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Ordered group invariants for one-dimensional spaces

by

Inhyeop Yi (Victoria)

Abstract. We show that the Bruschlinsky group with the winding order is a hom-
eomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we
show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then
the Bruschlinsky group with the winding order of the inverse limit space is a dimension
group and is a quotient of the dimension group with the standard order of the adjacency
matrices associated with the presentation.

1. Introduction. Ordered groups have been useful invariants for the
classification of many different categories. A class of ordered groups, dimen-
sion groups, was used in the study of C∗-algebras to classify AF-algebras
([6]), and Giordano, Herman, Putnam and Skau ([8, 9]) defined (simple) di-
mension groups in terms of dynamical concepts to give complete information
about the orbit structure of zero-dimensional minimal dynamical systems.
Swanson and Volkmer ([15]) showed that the dimension group of a prim-
itive matrix is a complete invariant for weak equivalence, which is called
C∗-equivalence by Bratteli, Jørgensen, Kim and Roush ([5]). And Barge,
Jacklitch and Vago ([3]) showed that, for a certain class of one-dimensional
inverse limit spaces, two spaces are homeomorphic if and only if their asso-
ciated substitutions are weak equivalent, and that if two inverse limit spaces
are homeomorphic and the squares of their connection maps are orientation
preserving, then the dimension groups of the adjacency matrices associated
with the substitutions are order isomorphic.

A recent development ([2, 3, 4, 7, 8, 15]) is the refinement of Ȟ1(X) as a
topological invariant for certain one-dimensional spaces X, by making this
group an ordered group. Here Ȟ1(X) is the direct limit of first cohomology
groups on graphs approximating the space X. There is a natural order on the
first cohomology of a graph (a coset is positive if it contains a nonnegative
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268 I. Yi

function), and the standard order on Ȟ1(X) is the direct limit order derived
from the natural graph orders (see Definition 3.7). Except for parts of [4]
and [7], the ordered cohomology results have involved the standard order.

A second order on Ȟ1(X), the winding order, is geometrically natural
as its positive elements are the homotopy classes of continuous orientation
preserving maps from X to S1. Boyle and Handelman ([4]) defined the wind-
ing order for suspension spaces of zero-dimensional dynamical systems, and
showed that in some (but not all) cases it agrees with the standard order.
Forrest ([7]) defined the winding order for the first Čech cohomology groups
of directed graphs (thus taking the step of removing dynamics), and used
this to show that whenever two one-dimensional inverse limit spaces are
pro-homotopy equivalent , then their first Čech cohomology groups with the
standard order are order isomorphic.

In this paper, we extend the definition of the winding order to a large
class of one-dimensional spaces, “compact branched matchbox manifolds”.
We show that, for a compact connected orientable branched matchbox man-
ifold with an inverse limit presentation satisfying the Simplicity Condition,
the Bruschlinsky group with the winding order is a simple dimension group,
and the winding order equals the standard order. This is a natural exten-
sion of the relations between zero-dimensional minimal systems and simple
dimension groups in Giordano, Herman, Putnam and Skau ([8, 9]) to an
appropriate class of one-dimensional spaces. As a corollary we obtain an
independent proof of some results of Forrest and Barge, Jacklitch and Vago
([7, 3]) computing dimension group invariants for the oriented generalized
one-dimensional solenoids of Williams ([16, 17, 18]).

The outline of the paper is as follows. In Section 2, using work of Aarts
and Oversteegen ([1]), Mardešić and Segal ([12]) and Rogers ([14]), we de-
fine compact connected orientable branched matchbox manifolds, and show
that they all have presentations by orientation preserving maps of finite di-
rected nondegenerate graphs. In Section 3, we show that the Bruschlinsky
group with the winding order of a compact connected orientable branched
matchbox manifold with the Simplicity Condition is order isomorphic to the
direct limit of the graph groups with the standard order defined from the
presentation (and therefore the winding and standard orders agree). And
in Section 4, we recall the axioms for one-dimensional generalized solenoids
and calculate the Bruschlinsky groups with the winding order of an example
in which the Bruschlinsky group is not given by the obvious direct limit of
presenting matrices.

2. Branched matchbox manifolds and ordered groups. Aarts and
Oversteegen ([1]) defined a matchbox manifold to be a separable metric space
Y such that each point y ∈ Y has a neighborhood which is homeomorphic
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to Sy × Iy, where Sy is a zero-dimensional space and Iy is an open interval.
For a topological embedding h : Sy × Iy → Y , they called h(Sy × Iy) a
matchbox neighborhood of y ∈ Y . A matchbox manifold Y is called orientable
if each arc component Cα, α ∈ A, of Y has a parameterized immersed arc
pα : R → Cα such that each point y ∈ Y has a matchbox neighborhood
h(Sy × Iy) with the following property: for each α ∈ A and each t ∈ R with
pα(t) ∈ h(Sy × Iy) there exists an open interval I containing t such that
pr2 ◦ h−1 ◦ pα is increasing on I, where pr2 is the canonical projection from
Spα(t) × Ipα(t) to Ipα(t).

Theorem 2.1 ([1]). For a one-dimensional space Y , the following are
equivalent :

(1) Y is an orientable matchbox manifold.
(2) Y is the phase space of a flow without rest point.
(3) There exists a cross section K with return time map rK such that Y

is the standard suspension of (K, rK).

Branched matchbox manifold. We define a branched matchbox to be a
topological space homeomorphic to U = ((S1 × (−1, 0]) ∪ (S2 × [0, 1)))/∼
such that S1 and S2 are zero-dimensional separable metrizable spaces and
there is a (closed) equivalence relation ≈ on S1 ∪ S2 such that

(1) for every s1 ∈ S1 (σ2 ∈ S2, respectively) there exists at least one
s2 ∈ S2 (σ1 ∈ S1, respectively) such that s1 ≈ s2 (σ1 ≈ σ2, respectively),

(2) (S1∪S2)/≈ is a zero-dimensional metrizable space with the quotient
topology, and

(3) (s1, i) ∼ (s2, j) if and only if either s1 ≈ s2 and i = j = 0 or s1 = s2

and i = j.

Remark 2.2. In this paper, we will always be concerned with the case
where S1 and S2 are compact.

For s1 ∈ S1 and s2 ∈ S2 such that s1 ≈ s2, the set

(({s1} × (−1, 0]) ∪ ({s2} × [0, 1)))/∼
is called a match.

A branched matchbox manifold is a separable metrizable space Y together
with a collection of maps called charts such that

(1) a chart is a homeomorphism h : V → U where V is an open set in Y
and U is a branched matchbox,

(2) every point in Y is in the domain of some chart, and
(3) for charts h1 : V1 → U1 and h2 : V2 → U2 the change of coordinates

map h2 ◦ h−1
1 : h1(V1 ∩ V2)→ h2(V1 ∩ V2) is continuous.

Every branched matchbox U has the direction given by the second coor-
dinate, with a continuous projection pU :U→ (−1, 1) defined by [(z, j)] 7→ j.
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Following the approach of Aarts and Oversteegen ([1, §3]), we call a branched
matchbox manifold Y orientable if it can be covered by branched match-
boxes with directions agreeing on overlaps, i.e., there are oriented branched
matchboxes Ui with projections pi : Ui → (−1, 1), open sets Vi covering Y ,
and homeomorphisms hi : Vi → Ui such that for every i, j and every locally
one-to-one curve γ : [0, 1] → Vi ∩ Vj , pi ◦ hi ◦ γ is increasing if and only if
pj ◦ hj ◦ γ is increasing. The particular collection of charts, maximal with
respect to this change of coordinate property, is called an orientation of the
branched matchbox manifold Y .

Ordered group. A preordered group is a pair (G,G+) where G is an
Abelian group, and the positive cone G+ is a submonoid of G which gener-
ates G. We write g1 ≤ g2 if g2 − g1 ∈ G+ for g1, g2 ∈ G. If (G,G+) satisfies
the additional condition G+∩−G+ = {0}, then (G,G+) is called an ordered
group.

An order unit in a preordered group is an element u ∈ G+ such that
for every g ∈ G there exists a positive integer n = n(g) such that g ≤ nu.
A preordered group (G,G+) is unperforated if for every g ∈ G and positive
integer n, ng ∈ G+ implies g ∈ G+. We say that an ordered group (G,G+)
has the Riesz Interpolation Property if given g1, g2, h1, h2 ∈ G with gi ≤ hj
(i, j = 1, 2), there is a k ∈ G such that gi ≤ k ≤ hj .

Bruschlinsky group with the winding order. For a compact metric space
Y , let C(Y, S1) be the set of continuous functions from Y to S1, and

R(Y ) = {φ ∈ C(Y, S1) | φ(y) = exp(2πig(y)) for some g ∈ C(Y,R)}.
Then R(Y ) is the subgroup of functions homotopic to a constant map in
C(Y, S1). The Bruschlinsky group of Y ([13, §4.3]) is given by

Br(Y ) = C(Y, S1)/R(Y ).

It is well known that Ȟ1(Y ), the first Čech cohomology group of Y , is
isomorphic to the Bruschlinsky group of Y ([4, 10]).

Now suppose that Y is an oriented compact branched matchbox mani-
fold. Let C⊕(Y, S1) be the set of φ ∈ C(Y, S1) such that there exists a map
ψ ∈ R(Y ) for which φ ·ψ is non-orientation reversing, i.e., for every orienta-
tion preserving parameterized curve γ : R→ Y , (φ ·ψ)(γ)(t) does not move
in the clockwise direction as t ∈ R increases.

Define Br⊕(Y ) = {[φ] | φ ∈ C⊕(Y, S1)}. Then (Br(Y ),Br⊕(Y )) is a
preordered group. We call this preorder the winding order ([4, §4]).

Remark 2.3 ([4, 4.7]). It is possible that the Bruschlinsky group with
the winding order of a compact orientable space is not an ordered group.

Observation 2.4. Homeomorphic orientable compact metric spaces
have order-isomorphic Bruschlinsky groups with the winding order.
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Proposition 2.5 ([10]). The Bruschlinsky group of a compact branched
matchbox manifold is a torsion-free group.

Recall that a continuum is a compact connected metric space.

Lemma 2.6 ([10]). Let Y be a continuum, φ ∈ C(Y, S1), and pn : S1 →
S1 defined by z 7→ zn for every positive integer n. Then n · [φ] = [pn ◦ φ].

Proposition 2.7. The Bruschlinsky group with the winding order of a
compact connected oriented branched matchbox manifold Y is unperforated.

Proof. Suppose that φ∈C(Y, S1) and n∈Z+ are such that n·[φ] = [pn◦φ]
∈ Br⊕(Y ). Then there exists a map ψ ∈ R(Y ) given by y 7→ exp(2πig(y))
with g ∈ C(Y,R) such that (pn ◦ φ) · ψ is non-orientation-reversing.

Define ψ̃ : Y → S1 by y 7→ exp(2πi · 1
ng(y)). Then we have ψ̃ ∈ R(Y )

and (pn ◦φ) ·ψ = pn ◦ (φ · ψ̃). For every orientation preserving parameterized
curve γ : R→ Y ,

((pn ◦ φ) · ψ) ◦ γ(t) = pn ◦ (φ · ψ̃) ◦ γ(t) = pn ◦ ((φ · ψ̃) ◦ γ(t))

does not move clockwise on S1 as t ∈ R increases. So φ · ψ̃ is non-orientation
reversing as n is a positive integer. Therefore φ ∈ C⊕(Y, S1), and (Br(Y ),
Br⊕(Y )) is unperforated.

Remark 2.8. If Y is a compact connected orientable matchbox mani-
fold, then the above Propositions 2.5 and 2.7 follow from Propositions 4.5
and 3.4 of [4] and Theorem 2.1.

One-dimensional continua. In [14], Rogers introduced the following no-
tions for one-dimensional continua.

Suppose that X1 and X2 are graphs and that Vi and Ei are the vertex
set and the edge set of Xi, respectively, i = 1, 2. A continuous onto map
f : X2 → X1 is called simplicial relative to (V1,V2) if f(V2) ⊆ V1 and for
every edge e2 ∈ E2 there is an edge e1 ∈ E1 such that f |e2\V2 is a hom-
eomorphism onto e1 \ V1 or a constant map. The map f : X2 → X1 is
simplicial if it is simplicial relative to some vertex sets of X1 and X2. And
f is called light if the preimage of each point is totally disconnected.

An inverse limit sequence {Xk, fk} on graphs is called light simplicial
if each fk is light simplicial, and is called light uniformly simplicial if each
Xk is a graph with a vertex set Vk and each map fk : Xk → Xk−1 is light
simplicial relative to (Vk−1,Vk).

Theorem 2.9 ([12, 14]). Suppose that X is a one-dimensional contin-
uum.

(1) X is homeomorphic to an inverse limit of a light simplicial sequence
{Xk, fk} on graphs.
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(2) X is homeomorphic to a light uniformly simplicial inverse limit on
graphs if and only if there exists a map π : X → [0, 1] such that π−1({0, 1})
is totally disconnected and π|e is a homeomorphism for every e which is the
closure of a component of X \ π−1({0, 1}).

Suppose that {Xk, fk} is a light simplicial sequence on graphs. Let

X = X0
f1←− X1

f2←− . . . =
{

(x0, x1, . . .) ∈
∞∏

k=0

Xk

∣∣∣ fk+1(xk+1) = xk

}
.

For a one-dimensional continuum Y , we call the sequence {Xk, fk} a pre-
sentation of Y if X is homeomorphic to Y .

Notation 2.10. Suppose that G is a directed graph. We consider a di-
rected edge e of G as the image of a local homeomorphism from [0, 1] to e
such that e(0) is the initial point of e and e(1) is the terminal point. Then
we can represent each point x ∈ e as e(t) (possibly e(0) = e(1)).

Recall that a continuous map p : [0, 1] → G, a directed graph, is ori-
entation preserving if e−1 ◦ p : I → [0, 1] is increasing for every interval
I ⊂ [0, 1] such that p(I) is a subset of a directed edge e. A continuous map
f : G1 → G2 between two directed graphs is orientation preserving if, for
every orientation preserving map p : [0, 1] → G1, f ◦ p : [0, 1] → G2 is ori-
entation preserving ([7]). A directed graph is called nondegenerate if every
vertex has at least one incoming edge and at least one outgoing edge.

Suppose that Y is a compact connected oriented branched matchbox
manifold. Since Y is a one-dimensional continuum, there is a light simplicial
presentation {Xk, fk} of Y by Theorem 2.9. The following proposition shows
that the orientation of Y decides the directions of edges in each coordinate
space Xk so that every connection map fk : Xk → Xk−1 is orientation
preserving.

Proposition 2.11. Suppose that Y is a compact connected oriented
branched matchbox manifold. Then Y has a light simplicial presentation
by orientation preserving maps of directed nondegenerate graphs.

Proof. Suppose that {hU : V → U} is an orientation of Y where U is
a branched matchbox with the projections pU : U → (−1, 1). Let {Xk, fk}
be a light uniformly simplicial presentation of Y given by Theorem 2.9, and
πk : Y → Xk the canonical projection to the kth coordinate space. If e is
an edge of Xk with π−1

k (e \ Vk) ∩ h−1
U (U) 6= ∅, then give the direction to

the set (e \ Vk) ∩
(
πk ◦ h−1

U (U)
)
⊂ e so that, for every curve γ : [0, 1] →

π−1
k (e \ Vk) ∩ h−1

U (U), pU ◦ hU ◦ γ is increasing if and only if e−1 ◦ πk ◦ γ is
increasing. Since {hU} is an orientation of Y , we can extend this direction
on (e \ Vk)∩ πk ◦ h−1

U (U) to e, and each edge Xk has a direction induced by
the orientation of Y .
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Suppose that x = (x0, x1, . . .) is a point in Y such that xk ∈ Xk is
a vertex and that U is a branched matchbox such that the domain of hU
contains x. Then there is a match M ⊂ U containing hU (x) such that
pU |M ◦ hU (x) = t for some t ∈ (−1, 1). Since πk ◦ h−1

U ◦ (pU |M )−1((−1, t))
and πk ◦h−1

U ◦ (pU |M )−1((t, 1)) are nonempty sets in Xk, there exist an edge
e− such that (πk ◦ h−1

U ◦ (pU |M)−1((−1, t))) ∩ e− 6= ∅, which is incoming
to xk, and an edge e+ such that (πk ◦h−1

U ◦ (pU |M )−1((t, 1)))∩e+ 6= ∅, which
is outgoing from xk. Therefore Xk is nondegenerate.

Suppose that ek ∈ Ek and ek−1 ∈ Ek−1 are two edges such that ek−1 =
fk(ek), and hU : V → U is a chart such that W = πk ◦ h−1

U (U) ∩ (ek \ Vk)
6= ∅. Then fk(W ) ⊂ πk−1 ◦ h−1

U (U) ∩ (ek−1 \ Vk−1), and for every curve
γ : [0, 1]→ h−1

U (U) ∩ π−1
k (ek \ Vk), e−1

k ◦πk ◦γ is increasing ⇔ pU ◦ hu ◦ γ is
increasing ⇔ e−1

k−1 ◦ πk−1 ◦ γ is increasing.
Let γ : [a, b]→ h−1

U (U)∩π−1
k (ek \Vk) be given by πk ◦γ(t) = ek(t). Then

we have πk−1 ◦ γ(t) = fk ◦ ek(t), and e−1
k−1 ◦ πk−1 ◦ γ(t) = e−1

k−1 ◦ fk ◦ ek(t)
is increasing as t is increasing. Therefore fk : Xk → Xk−1 is orientation
preserving.

Corollary 2.12. Suppose that Y is a compact connected orientable
branched matchbox manifold. Then there is a continuous map π : Y → S1

such that π−1(1) is totally disconnected and π|` is an orientation preserving
homeomorphism for every ` which is an arc component of Y \ π−1(1).

Proof. Define π : Y → S1 by x = (x0, x1, . . .) 7→ exp(2πit), where
t ∈ [0, 1] is given by x0 = e(t) ∈ e ∈ E0. Then π is well defined and
π−1(1) = {x ∈ Y | x0 ∈ V0} is a zero-dimensional set. Since `, an arc
component of Y \ π−1(1), is given by ` = (e0 \ V0, e1 \ V1, . . .) where ei ∈ Ei,
π : ` → S1 given by x = (e0(t), e1(t), . . .) 7→ exp(2πit) is an orientation
preserving homeomorphism.

We have the following proposition from Theorem 2.9.

Proposition 2.13. Every compact connected orientable branched match-
box manifold has a light uniformly simplicial presentation.

Standing Assumption 2.14. From now on, a graph means a finite di-
rected nondegenerate graph.

3. Orientable one-dimensional inverse limit spaces. In this sec-
tion we suppose that X is a compact connected oriented branched matchbox
manifold with a presentation {Xk, fk} such that each Xk is a graph with
a fixed vertex set Vk and each map fk : Xk → Xk−1 is an orientation pre-
serving map such that fk(Vk) ⊂ Vk−1 and fk|Xk\Vk is locally one-to-one.
Let Ek be the set of directed edges in Xk defined by Vk, C(Ek,Z) the set of
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integer-valued functions on Ek, and C+(Ek,Z) the subset of C(Ek,Z) with
range in the nonnegative integers Z+. For each vertex pi of Xk, define the
vertex function vi ∈ C(Ek,Z) such that for every edge e ∈ Ek,

vi(e) =

{ 1 if e is an edge from pi to another vertex point,
−1 if e is an edge from another vertex point to pi,
0 if pi is the initial and terminal point of e, or pi 6∈ e.

Write Vk for the set of integral combinations of {vi} ⊂ C(Ek,Z), and call an
element of Vk a vertex coboundary. Define

Gk = C(Ek,Z)/Vk and Gk+ = C+(Ek,Z)/Vk.

Then (Gk,Gk+,1) is a unital preordered group.

Notation 3.1. By a path in a graph X we mean a finite sequence
e
s(1)
1 . . . e

s(n)
n of edges such that, for 1 ≤ i < n, s(i) = ±1 represents the

direction of ei and the terminal vertex of es(i)i is the initial vertex of es(i+1)
i+1 .

We write es ∈ ℘ if ℘ is a path and e is an edge such that es is a factor of ℘.
A cycle is a path e

s(1)
1 . . . e

s(n)
n such that the terminal vertex of es(n)

n is the

initial vertex of es(1)
1 .

We say that a function g in C(Ek,Z) is zero (nonnegative, respectively)
on cycles if the sum of g(e) over the edges e of every cycle in Xk is zero
(nonnegative, respectively).

Lemma 3.2 ([4, §3]). Suppose that g is an element of C(Ek,Z). Then

(1) g is an element of Vk if and only if g is zero on cycles in Xk, and
(2) [g] is an element of C+(Ek,Z)/Vk = Gk+ if and only if g is nonnega-

tive on cycles.

Given g ∈ C(Ek,Z), define a continuous map

φg : Xk → S1, x 7→ exp(2πitg(e)) for x = e(t), t ∈ [0, 1].

Then φg is well defined as every vertex point maps to 1 ∈ S1, and φg is an
element of C(Xk, S

1).

Lemma 3.3. Suppose that g is an element of C(Ek,Z). Then g is an
element of Vk if and only if φg is homotopic to a constant function 1 in
C(Xk, S

1).

Proof. Suppose that g is an element of Vk. For each vertex function vi
defined at the vertex pi of Xk, define a map hsvi : Xk → S1 for 0 ≤ s ≤ 1 by

hsvi(e(t)) =





e2πist if e is an edge from pi to another vertex point,
e−2πist if e is an edge from another vertex point to pi,
e2πis if pi is the initial and terminal point of e,
1 otherwise.

Then s 7→ hsvi , 0 ≤ s ≤ 1, is a homotopy between φvi and 1.
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Now suppose that φg and 1 are homotopic on Xk. Since the winding
number of the restriction of φg to every cycle in Xk is a homotopy invariant
and

∑
e∈` g(e) is the winding number for every cycle ` in Xk, we conclude

that g is zero on every cycle, and that g is an element of Vk by Lemma 3.2.

Therefore we have a well defined map

ιk : Gk → Br(Xk) given by [g] 7→ [φg].

Proposition 3.4. Let ιk be defined as above. Then ιk is an isomorphism
of preordered groups (Gk,Gk+) and (Br(Xk),Br⊕(Xk)).

Proof. Since φg+h = φg ·φh, ιk is a group homomorphism. By Lemma 3.3,
φg is homotopic to a constant function 1 if and only if g is a vertex cobound-
ary. So ιk : Gk → Br(Xk) is injective.

To obtain an inverse of ιk, suppose that φ belongs to C(Xk, S
1). Then

we can choose a map % : Vk → R where Vk is the vertex set of Xk such that
φ(p) = φ(2πi%(p)) for every vertex p of Xk. Define S% ∈ C(Xk, S

1) by

e(t) 7→ exp(2πi((1− t)%(e(0)) + t%(e(1)))), 0 ≤ t ≤ 1.

Then S% is homotopic to the constant map 1 by Hu = Su% for 0 ≤ u ≤ 1,
φ is homotopic to φ/S%, and for every vertex p of Xk, (φ/S%)(p) = 1 ∈ S1.

For each edge e ∈ Ek, let rφ(e) be the number of times the loop (φ/S%)(x)
winds around S1 as x = e(t) moves on e. Since (φ/S%)(p) = 1 ∈ S1 for every
vertex p of Xk, rφ(e) is well defined for each edge e. Then rφ : e 7→ rφ(e)
is an element of C(Ek,Z), and φrφ wraps around S1 the same number of
times as φ/S%. Therefore φrφ is homotopic to φ/S%, and [φ] 7→ [rφ] gives the
desired inverse to ιk.

Clearly, if g ∈ C(Ek,Z+), then [ιk(g)] = [φg] is a positive element in
the winding order. Conversely, if [φg] ∈ Br(Xk) is positive in the winding
order, then there exists a map ψ ∈ R(Xk) such that φg ·ψ is non-orientation
reversing. It follows that g has to be nonnegative on cycles, and we have [g] ∈
Gk+ by Lemma 3.2. Therefore ιk is an isomorphism of preordered groups.

Since fk+1 : Xk+1 → Xk is an orientation preserving map, if e is an edge
in Ek+1, then fk+1(e) is a path e1 . . . en in Xk. Hence fk+1 induces a map

f∗k+1 : C(Ek,Z)→ C(Ek+1,Z), g 7→ g ◦ fk+1,

where (g ◦ fk+1)(e) =
∑n

i=1 g(ei) such that fk+1(e) = e1 . . . en in Ek. And
fk+1 induces another map

f̃∗k+1 : C(Xk, S
1)→ C(Xk+1, S

1), φ 7→ φ ◦ fk+1.

Lemma 3.5. Let f∗k+1 and f̃∗k+1 be given as above. Then there are well
defined homomorphisms from Gk to Gk+1 and from Br(Xk) to Br(Xk+1)
defined by f∗k+1 and f̃∗k+1, respectively.
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Proof. For every v ∈ Vk and every cycle ` in Xk+1, fk+1(`) is a cycle in
Xk and f∗k+1(v)(`) = v(fk+1(`)) = 0 by Lemma 3.2. Therefore f ∗k+1(v) is an
element of Vk+1, and the map Gk → Gk+1 given by [g] 7→ [f∗k+1(g)] is a well

defined homomorphism. That f̃∗k+1 induces a homomorphism follows from
the definition of the Bruschlinsky group.

Let us denote these well defined homomorphisms as f ∗k+1 and f̃∗k+1, re-
spectively, if they do not give any confusion.

Proposition 3.6. Let ιk : Gk → Br(Xk), f∗k+1 and f̃∗k+1 be given as

above. Then ιk+1 ◦ f∗k+1 = f̃∗k+1 ◦ ιk, and moreover , f∗k+1 and f̃∗k+1 are order
preserving homomorphisms.

Proof. It is not difficult to check, for every [g] ∈ Gk,
(ιk+1 ◦ f∗k+1)([g]) = (f̃∗k+1 ◦ ιk)([g]),

and we have ιk+1 ◦ f∗k+1 = f̃∗k+1 ◦ ιk.
To show that f̃∗k+1 is order preserving, suppose [φ] ∈ Br⊕(Xk). Then

there exists a ψ ∈ R(Xk) such that φ · ψ is non-orientation reversing.
Since f̃∗k+1(ψ) = ψ ◦ fk+1 is an element of R(Xk+1) by Lemma 3.5 and
fk+1 : Xk+1 → Xk is orientation preserving, for every orientation preserving
parameterized curve γ : R → Xk+1, fk+1 ◦ γ is an orientation preserving
parameterized curve in Xk, and

((φ ◦ fk+1) · (ψ ◦ fk+1))(γ(t)) = ((φ ·ψ) ◦ fk+1)(γ(t)) = (φ ·ψ) ◦ (fk+1 ◦ γ)(t)

does not move in the clockwise direction as t ∈ R increases. Therefore
[φ ◦ fk+1] = f̃∗k+1([φ]) is an element of Br⊕(Xk+1), and f̃∗k+1 is an order
preserving homomorphism. Since ιk is an order preserving isomorphism by
Proposition 3.4, f∗k+1 = ι−1

k+1 ◦ f̃∗k+1 ◦ ιk is also order preserving.

Then {Gk, f∗k+1} and {Br(Xk), f̃∗k+1} are directed systems. Let lim−→G
k

and lim−→Br(Xk) be the direct limits of {Gk, f∗k+1} and {Br(Xk), f̃∗k+1}, re-
spectively.

Definition 3.7. Recall that C+(Ek,Z) is the subset of C(Ek,Z) with
range in Z+, and that Gk+ is given by C+(Ek,Z)/Vk. Since f∗k+1 : C(Ek,Z)→
C(Ek+1,Z) defined by g 7→ g◦fk+1 is an order preserving homomorphism by
Proposition 3.6, (lim−→G

k)+ = lim−→G
k
+ is well defined. This set, as a positive

set, defines the order which is the direct limit order or the standard order
on lim−→G

k.

The standard isomorphism lim−→G
k → Br(X). Suppose X = lim←−Xk and

that πk : X → Xk is the projection map to the kth coordinate space. If φ is
an element of C(Xk, S

1), then φ induces an element φ ◦ πk ∈ C(X,S1). We
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will use the isomorphism ιk : Gk → Br(Xk) and the natural map Br(Xk)→
Br(X) defined by [φ] 7→ [φ◦πk] to make an isomorphism ι : lim−→G

k → Br(X).
Let 1Xk : Xk → S1 and 1X : X → S1 be given by xk 7→ 1 ∈ S1 and

x 7→ 1 for all xk ∈ Xk and x ∈ X, respectively. Suppose that φ is an element
of C(Xk, S

1) such that φ is homotopic to 1Xk by H : Xk× [0, 1]→ S1. Then
φ ◦ πk is homotopic to 1X = 1Xk ◦ πk by the map H : X × [0, 1]→ S1 given
by H(x, t) = H(πk(x), t). Thus there is a well defined map

π∗k : Br(Xk)→ Br(X), [φ] 7→ [φ ◦ πk].
Since (φ1 · φ2) ◦ πk = (φ1 ◦ πk) · (φ2 ◦ πk) for all φ1, φ2 ∈ C(Xk, S

1), π∗k is
a homomorphism. That fk+1 ◦ πk+1 = πk : X → Xk implies the following
lemma.

Lemma 3.8. Let π∗k and f̃∗k+1 be defined as above. Then π∗k+1◦f̃∗k+1 = π∗k
for all k.

Let ϕ∗k : Br(Xk)→ lim−→Br(Xk) be the natural map for each k. If ϕ∗k([φ]) =
ϕ∗l ([ψ]) for [φ] ∈ Br(Xk) and [ψ] ∈ Br(Xl), then there is a positive integer
m ≥ k, l such that f̃∗m+1 ◦ . . . ◦ f̃∗k+1([φ]) = f̃∗m+1 ◦ . . . ◦ f̃∗l+1([ψ]). Hence

π∗k([φ]) = π∗m+1 ◦ f̃∗m+1 ◦ . . . ◦ f̃∗k+1([φ])

= π∗m+1 ◦ f̃∗m+1 ◦ . . . ◦ f̃∗l+1([ψ]) = π∗l ([ψ]),

and there is a well defined group homomorphism

π∗ : lim−→Br(Xk)→ Br(X), ϕ∗k([φ]) 7→ π∗k([φ]) = [φ ◦ πk] .
Lemma 3.9. Suppose that ξ is an element of C(X,S1). Then there exist

ξ′ ∈ C(X,S1) and k ≥ 0 such that ξ is homotopic to ξ′ and ξ′(x) = ξ′(y) if
xk = yk.

Proof. Define a metric d on X by

d(x, y) =
∞∑

k=0

1
2k
dk(xk, yk)

where x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ X and dk is a metric on Xk

compatible with its topology. Since X is a compact Hausdorff space, every
element in C(X,S1) is uniformly continuous. So, for given ξ and ε > 0,
there exists a nonnegative integer k such that for x, y ∈ X, xk = yk implies
d(ξ(x), ξ(y)) < ε.

For x = (x0, . . . , xk, . . .) ∈ X, set xk = {y ∈ X | yk = xk}. Then
d(ξ(a), ξ(b)) < ε for all a, b ∈ xk, and we can choose a point x̃ ∈ S1 such
that x̃ is the center of the smallest interval containing ξ(xk) in S1. Define
ξ′ : X → S1 by ξ′|xk = x̃. Then it is clear that ξ′ ∈ C(X,S1) and ξ′(x) =
ξ′(y) if xk = yk. Since d(ξ(x), ξ′(x)) < ε for all x ∈ X, ξ is homotopic to ξ′.
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Proposition 3.10. Let π∗ be defined as above. Then π∗ is a group iso-
morphism.

Proof. To show that π∗ is surjective, suppose ξ ∈ C(X,S1) and that
ξ′ and k are given in Lemma 3.9. Define φk : Xk → S1 by xk 7→ ξ′(x)
for x = (x0, . . . , xk, . . .) ∈ X. Then φk is well defined, and it is trivial
that φk ◦ πk = ξ′. Therefore ξ ∈ C(X,S1) is homotopic to φk ◦ πk, and
π∗ : lim−→Br(Xk)→ Br(X) is surjective.

Suppose ξ1, ξ2 ∈ C(X,S1) and that ξ1 is homotopic to ξ2. Then by the
surjectivity of π∗, there exist nonnegative integers k ≤ l and φ ∈ C(Xk, S

1),
ψ ∈ C(Xl, S

1) such that ξ1 is homotopic to φ ◦ πk and ξ2 is homotopic to
ψ ◦ πl. Since φ ◦ πk = φ ◦ fk+1 ◦ . . . ◦ fl ◦ πl, we have

ϕ∗l ([ψ]) = ϕ∗l ([φ ◦ fk+1 ◦ . . . ◦ fl]) = ϕ∗l ◦ f̃∗l ◦ . . . ◦ f̃∗k+1([φ]) = ϕ∗k([φ]).

Hence π∗ is injective.

Therefore the isomorphisms ιk : Gk → Br(Xk) and π∗ : lim−→Br(Xk) →
Br(X) induce an isomorphism ι : lim−→G

k → Br(X).

Order isomorphism. Assume now that the presentation {Xk, fk} satisfies
the following

Simplicity Condition. For each k ≥ 1 there exists κ(k) ≥ k such that
fk+1 ◦ . . . ◦ fl(e) = Xk for every l ≥ κ(k) and e ∈ El, where El is the edge set
of Xl.

Then the winding order on Br(Xk) and Br(X) is an order.

Theorem 3.11. Suppose that the presentation {Xk, fk} satisfies the
above Simplicity Condition. Then ι : (lim−→G

k, lim−→G
k
+) → (Br(X),Br⊕(X))

is an isomorphism of ordered groups.

Proof. Trivial case. Suppose that all but finitely many Xk have a unique
edge, i.e., Xk is homeomorphic to the circle S1 with a unique vertex by the
Standing Assumption 2.14, and that the connection map fk : Xk → Xk−1
is the identity map if Xk = Xk−1 = S1. Then it is obvious that

(lim−→G
k, lim−→G

k
+) ∼= (Br(X),Br⊕(X)) = (Z,Z+),

and ι is an isomorphism.
Nontrivial case. First, ι is a group isomorphism, and clearly ι(lim−→G

k
+) ⊆

Br⊕(X). It remains to show that ι maps lim−→G
k
+ onto Br⊕(X). So we assume

that [φ] is an element of Br⊕(X). Then there is an [h] in Gk for some k ≥ 0
such that [φ] = [φh ◦ πk], and we need to show [h] ∈ Gk+.

That [φ] is an element of Br⊕(X) implies that there is a map γ ∈ R(X)
such that (φh ◦ πk) · γ is non-orientation reversing. Since γ is an element of
R(X), there is a continuous map g : X → R such that γ(x) = exp(2πig(x)).
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For y = (y0, . . . , yk, . . .) ∈ X, if yk = e(t) for e ∈ Ek and t ∈ [0, 1], then
φh ◦ πk · γ is defined by y 7→ exp(2πi(th(e) + g(y))).

Suppose that (φh ◦ πk) · γ is a constant map to S1. Then [(φh ◦πk) · γ] =
[φh ◦ πk] · [γ] = [φh ◦ πk] = [1] in Br(X) as γ is homotopic to the identity
element in Br(X). Hence the equivalence class of h is the identity element
in lim−→G

k, for ι : lim−→G
k → Br(X) is an isomorphism.

Next suppose that (φh ◦ πk) · γ is not constant on S1. Then there are
a nonnegative integer m, a small interval I contained in some edge e′ of
Xk+m, and ε > 0 such that if Γ is any orientation preserving curve in X
and πk+m(Γ |[a,b]) = I, then length{((φh ◦ πk) · γ) ◦ Γ |[a,b]} > ε.

Given an arbitrary constant L, by the Simplicity Condition we can choose
a sufficiently large integer M such that e′ is covered under fk+m+1 ◦ . . . ◦
fk+m+M at least L times by every edge in Ek+m+M .

Define

H = f∗k+m+M ◦ . . . ◦ f∗k+1(h) = h ◦ fk+1 ◦ . . . ◦ fk+m+M ∈ C(Ek+m+M ,Z).

Then by Lemma 3.8, φH ◦ πk+m+M ∈ C(X,S1) is homotopic to φh ◦ πk.
For x = (x0, . . . , xk+m+M , . . .) ∈ X, as xk+m+M moves forward through a
directed edge e of Ek+m+M , its image under φH ◦ πk+m+M moves

∑
h(ê) ·

ne(ê) times around S1, where ne(ê) is the number of times e covers ê ∈ Ek
under the map fk+1 ◦ . . . ◦ fk+m+M .

Lemma 3.12. For every edge e ∈ Ek+m+M , H(e) ≥ 2πLε− 2 max |g|.
Proof. Regard e as a curve e(t), 0 ≤ t ≤ 1, and pick a curve Γ : [0, 1]→

X such that πk+m+M ◦ Γ (t) = e(t). As t increases from 0 to 1, the point

((φh ◦ πk) · γ) ◦ Γ (t) = (φh ◦ πk ◦ Γ (t)) · (γ ◦ Γ (t))

moves counterclockwise on S1 from e2πig(Γ (0)) to e2πi(g(Γ (1))+H(e)), covering
an arclength A in the plane such that

A ≤ 1
2π

(H(e) + 2 max |g|).
Because φh ◦πk ◦Γ = φh ◦ fk+1 ◦ . . . ◦ fk+m+M ◦πk+m+M ◦Γ , as t runs from
0 to 1 the curve fk+m+1 ◦ . . . ◦ fk+m+M ◦ πk+m+M ◦Γ (t) wraps around e′ at
least L times, and therefore A ≥ Lε. Consequently, 2πLε− 2max|g| ≤ H(e)
as required.

Since we can choose M to make L as large as we wish, we can make
the choice to guarantee H(e) > 0 for every edge. Therefore [H] = [h] is an
element of Gk+.

Dimension group. Let M be an r × s nonnegative integer matrix. Then
the matrix M determines a homomorphism Zs → Zr by the ordinary ma-
trix multiplication. The simplicial order on Zr is the usual ordering Zr+ =
{(n1, . . . , nr) | ni ≥ 0}. Then the corresponding homomorphism M : Zs →
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Zr is positive with respect to the simplicial order, that is, a ≥ 0 implies
M(a) ≥ 0.

Definition 3.13 ([6, §2]). Let Mi be an r(i) × r(i − 1) nonnegative
integer matrix. For a system of ordered groups and positive maps

Zr(0) M1−→ Zr(1) M2−→ . . .

the set-theoretic direct limit lim−→(Zr(i),Mi) is an ordered group under the
usual limit addition operation with the positive cone lim−→(Zr(i)+ ,Mi) =⋃∞
i=1Mi∞(Zr(i−1)

+ ) where Mi∞ is the induced map from Zr(i−1) to the direct
limit lim−→(Zr(i),Mi).

An ordered group (G,G+) is called a dimension group if it is order iso-
morphic to the limit of a system of simplicially ordered groups with positive
maps.

Let (G,G+) be a dimension group. A subgroup H of G is called an order
ideal if H is an ordered group with the positive cone H+ = H ∩ G+ and
0 ≤ a ≤ b ∈ H implies a ∈ H. The dimension group (G,G+) is called simple
if it has no proper order ideal.

In a simple dimension group (G,G+) with an element g ∈ G, if neither g
nor −g lies in G+, then g is called an infinitesimal element. If u is an order
unit and g is an infinitesimal element of G, then g+ u is also an order unit.

It is well known that a dimension group defined as above by matrices
Mi is simple if for every i there exists j such that all entries of the matrix
MjMj−1 . . .Mi+1Mi are strictly positive.

Suppose that {Xk, fk} is a presentation of an (orientable) branched
matchbox manifold with the edge set Ek of Xk. Then for each edge ei ∈ Ek,
fk(ei) is a path e

s(1)
i,1 . . . e

s(j(i))
i,j(i) in Xk−1 such that s(j) = ±1 denotes the

direction and the terminal point of es(j)i,j is the initial point of es(j+1)
i,j+1 for

1 ≤ j < j(i). Therefore we can define an induced map f̌k : Ek → E∗k−1 by

f̌k : ei 7→ e
s(1)
i,1 . . . e

s(j(i))
i,j(i) .

Definition 3.14. Suppose that Xk has nk edges for all k ≥ 0. Then the
adjacency matrix Mk of (f̌k, Ek, Ek−1) is an nk × nk−1 matrix such that for
any edges ei ∈ Ek and ej ∈ Ek−1, Mk(i, j) is the number of times f̌k(ei)
covers ej ignoring the direction of the covering.

Lemma 3.15 ([6, §3]). A countable ordered group is a dimension group
if and only if it is unperforated and has the Riesz Interpolation Property.

Proposition 3.16. Suppose that {Xk, fk} is a presentation of a com-
pact connected orientable branched matchbox manifold with the adjacency
matrices Mk. Then
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(1) (lim−→C(Ek,Z), lim−→C+(Ek,Z)) ∼= (lim−→(Znk ,Mk), lim−→(Znk+ ,Mk)).

If the presentation satisfies the Simplicity Condition, then

(2) (lim−→C(Ek,Z), lim−→C+(Ek,Z)) and (lim−→G
k, lim−→G

k
+) are simple dimen-

sion groups.

Proof. (1) For each g ∈ C(Ek−1,Z) and f∗k : C(Ek−1,Z) → C(Ek,Z)
given by g 7→ g ◦ fk, if we represent g as (g(e1), . . . , g(enk−1)) ∈ Znk−1 ,
then C(Ek−1,Z) is isomorphic to Znk−1 and f∗k (g) = g ◦ fk is given by Mk ·
(g(e1), . . . , g(enk−1))t. Hence we have lim−→C(Ek−1,Z) ∼= lim−→(Znk ,Mk). Since
C+(Ek−1,Z) is the set of elements in C(Ek−1,Z) with range in Z+, C(Ek−1,Z)
is simplicially ordered, and so is lim−→C(Ek,Z). Therefore (lim−→C(Ek,Z),
lim−→C+(Ek,Z)) is order isomorphic to (lim−→(Znk ,Mk), lim−→(Znk+ ,Mk)).

(2) Suppose thatH is a proper order ideal of (lim−→C(Ek,Z), lim−→C+(Ek,Z))
and that b ∈ H+. Then there exist a nonnegative integer k and h ∈ C+(Ek,Z)
such that b = [h] ∈ lim−→C(Ek,Z). By the Simplicity Condition, there is a
nonnegative integer κ(k) ≥ k such that fk+1 ◦ . . . ◦ fl(e) = Xk for every
l ≥ κ(k) and every edge e ∈ El. If a ∈ lim−→C+(Ek,Z), then we can choose
a positive integer l ≥ κ(k) and g ∈ C+(El,Z) such that a = [g]. Let n =
maxe∈El g(e). Then n · b = [n · f ∗l ◦ . . . ◦ f∗k+1 ◦ h] ∈ H+ and n · f∗l ◦ . . . ◦
f∗k+1 ◦ h − g ∈ C+(El,Z). So we have 0 ≤ a ≤ n · b and a ∈ H+. Therefore
H+ = lim−→C+(Ek,Z), and (lim−→C(Ek,Z), lim−→C+(Ek,Z)) is a simple dimension
group.

The group (lim−→G
k, lim−→G

k
+) ∼= (Br(X),Br⊕(X)) is an unperforated or-

dered group by Proposition 2.7, and its positive set is the image of the pos-
itive set of lim−→C(Ek,Z) under the quotient map χ : lim−→C(Ek,Z) → lim−→G

k.
We claim that with this quotient order, (lim−→G

k, lim−→G
k
+) satisfies the Riesz

Interpolation Property (and therefore by Lemma 3.15 is a dimension group).
(We learned this argument from unpublished remarks of David Handelman.
The general line of argument is also implicit in remarks on pp. 58 and 66
of [8].)

Let V = kerχ. Note that if V contains a nonzero positive element u, then
for every g ∈ lim−→C+(Ek,Z) we have 0 ≤ g ≤ nu for some integer n, and
therefore 0 ≤ χ(g) ≤ 0, which contradicts the image of χ being a nontrivial
ordered group. Therefore all elements of V are infinitesimals.

To show the Riesz Interpolation Property, suppose that [a1], [a2], [b1], [b2]
∈ lim−→G

k satisfy [ai] < [bj ] (i, j = 1, 2). Let ai, bj ∈ lim−→C(Ek,Z) be preim-
ages of [ai] and [bj ], respectively. Since −[ai] + [bj] is a nonzero positive
element of lim−→G

k, there exists a vi,j ∈ V such that −ai + vi,j + bj is a
nonzero positive element of lim−→C(Ek,Z). Because vi,j is an infinitesimal el-
ement, it follows that −ai + bj is a nonzero positive element of lim−→C(Ek,Z),
and ai < bj for i, j = 1, 2. Hence by the Riesz Interpolation Property for
lim−→C(Ek,Z) there exists an element c ∈ lim−→C(Ek,Z) such that ai ≤ c ≤ bj .
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Then by the definition of the quotient order we have [ai] ≤ [c] ≤ [bj]
for all i, j, as required. Therefore (lim−→G

k, lim−→G
k
+) is a dimension group by

Lemma 3.15.
Suppose that (G,G+) is a proper order ideal of (lim−→G

k, lim−→G
k
+). Then it is

not difficult to see that (H,H+) = (χ−1(G), χ−1(G+)) is a proper order ideal
of (lim−→C(Ek,Z), lim−→C+(Ek,Z)) which is a simple dimension group. Therefore
(lim−→G

k, lim−→G
k
+) is a simple dimension group.

If each graph Xk is a wedge of circles, then Vk = {0} as each edge in Xk

is a cycle. So we have the following corollary:

Corollary 3.17. Suppose that the presentation {Xk, fk} satisfies the
Simplicity Condition and that each graph Xk is a wedge of circles. Then
(lim−→G

k, lim−→G
k
+) is order isomorphic to (lim−→(Znk ,Mk), lim−→(Znk+ ,Mk)).

The following corollary follows from Observation 2.4 and Theorem 3.11.

Corollary 3.18. Suppose that (X i, f i) is a compact connected orient-
able branched matchbox manifold with the Simplicity Condition for i = 1, 2.
If X1 is homeomorphic to X2, then lim−→G

k
1 is order isomorphic to lim−→G

k
2 .

Remark 3.19. (1) The dimension group of adjacency matrices is not a
homeomorphism invariant. See Example 4.4.

(2) The isomorphism in Corollary 3.18 need not respect distinguished
order units ([4, §1]).

4. One-dimensional generalized solenoid. One interesting class of
branched matchbox manifolds is one-dimensional branched solenoids, in-
cluding one-dimensional generalized solenoids of Williams ([16, 17, 18]). Let
X be a directed graph with vertex set V and edge set E , and f : X → X a
continuous map. We define some axioms which might be satisfied by (X, f)
([18]).

Axiom 0 (Indecomposability). (X, f) is indecomposable.

Axiom 1 (Nonwandering). All points of X are nonwandering under f .

Axiom 2 (Flattening). There is k ≥ 1 such that for all x ∈ X there is
an open neighborhood U of x such that f k(U) is homeomorphic to (−ε, ε).

Axiom 3 (Expansion). There are a metric d compatible with the topol-
ogy and positive constants C and λ with λ > 1 such that for all n > 0 and
all points x, y on a common edge of X, if fn maps the interval [x, y] into an
edge, then d(fnx, fny) ≥ Cλnd(x, y).

Axiom 4 (Nonfolding). fn|X−V is locally one-to-one for every positive
integer n.

Axiom 5 (Markov). f(V) ⊆ V.
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Let X be the inverse limit space

X = X
f←− X f←− . . . =

{
(x0, x1, x2, . . .) ∈

∞∏

k=0

X
∣∣∣ f(xn+1) = xn

}
,

and f : X → X the induced homeomorphism defined by

(x0, x1, x2, . . .) 7→ (f(x0), f(x1), f(x2), . . .) = (f(x0), x0, x1, . . .).

Let Y be a topological space and g : Y → Y a homeomorphism. We call
Y a 1-dimensional generalized solenoid or 1-solenoid and g a solenoid map
if there exist a directed graph X and a continuous map f : X → X such that
(X, f) satisfies all six axioms and (X, f) is topologically conjugate to (Y, g).
If (X, f) satisfies all axioms except possibly the Flattening Axiom, then we
call Y a branched solenoid. If we can choose the direction of each edge in
X so that the connection map f : X → X is orientation preserving, then
we call (X, f) an orientable presentation, and Y an orientable (branched)
solenoid. If (Y, g) is a branched solenoid with a presentation (X, f), then
there exists an n×n adjacency matrix MX,f where n is the cardinal number
of the set of edges in X. If X is a wedge of circles and f leaves the unique
branch point of X fixed, then we say (X, f) is an elementary presentation.

We get the following proposition from Theorem 3.11 and Corollary 3.17.

Proposition 4.1. Suppose that (X, f) is an orientable branched
solenoid with an adjacency matrix M . Then ι : (lim−→(Zn,M), lim−→(Zn+,M))→
(Br(X),Br⊕(X)) is an epimorphism of ordered groups. If (X, f) is an ele-
mentary presentation, then ι is an isomorphism.

Remark 4.2. We need the elementary presentation condition for the
injectivity of ι. See Example 4.4.

Example 4.3 ([18, §2] and [11, §7.5]). Let X be the unit circle on the
complex plane. Suppose that 1 and −1 are the vertices of X, and that
the upper half-circle e1 and the lower half-circle e2 with counterclockwise

v1

1

2

E2

E1

e

ee 2

1e

v2
..

Fig. 1. (X, f) with the wrapping rule f̌

direction are the edges of X. Define f : X → X by f : z 7→ z2. The
f̌ : EX → E∗X is given by f̌ : e1 7→ e1e2, e2 7→ e1e2, and the adjacency
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matrix is

MX,f =
(

1 1
1 1

)
.

Therefore we have

(Br(X),Br⊕(X)) = (Z[1/2],Z[1/2] ∩ R+).

Figure 1 represents the presentation (X, f) with the wrapping rule f̌ .
Similarly, if (Y, g) is given by Figure 2, then (Y, g) does not satisfy

A

a

a b
B

v
.

Fig. 2. (Y, g) with wrapping rule ǧ

the Flattening Axiom and (Y , g) is a branched solenoid. The wrapping rule
ǧ : EY → E∗Y is given by a 7→ ab, b 7→ a and the adjacency matrix is

MY,g =
(

1 1
1 0

)
.

Thus

Br(Y ) = Z⊕Z and Br⊕(Y ) =
{

v ∈ Z⊕Z
∣∣∣∣v ·

(
1 +
√

5
2

, 1
)
> 0
}
∪{0}.

The following example shows that the dimension group of adjacency
matrices induced by a presentation is not a homeomorphism invariant.

Example 4.4 ([18, 4.8 and 5.1]). Let X be a wedge of two circles a, b
with a unique vertex p, and f : X → X be defined by a 7→ aab and b 7→ ab.
So (X, f) is given by Figure 3. Suppose that Y is given by Figure 4 and

p

q

r

B

a

a

b
b

.

.

a

.

A

Fig. 3. (X, f) with a unique vertex {p}
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q α. .
γ

β

r

Fig. 4. The graph Y with two vertices {q, r}

that the wrapping rule ǧ : EY → E∗Y is given by

α 7→ γαβ, β 7→ γ, γ 7→ βγαβ.

Then it is shown in [18, 4.8] that (X, f) is topologically conjugate to (Y , g).
Their adjacency matrices are given by the matrices

M(X,f) =
(

2 1
1 1

)
and M(Y,g) =




1 1 1
0 0 1
1 2 1


 .

Since the determinants of M(X,f) and M(Y,g) are 1 and −1, respectively,
M(X,f) andM(Y,g) are invertible over Z. Hence the dimension group ofM(X,f)

is Z2 and that of M(Y,g) is Z3. Therefore the dimension group of M(X,f) is
not isomorphic to the dimension group of M(Y,g).

Since (X, f) is elementarily presented, the dimension group of M(X,f) is
order isomorphic to the Bruschlinsky group of (X, f). And the Bruschlinsky
group of (Y , g) is given by the dimension group of

(1 1
1 2

)
. Hence we have

Br(X) ∼= Br(Y ) ∼= Z⊕ Z with

Br⊕(X) ∼= Br⊕(Y ) ∼=
{

v ∈ Z⊕ Z
∣∣∣∣v ·

(
3 +
√

5
2

, 1
)
> 0
}
∪ {0}.
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