Ordered group invariants for one-dimensional spaces

by
Inhyeop Yi (Victoria)

Abstract

We show that the Bruschlinsky group with the winding order is a homeomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the standard order of the adjacency matrices associated with the presentation.

1. Introduction. Ordered groups have been useful invariants for the classification of many different categories. A class of ordered groups, dimension groups, was used in the study of C^{*}-algebras to classify AF-algebras ([6]), and Giordano, Herman, Putnam and Skau ([8, 9]) defined (simple) dimension groups in terms of dynamical concepts to give complete information about the orbit structure of zero-dimensional minimal dynamical systems. Swanson and Volkmer ([15]) showed that the dimension group of a primitive matrix is a complete invariant for weak equivalence, which is called C^{*}-equivalence by Bratteli, Jørgensen, Kim and Roush ([5]). And Barge, Jacklitch and Vago ([3]) showed that, for a certain class of one-dimensional inverse limit spaces, two spaces are homeomorphic if and only if their associated substitutions are weak equivalent, and that if two inverse limit spaces are homeomorphic and the squares of their connection maps are orientation preserving, then the dimension groups of the adjacency matrices associated with the substitutions are order isomorphic.

A recent development $([2,3,4,7,8,15])$ is the refinement of $\check{H}^{1}(X)$ as a topological invariant for certain one-dimensional spaces X, by making this group an ordered group. Here $\check{H}^{1}(X)$ is the direct limit of first cohomology groups on graphs approximating the space X. There is a natural order on the first cohomology of a graph (a coset is positive if it contains a nonnegative

[^0]function), and the standard order on $\check{H}^{1}(X)$ is the direct limit order derived from the natural graph orders (see Definition 3.7). Except for parts of [4] and [7], the ordered cohomology results have involved the standard order.

A second order on $\check{H}^{1}(X)$, the winding order, is geometrically natural as its positive elements are the homotopy classes of continuous orientation preserving maps from X to S^{1}. Boyle and Handelman ([4]) defined the winding order for suspension spaces of zero-dimensional dynamical systems, and showed that in some (but not all) cases it agrees with the standard order. Forrest ([7]) defined the winding order for the first Čech cohomology groups of directed graphs (thus taking the step of removing dynamics), and used this to show that whenever two one-dimensional inverse limit spaces are pro-homotopy equivalent, then their first Čech cohomology groups with the standard order are order isomorphic.

In this paper, we extend the definition of the winding order to a large class of one-dimensional spaces, "compact branched matchbox manifolds". We show that, for a compact connected orientable branched matchbox manifold with an inverse limit presentation satisfying the Simplicity Condition, the Bruschlinsky group with the winding order is a simple dimension group, and the winding order equals the standard order. This is a natural extension of the relations between zero-dimensional minimal systems and simple dimension groups in Giordano, Herman, Putnam and Skau ([8, 9]) to an appropriate class of one-dimensional spaces. As a corollary we obtain an independent proof of some results of Forrest and Barge, Jacklitch and Vago ($[7,3]$) computing dimension group invariants for the oriented generalized one-dimensional solenoids of Williams ($[16,17,18]$).

The outline of the paper is as follows. In Section 2, using work of Aarts and Oversteegen ([1]), Mardešić and Segal ([12]) and Rogers ([14]), we define compact connected orientable branched matchbox manifolds, and show that they all have presentations by orientation preserving maps of finite directed nondegenerate graphs. In Section 3, we show that the Bruschlinsky group with the winding order of a compact connected orientable branched matchbox manifold with the Simplicity Condition is order isomorphic to the direct limit of the graph groups with the standard order defined from the presentation (and therefore the winding and standard orders agree). And in Section 4, we recall the axioms for one-dimensional generalized solenoids and calculate the Bruschlinsky groups with the winding order of an example in which the Bruschlinsky group is not given by the obvious direct limit of presenting matrices.
2. Branched matchbox manifolds and ordered groups. Aarts and Oversteegen ([1]) defined a matchbox manifold to be a separable metric space Y such that each point $y \in Y$ has a neighborhood which is homeomorphic
to $S_{y} \times I_{y}$, where S_{y} is a zero-dimensional space and I_{y} is an open interval. For a topological embedding $h: S_{y} \times I_{y} \rightarrow Y$, they called $h\left(S_{y} \times I_{y}\right)$ a matchbox neighborhood of $y \in Y$. A matchbox manifold Y is called orientable if each arc component $C_{\alpha}, \alpha \in A$, of Y has a parameterized immersed arc $p_{\alpha}: \mathbb{R} \rightarrow C_{\alpha}$ such that each point $y \in Y$ has a matchbox neighborhood $h\left(S_{y} \times I_{y}\right)$ with the following property: for each $\alpha \in A$ and each $t \in \mathbb{R}$ with $p_{\alpha}(t) \in h\left(S_{y} \times I_{y}\right)$ there exists an open interval I containing t such that $\mathrm{pr}_{2} \circ h^{-1} \circ p_{\alpha}$ is increasing on I, where pr_{2} is the canonical projection from $S_{p_{\alpha}(t)} \times I_{p_{\alpha}(t)}$ to $I_{p_{\alpha}(t)}$.

Theorem 2.1 ([1]). For a one-dimensional space Y, the following are equivalent:
(1) Y is an orientable matchbox manifold.
(2) Y is the phase space of a flow without rest point.
(3) There exists a cross section K with return time map r_{K} such that Y is the standard suspension of $\left(K, r_{K}\right)$.

Branched matchbox manifold. We define a branched matchbox to be a topological space homeomorphic to $U=\left(\left(S_{1} \times(-1,0]\right) \cup\left(S_{2} \times[0,1)\right)\right) / \sim$ such that S_{1} and S_{2} are zero-dimensional separable metrizable spaces and there is a (closed) equivalence relation \approx on $S_{1} \cup S_{2}$ such that
(1) for every $s_{1} \in S_{1}\left(\sigma_{2} \in S_{2}\right.$, respectively) there exists at least one $s_{2} \in S_{2}\left(\sigma_{1} \in S_{1}\right.$, respectively) such that $s_{1} \approx s_{2}$ ($\sigma_{1} \approx \sigma_{2}$, respectively),
(2) $\left(S_{1} \cup S_{2}\right) / \approx$ is a zero-dimensional metrizable space with the quotient topology, and
(3) $\left(s_{1}, i\right) \sim\left(s_{2}, j\right)$ if and only if either $s_{1} \approx s_{2}$ and $i=j=0$ or $s_{1}=s_{2}$ and $i=j$.

Remark 2.2. In this paper, we will always be concerned with the case where S_{1} and S_{2} are compact.

For $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ such that $s_{1} \approx s_{2}$, the set

$$
\left(\left(\left\{s_{1}\right\} \times(-1,0]\right) \cup\left(\left\{s_{2}\right\} \times[0,1)\right)\right) / \sim
$$

is called a match.
A branched matchbox manifold is a separable metrizable space Y together with a collection of maps called charts such that
(1) a chart is a homeomorphism $h: V \rightarrow U$ where V is an open set in Y and U is a branched matchbox,
(2) every point in Y is in the domain of some chart, and
(3) for charts $h_{1}: V_{1} \rightarrow U_{1}$ and $h_{2}: V_{2} \rightarrow U_{2}$ the change of coordinates map $h_{2} \circ h_{1}^{-1}: h_{1}\left(V_{1} \cap V_{2}\right) \rightarrow h_{2}\left(V_{1} \cap V_{2}\right)$ is continuous.

Every branched matchbox U has the direction given by the second coordinate, with a continuous projection $p_{U}: U \rightarrow(-1,1)$ defined by $[(z, j)] \mapsto j$.

Following the approach of Aarts and Oversteegen $([1, \S 3])$, we call a branched matchbox manifold Y orientable if it can be covered by branched matchboxes with directions agreeing on overlaps, i.e., there are oriented branched matchboxes U_{i} with projections $p_{i}: U_{i} \rightarrow(-1,1)$, open sets V_{i} covering Y, and homeomorphisms $h_{i}: V_{i} \rightarrow U_{i}$ such that for every i, j and every locally one-to-one curve $\gamma:[0,1] \rightarrow V_{i} \cap V_{j}, p_{i} \circ h_{i} \circ \gamma$ is increasing if and only if $p_{j} \circ h_{j} \circ \gamma$ is increasing. The particular collection of charts, maximal with respect to this change of coordinate property, is called an orientation of the branched matchbox manifold Y.

Ordered group. A preordered group is a pair $\left(G, G_{+}\right)$where G is an Abelian group, and the positive cone G_{+}is a submonoid of G which generates G. We write $g_{1} \leq g_{2}$ if $g_{2}-g_{1} \in G_{+}$for $g_{1}, g_{2} \in G$. If $\left(G, G_{+}\right)$satisfies the additional condition $G_{+} \cap-G_{+}=\{0\}$, then $\left(G, G_{+}\right)$is called an ordered group.

An order unit in a preordered group is an element $u \in G_{+}$such that for every $g \in G$ there exists a positive integer $n=n(g)$ such that $g \leq n u$. A preordered group $\left(G, G_{+}\right)$is unperforated if for every $g \in G$ and positive integer $n, n g \in G_{+}$implies $g \in G_{+}$. We say that an ordered group (G, G_{+}) has the Riesz Interpolation Property if given $g_{1}, g_{2}, h_{1}, h_{2} \in G$ with $g_{i} \leq h_{j}$ $(i, j=1,2)$, there is a $k \in G$ such that $g_{i} \leq k \leq h_{j}$.

Bruschlinsky group with the winding order. For a compact metric space Y, let $C\left(Y, S^{1}\right)$ be the set of continuous functions from Y to S^{1}, and

$$
R(Y)=\left\{\phi \in C\left(Y, S^{1}\right) \mid \phi(y)=\exp (2 \pi i g(y)) \text { for some } g \in C(Y, \mathbb{R})\right\}
$$

Then $R(Y)$ is the subgroup of functions homotopic to a constant map in $C\left(Y, S^{1}\right)$. The Bruschlinsky group of $Y([13, \S 4.3])$ is given by

$$
\operatorname{Br}(Y)=C\left(Y, S^{1}\right) / R(Y)
$$

It is well known that $\check{H}^{1}(Y)$, the first Čech cohomology group of Y, is isomorphic to the Bruschlinsky group of $Y([4,10])$.

Now suppose that Y is an oriented compact branched matchbox manifold. Let $C_{\oplus}\left(Y, S^{1}\right)$ be the set of $\phi \in C\left(Y, S^{1}\right)$ such that there exists a map $\psi \in R(Y)$ for which $\phi \cdot \psi$ is non-orientation reversing, i.e., for every orientation preserving parameterized curve $\gamma: \mathbb{R} \rightarrow Y,(\phi \cdot \psi)(\gamma)(t)$ does not move in the clockwise direction as $t \in \mathbb{R}$ increases.

Define $\operatorname{Br}_{\oplus}(Y)=\left\{[\phi] \mid \phi \in C_{\oplus}\left(Y, S^{1}\right)\right\}$. Then $\left(\operatorname{Br}(Y), \operatorname{Br}_{\oplus}(Y)\right)$ is a preordered group. We call this preorder the winding order ([4, §4]).

REmark 2.3 ([4, 4.7]). It is possible that the Bruschlinsky group with the winding order of a compact orientable space is not an ordered group.

Observation 2.4. Homeomorphic orientable compact metric spaces have order-isomorphic Bruschlinsky groups with the winding order.

Proposition 2.5 ([10]). The Bruschlinsky group of a compact branched matchbox manifold is a torsion-free group.

Recall that a continuum is a compact connected metric space.
Lemma 2.6 ([10]). Let Y be a continuum, $\phi \in C\left(Y, S^{1}\right)$, and $p_{n}: S^{1} \rightarrow$ S^{1} defined by $z \mapsto z^{n}$ for every positive integer n. Then $n \cdot[\phi]=\left[p_{n} \circ \phi\right]$.

Proposition 2.7. The Bruschlinsky group with the winding order of a compact connected oriented branched matchbox manifold Y is unperforated.

Proof. Suppose that $\phi \in C\left(Y, S^{1}\right)$ and $n \in \mathbb{Z}_{+}$are such that $n \cdot[\phi]=\left[p_{n} \circ \phi\right]$ $\in \operatorname{Br}_{\oplus}(Y)$. Then there exists a map $\psi \in R(Y)$ given by $y \mapsto \exp (2 \pi i g(y))$ with $g \in C(Y, \mathbb{R})$ such that $\left(p_{n} \circ \phi\right) \cdot \psi$ is non-orientation-reversing.

Define $\widetilde{\psi}: Y \rightarrow S^{1}$ by $y \mapsto \exp \left(2 \pi i \cdot \frac{1}{n} g(y)\right)$. Then we have $\widetilde{\psi} \in R(Y)$ and $\left(p_{n} \circ \phi\right) \cdot \psi=p_{n} \circ(\phi \cdot \psi)$. For every orientation preserving parameterized curve $\gamma: \mathbb{R} \rightarrow Y$,

$$
\left(\left(p_{n} \circ \phi\right) \cdot \psi\right) \circ \gamma(t)=p_{n} \circ(\phi \cdot \widetilde{\psi}) \circ \gamma(t)=p_{n} \circ((\phi \cdot \widetilde{\psi}) \circ \gamma(t))
$$

does not move clockwise on S^{1} as $t \in \mathbb{R}$ increases. So $\phi \cdot \widetilde{\psi}$ is non-orientation reversing as n is a positive integer. Therefore $\phi \in C_{\oplus}\left(Y, S^{1}\right)$, and $(\operatorname{Br}(Y)$, $\left.\operatorname{Br}_{\oplus}(Y)\right)$ is unperforated.

REMARK 2.8. If Y is a compact connected orientable matchbox manifold, then the above Propositions 2.5 and 2.7 follow from Propositions 4.5 and 3.4 of [4] and Theorem 2.1.

One-dimensional continua. In [14], Rogers introduced the following notions for one-dimensional continua.

Suppose that X_{1} and X_{2} are graphs and that \mathcal{V}_{i} and \mathcal{E}_{i} are the vertex set and the edge set of X_{i}, respectively, $i=1,2$. A continuous onto map $f: X_{2} \rightarrow X_{1}$ is called simplicial relative to $\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ if $f\left(\mathcal{V}_{2}\right) \subseteq \mathcal{V}_{1}$ and for every edge $e_{2} \in \mathcal{E}_{2}$ there is an edge $e_{1} \in \mathcal{E}_{1}$ such that $\left.f\right|_{e_{2} \backslash \mathcal{V}_{2}}$ is a homeomorphism onto $e_{1} \backslash \mathcal{V}_{1}$ or a constant map. The map $f: X_{2} \rightarrow X_{1}$ is simplicial if it is simplicial relative to some vertex sets of X_{1} and X_{2}. And f is called light if the preimage of each point is totally disconnected.

An inverse limit sequence $\left\{X_{k}, f_{k}\right\}$ on graphs is called light simplicial if each f_{k} is light simplicial, and is called light uniformly simplicial if each X_{k} is a graph with a vertex set \mathcal{V}_{k} and each map $f_{k}: X_{k} \rightarrow X_{k-1}$ is light simplicial relative to $\left(\mathcal{V}_{k-1}, \mathcal{V}_{k}\right)$.

Theorem 2.9 ([12, 14]). Suppose that \bar{X} is a one-dimensional continuum.
(1) \bar{X} is homeomorphic to an inverse limit of a light simplicial sequence $\left\{X_{k}, f_{k}\right\}$ on graphs.
(2) \bar{X} is homeomorphic to a light uniformly simplicial inverse limit on graphs if and only if there exists a map $\pi: \bar{X} \rightarrow[0,1]$ such that $\pi^{-1}(\{0,1\})$ is totally disconnected and $\left.\pi\right|_{e}$ is a homeomorphism for every e which is the closure of a component of $\bar{X} \backslash \pi^{-1}(\{0,1\})$.

Suppose that $\left\{X_{k}, f_{k}\right\}$ is a light simplicial sequence on graphs. Let

$$
\bar{X}=X_{0} \stackrel{f_{1}}{\leftrightarrows} X_{1} \stackrel{f_{2}}{\longleftrightarrow} \ldots=\left\{\left(x_{0}, x_{1}, \ldots\right) \in \prod_{k=0}^{\infty} X_{k} \mid f_{k+1}\left(x_{k+1}\right)=x_{k}\right\} .
$$

For a one-dimensional continuum Y, we call the sequence $\left\{X_{k}, f_{k}\right\}$ a presentation of Y if \bar{X} is homeomorphic to Y.

Notation 2.10. Suppose that G is a directed graph. We consider a directed edge e of G as the image of a local homeomorphism from $[0,1]$ to e such that $e(0)$ is the initial point of e and $e(1)$ is the terminal point. Then we can represent each point $x \in e$ as $e(t)$ (possibly $e(0)=e(1)$).

Recall that a continuous map $p:[0,1] \rightarrow G$, a directed graph, is orientation preserving if $e^{-1} \circ p: I \rightarrow[0,1]$ is increasing for every interval $I \subset[0,1]$ such that $p(I)$ is a subset of a directed edge e. A continuous map $f: G_{1} \rightarrow G_{2}$ between two directed graphs is orientation preserving if, for every orientation preserving map $p:[0,1] \rightarrow G_{1}, f \circ p:[0,1] \rightarrow G_{2}$ is orientation preserving ([7]). A directed graph is called nondegenerate if every vertex has at least one incoming edge and at least one outgoing edge.

Suppose that Y is a compact connected oriented branched matchbox manifold. Since Y is a one-dimensional continuum, there is a light simplicial presentation $\left\{X_{k}, f_{k}\right\}$ of Y by Theorem 2.9. The following proposition shows that the orientation of Y decides the directions of edges in each coordinate space X_{k} so that every connection map $f_{k}: X_{k} \rightarrow X_{k-1}$ is orientation preserving.

Proposition 2.11. Suppose that Y is a compact connected oriented branched matchbox manifold. Then Y has a light simplicial presentation by orientation preserving maps of directed nondegenerate graphs.

Proof. Suppose that $\left\{h_{U}: V \rightarrow U\right\}$ is an orientation of Y where U is a branched matchbox with the projections $p_{U}: U \rightarrow(-1,1)$. Let $\left\{X_{k}, f_{k}\right\}$ be a light uniformly simplicial presentation of Y given by Theorem 2.9, and $\pi_{k}: Y \rightarrow X_{k}$ the canonical projection to the k th coordinate space. If e is an edge of X_{k} with $\pi_{k}^{-1}\left(e \backslash \mathcal{V}_{k}\right) \cap h_{U}^{-1}(U) \neq \emptyset$, then give the direction to the set $\left(e \backslash \mathcal{V}_{k}\right) \cap\left(\pi_{k} \circ h_{U}^{-1}(U)\right) \subset e$ so that, for every curve $\gamma:[0,1] \rightarrow$ $\pi_{k}^{-1}\left(e \backslash \mathcal{V}_{k}\right) \cap h_{U}^{-1}(U), p_{U} \circ h_{U} \circ \gamma$ is increasing if and only if $e^{-1} \circ \pi_{k} \circ \gamma$ is increasing. Since $\left\{h_{U}\right\}$ is an orientation of Y, we can extend this direction on $\left(e \backslash \mathcal{V}_{k}\right) \cap \pi_{k} \circ h_{U}^{-1}(U)$ to e, and each edge X_{k} has a direction induced by the orientation of Y.

Suppose that $x=\left(x_{0}, x_{1}, \ldots\right)$ is a point in Y such that $x_{k} \in X_{k}$ is a vertex and that U is a branched matchbox such that the domain of h_{U} contains x. Then there is a match $M \subset U$ containing $h_{U}(x)$ such that $\left.p_{U}\right|_{M} \circ h_{U}(x)=t$ for some $t \in(-1,1)$. Since $\pi_{k} \circ h_{U}^{-1} \circ\left(\left.p_{U}\right|_{M}\right)^{-1}((-1, t))$ and $\pi_{k} \circ h_{U}^{-1} \circ\left(\left.p_{U}\right|_{M}\right)^{-1}((t, 1))$ are nonempty sets in X_{k}, there exist an edge e_{-}such that $\left(\pi_{k} \circ h_{U}^{-1} \circ\left(\left.p_{U}\right|_{M}\right)^{-1}((-1, t))\right) \cap e_{-} \neq \emptyset$, which is incoming to x_{k}, and an edge e_{+}such that $\left(\pi_{k} \circ h_{U}^{-1} \circ\left(\left.p_{U}\right|_{M}\right)^{-1}((t, 1))\right) \cap e_{+} \neq \emptyset$, which is outgoing from x_{k}. Therefore X_{k} is nondegenerate.

Suppose that $e_{k} \in \mathcal{E}_{k}$ and $e_{k-1} \in \mathcal{E}_{k-1}$ are two edges such that $e_{k-1}=$ $f_{k}\left(e_{k}\right)$, and $h_{U}: V \rightarrow U$ is a chart such that $W=\pi_{k} \circ h_{U}^{-1}(U) \cap\left(e_{k} \backslash \mathcal{V}_{k}\right)$ $\neq \emptyset$. Then $f_{k}(W) \subset \pi_{k-1} \circ h_{U}^{-1}(U) \cap\left(e_{k-1} \backslash \mathcal{V}_{k-1}\right)$, and for every curve $\gamma:[0,1] \rightarrow h_{U}^{-1}(U) \cap \pi_{k}^{-1}\left(e_{k} \backslash \mathcal{V}_{k}\right), e_{k}^{-1} \circ \pi_{k} \circ \gamma$ is increasing $\Leftrightarrow p_{U} \circ h_{u} \circ \gamma$ is increasing $\Leftrightarrow e_{k-1}^{-1} \circ \pi_{k-1} \circ \gamma$ is increasing.

Let $\gamma:[a, b] \rightarrow h_{U}^{-1}(U) \cap \pi_{k}^{-1}\left(e_{k} \backslash \mathcal{V}_{k}\right)$ be given by $\pi_{k} \circ \gamma(t)=e_{k}(t)$. Then we have $\pi_{k-1} \circ \gamma(t)=f_{k} \circ e_{k}(t)$, and $e_{k-1}^{-1} \circ \pi_{k-1} \circ \gamma(t)=e_{k-1}^{-1} \circ f_{k} \circ e_{k}(t)$ is increasing as t is increasing. Therefore $f_{k}: X_{k} \rightarrow X_{k-1}$ is orientation preserving.

Corollary 2.12. Suppose that Y is a compact connected orientable branched matchbox manifold. Then there is a continuous map $\pi: Y \rightarrow S^{1}$ such that $\pi^{-1}(1)$ is totally disconnected and $\left.\pi\right|_{\ell}$ is an orientation preserving homeomorphism for every ℓ which is an arc component of $Y \backslash \pi^{-1}(1)$.

Proof. Define $\pi: Y \rightarrow S^{1}$ by $x=\left(x_{0}, x_{1}, \ldots\right) \mapsto \exp (2 \pi i t)$, where $t \in[0,1]$ is given by $x_{0}=e(t) \in e \in \mathcal{E}_{0}$. Then π is well defined and $\pi^{-1}(1)=\left\{x \in Y \mid x_{0} \in \mathcal{V}_{0}\right\}$ is a zero-dimensional set. Since ℓ, an arc component of $Y \backslash \pi^{-1}(1)$, is given by $\ell=\left(e_{0} \backslash \mathcal{V}_{0}, e_{1} \backslash \mathcal{V}_{1}, \ldots\right)$ where $e_{i} \in \mathcal{E}_{i}$, $\pi: \ell \rightarrow S^{1}$ given by $x=\left(e_{0}(t), e_{1}(t), \ldots\right) \mapsto \exp (2 \pi i t)$ is an orientation preserving homeomorphism.

We have the following proposition from Theorem 2.9.
Proposition 2.13. Every compact connected orientable branched matchbox manifold has a light uniformly simplicial presentation.

Standing Assumption 2.14. From now on, a graph means a finite directed nondegenerate graph.
3. Orientable one-dimensional inverse limit spaces. In this section we suppose that \bar{X} is a compact connected oriented branched matchbox manifold with a presentation $\left\{X_{k}, f_{k}\right\}$ such that each X_{k} is a graph with a fixed vertex set \mathcal{V}_{k} and each map $f_{k}: X_{k} \rightarrow X_{k-1}$ is an orientation preserving map such that $f_{k}\left(\mathcal{V}_{k}\right) \subset \mathcal{V}_{k-1}$ and $\left.f_{k}\right|_{X_{k} \backslash \mathcal{V}_{k}}$ is locally one-to-one. Let \mathcal{E}_{k} be the set of directed edges in X_{k} defined by $\mathcal{V}_{k}, C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ the set of
integer-valued functions on \mathcal{E}_{k}, and $C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ the subset of $C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ with range in the nonnegative integers \mathbb{Z}_{+}. For each vertex p_{i} of X_{k}, define the vertex function $v_{i} \in C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ such that for every edge $e \in \mathcal{E}_{k}$,

$$
v_{i}(e)= \begin{cases}1 & \text { if } e \text { is an edge from } p_{i} \text { to another vertex point } \\ -1 & \text { if } e \text { is an edge from another vertex point to } p_{i} \\ 0 & \text { if } p_{i} \text { is the initial and terminal point of } e, \text { or } p_{i} \notin e\end{cases}
$$

Write V_{k} for the set of integral combinations of $\left\{v_{i}\right\} \subset C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, and call an element of V_{k} a vertex coboundary. Define

$$
\mathcal{G}^{k}=C\left(\mathcal{E}_{k}, \mathbb{Z}\right) / V_{k} \quad \text { and } \quad \mathcal{G}_{+}^{k}=C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right) / V_{k}
$$

Then $\left(\mathcal{G}^{k}, \mathcal{G}_{+}^{k}, \mathbf{1}\right)$ is a unital preordered group.
Notation 3.1. By a path in a graph X we mean a finite sequence $e_{1}^{s(1)} \ldots e_{n}^{s(n)}$ of edges such that, for $1 \leq i<n, s(i)= \pm 1$ represents the direction of e_{i} and the terminal vertex of $e_{i}^{s(i)}$ is the initial vertex of $e_{i+1}^{s(i+1)}$. We write $e^{s} \in \wp$ if \wp is a path and e is an edge such that e^{s} is a factor of \wp. A cycle is a path $e_{1}^{s(1)} \ldots e_{n}^{s(n)}$ such that the terminal vertex of $e_{n}^{s(n)}$ is the initial vertex of $e_{1}^{s(1)}$.

We say that a function g in $C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ is zero (nonnegative, respectively) on cycles if the sum of $g(e)$ over the edges e of every cycle in X_{k} is zero (nonnegative, respectively).

Lemma $3.2([4, \S 3])$. Suppose that g is an element of $C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$. Then
(1) g is an element of V_{k} if and only if g is zero on cycles in X_{k}, and
(2) $[g]$ is an element of $C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right) / V_{k}=\mathcal{G}_{+}^{k}$ if and only if g is nonnegative on cycles.

Given $g \in C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, define a continuous map

$$
\phi_{g}: X_{k} \rightarrow S^{1}, \quad x \mapsto \exp (2 \pi i t g(e)) \quad \text { for } x=e(t), t \in[0,1]
$$

Then ϕ_{g} is well defined as every vertex point maps to $1 \in S^{1}$, and ϕ_{g} is an element of $C\left(X_{k}, S^{1}\right)$.

Lemma 3.3. Suppose that g is an element of $C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$. Then g is an element of V_{k} if and only if ϕ_{g} is homotopic to a constant function 1 in $C\left(X_{k}, S^{1}\right)$.

Proof. Suppose that g is an element of V_{k}. For each vertex function v_{i} defined at the vertex p_{i} of X_{k}, define a map $h_{s v_{i}}: X_{k} \rightarrow S^{1}$ for $0 \leq s \leq 1$ by

$$
h_{s v_{i}}(e(t))= \begin{cases}e^{2 \pi i s t} & \text { if } e \text { is an edge from } p_{i} \text { to another vertex point } \\ e^{-2 \pi i s t} & \text { if } e \text { is an edge from another vertex point to } p_{i} \\ e^{2 \pi i s} & \text { if } p_{i} \text { is the initial and terminal point of } e \\ 1 & \text { otherwise }\end{cases}
$$

Then $s \mapsto h_{s v_{i}}, 0 \leq s \leq 1$, is a homotopy between $\phi_{v_{i}}$ and 1 .

Now suppose that ϕ_{g} and 1 are homotopic on X_{k}. Since the winding number of the restriction of ϕ_{g} to every cycle in X_{k} is a homotopy invariant and $\sum_{e \in \ell} g(e)$ is the winding number for every cycle ℓ in X_{k}, we conclude that g is zero on every cycle, and that g is an element of V_{k} by Lemma 3.2.

Therefore we have a well defined map

$$
\iota_{k}: \mathcal{G}^{k} \rightarrow \operatorname{Br}\left(X_{k}\right) \quad \text { given by } \quad[g] \mapsto\left[\phi_{g}\right] .
$$

Proposition 3.4. Let ι_{k} be defined as above. Then ι_{k} is an isomorphism of preordered groups $\left(\mathcal{G}^{k}, \mathcal{G}_{+}^{k}\right)$ and $\left(\operatorname{Br}\left(X_{k}\right), \operatorname{Br}_{\oplus}\left(X_{k}\right)\right)$.

Proof. Since $\phi_{g+h}=\phi_{g} \cdot \phi_{h}, \iota_{k}$ is a group homomorphism. By Lemma 3.3, ϕ_{g} is homotopic to a constant function 1 if and only if g is a vertex coboundary. So $\iota_{k}: \mathcal{G}^{k} \rightarrow \operatorname{Br}\left(X_{k}\right)$ is injective.

To obtain an inverse of ι_{k}, suppose that ϕ belongs to $C\left(X_{k}, S^{1}\right)$. Then we can choose a map $\varrho: \mathcal{V}_{k} \rightarrow \mathbb{R}$ where \mathcal{V}_{k} is the vertex set of X_{k} such that $\phi(p)=\phi(2 \pi i \varrho(p))$ for every vertex p of X_{k}. Define $S_{\varrho} \in C\left(X_{k}, S^{1}\right)$ by

$$
e(t) \mapsto \exp (2 \pi i((1-t) \varrho(e(0))+t \varrho(e(1)))), \quad 0 \leq t \leq 1 .
$$

Then S_{ϱ} is homotopic to the constant map 1 by $H_{u}=S_{u \varrho}$ for $0 \leq u \leq 1$, ϕ is homotopic to ϕ / S_{ϱ}, and for every vertex p of $X_{k},\left(\phi / S_{\varrho}\right)(p)=1 \in S^{1}$.

For each edge $e \in \mathcal{E}_{k}$, let $r_{\phi}(e)$ be the number of times the loop $\left(\phi / S_{\varrho}\right)(x)$ winds around S^{1} as $x=e(t)$ moves on e. Since $\left(\phi / S_{\varrho}\right)(p)=1 \in S^{1}$ for every vertex p of $X_{k}, r_{\phi}(e)$ is well defined for each edge e. Then $r_{\phi}: e \mapsto r_{\phi}(e)$ is an element of $C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, and $\phi_{r_{\phi}}$ wraps around S^{1} the same number of times as ϕ / S_{ϱ}. Therefore $\phi_{r_{\phi}}$ is homotopic to ϕ / S_{ϱ}, and $[\phi] \mapsto\left[r_{\phi}\right]$ gives the desired inverse to ι_{k}.

Clearly, if $g \in C\left(\mathcal{E}_{k}, \mathbb{Z}_{+}\right)$, then $\left[\iota_{k}(g)\right]=\left[\phi_{g}\right]$ is a positive element in the winding order. Conversely, if $\left[\phi_{g}\right] \in \operatorname{Br}\left(X_{k}\right)$ is positive in the winding order, then there exists a map $\psi \in R\left(X_{k}\right)$ such that $\phi_{g} \cdot \psi$ is non-orientation reversing. It follows that g has to be nonnegative on cycles, and we have $[g] \in$ \mathcal{G}_{+}^{k} by Lemma 3.2. Therefore ι_{k} is an isomorphism of preordered groups.

Since $f_{k+1}: X_{k+1} \rightarrow X_{k}$ is an orientation preserving map, if e is an edge in \mathcal{E}_{k+1}, then $f_{k+1}(e)$ is a path $e_{1} \ldots e_{n}$ in X_{k}. Hence f_{k+1} induces a map

$$
f_{k+1}^{*}: C\left(\mathcal{E}_{k}, \mathbb{Z}\right) \rightarrow C\left(\mathcal{E}_{k+1}, \mathbb{Z}\right), \quad g \mapsto g \circ f_{k+1},
$$

where $\left(g \circ f_{k+1}\right)(e)=\sum_{i=1}^{n} g\left(e_{i}\right)$ such that $f_{k+1}(e)=e_{1} \ldots e_{n}$ in \mathcal{E}_{k}. And f_{k+1} induces another map

$$
\tilde{f}_{k+1}^{*}: C\left(X_{k}, S^{1}\right) \rightarrow C\left(X_{k+1}, S^{1}\right), \quad \phi \mapsto \phi \circ f_{k+1} .
$$

Lemma 3.5. Let f_{k+1}^{*} and \tilde{f}_{k+1}^{*} be given as above. Then there are well defined homomorphisms from \mathcal{G}^{k} to \mathcal{G}^{k+1} and from $\operatorname{Br}\left(X_{k}\right)$ to $\operatorname{Br}\left(X_{k+1}\right)$ defined by f_{k+1}^{*} and \widetilde{f}_{k+1}^{*}, respectively.

Proof. For every $v \in V_{k}$ and every cycle ℓ in $X_{k+1}, f_{k+1}(\ell)$ is a cycle in X_{k} and $f_{k+1}^{*}(v)(\ell)=v\left(f_{k+1}(\ell)\right)=0$ by Lemma 3.2. Therefore $f_{k+1}^{*}(v)$ is an element of V_{k+1}, and the $\operatorname{map} \mathcal{G}^{k} \rightarrow \mathcal{G}^{k+1}$ given by $[g] \mapsto\left[f_{k+1}^{*}(g)\right]$ is a well defined homomorphism. That \widetilde{f}_{k+1}^{*} induces a homomorphism follows from the definition of the Bruschlinsky group.

Let us denote these well defined homomorphisms as f_{k+1}^{*} and $\widetilde{f_{k+1}^{*}}$, respectively, if they do not give any confusion.

Proposition 3.6. Let $\iota_{k}: \mathcal{G}^{k} \rightarrow \operatorname{Br}\left(X_{k}\right), f_{k+1}^{*}$ and \widetilde{f}_{k+1}^{*} be given as above. Then $\iota_{k+1} \circ f_{k+1}^{*}=\widetilde{f}_{k+1}^{*} \circ \iota_{k}$, and moreover, f_{k+1}^{*} and \widetilde{f}_{k+1}^{*} are order preserving homomorphisms.

Proof. It is not difficult to check, for every $[g] \in \mathcal{G}^{k}$,

$$
\left(\iota_{k+1} \circ f_{k+1}^{*}\right)([g])=\left(\widetilde{f}_{k+1}^{*} \circ \iota_{k}\right)([g])
$$

and we have $\iota_{k+1} \circ f_{k+1}^{*}=\widetilde{f}_{k+1}^{*} \circ \iota_{k}$.
To show that \widetilde{f}_{k+1}^{*} is order preserving, suppose $[\phi] \in \operatorname{Br}_{\oplus}\left(X_{k}\right)$. Then there exists a $\psi \in R\left(X_{k}\right)$ such that $\phi \cdot \psi$ is non-orientation reversing. Since $\widetilde{f}_{k+1}^{*}(\psi)=\psi \circ f_{k+1}$ is an element of $R\left(X_{k+1}\right)$ by Lemma 3.5 and $f_{k+1}: X_{k+1} \rightarrow X_{k}$ is orientation preserving, for every orientation preserving parameterized curve $\gamma: \mathbb{R} \rightarrow X_{k+1}, f_{k+1} \circ \gamma$ is an orientation preserving parameterized curve in X_{k}, and
$\left(\left(\phi \circ f_{k+1}\right) \cdot\left(\psi \circ f_{k+1}\right)\right)(\gamma(t))=\left((\phi \cdot \psi) \circ f_{k+1}\right)(\gamma(t))=(\phi \cdot \psi) \circ\left(f_{k+1} \circ \gamma\right)(t)$
does not move in the clockwise direction as $t \in \mathbb{R}$ increases. Therefore $\left[\phi \circ f_{k+1}\right]=\widetilde{f}_{k+1}^{*}([\phi])$ is an element of $\operatorname{Br}_{\oplus}\left(X_{k+1}\right)$, and \widetilde{f}_{k+1}^{*} is an order preserving homomorphism. Since ι_{k} is an order preserving isomorphism by Proposition 3.4, $f_{k+1}^{*}=\iota_{k+1}^{-1} \circ \widetilde{f}_{k+1}^{*} \circ \iota_{k}$ is also order preserving.

Then $\left\{\mathcal{G}^{k}, f_{k+1}^{*}\right\}$ and $\left\{\operatorname{Br}\left(X_{k}\right), \widetilde{f}_{k+1}^{*}\right\}$ are directed systems. Let $\underset{\longrightarrow}{\lim } \mathcal{G}^{k}$ and $\underset{\longrightarrow}{\lim } \operatorname{Br}\left(X_{k}\right)$ be the direct limits of $\left\{\mathcal{G}^{k}, f_{k+1}^{*}\right\}$ and $\left\{\operatorname{Br}\left(X_{k}\right), \widetilde{f}_{k+1}^{*}\right\}$, respectively.

Definition 3.7. Recall that $C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ is the subset of $C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ with range in \mathbb{Z}_{+}, and that \mathcal{G}_{+}^{k} is given by $C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right) / V_{k}$. Since $f_{k+1}^{*}: C\left(\mathcal{E}_{k}, \mathbb{Z}\right) \rightarrow$ $C\left(\mathcal{E}_{k+1}, \mathbb{Z}\right)$ defined by $g \mapsto g \circ f_{k+1}$ is an order preserving homomorphism by Proposition 3.6, $\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}\right)_{+}=\lim _{\longrightarrow} \mathcal{G}_{+}^{k}$ is well defined. This set, as a positive set, defines the order which is the direct limit order or the standard order on $\xrightarrow{\lim } \mathcal{G}^{k}$.

The standard isomorphism $\lim _{\longrightarrow} \mathcal{G}^{k} \rightarrow \operatorname{Br}(\bar{X})$. Suppose $\bar{X}=\lim _{\rightleftarrows} X_{k}$ and that $\pi_{k}: \bar{X} \rightarrow X_{k}$ is the projection map to the k th coordinate space. If ϕ is an element of $C\left(X_{k}, S^{1}\right)$, then ϕ induces an element $\phi \circ \pi_{k} \in C\left(\bar{X}, S^{1}\right)$. We
will use the isomorphism $\iota_{k}: \mathcal{G}^{k} \rightarrow \operatorname{Br}\left(X_{k}\right)$ and the natural map $\operatorname{Br}\left(X_{k}\right) \rightarrow$

Let $1_{X_{k}}: X_{k} \rightarrow S^{1}$ and $1_{\bar{X}}: \bar{X} \rightarrow S^{1}$ be given by $x_{k} \mapsto 1 \in S^{1}$ and $x \mapsto 1$ for all $x_{k} \in X_{k}$ and $x \in \bar{X}$, respectively. Suppose that ϕ is an element of $C\left(X_{k}, S^{1}\right)$ such that ϕ is homotopic to $1_{X_{k}}$ by $H: X_{k} \times[0,1] \rightarrow S^{1}$. Then $\phi \circ \pi_{k}$ is homotopic to $1_{\bar{X}}=1_{X_{k}} \circ \pi_{k}$ by the map $\bar{H}: \bar{X} \times[0,1] \rightarrow S^{1}$ given by $\bar{H}(x, t)=H\left(\pi_{k}(x), t\right)$. Thus there is a well defined map

$$
\pi_{k}^{*}: \operatorname{Br}\left(X_{k}\right) \rightarrow \operatorname{Br}(\bar{X}), \quad[\phi] \mapsto\left[\phi \circ \pi_{k}\right] .
$$

Since $\left(\phi_{1} \cdot \phi_{2}\right) \circ \pi_{k}=\left(\phi_{1} \circ \pi_{k}\right) \cdot\left(\phi_{2} \circ \pi_{k}\right)$ for all $\phi_{1}, \phi_{2} \in C\left(X_{k}, S^{1}\right), \pi_{k}^{*}$ is a homomorphism. That $f_{k+1} \circ \pi_{k+1}=\pi_{k}: \bar{X} \rightarrow X_{k}$ implies the following lemma.

Lemma 3.8. Let π_{k}^{*} and \widetilde{f}_{k+1}^{*} be defined as above. Then $\pi_{k+1}^{*} \circ \widetilde{f}_{k+1}^{*}=\pi_{k}^{*}$ for all k.

Let $\varphi_{k}^{*}: \operatorname{Br}\left(X_{k}\right) \rightarrow \underset{\rightarrow}{\lim \operatorname{Br}\left(X_{k}\right) \text { be the natural map for each } k \text {. If } \varphi_{k}^{*}([\phi])=, ~=~=~}$ $\varphi_{l}^{*}([\psi])$ for $[\phi] \in \operatorname{Br}\left(X_{k}\right)$ and $[\psi] \in \operatorname{Br}\left(X_{l}\right)$, then there is a positive integer $m \geq k, l$ such that $\widetilde{f_{m+1}^{*}} \circ \ldots \circ \widetilde{f}_{k+1}^{*}([\phi])=\widetilde{f_{m+1}^{*}} \circ \ldots \circ \widetilde{f}_{l+1}^{*}([\psi])$. Hence

$$
\begin{aligned}
\pi_{k}^{*}([\phi]) & =\pi_{m+1}^{*} \circ \widetilde{f}_{m+1}^{*} \circ \ldots \circ \widetilde{f}_{k+1}^{*}([\phi]) \\
& =\pi_{m+1}^{*} \circ \widetilde{f}_{m+1}^{*} \circ \ldots \circ{\widetilde{f_{l+1}^{*}}}_{l+1}^{*}([\psi])=\pi_{l}^{*}([\psi]),
\end{aligned}
$$

and there is a well defined group homomorphism

$$
\pi^{*}: \underline{\longrightarrow} \lim \left(X_{k}\right) \rightarrow \operatorname{Br}(\bar{X}), \quad \varphi_{k}^{*}([\phi]) \mapsto \pi_{k}^{*}([\phi])=\left[\phi \circ \pi_{k}\right] .
$$

Lemma 3.9. Suppose that ξ is an element of $C\left(\bar{X}, S^{1}\right)$. Then there exist $\xi^{\prime} \in C\left(\bar{X}, S^{1}\right)$ and $k \geq 0$ such that ξ is homotopic to ξ^{\prime} and $\xi^{\prime}(x)=\xi^{\prime}(y)$ if $x_{k}=y_{k}$.

Proof. Define a metric d on \bar{X} by

$$
d(x, y)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} d_{k}\left(x_{k}, y_{k}\right)
$$

where $x=\left(x_{0}, x_{1}, \ldots\right), y=\left(y_{0}, y_{1}, \ldots\right) \in \bar{X}$ and d_{k} is a metric on X_{k} compatible with its topology. Since \bar{X} is a compact Hausdorff space, every element in $C\left(\bar{X}, S^{1}\right)$ is uniformly continuous. So, for given ξ and $\varepsilon>0$, there exists a nonnegative integer k such that for $x, y \in \bar{X}, x_{k}=y_{k}$ implies $d(\xi(x), \xi(y))<\varepsilon$.

For $x=\left(x_{0}, \ldots, x_{k}, \ldots\right) \in \bar{X}$, set $x^{k}=\left\{y \in \bar{X} \mid y_{k}=x_{k}\right\}$. Then $d(\xi(a), \xi(b))<\varepsilon$ for all $a, b \in x^{k}$, and we can choose a point $\widetilde{x} \in S^{1}$ such that \widetilde{x} is the center of the smallest interval containing $\xi\left(x^{k}\right)$ in S^{1}. Define $\xi^{\prime}: \bar{X} \rightarrow S^{1}$ by $\left.\xi^{\prime}\right|_{x^{k}}=\widetilde{x}$. Then it is clear that $\xi^{\prime} \in C\left(\bar{X}, S^{1}\right)$ and $\xi^{\prime}(x)=$ $\xi^{\prime}(y)$ if $x_{k}=y_{k}$. Since $d\left(\xi(x), \xi^{\prime}(x)\right)<\varepsilon$ for all $x \in \bar{X}, \xi$ is homotopic to ξ^{\prime}.

Proposition 3.10. Let π^{*} be defined as above. Then π^{*} is a group isomorphism.

Proof. To show that π^{*} is surjective, suppose $\xi \in C\left(\bar{X}, S^{1}\right)$ and that ξ^{\prime} and k are given in Lemma 3.9. Define $\phi_{k}: X_{k} \rightarrow S^{1}$ by $x_{k} \mapsto \xi^{\prime}(x)$ for $x=\left(x_{0}, \ldots, x_{k}, \ldots\right) \in \bar{X}$. Then ϕ_{k} is well defined, and it is trivial that $\phi_{k} \circ \pi_{k}=\xi^{\prime}$. Therefore $\xi \in C\left(\bar{X}, S^{1}\right)$ is homotopic to $\phi_{k} \circ \pi_{k}$, and $\pi^{*}: \underset{\longrightarrow}{\lim } \operatorname{Br}\left(X_{k}\right) \rightarrow \operatorname{Br}(\bar{X})$ is surjective.

Suppose $\xi_{1}, \xi_{2} \in C\left(\bar{X}, S^{1}\right)$ and that ξ_{1} is homotopic to ξ_{2}. Then by the surjectivity of π^{*}, there exist nonnegative integers $k \leq l$ and $\phi \in C\left(X_{k}, S^{1}\right)$, $\psi \in C\left(X_{l}, S^{1}\right)$ such that ξ_{1} is homotopic to $\phi \circ \pi_{k}$ and ξ_{2} is homotopic to $\psi \circ \pi_{l}$. Since $\phi \circ \pi_{k}=\phi \circ f_{k+1} \circ \ldots \circ f_{l} \circ \pi_{l}$, we have

$$
\varphi_{l}^{*}([\psi])=\varphi_{l}^{*}\left(\left[\phi \circ f_{k+1} \circ \ldots \circ f_{l}\right]\right)=\varphi_{l}^{*} \circ \widetilde{f}_{l}^{*} \circ \ldots \circ \widetilde{f}_{k+1}^{*}([\phi])=\varphi_{k}^{*}([\phi])
$$

Hence π^{*} is injective.
Therefore the isomorphisms $\iota_{k}: \mathcal{G}^{k} \rightarrow \operatorname{Br}\left(X_{k}\right)$ and $\pi^{*}: \underset{\longrightarrow}{\lim } \operatorname{Br}\left(X_{k}\right) \rightarrow$ $\operatorname{Br}(\bar{X})$ induce an isomorphism $\iota: \underline{\longrightarrow} \lim ^{k} \rightarrow \operatorname{Br}(\bar{X})$.

Order isomorphism. Assume now that the presentation $\left\{X_{k}, f_{k}\right\}$ satisfies the following

Simplicity Condition. For each $k \geq 1$ there exists $\kappa(k) \geq k$ such that $f_{k+1} \circ \ldots \circ f_{l}(e)=X_{k}$ for every $l \geq \kappa(k)$ and $e \in \mathcal{E}_{l}$, where \mathcal{E}_{l} is the edge set of X_{l}.

Then the winding order on $\operatorname{Br}\left(X_{k}\right)$ and $\operatorname{Br}(\bar{X})$ is an order.
Theorem 3.11. Suppose that the presentation $\left\{X_{k}, f_{k}\right\}$ satisfies the above Simplicity Condition. Then $\iota:\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}, \underset{+}{\lim } \mathcal{G}_{+}^{k}\right) \rightarrow\left(\operatorname{Br}(\bar{X}), \operatorname{Br}_{\oplus}(\bar{X})\right)$ is an isomorphism of ordered groups.

Proof. Trivial case. Suppose that all but finitely many X_{k} have a unique edge, i.e., X_{k} is homeomorphic to the circle S^{1} with a unique vertex by the Standing Assumption 2.14, and that the connection map $f_{k}: X_{k} \rightarrow X_{k-1}$ is the identity map if $X_{k}=X_{k-1}=S^{1}$. Then it is obvious that

$$
\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}, \lim _{\longrightarrow} \mathcal{G}_{+}^{k}\right) \cong\left(\operatorname{Br}(\bar{X}), \operatorname{Br}_{\oplus}(\bar{X})\right)=\left(\mathbb{Z}, \mathbb{Z}_{+}\right)
$$

and ι is an isomorphism.
Nontrivial case. First, ι is a group isomorphism, and clearly $\iota\left(\underset{\longrightarrow}{\lim } \mathcal{G}_{+}^{k}\right) \subseteq$ $\operatorname{Br}_{\oplus}(\bar{X})$. It remains to show that ι maps $\underset{\longrightarrow}{\lim } \mathcal{G}_{+}^{k}$ onto $\operatorname{Br}_{\oplus}(\bar{X})$. So we assume that $[\phi]$ is an element of $\operatorname{Br}_{\oplus}(\bar{X})$. Then there is an $[h]$ in \mathcal{G}^{k} for some $k \geq 0$ such that $[\phi]=\left[\phi_{h} \circ \pi_{k}\right]$, and we need to show $[h] \in \mathcal{G}_{+}^{k}$.

That $[\phi]$ is an element of $\operatorname{Br}_{\oplus}(\bar{X})$ implies that there is a map $\gamma \in R(\bar{X})$ such that $\left(\phi_{h} \circ \pi_{k}\right) \cdot \gamma$ is non-orientation reversing. Since γ is an element of $R(\bar{X})$, there is a continuous map $g: \bar{X} \rightarrow \mathbb{R}$ such that $\gamma(x)=\exp (2 \pi i g(x))$.

For $y=\left(y_{0}, \ldots, y_{k}, \ldots\right) \in \bar{X}$, if $y_{k}=e(t)$ for $e \in \mathcal{E}_{k}$ and $t \in[0,1]$, then $\phi_{h} \circ \pi_{k} \cdot \gamma$ is defined by $y \mapsto \exp (2 \pi i(t h(e)+g(y)))$.

Suppose that $\left(\phi_{h} \circ \pi_{k}\right) \cdot \gamma$ is a constant map to S^{1}. Then $\left[\left(\phi_{h} \circ \pi_{k}\right) \cdot \gamma\right]=$ $\left[\phi_{h} \circ \pi_{k}\right] \cdot[\gamma]=\left[\phi_{h} \circ \pi_{k}\right]=[1]$ in $\operatorname{Br}(\bar{X})$ as γ is homotopic to the identity element in $\operatorname{Br}(\bar{X})$. Hence the equivalence class of h is the identity element in $\underset{\longrightarrow}{\lim \mathcal{G}^{k}}$, for $\iota: \lim \mathcal{G}^{k} \rightarrow \operatorname{Br}(\bar{X})$ is an isomorphism.

Next suppose that $\left(\phi_{h} \circ \pi_{k}\right) \cdot \gamma$ is not constant on S^{1}. Then there are a nonnegative integer m, a small interval I contained in some edge e^{\prime} of X_{k+m}, and $\varepsilon>0$ such that if Γ is any orientation preserving curve in \bar{X} and $\pi_{k+m}\left(\left.\Gamma\right|_{[a, b]}\right)=I$, then length $\left\{\left.\left(\left(\phi_{h} \circ \pi_{k}\right) \cdot \gamma\right) \circ \Gamma\right|_{[a, b]}\right\}>\varepsilon$.

Given an arbitrary constant L, by the Simplicity Condition we can choose a sufficiently large integer M such that e^{\prime} is covered under $f^{k+m+1} \circ \ldots \circ$ f^{k+m+M} at least L times by every edge in \mathcal{E}_{k+m+M}.

Define

$$
H=f_{k+m+M}^{*} \circ \ldots \circ f_{k+1}^{*}(h)=h \circ f_{k+1} \circ \ldots \circ f_{k+m+M} \in C\left(\mathcal{E}_{k+m+M}, \mathbb{Z}\right)
$$

Then by Lemma 3.8, $\phi_{H} \circ \pi_{k+m+M} \in C\left(\bar{X}, S^{1}\right)$ is homotopic to $\phi_{h} \circ \pi_{k}$. For $x=\left(x_{0}, \ldots, x_{k+m+M}, \ldots\right) \in \bar{X}$, as x_{k+m+M} moves forward through a directed edge e of \mathcal{E}_{k+m+M}, its image under $\phi_{H} \circ \pi_{k+m+M}$ moves $\sum h(\widehat{e})$. $n_{e}(\widehat{e})$ times around S^{1}, where $n_{e}(\widehat{e})$ is the number of times e covers $\widehat{e} \in \mathcal{E}_{k}$ under the map $f^{k+1} \circ \ldots \circ f^{k+m+M}$.

Lemma 3.12. For every edge $e \in \mathcal{E}_{k+m+M}, H(e) \geq 2 \pi L \varepsilon-2 \max |g|$.
Proof. Regard e as a curve $e(t), 0 \leq t \leq 1$, and pick a curve $\Gamma:[0,1] \rightarrow$ \bar{X} such that $\pi_{k+m+M} \circ \Gamma(t)=e(t)$. As t increases from 0 to 1 , the point

$$
\left(\left(\phi_{h} \circ \pi_{k}\right) \cdot \gamma\right) \circ \Gamma(t)=\left(\phi_{h} \circ \pi_{k} \circ \Gamma(t)\right) \cdot(\gamma \circ \Gamma(t))
$$

moves counterclockwise on S^{1} from $e^{2 \pi i g(\Gamma(0))}$ to $e^{2 \pi i(g(\Gamma(1))+H(e))}$, covering an arclength A in the plane such that

$$
A \leq \frac{1}{2 \pi}(H(e)+2 \max |g|) .
$$

Because $\phi_{h} \circ \pi_{k} \circ \Gamma=\phi_{h} \circ f_{k+1} \circ \ldots \circ f_{k+m+M} \circ \pi_{k+m+M} \circ \Gamma$, as t runs from 0 to 1 the curve $f_{k+m+1} \circ \ldots \circ f_{k+m+M} \circ \pi_{k+m+M} \circ \Gamma(t)$ wraps around e^{\prime} at least L times, and therefore $A \geq L \varepsilon$. Consequently, $2 \pi L \varepsilon-2 \max |g| \leq H(e)$ as required.

Since we can choose M to make L as large as we wish, we can make the choice to guarantee $H(e)>0$ for every edge. Therefore $[H]=[h]$ is an element of \mathcal{G}_{+}^{k}.

Dimension group. Let M be an $r \times s$ nonnegative integer matrix. Then the matrix M determines a homomorphism $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{r}$ by the ordinary matrix multiplication. The simplicial order on \mathbb{Z}^{r} is the usual ordering $\mathbb{Z}_{+}^{r}=$ $\left\{\left(n_{1}, \ldots, n_{r}\right) \mid n_{i} \geq 0\right\}$. Then the corresponding homomorphism $M: \mathbb{Z}^{s} \rightarrow$
\mathbb{Z}^{r} is positive with respect to the simplicial order, that is, $a \geq 0$ implies $M(a) \geq 0$.

Definition $3.13([6, \S 2])$. Let M_{i} be an $r(i) \times r(i-1)$ nonnegative integer matrix. For a system of ordered groups and positive maps

$$
\mathbb{Z}^{r(0)} \xrightarrow{M_{1}} \mathbb{Z}^{r(1)} \xrightarrow{M_{2}} \ldots
$$

the set-theoretic direct limit $\xrightarrow{\lim }\left(\mathbb{Z}^{r(i)}, M_{i}\right)$ is an ordered group under the usual limit addition operation with the positive cone $\underset{\rightarrow}{\lim }\left(\mathbb{Z}_{+}^{r(i)}, M_{i}\right)=$ $\bigcup_{i=1}^{\infty} M_{i \infty}\left(\mathbb{Z}_{+}^{r(i-1)}\right)$ where $M_{i \infty}$ is the induced map from $\mathbb{Z}^{r(i-1)}$ to the direct limit $\xrightarrow{\lim }\left(\mathbb{Z}^{r(i)}, M_{i}\right)$.

An ordered group $\left(G, G_{+}\right)$is called a dimension group if it is order isomorphic to the limit of a system of simplicially ordered groups with positive maps.

Let $\left(G, G_{+}\right)$be a dimension group. A subgroup H of G is called an order ideal if H is an ordered group with the positive cone $H_{+}=H \cap G_{+}$and $0 \leq a \leq b \in H$ implies $a \in H$. The dimension group (G, G_{+}) is called simple if it has no proper order ideal.

In a simple dimension group $\left(G, G_{+}\right)$with an element $g \in G$, if neither g nor $-g$ lies in G_{+}, then g is called an infinitesimal element. If u is an order unit and g is an infinitesimal element of G, then $g+u$ is also an order unit.

It is well known that a dimension group defined as above by matrices M_{i} is simple if for every i there exists j such that all entries of the matrix $M_{j} M_{j-1} \ldots M_{i+1} M_{i}$ are strictly positive.

Suppose that $\left\{X_{k}, f_{k}\right\}$ is a presentation of an (orientable) branched matchbox manifold with the edge set \mathcal{E}_{k} of X_{k}. Then for each edge $e_{i} \in \mathcal{E}_{k}$, $f_{k}\left(e_{i}\right)$ is a path $e_{i, 1}^{s(1)} \ldots e_{i, j(i)}^{s(j(i))}$ in X_{k-1} such that $s(j)= \pm 1$ denotes the direction and the terminal point of $e_{i, j}^{s(j)}$ is the initial point of $e_{i, j+1}^{s(j+1)}$ for $1 \leq j<j(i)$. Therefore we can define an induced map $\check{f}_{k}: \mathcal{E}_{k} \rightarrow \mathcal{E}_{k-1}^{*}$ by

$$
\check{f}_{k}: e_{i} \mapsto e_{i, 1}^{s(1)} \ldots e_{i, j(i)}^{s(j(i))}
$$

Definition 3.14. Suppose that X_{k} has n_{k} edges for all $k \geq 0$. Then the adjacency matrix M_{k} of $\left(\check{f}_{k}, \mathcal{E}_{k}, \mathcal{E}_{k-1}\right)$ is an $n_{k} \times n_{k-1}$ matrix such that for any edges $e_{i} \in \mathcal{E}_{k}$ and $e_{j} \in \mathcal{E}_{k-1}, M_{k}(i, j)$ is the number of times $\breve{f}_{k}\left(e_{i}\right)$ covers e_{j} ignoring the direction of the covering.

Lemma 3.15 ([6, §3]). A countable ordered group is a dimension group if and only if it is unperforated and has the Riesz Interpolation Property.

Proposition 3.16. Suppose that $\left\{X_{k}, f_{k}\right\}$ is a presentation of a compact connected orientable branched matchbox manifold with the adjacency matrices M_{k}. Then
(1) $\left(\underset{\longrightarrow}{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right), \underline{\longrightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right) \cong\left(\underline{\lim }\left(\mathbb{Z}^{n_{k}}, M_{k}\right), \underline{\lim }\left(\mathbb{Z}_{+}^{n_{k}}, M_{k}\right)\right)$.

If the presentation satisfies the Simplicity Condition, then
$(2)\left(\underset{\longrightarrow}{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right), \underline{\longrightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right)$ and $\left(\xrightarrow{\lim } \mathcal{G}^{k}, \xrightarrow{\lim } \mathcal{G}_{+}^{k}\right)$ are simple dimension groups.

Proof. (1) For each $g \in C\left(\mathcal{E}_{k-1}, \mathbb{Z}\right)$ and $f_{k}^{*}: C\left(\mathcal{E}_{k-1}, \mathbb{Z}\right) \rightarrow C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ given by $g \mapsto g \circ f_{k}$, if we represent g as $\left(g\left(e_{1}\right), \ldots, g\left(e_{n_{k-1}}\right)\right) \in \mathbb{Z}^{n_{k-1}}$, then $C\left(\mathcal{E}_{k-1}, \mathbb{Z}\right)$ is isomorphic to $\mathbb{Z}^{n_{k-1}}$ and $f_{k}^{*}(g)=g \circ f_{k}$ is given by M_{k}. $\left(g\left(e_{1}\right), \ldots, g\left(e_{n_{k-1}}\right)\right)^{t}$. Hence we have $\underline{\underline{\mathcal{L i m}_{k}}} C\left(\mathcal{E}_{k-1}, \mathbb{Z}\right) \cong \underline{\lim }\left(\mathbb{Z}^{n_{k}}, M_{k}\right)$. Since $C_{+}\left(\mathcal{E}_{k-1}, \mathbb{Z}\right)$ is the set of elements in $\left.C \overrightarrow{\mathcal{E}_{k-1}}, \mathbb{Z}\right)$ with range in $\mathbb{Z}_{+}, C\left(\mathcal{E}_{k-1}, \mathbb{Z}\right)$ is simplicially ordered, and so is $\underline{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$. Therefore $\left(\underline{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right.$, $\left.\xrightarrow{\lim } C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right)$ is order isomorphic to $\left(\underline{\lim }\left(\mathbb{Z}^{n_{k}}, M_{k}\right), \underline{\lim }\left(\mathbb{Z}_{+}^{n_{k}}, \overrightarrow{\left.M_{k}\right)}\right)\right.$.
(2) Suppose that H is a proper order ideal of $\left(\underset{\longrightarrow}{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right), \underline{\longrightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right)$ and that $b \in H_{+}$. Then there exist a nonnegative integer k and $\overrightarrow{h \in} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ such that $b=[h] \in \underline{\longrightarrow} C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$. By the Simplicity Condition, there is a nonnegative integer $\kappa(k) \geq k$ such that $f_{k+1} \circ \ldots \circ f_{l}(e)=X_{k}$ for every $l \geq \kappa(k)$ and every edge $e \in \mathcal{\mathcal { E } _ { l }}$. If $a \in \underline{\underline{\lim } C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right) \text {, then we can choose }}$ a positive integer $l \geq \kappa(k)$ and $g \in C_{+}\left(\overrightarrow{\mathcal{E}_{l}}, \mathbb{Z}\right)$ such that $a=[g]$. Let $n=$ $\max _{e \in \mathcal{E}_{l}} g(e)$. Then $n \cdot b=\left[n \cdot f_{l}^{*} \circ \ldots \circ f_{k+1}^{*} \circ h\right] \in H_{+}$and $n \cdot f_{l}^{*} \circ \ldots \circ$ $f_{k+1}^{*} \circ h-g \in C_{+}\left(\mathcal{E}_{l}, \mathbb{Z}\right)$. So we have $0 \leq a \leq n \cdot b$ and $a \in H_{+}$. Therefore $H_{+}=\underline{\longrightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, and $\left(\underset{\longrightarrow}{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right), \underline{\longrightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right)$ is a simple dimension group.

The group $\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}, \underline{\longrightarrow} \mathcal{G}_{+}^{k}\right) \cong\left(\operatorname{Br}(\bar{X}), \operatorname{Br}_{\oplus}(\bar{X})\right)$ is an unperforated ordered group by Proposition 2.7, and its positive set is the image of the positive set of $\underset{\longrightarrow}{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ under the quotient map $\chi: \lim C\left(\mathcal{E}_{k}, \mathbb{Z}\right) \rightarrow \underline{\lim } \mathcal{G}^{k}$. We claim that with this quotient order, $\left(\underset{\longrightarrow}{\left.\lim \mathcal{G}^{k}, \lim \overrightarrow{\mathcal{G}_{+}^{k}}\right) \text { satisfies the Riesz }}\right.$ Interpolation Property (and therefore by Lemma $\overrightarrow{3.15}$ is a dimension group). (We learned this argument from unpublished remarks of David Handelman. The general line of argument is also implicit in remarks on pp. 58 and 66 of [8].)

Let $V=\operatorname{ker} \chi$. Note that if V contains a nonzero positive element u, then for every $g \in \underline{\longrightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ we have $0 \leq g \leq n u$ for some integer n, and therefore $0 \leq \chi(g) \leq 0$, which contradicts the image of χ being a nontrivial ordered group. Therefore all elements of V are infinitesimals.

To show the Riesz Interpolation Property, suppose that $\left[a_{1}\right],\left[a_{2}\right],\left[b_{1}\right],\left[b_{2}\right]$ $\in \xrightarrow{\lim } \mathcal{G}^{k}$ satisfy $\left[a_{i}\right]<\left[b_{j}\right](i, j=1,2)$. Let $a_{i}, b_{j} \in \xrightarrow[\longrightarrow]{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ be preimages of $\left[a_{i}\right]$ and $\left[b_{j}\right]$, respectively. Since $-\left[a_{i}\right]+\left[b_{j}\right] \overrightarrow{\overrightarrow{i s}}$ a nonzero positive element of $\underline{\underline{l i m}} \mathcal{G}^{k}$, there exists a $v_{i, j} \in V$ such that $-a_{i}+v_{i, j}+b_{j}$ is a nonzero positive element of $\xrightarrow{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$. Because $v_{i, j}$ is an infinitesimal element, it follows that $-a_{i}+\overrightarrow{b_{j}}$ is a nonzero positive element of $\underset{\mathrm{P}}{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, and $a_{i}<b_{j}$ for $i, j=1,2$. Hence by the Riesz Interpolation Property for $\xrightarrow{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ there exists an element $c \in \xrightarrow{\lim } C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$ such that $a_{i} \leq c \leq b_{j}$.

Then by the definition of the quotient order we have $\left[a_{i}\right] \leq[c] \leq\left[b_{j}\right]$ for all i, j, as required. Therefore $\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}, \underline{\longrightarrow} \mathcal{G}_{+}^{k}\right)$ is a dimension group by Lemma 3.15.

Suppose that $\left(G, G_{+}\right)$is a proper order ideal of $\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}, \underset{\longrightarrow}{\lim } \mathcal{G}_{+}^{k}\right)$. Then it is not difficult to see that $\left(H, H_{+}\right)=\left(\chi^{-1}(G), \chi^{-1}\left(G_{+}\right)\right)$is a proper order ideal of $\left(\lim C\left(\mathcal{E}_{k}, \mathbb{Z}\right), \xrightarrow{\lim } C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right)$ which is a simple dimension group. Therefore $\left(\underset{\longrightarrow}{\lim } \overrightarrow{\mathcal{G}}^{k}, \xrightarrow{\lim } \mathcal{G}_{+}^{k}\right)$ is a simple dimension group.

If each graph X_{k} is a wedge of circles, then $V_{k}=\{0\}$ as each edge in X_{k} is a cycle. So we have the following corollary:

Corollary 3.17. Suppose that the presentation $\left\{X_{k}, f_{k}\right\}$ satisfies the Simplicity Condition and that each graph X_{k} is a wedge of circles. Then $\left(\underset{\longrightarrow}{\lim } \mathcal{G}^{k}, \underline{\longrightarrow} \mathcal{G}_{+}^{k}\right)$ is order isomorphic to $\left(\underset{\longrightarrow}{\lim }\left(\mathbb{Z}^{n_{k}}, M_{k}\right), \underline{\lim _{+}}\left(\mathbb{Z}_{+}^{n_{k}}, M_{k}\right)\right)$.

The following corollary follows from Observation 2.4 and Theorem 3.11.
Corollary 3.18. Suppose that $\left(\bar{X}_{i}, \bar{f}_{i}\right)$ is a compact connected orientable branched matchbox manifold with the Simplicity Condition for $i=1,2$. If \bar{X}_{1} is homeomorphic to \bar{X}_{2}, then $\xrightarrow{\lim } \mathcal{G}_{1}^{k}$ is order isomorphic to $\xrightarrow{\lim } \mathcal{G}_{2}^{k}$.

Remark 3.19. (1) The dimension group of adjacency matrices is not a homeomorphism invariant. See Example 4.4.
(2) The isomorphism in Corollary 3.18 need not respect distinguished order units $([4, \S 1])$.
4. One-dimensional generalized solenoid. One interesting class of branched matchbox manifolds is one-dimensional branched solenoids, including one-dimensional generalized solenoids of Williams ($[16,17,18]$). Let X be a directed graph with vertex set \mathcal{V} and edge set \mathcal{E}, and $f: X \rightarrow X$ a continuous map. We define some axioms which might be satisfied by (X, f) ([18]).

Axiom 0 (Indecomposability). (X, f) is indecomposable.
Axiom 1 (Nonwandering). All points of X are nonwandering under f.
Axiom 2 (Flattening). There is $k \geq 1$ such that for all $x \in X$ there is an open neighborhood U of x such that $f^{k}(U)$ is homeomorphic to $(-\varepsilon, \varepsilon)$.

Axiom 3 (Expansion). There are a metric d compatible with the topology and positive constants C and λ with $\lambda>1$ such that for all $n>0$ and all points x, y on a common edge of X, if f^{n} maps the interval $[x, y]$ into an edge, then $d\left(f^{n} x, f^{n} y\right) \geq C \lambda^{n} d(x, y)$.

Axiom 4 (Nonfolding). $\left.f^{n}\right|_{X-\mathcal{V}}$ is locally one-to-one for every positive integer n.

Axiom 5 (Markov). $f(\mathcal{V}) \subseteq \mathcal{V}$.

Let \bar{X} be the inverse limit space

$$
\bar{X}=X \stackrel{f}{\longleftarrow} X \stackrel{f}{\longleftarrow} \ldots=\left\{\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in \prod_{k=0}^{\infty} X \mid f\left(x_{n+1}\right)=x_{n}\right\},
$$

and $\bar{f}: \bar{X} \rightarrow \bar{X}$ the induced homeomorphism defined by

$$
\left(x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto\left(f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right)=\left(f\left(x_{0}\right), x_{0}, x_{1}, \ldots\right) .
$$

Let Y be a topological space and $g: Y \rightarrow Y$ a homeomorphism. We call Y a 1-dimensional generalized solenoid or 1-solenoid and g a solenoid map if there exist a directed graph X and a continuous map $f: X \rightarrow X$ such that (X, f) satisfies all six axioms and (\bar{X}, \bar{f}) is topologically conjugate to (Y, g). If (X, f) satisfies all axioms except possibly the Flattening Axiom, then we call Y a branched solenoid. If we can choose the direction of each edge in X so that the connection map $f: X \rightarrow X$ is orientation preserving, then we call (X, f) an orientable presentation, and Y an orientable (branched) solenoid. If (Y, g) is a branched solenoid with a presentation (X, f), then there exists an $n \times n$ adjacency matrix $M_{X, f}$ where n is the cardinal number of the set of edges in X. If X is a wedge of circles and f leaves the unique branch point of X fixed, then we say (X, f) is an elementary presentation.

We get the following proposition from Theorem 3.11 and Corollary 3.17.
Proposition 4.1. Suppose that (\bar{X}, \bar{f}) is an orientable branched solenoid with an adjacency matrix M. Then $\iota:\left(\underline{\lim }\left(\mathbb{Z}^{n}, M\right), \lim \left(\mathbb{Z}_{+}^{n}, M\right)\right) \rightarrow$ $\left(\operatorname{Br}(\bar{X}), \operatorname{Br}_{\oplus}(\bar{X})\right)$ is an epimorphism of ordered groups. If $(\overrightarrow{X, f})$ is an elementary presentation, then ι is an isomorphism.

Remark 4.2. We need the elementary presentation condition for the injectivity of ι. See Example 4.4.

Example 4.3 ($[18, \S 2]$ and $[11, \S 7.5])$. Let X be the unit circle on the complex plane. Suppose that 1 and -1 are the vertices of X, and that the upper half-circle e_{1} and the lower half-circle e_{2} with counterclockwise

Fig. 1. (X, f) with the wrapping rule \check{f}
direction are the edges of X. Define $f: X \rightarrow X$ by $f: z \mapsto z^{2}$. The $\check{f}: \mathcal{E}_{X} \rightarrow \mathcal{E}_{X}^{*}$ is given by $\check{f}: e_{1} \mapsto e_{1} e_{2}, e_{2} \mapsto e_{1} e_{2}$, and the adjacency
matrix is

$$
M_{X, f}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Therefore we have

$$
\left(\operatorname{Br}(\bar{X}), \operatorname{Br}_{\oplus}(\bar{X})\right)=\left(\mathbb{Z}[1 / 2], \mathbb{Z}[1 / 2] \cap \mathbb{R}_{+}\right)
$$

Figure 1 represents the presentation (X, f) with the wrapping rule \check{f}.
Similarly, if (Y, g) is given by Figure 2 , then (Y, g) does not satisfy

Fig. 2. (Y, g) with wrapping rule \check{g}
the Flattening Axiom and (\bar{Y}, \bar{g}) is a branched solenoid. The wrapping rule $\check{g}: \mathcal{E}_{Y} \rightarrow \mathcal{E}_{Y}^{*}$ is given by $a \mapsto a b, b \mapsto a$ and the adjacency matrix is

$$
M_{Y, g}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

Thus
$\operatorname{Br}(\bar{Y})=\mathbb{Z} \oplus \mathbb{Z} \quad$ and $\quad \operatorname{Br}_{\oplus}(\bar{Y})=\left\{\mathbf{v} \in \mathbb{Z} \oplus \mathbb{Z} \left\lvert\, \mathbf{v} \cdot\left(\frac{1+\sqrt{5}}{2}, 1\right)>0\right.\right\} \cup\{\mathbf{0}\}$.
The following example shows that the dimension group of adjacency matrices induced by a presentation is not a homeomorphism invariant.

Example 4.4 ([18, 4.8 and 5.1]). Let X be a wedge of two circles a, b with a unique vertex p, and $f: X \rightarrow X$ be defined by $a \mapsto a a b$ and $b \mapsto a b$. So (X, f) is given by Figure 3 . Suppose that Y is given by Figure 4 and

Fig. 3. (X, f) with a unique vertex $\{p\}$

Fig. 4. The graph Y with two vertices $\{q, r\}$
that the wrapping rule $\check{g}: \mathcal{E}_{Y} \rightarrow \mathcal{E}_{Y}^{*}$ is given by

$$
\alpha \mapsto \gamma \alpha \beta, \quad \beta \mapsto \gamma, \quad \gamma \mapsto \beta \gamma \alpha \beta
$$

Then it is shown in $[18,4.8]$ that (\bar{X}, \bar{f}) is topologically conjugate to (\bar{Y}, \bar{g}). Their adjacency matrices are given by the matrices

$$
M_{(X, f)}=\left(\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad M_{(Y, g)}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

Since the determinants of $M_{(X, f)}$ and $M_{(Y, g)}$ are 1 and -1 , respectively, $M_{(X, f)}$ and $M_{(Y, g)}$ are invertible over \mathbb{Z}. Hence the dimension group of $M_{(X, f)}$ is \mathbb{Z}^{2} and that of $M_{(Y, g)}$ is \mathbb{Z}^{3}. Therefore the dimension group of $M_{(X, f)}$ is not isomorphic to the dimension group of $M_{(Y, g)}$.

Since (X, f) is elementarily presented, the dimension group of $M_{(X, f)}$ is order isomorphic to the Bruschlinsky group of (\bar{X}, \bar{f}). And the Bruschlinsky group of (\bar{Y}, \bar{g}) is given by the dimension group of $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Hence we have $\operatorname{Br}(\bar{X}) \cong \operatorname{Br}(\bar{Y}) \cong \mathbb{Z} \oplus \mathbb{Z}$ with

$$
\operatorname{Br}_{\oplus}(\bar{X}) \cong \operatorname{Br}_{\oplus}(\bar{Y}) \cong\left\{\mathbf{v} \in \mathbb{Z} \oplus \mathbb{Z} \left\lvert\, \mathbf{v} \cdot\left(\frac{3+\sqrt{5}}{2}, 1\right)>0\right.\right\} \cup\{\mathbf{0}\}
$$

Acknowledgements. This paper is a part of my Ph.D. dissertation at UMCP. I sincerely express my gratitude to my advisor Dr. M. Boyle for his encouragement and advice. The proof of Lemma 3.12 was suggested by Dr. Boyle. By his kind permission, I presented his proof here.

References

[1] J. Aarts and L. Oversteegen, Matchbox manifolds, in: Continua (Cincinnati, OH, 1994), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, 1995, 3-14.
[2] M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, Fund. Math. 146 (1995), 509-537.
[3] M. Barge, J. Jacklitch and G. Vago, Homeomorphisms of one-dimensional inverse limits with applications to substitution tilings, unstable manifolds, and tent maps, in: Geometry and Topology in Dynamics, Contemp. Math. 246, Amer. Math. Soc., 1999, 1-15.
[4] M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210.
[5] O. Bratteli, P. E. T. Jørgensen, K. H. Kim and F. Roush, Non-stationarity of isomorphism between AF algebras defined by stationary Bratteli diagrams, Ergodic Theory Dynam. Systems 20 (2000), 1639-1656.
[6] E. Effros, Dimensions and C^{*}-algebras, CBMS Regional Conf. Ser. in Math. 46, Amer. Math. Soc., 1981.
[7] A. Forrest, Cohomology of ordered Bratteli diagrams, Pacific J. Math., to appear.
[8] T. Giordano, I. Putnam and C. Skau, Topological orbit equivalence and C^{*}-crossed products, J. Reine Angew. Math. 469 (1995), 41-111.
[9] R. Herman, I. Putnam and C. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864.
[10] J. Krasinkiewicz, Mappings onto circle-like continua, Fund. Math. 91 (1976), 39-49.
[11] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995.
[12] S. Mardešić and J. Segal, e-Mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-164.
[13] W. Parry and S. Tuncel, Classification Problems in Ergodic Theory, London Math. Soc. Lecture Note Ser. 67, Cambridge Univ. Press, 1982.
[14] J. W. Rogers, Jr., Inverse limits on graphs and monotone mappings, Trans. Amer. Math. Soc. 176 (1973), 215-225.
[15] R. Swanson and H. Volkmer, Invariants of weak equivalence in primitive matrices, Ergodic Theory Dynam. Systems 20 (2000), 611-626.
[16] R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473-487.
[17] -, Classification of one-dimensional attractors, in: Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 341-361.
[18] I. Yi, Canonical symbolic dynamics for one dimensional generalized solenoids, Trans. Amer. Math. Soc. 353 (2001), 3741-3767.

Department of Mathematics and Statistics
University of Victoria
Victoria, B.C.
Canada, V8W 3P4
E-mail: yih@math.uvic.ca

[^0]: 2000 Mathematics Subject Classification: 37B45, 54F15, 54F65, 06F20.
 Key words and phrases: branched matchbox manifold, Bruschlinsky group, winding order, dimension group, one-dimensional solenoid.

