discussed in Section 3.3.

Throughout this section, M™ is a noncompact connected n-manifold and
wE ./\/lg(M ).

LeMMA 5.1 ([3, Proposition 4.2, Proof of Theorem 4.1 (p. 252)]). There
exists a compact 0-dimensional subset E C I" (E C Iy if n > 2) and a
continuous proper surjection m : I™ — E — M which satisfies the following
conditions:

(i) U = n(IntI™) is a dense open subset of Int M and the restriction
|t n 2 Int I™ — U is a homeomorphism.
(i) F=n(0I"—E)=M —U and w(F) =0.
(iii) The induced map T : E — Ejr is a homeomorphism.
(iv) The induced measure 7w is m|m_g-regular.

Let My = I"—E and mg = m|as,. We have wy = m*w € ./\/lg(Mo, mo-reg).

Proof of Theorem 1.2. By the considerations in Section 3.3 the map 7 in
Lemma 5.1 induces the reciprocal homeomorphisms and the commutative
diagram of three squares:

Tk
Mg(M()amO'reg) <ﬂ_—_*> Mg(Mv w'reg)v T = (ﬂ-*)_lv

«
c™ Hp

Ho(Mo, mo-reg)1 D Ho(Mo, m*pp)1 —  S(Mo,mpp) C S(Ews)

- - S ~ |7,

cHp

Hp(M,w-reg)1 D Hp(M,pph —  SM,p,) < S(Eum)
The maps i and a admit lifts to My:
™ P — /\/lg(Mo,mo—reg) and @ = (7.) la: P — S(Eyp).
Since a, € S(M, ), the third square in the above diagram iHLplies that
ap € S(My,m*pp). Theorem 1.2" provides a continuous map h : P —
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Hy(My, 7*w-reg); such that for each p € P,
1) h € Ho(Mo, 7 pp)1,

(
(1)
(2) 4 #p = ap,
(3) 1fap = 0, then hp = idpy, -
We show that the map
h=mh: P — Hp(M,wreg)1 C Hy(M,w-reg),
satisfies the required conditions.

(1) The condition (1)" and the first square imply that hy, € Hp(M, p1p)1
C Ha(Ma Mp) 1-
(2) From (2)" and the second square it follows that

&r = v (hy) = T o () = f*((‘%p#p) = Tu(ap) = ap.

(3) If a, = 0, then @, = 0 and hy, = idyy,. This implies that h, = idxy.
This completes the proof. m
Proof of Theorem 1.1. The required section is obtained by applying

Theorem 1.2 to the data: P = S(M,w), p = w and a is the inclusion
S(M,w) C S(Ep). m

Suppose G is any subgroup of Hg,, (M,w) with Ho(M,w); C G. Consider
the restriction ¢|g : § — S(M,w).

COROLLARY 5.1.

(1) (G,Kerc?[g) = (Kerc?|g) x (S(M,w),0).

(2) Kerc¥|g is a strong deformation retract of G.
Proof. (1) The required homeomorphism is defined by
oG — (Kerelg) x SMLw),  (h) = ((s(c)) " h, k).
The inverse is given by ¢~ 1(f,a) = s(a)f.

(2) Since the topological vector space S(M,w) admits a strong deforma-
tion retraction onto {0}, the conclusion follows from (1). m

References

[1] S.R. Alpern and V. S. Prasad, Typical Dynamics of Volume-Preserving Homeomor-
phisms, Cambridge Tracts Math. 139, Cambridge Univ. Press, 2000.

[2] R. Berlanga, A mapping theorem for topological sigma-compact manifolds, Compos.
Math. 63 (1987), 209-216.

[3] —, Groups of measure-preserving homeomorphisms as deformation retracts, J. Lon-
don Math. Soc. (2) 68 (2003), 241-254.



(4]

Mass flow toward ends 287

R. Berlanga and D. B. A. Epstein, Measures on sigma-compact manifolds and their
equivalence under homeomorphism, ibid. 27 (1983), 63-74.

M. Brown, A mapping theorem for untriangulated manifolds, in: Topology of 3-
Manifolds and Related Topics, M. K. Fort (ed.), Prentice-Hall, Englewood Cliffs,
1963, 92-94.

A. Fathi, Structures of the group of homeomorphisms preserving a good measure on
a compact manifold, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), 45-93.

J. Oxtoby and S. Ulam, Measure preserving homeomorphisms and metrical transitiv-
ity, Ann. of Math. 42 (1941), 874-920.

T. Yagasaki, Groups of measure-preserving homeomorphisms of noncompact 2-man-
ifolds, Topology Appl. 154 (2007), 1521-1531.

—, Groups of volume-preserving diffeomorphisms of noncompact manifolds and mass
flow toward ends, preprint.

Division of Mathematics

Faculty of Engineering and Design

Kyoto Institute of Technology

Matsugasaki, Sakyoku, Kyoto 606-8585, Japan
E-mail: yagasaki@kit.ac.jp

Received 17 November 2005;
in revised form 19 November 2007



