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On the continuity of Hausdorff dimension of Julia sets
and similarity between the Mandelbrot set and Julia sets

by

Juan Rivera-Letelier (Stony Brook, NY)

Abstract. Given d ≥ 2 consider the family of polynomials Pc(z) = zd + c for c ∈ C.
Denote by Jc the Julia set of Pc and letMd = {c | Jc is connected} be the connectedness
locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters
c0 ∈ ∂Md: those for which the critical point 0 is not recurrent by Pc0 and without
parabolic cycles. The Hausdorff dimension of Jc, denoted by HD(Jc), does not depend
continuously on c at such c0 ∈ ∂Md; on the other hand the function c 7→ HD(Jc) is
analytic in C − Md. Our first result asserts that there is still some continuity of the
Hausdorff dimension if one approaches c0 in a “good” way: there is C = C(c0) > 0 such
that for a sequence cn → c0,

if dist(cn,Md) ≥ C|cn − c0|1+1/d, then HD(Jcn)→ HD(Jc0).

To prove this we use the fact that Md and Jc0 are similar near c0. In fact we prove that
the biholomorphism ψ : C−Jc0 → C−Md tangent to the identity at infinity is conformal
at c0: there is λ 6= 0 such that

ψ(w) = c0 + λ(w − c0) +O(|w − c0|1+1/d) for w 6∈ Jc0 .
This implies that the local structures ofMd and Jc0 at c0 are similar. The fact that λ 6= 0
is related to a transversality phenomenon that is well known for Misiurewicz parameters
and that we extend to the semihyperbolic case. We also prove that for some C > 0,

dH(Jc, Jc0) ≤ C|c− c0|1/d and dH(Kc, Jc0) ≤ C|c− c0|1/d,
where dH denotes the Hausdorff distance.

1. Introduction. Given d ≥ 2 consider the family of monic polynomials
Pc(z) = zd + c, for c ∈ C, whose unique finite critical point is 0. The set

Kc = {z ∈ C | {Pnc (z)}n≥0 is bounded}
is called the filled-in Julia set of Pc and Jc = ∂Kc is called the Julia set
of Pc.
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We study dynamics of polynomials Pc such that the critical point 0
is not recurrent and 0 ∈ Jc. These polynomials are semihyperbolic in the
sense of [CJY]: a semihyperbolic polynomial Pc0 is either as above or it is
hyperbolic. The latter means that either 0 6∈ Kc0 or Pc0 has an attracting
cycle. Dynamics of hyperbolic polynomials is well understood, so we only
consider semihyperbolic polynomials that are not hyperbolic.

Examples of semihyperbolic polynomials are Misiurewicz polynomials: a
polynomial Pc0 is said to be Misiurewicz if the critical point of Pc0 is strictly
preperiodic. In this case Pc0 is not hyperbolic; see [CG]. The set of param-
eters c ∈ C for which Pc is Misiurewicz is countable; see [DH2]. The set of
parameters c ∈ C for which Pc is semihyperbolic but not hyperbolic, is much
larger: Shishikura proved in [Sh] that it has Hausdorff dimension two.

It follows from a theorem of Fatou that the Julia set Jc is connected if
and only if c ∈ Kc; see [CG]. Consider the connectedness locus

Md = {c ∈ C | Jc is connected} = {c ∈ C | c ∈ Kc}.
If d = 2 this set is also denoted by M and is called the Mandelbrot set .
It is known that Md is compact and connected and moreover C −Md is
homeomorphic to {|z| > 1}; see [DH2].

If Pc0 is semihyperbolic, then c0 ∈ ∂Md if and only Pc0 is not hyperbolic;
see [DH2].

1.1. On the continuity of Hausdorff dimension. Our first result is about
the dependence of the Hausdorff dimension of Julia sets on the parameter;
see also [McM], [DSZ], [GSm], [GSw] and [UZ]. We denote the Hausdorff
dimension by HD.

The Hausdorff dimension of the Julia set varies in an analytic way in
the exterior of Md; see [R]. On the other hand Shishikura proved in [Sh]
that there is a residual (hence dense) set of parameters in ∂Md for which
HD(Jc) = 2 and by [U] we have HD(Jc0) < 2 for any c0 ∈ ∂Md such that
Pc0 is semihyperbolic. So the Hausdorff dimension of the Julia set does not
vary continuously in the parameter at such c0.

The following theorem asserts that there is some continuity of the Haus-
dorff dimension at c0 ∈ ∂Md such that Pc0 is semihyperbolic, if one ap-
proaches c0 from the exterior of Md in a “good” way.

Theorem A. Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic. Then
there is some C > 0 such that if a sequence cn → c0 is such that

dist(cn,Md) ≥ C|cn − c0|1+1/d,

then HD(Jcn)→ HD(Jc0).

As we will see below this is much stronger than radial continuity of the
Hausdorff dimension; see Figure 1.
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Fig. 1. Detail of the Mandelbrot set about the Misiurewicz parameter −2. The Haus-
dorff dimension of Julia sets corresponding to a sequence of parameters in the grey part
converging to −2, should converge to HD(J−2) = 1.

1.2. Similarities between the Mandelbrot set and Julia sets. One of the
main ingredients in the proof of Theorem A is the similarity of Md and Jc0
at a parameter c0 ∈ ∂Md such that Pc0 is semihyperbolic.

There is an heuristic principle that the local structure in the dynamical
plane should be similar to the structure in the parameter plane, at least at
parameters with some expanding property. For example Shishikura made
use of this principle in proving that the boundary of the Mandelbrot set
has Hausdorff dimension two; see [Sh]. Also Wenstorm in [W] proved some
remarkable similarities between the Mandelbrot set and the Fibonacci Julia
set; see also [R-L1].

In [L] T. Lei proved that for a Misiurewicz parameter c0, the setsM and
Jc0 are asymptotically similar at c0; see also [R-L1] and [R-L2]. To define
this notion let us consider the following definitions. Given a compact subset
X of C and r > 0, let

Xr = ({r−1w | w ∈ X} ∩ D) ∪ ∂D.
That is, to construct Xr consider the intersection of X with the disc of
radius r centered at 0, scale it to the unit disk and for technical reasons add
∂D. Moreover, for λ ∈ C − {0} and ζ ∈ C we define λX = {λw | w ∈ X}
and X − ζ = {w − ζ | w ∈ X}.

Theorem (T. Lei [L]). Consider c0 ∈ M such that Pc0 is Misiurewicz.
Then there is λ ∈ C− {0} such that
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lim
r→0

dH((M− c0)r, (λ(Jc0 − c0))r) = 0,

where dH denotes the Hausdorff distance.

See also [R-L1]. Whenever this holds, it is said that Md and Jc0 are
asymptotically similar at c0. We generalize this theorem to semihyperbolic
parameters as an easy corollary to the following theorem.

Theorem B (C1+1/d-conformality of external maps). Let c0 ∈ ∂Md

be such that Pc0 is semihyperbolic, and let ϕc0 : C − Jc0 → C − D and
ϕMd

: C −Md → C − D be the canonical uniformizations (tangent to the
identity at infinity). Then λ =

∑
n≥0 1/(Pnc0)′(c0) ∈ C− {0} and

ϕ−1
c0 ◦ ϕMd

(c) = c0 + λ(c− c0) +O(|c− c0|1+1/d) for c 6∈ Md,

ϕ−1
Md
◦ ϕc0(w) = c0 + λ−1(w − c0) +O(|w − c0|1+1/d) for w 6∈ Jc0 .

The conformality of these maps is a finer notion of similarity; see [R-L1].
For Misiurewicz parameters the similarity factor , given by the series above,
is essentially a geometric series and therefore it can be calculated explicitly.
For example −2 is a quadratic Misiurewicz parameter and λ = 2/3 in this
case.

The following are corollaries of Theorem B, whose proofs are in Ap-
pendix 1. The following one improves T. Lei’s theorem.

Corollary (Asymptotic similarity). Let c0 ∈ ∂Md be such that Pc0 is
semihyperbolic. Then there is a constant C > 0 such that for r > 0 small ,

dH((Md − c0)r, (λ(Jc0 − c0))r) ≤ Cr1/d.

In particular Md and Jc0 are asymptotically similar at c0.

Corollary. Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic and put
D = HD(Jc0). Then there is a constant C > 0 such that

Lebesgue-measure (Md ∩Br(c0)) ≤ Cr2+(2−D)/d.

Recall that by [U], D = HD(Jc0) < 2 in this case, so these parameters
are density points of the complement of Md. Combining Theorems A and
B we obtain the following immediate corollary.

Corollary. Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic and let
λ =

∑
n≥0 1/(Pnc0)′(c0) ∈ C − {0} be as in Theorem B. Then there is some

C > 0 such that if zn → c0 with dist(zn, Jc0) ≥ C|zn − c0|1+1/d, then letting
cn = c0 + λ(zn − c0) we have

HD(Jcn)→ HD(Jc0).

For example the polynomial z2−2 is a quadratic Misiurewicz polynomial
and its Julia set is the interval [−2, 2]. So, by the previous corollary, there is
a constant C0 > 0 such that if a sequence cn → c0 is at the left of the graph



Hausdorff dimension of Julia sets 291

of the semicubical parabola y = C0(x+ 2)3/2, then HD(Jcn)→ HD(Jc0); see
Figure 1.

It follows by [H] that if ζ ∈ ∂D is such that the ray {ϕ−1
Md

(rζ) | r > 1}
accumulates at c0, then ϕ−1

Md
extends continuously to ζ, with ϕ−1

Md
(ζ) = c0.

Recall that a Stolz angle in C− D at ζ is a set of the form

{reiθζ | r ≥ 1 and |θ| ≤ C(r − 1)} for some C > 0.

The following corollary was obtained in [BR] for Misiurewicz parameters;
see also [GSm] and [GSw]. It follows from the previous corollary together
with the fact that C− Jc0 is a John domain; see [CJY] and Preliminaries.

Corollary (Angular convergence of Hausdorff dimension). Let c0 ∈
∂Md be such that Pc0 is semihyperbolic and let ζ ∈ ∂D be such that c0 =
ϕ−1
Md

(ζ). Then the function

w 7→ HD(Jϕ−1
Md

(w))

is continuous in the closure of any Stolz angle in C− D at ζ.

1.3. Stability of Julia sets. Our final result is about the stability of Julia
sets under perturbation.

Theorem C. Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic. Then
there is C > 0 such that for c ∈ C close to c0,

dH(Jc0 , Jc) ≤ C|c− c0|1/d and dH(Jc0 ,Kc) ≤ C|c− c0|1/d.
In particular the Julia set varies continuously with the parameter at

semihyperbolic parameters. This is true for all parameters without parabolic
or Siegel cycles; see [D].

We remark that this theorem is sharp, that is, O(|c− c0|1/d) cannot be
replaced by o(|c− c0|1/d); see end of Section 4.2.

1.4. Organization of the paper. It follows from a theorem of Mañé that
for a semihyperbolic polynomial the set of accumulation points of the orbit
of the critical point, denoted by ω(0), is a hyperbolic set. In Section 2 we
construct a Markov partition for ω(0) with puzzles.

In Section 3 we prove that semihyperbolic polynomials have a property
that we call Almost Uniform Expansion, which by [R-L3] is equivalent to the
Collet–Eckmann condition. With this property we prove the Main Lemma
about backward stability under perturbations (Section 3.1). This property
is related to backward shadowing properties. Section 3 is independent of
Section 2.

In Section 4 we prove Theorems B and C. In Section 4.1 we prove that
some big sets in the dynamical plane can be extended in a holomorphic
motion compatible with dynamics, in some neighborhoods of the parame-
ter. As a consequence we obtain Theorem C. In Section 4.2 we prove that
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these holomorphic motions are close to a non-degenerate affine map near the
critical value. This yields Theorem B about the conformality of the exter-
nal maps. The non-degeneracy of this affine map is due to a transversality
property proven in Appendix 2. We prove the sharpness of Theorem C at
the end of Section 4.2.

In Section 5 we prove the HD Lemma, which is a criterion for the con-
vergence of the Hausdorff dimension of Julia sets. Theorem A is an easy
consequence of Theorem B and this lemma.

In Appendix 1 we prove two corollaries of Theorem B stated in the
introduction.

In Appendix 2 we prove a transversality property. This property of semi-
hyperbolic polynomials states that the graph of the dynamical continuation
of the critical value is transversal to the diagonal. This generalizes a well
known property of Misiurewicz maps; see for example [DH2]. For d = 2 this
also follows from [vS], which was done independently.

Acknowledgments. I am grateful to J. C. Yoccoz for reading the first
version of this work, and for very useful suggestions and comments. I would
also like to thank the referee for useful criticism that helped to improve the
exposition.

Preliminaries. The basic facts stated here can be found in [DH2], [CG]
and [CJY].

For two numbers A and B, A = O(B) and A ∼ B mean A < CB and
C−1B < A < CB, respectively, for some implicit constant C. Moreover
Br(x) denotes the open ball of radius r and center x.

Throughout all this work we fix d ≥ 2 and we let Pc(z) = zd + c for
c ∈ C. For c ∈ Md, the filled-in Julia set Kc is a compact connected set and
C−Kc is homeomorphic to C−D, where C denotes the Riemann sphere and
D denotes the unit disc. Moreover there is a unique conformal representation

ϕc : C−Kc → C− D
which is tangent to the identity at infinity. This representation conjugates
Pc in C − Jc to z 7→ zd in C − D. For r > 1 the set {z | ϕc0(z) = r} is an
analytic Jordan curve called an equipotential and for θ ∈ R the preimage of
{re2πiθ | r > 1} under ϕc0 is called the ray of angle θ. We say that the ray
of angle θ lands at z if limr→1 ϕ

−1
c0 (re2πiθ) = z; in this case z ∈ Jc0 .

For c 6∈ Md, there is a map ϕc defined in a neighborhood of infinity that
conjugates Pc to zd near infinity. Moreover we may assume that ϕc is tangent
to the identity at infinity. Then ϕc can be extended in a canonical way to c.
It is rather surprising that the function ϕMd

, defined by ϕMd
(c) = ϕc(c) for

c 6∈ Md, is a conformal representation of C−Md to C− D that is tangent
to the identity at infinity; see [DH1].
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Consider c0 ∈ ∂Md so that Pc0 is semihyperbolic. It follows from a
theorem of Mañé [Ma] that all (finite) periodic points of Pc0 are repelling.
Moreover, the set ω(0) of accumulation points of the orbit of 0 is a hyperbolic
set of Pc0 . Thus, by the expansive property, there is l > 1 such that P l

c0(0) ∈
ω(0). We suppose that l > 1 is the least integer with this property. We
usually set z0 = P lc0(0).

In [CJY] it is proved that there are constants ε > 0, C > 0 and θ ∈ (0, 1)
such that for all x ∈ Jc0 and any connected component B of P−nc0 (Bε(x))
for n ≥ 0, the map

Pnc0 : B → Bε(x)

has degree at most d and diam(B) < Cθn.
Moreover the complement of Jc0 is a John domain; this means that Jc0 is

locally connected and there is δ > 0 such that if z ∈ Jc0 and w belongs to a
ray landing at z, then Bδ|z−w|(w)∩Jc0 = ∅. In particular, by Carathéodory’s
theorem, the map ϕ−1

c0 , defined in C−D, extends continuously to ∂D, so every
ray lands at some point in Jc0 .

2. Markov partitions. Fix c0 ∈ ∂Md such that Pc0 is semihyperbolic.
It follows by [Ma] that Pc0 is uniformly expanding in ω(0). In Section 2.1 we
construct a Markov partition for ω(0) with puzzles; a puzzle is a set bounded
by a finite number of (closures of) rays and an equipotential. Recall that
by [CJY] all rays land at some point in Jc0 . Puzzles are homeomorphic to a
disc.

Proposition (Markov partitions). There is a Markov partition for ω(0)
with puzzles. That is, there is a finite collection of disjoint puzzles Ua, a ∈ A,
that cover ω(0) so that Pc0 is univalent in Ua and such that if a, b ∈ A are
such that Ua ∩ Pc0(Ub) 6= ∅, then Ua ⊂ Pc0(Ub).

The proof of this proposition is in Section 2.1. The main reason that we
need a Markov partition with puzzles, instead of any other type of set, is to
have the following property needed in the proof of Proposition 4.2. If z 6∈ Jc0
belongs to the boundary of a puzzle, then the piece of ray from z to infinity
is disjoint from that puzzle.

Consider the Markov partition Ua, a ∈ A, given by the Proposition.
For n ≥ 0, the preimages of the sets Ua under Pnc0 that intersect ω(0) are
called the nth step pieces of the Markov partition. Note that for n ≥ 1
the collection of all the nth step pieces is a Markov partition; we call it a
refinement of the Markov partition Ua, a ∈ A.

In Section 2.2 we prove that, refining the Markov partition if necessary,
we have the following important property.
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Bounded Distortion Property. For any k ≥ 0 the distortion of P kc0
in each of the kth step pieces of the Markov partition is bounded by some
constant K > 1, independent of k.

In Section 2.2 we also consider some holomorphic motions of the Markov
partition and a uniform bonded distortion property.

2.1. Construction of a Markov partition. The idea to construct the
Markov partition is the following. Consider a finite set P ⊂ Jc0 of preperi-
odic points, which is forward invariant under Pc0 . There are a finite number
of rays landing at a given preperiodic point; see [DH1]. Consider the collec-
tion of puzzles Ub, b ∈ B, determined by some equipotential and all rays
that land at some point in P. This collection of puzzles has the Markov
property: if a, b ∈ B are such that P (Ua) ∩ Ub 6= ∅, then Ub ⊂ Pc0(Ua). The
difficulty is to find such a P disjoint from ω(0) (so that the puzzles Ub cover
ω(0)) and such that the puzzle containing 0 is disjoint from ω(0) (so that
Pc0 is univalent in every Ub intersecting ω(0)). Then the collection of puzzles
intersecting ω(0) is the desired Markov partition.

We first reduce the situation to the non-renormalizable case; see [H] for
references. Since all periodic points of Pc0 are repelling, Pc0 has d fixed
points, d − 1 of them are the landing points of the d − 1 fixed rays; we
denote by β the landing point of the ray of angle 0. The remaining fixed
point, which we denote by α, is the landing point of q ≥ 2 rays that are
cyclically permuted by Pc0 .

Consider the q puzzles P1, . . . , Pq determined by the q rays landing
at α and an equipotential. Then there are two cases. Either the diameters
of the successive preimages of these puzzles converge uniformly to 0, or
Pc0 is renormalizable: this means that there is a pull-back P of Pi, for
some 1 ≤ i ≤ q, that contains 0 and such that for some n ≥ 1 we have
P ⊂ P ′ = Pnc0(P ) and Pnc0 : P → P ′ is proper of degree d. In this case the
puzzles P , Pc0(P ), . . . , P n−1

c0 (P ) are pairwise disjoint and the polynomial
Pnc0 is conjugate to some polynomial Pc1 in P . It follows that Pc1 is also
semihyperbolic. The conjugacy maps the maximal invariant set J1 ⊂ Jc0 of
Pnc0 in P to the Julia set Jc1 of Pc1 , which is connected.

In this case it is enough to find a finite set P1 ⊂ Jc1 of preperiodic points
of Pc1 , as above. In fact, if P ′1 ⊂ J1 is the set corresponding to P1, then

P = P1 ∪ Pc0(P1) ∪ . . . ∪ Pn−1
c0 (P1)

is a finite set forward invariant under Pc0 that has the desired properties.
As before it may happen that Pc1 is renormalizable. Semihyperbolic poly-

nomials are at most finitely renormalizable, so this process must end; see
[H]. So by the above we may assume that Pc0 is not renormalizable.
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Now we consider the tree structure of Jc0 ; see [DH1] for references. Since
Jc0 is a locally connected compact set with empty interior, it has a tree
structure: given two different points δ, γ ∈ Jc0 there is a set [δ, γ] ⊂ Jc0 ,
homeomorphic to a compact interval, which is the least connected subset of
Jc0 containing δ and γ. We write (γ, δ] = [δ, γ) = [δ, γ] − {γ} and (γ, δ) =
[γ, δ) − {γ}. Such sets are called arcs. Moreover for every δ0, δ1, δ2 ∈ Jc0
there is γ ∈ Jc0 so that [δ0, δ1] ∩ [δ0, δ2] = [δ0, γ].

It is easy to see that α ∈ [β, c0] and that if Pc0 is not injective in an arc,
then the critical point, 0, belongs to it. If w ∈ Jc0 is such that there are γ
and δ in Jc0 such that w ∈ (γ, δ), then w is the landing point of at least two
rays. The following property is well known.

Lemma 2.1. Let γ ∈ Jc0 be the landing point of at least two rays. Then
there is k such that P kc0(γ) ∈ [α, c0].

Proof. Let θ+ and θ− be different angles of rays landing at γ. By iterating
if necessary, we may assume that there is i ∈ {1, . . . , d−1} such that θ+ and
θ− lay in different connected components of T − {i/d, 0}, where T = R/Z;
equivalently there is a preimage β ′ of β so that γ ∈ (β, β′). Note that
0 ∈ (β, β′) and therefore

Pc0((β, 0)) = Pc0((β′, 0)) = (β, c0).

Since α ∈ (β, c0) there is a preimage α′ of α in (β, α), so that

Pc0((α, 0)) = Pc0((α′, 0)) = (α, c0),

and Pc0((β, α′)) = (β, α). So for every δ ∈ (β, c0) there is n ≥ 0 so that
Pnc0(δ) ∈ [α, c0]. Since Pc0(γ) ∈ (β, c0], the lemma follows.

Lemma 2.2. Suppose that Pc0 is not renormalizable. Then:

(i) The preimages of α and the preimages of 0 are dense in (0, α).
(ii) For any γ ∈ Jc0 − {α} there are δ ∈ (α, γ) and k ≥ 1 such that P kc0

is univalent in (α, δ) and P kc0((α, δ)) = (α, 0).
(iii) The periodic points of Pc0 are dense in (α, 0).
(iv) If c0 is not preperiodic, there is k ≥ 0 such that for every γ ∈

Jc0 − {P kc0(0)} there is a periodic point of Pc0 in (P kc0(0), γ) that is not
in ω(0).

Proof. (i) Note that the boundary of a preimage of a puzzle Pi intersects
Jc0 at preimages of α. Since the closures of the nth preimages of the Pi, for
1 ≤ i ≤ q, cover Jc0 and have small diameter, it follows that for every subarc
I ⊂ (0, α) there is a preimage P of some Pi intersecting I with diameter
much smaller than that of I. So ∂P ∩I ⊂ ∂P ∩Jc0 is not empty and therefore
it contains a preimage of α. To prove that the preimages of 0 are dense in I,
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note that by the above, I contains at least two preimages of α. Therefore
there is k ≥ 1 so that P kc0 is not injective in I, thus I contains a preimage
of 0.

(ii) Iterating at most q − 1 times we may suppose that γ belongs to the
same connected component of Jc0 − {α} that contains 0; so (α, γ]∩ (α, 0] is
of the form (a, γ̃] and we may suppose that γ belongs to (α, 0]. By (i), (α, γ)
contains a kth preimage δ of 0; we suppose that δ minimizes k, so that P k

c0

is univalent in (α, δ) and P kc0((α, δ)) = (α, 0).
(iii) Consider a subarc I of (α, 0). By (i) there is a preimage γ of α in I;

let k be such that P kc0(γ) = α and γ′ ∈ I − {γ} so that P kc0 is univalent in
(γ, γ′). By (ii), taking γ′ closer to γ if necessary, we may assume that there
is l so that P lc0 is univalent in (P kc0(γ), P kc0(γ′)) and P k+l

c0 ((γ, γ′)) = (α, 0).
Thus there is a periodic point of Pc0 in I.

(iv) If there are at least three rays landing at c0, then c0 is preperiodic;
see [Th] and [K]. So there is nothing to prove in this case. So we assume
that there are at most two rays landing at c0.

If there is only one ray landing at c0 then for every δ ∈ Jc0 − {c0}, the
arc (c0, δ) contains a subarc of (α, c0). By (iii) the periodic points of Pc0 are
dense in (α, c0) so the assertion follows with k = 1, by considering that c0
is not in ω(0).

If there are exactly two rays landing at c0 and c0 is not eventually mapped
to α, then by Lemma 2.1 there is l ≥ 0 so that P lc0(c0) ∈ (α, c0). Then for
every γ ∈ Jc0 − {P lc0(0)}, the arc (P lc0(0), γ) contains a subarc of (α, 0). By
(i) the preimages of 0 are dense in (α, 0) so ω(0) is nowhere dense in (α, 0).
On the other hand, by (iii), the periodic points of Pc0 are dense in (α, 0) so
the assertion follows with k = l + 1 ≥ 1.

Proof of the Proposition. As already mentioned we may suppose that
Pc0 is not renormalizable, so the previous lemma applies. If c0 is preperiodic
and not eventually mapped to α we can construct a Markov partition for
the finite set ω(0) with preimages of the puzzles constructed with α. If c0
is eventually mapped to α then clearly in the previous lemma property (iii)
implies (iv). So we can assume that Pc0 satisfies (iv) of the previous lemma.

Let k ≥ 1 be as in (iv) of the previous lemma and let δ > 0 be such
that |P kc0(0)| > δ. So by the previous lemma, for every y ∈ ∂Bδ(P kc0(0))∩Jc0
there is a periodic point p(y) ∈ (y, P kc0(0)) that is not in ω(0). Moreover we
may suppose that p(y) ∈ Bδ(P kc0(0)).

Since p(y) belongs to the arc (y, P kc0(0)) there are at least two rays that
land at p(y). These rays divide C in at least two parts; let U(y) be the one
containing y. Since ∂Bδ(P kc0(0))∩Jc0 is a compact set, we may choose points
y1, . . . , yn in this set so that the U(yi) for 1 ≤ i ≤ n cover ∂Bδ(P kc0(0))∩Jc0.
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Consider the puzzle P containing P kc0(0) determined by all rays that land
at the points p(y1), . . . , p(yn) and some equipotential. Choosing the equipo-
tential with sufficiently small potential, we may assume that the puzzle P
is contained in Bδ(P kc0(0)). So P does not contain 0.

Let P be the set of all points in the forward orbit of points in P−kc0 (p(yi))
for 1 ≤ i ≤ n. So P is a finite set of preperiodic points that is forward
invariant under Pc0 and is disjoint from ω(0) by construction. Consider the
collection Ub, b ∈ B, of the puzzles determined by the rays that land at points
in P and some equipotential. By construction the puzzle containing the
critical point is disjoint from ω(0). Then, as remarked above, the collection
Ua, a ∈ A ⊂ B, of the puzzles that intersect ω(0) forms a Markov partition
for ω(0).

2.2. Bounded distortion property and holomorphic motions. Consider
the Markov partition Ua, a ∈ A, for ω(0) given by the Proposition. Refining
the Markov partition if necessary we prove that it has the property stated
below. As in immediate consequence, together with the Koebe Distortion
Theorem, we obtain the Bounded Distortion Property.

Univalent Extension Property. Let W be an nth step piece of the
Markov partition Ua, a ∈ A. Then the inverse of

Pnc0 : W → Ua = Pnc0(W )

extends in a univalent way to a neighborhood of Ua, only depending on a ∈ A.

Proof. We will prove that there is m ≥ 1 such that all the mth step
pieces of the Markov partition are compactly contained in some Ua. Then
the Markov partition formed by the mth step pieces will be the desired
Markov partition. Thus it is enough to prove that the diameters of the mth
step pieces of the Markov partition converge uniformly to zero as m→∞.

Let ε > 0, C > 0 and θ ∈ (0, 1) be as in [CJY]; see Preliminaries.
Let N ≥ 1 be such that we can partition each Ua, a ∈ A, in at most N
connected sets of diameter less than ε > 0. Let W be an mth step piece
of the Markov partition, so that Pmc0 is univalent in W . Then by [CJY] it
follows that diam(W ) ≤ NCθm.

Since Pc0 is uniformly expanding in ω(0) there is a holomorphic motion
j : Bδ(c0)× ω(0)→ C, for some δ > 0, which is compatible with dynamics;
see [Sh]. This means that for each c ∈ Bδ(c0) the map jc : ω(0) → C
is injective and for each z ∈ ω(0) the function c 7→ jc(z) is holomorphic.
Being compatible with dynamics means that for every c ∈ Bδ(c0) the map
jc conjugates Pc0 on ω(0) to Pc on jc(ω(0)).

Recall that l > 1 is the least integer such that P l
c0(0) ∈ ω(0); see Pre-

liminaries. Reducing δ > 0 if necessary we extend the holomorphic motion
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j to c0; thus the function z(c) = jc(c0) is the dynamical continuation of
the critical value c0. This holomorphic function will be important for Theo-
rem B. In fact the similarity factor is λ = 1− z′(c0) and the Transversality
property proven in Appendix 2 is that λ = 1 − z′(c0) 6= 0. Note that the
function z is defined in Bδ(c0), it satisfies z(c0) = c0 and by definition
P l−1
c (z(c)) = jc(P l−1

c0 (c0)).

Proposition 2.3. Consider a Markov partition Ua, a ∈ A, of ω(0) as
in Section 2.1. Then there is δ > 0 and a holomorphic motion j : Bδ(c0)×⋃
a∈A Ua → C compatible with dynamics. Moreover there is R > 0 such that

j(Bδ(c0)×⋃a∈A Ua) ⊂ BR(0).

Proof. Let P ⊂ Jc0 be the finite set of preperiodic points used in the
construction of the Markov partition Ua, a ∈ A. By construction P is forward
invariant and does not contain 0. By reducing δ > 0 we may suppose that
j is also defined in P. Thus for any z ∈ P and any c ∈ Bδ(c0), jc(z) is a
preperiodic point of Pc. Moreover the rays of Pc landing at jc(z) have the
same angles as those of Pc0 landing at z and we may extend the holomorphic
motion j to the set of rays landing at points of P. Extending j to the
equipotential used in the construction of the Markov partition (reducing
δ > 0 if necessary) we may suppose that j is defined in

⋃
a∈A ∂Ua. By [S l]

we may extend j to a fundamental domain of the Markov partition, and
then to

⋃
a∈A Ua by dynamics.

Since for all c ∈ Bδ(c0), jc(
⋃
a∈A Ua) is contained in the set bounded

by an equipotential with potential independent of c, it follows that there is
R > 0 such that j(Bδ(c0)×⋃a∈A Ua) ⊂ BR(0).

We end this section with the following lemma, which is independent of
dynamics and is used in the proof of Lemma 4.3.

Lemma 2.4. Let j : D × X → C be a holomorphic motion such that
j(D × X) ⊂ BR(0) for some R > 0. If x, y ∈ X and z ∈ D are such that
|z|
(

ln
( 1

2R |x− y|
))−1 ≤ 1

4 , then

|jz(x)− jz(y)− (x− y)| ≤ 4|z| · |x− y|
(

ln
(

1
2R
|x− y|

))−1

.

Proof. Fix y ∈ X and consider the holomorphic motion i : D ×X → D
defined by i(x) = (2R)−1(jz(x) − jz(y)), so for x 6= y, iz(x) ∈ D − {0}.
Moreover fix x ∈ X − {y} and put xz = iz(x) for z ∈ D. The map w 7→
x0e

−2w
1+w ln |x0| is a local isometry between D and D − {0} which maps 0 to

x0 = x. Therefore by Schwarz’ Lemma,

xz ∈ {w ∈ D− {0} | %D−{0}(w, x0) ≤ %D(0, z)} = {x0e
−2w
1+w ln |x0| | |w| ≤ |z|},

where %D−{0} and %D denote the hyperbolic distances in D − {0} and in D
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respectively. The hypothesis |z| ln(1/|x0|) ≤ 1/4 implies that

|e
2|z|

1+|z| ln 1
|x0| − 1| ≤ 4|z| ln 1

|x0|
,

so

|xz − x0| ≤ sup
|w|<|z|

|x0e
−2w
1+w ln |x0| − x0| = |x0| · |e

2|z|
1+|z| ln 1

|x0| − 1|

≤ 4|z| · |x0| ln
1
|x0|

.

3. Expansion and backward stability. Fix c0 ∈ ∂Md such that Pc0
is semihyperbolic. We begin this section by proving that Pc0 has the Almost
Uniform Expansion property stated below. As a consequence we prove the
Main Lemma in Section 3.1, about backward stability of semihyperbolic
polynomials.

Consider the constants ε > 0, C > 0 and θ ∈ (0, 1) as in [CJY]; see
Preliminaries.

Almost Uniform Expansion. There is a constant A > 0 such that
given z ∈ C and k ≥ 0, if 0 ≤ j < k is such that |P jc0(z)| ≤ |P ic0(z)| for all
0 ≤ i < k, then

|(P jc0)′(z)| ≥ Aθ−j and |(P k−j−1
c0 )′(P j+1

c0 (z))| ≥ Aθ−(k−j−1).

This property is equivalent to the Collet–Eckmann condition, which re-
quires a positive Lyapunov exponent at the critical value; see [R-L3]. In the
presence of more than one critical point this is no longer true.

The following is a distortion lemma for ramified maps, which is indepen-
dent of dynamics.

Lemma 3.1. Let N ≥ 1 and γ ∈ (0, 1) be given. Then there exists κ =
κ(γ,N) ∈ (0, 1) such that for any open and simply connected bounded set
U ⊂ C and any ramified covering R : U → D of degree N , we have

diam(U ′) ≤ γ diam(U),

where U ′ is any connected component of R−1(Bκ(0)).

Proof. It is enough to prove that the hyperbolic diameter of U ′ in U
goes to zero as κ → 0. So suppose that U = D and R(0) = 0; so there are
a1, . . . , aN−1 ∈ D and λ ∈ ∂D such that

R(z) = λz

N−1∏

i=1

z − ai
1− aiz

.
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Note that for any ν ∈ (0, 1) we may choose 1
2ν < ξ < ν such that for any w

satisfying |w| = ξ we have |w − ai| ≥ ν/(4N) for 1 ≤ i < N . So

|R(w)| =
∣∣∣∣λ

N−1∏

i=1

w − ai
1− aiw

∣∣∣∣ ≥
(
ν

8N

)N−1

.

Thus for κ(N, γ) = (ν/(8N))N−1 we have U ′ ⊂ Bν(0). So the hyperbolic
diameter of U ′ goes to 0 as κ→ 0.

Let κ ∈ (0, 1) be as in Lemma 3.1 for N = d and γ = C−1ε/2, so that by
[CJY] for any z ∈ Bκε/2(Jc0), any n ≥ 0 and any connected component W
of P−nc0 (Bκε/2(z)), we have diam(W ) < ε/2.

Lemma 3.2. Let κ ∈ (0, 1) be as above and let δ > 0 be such that for
all z and k ≥ 1 such that P kc0(z) ∈ Bδ(Jc0) we have P ic0(z) ∈ Bκε/2(Jc0) for
0 ≤ i ≤ k + 1. Then there is a constant A0 > 0 such that for all z and k
such that P kc0(z) ∈ Bε/2(0) or P kc0(z) 6∈ Bδ(Jc0) we have

|(P kc0)′(z)| ≥ A0 max(θ−k, |z|−1).

Proof. If P kc0(z) ∈ Bε/2(0) then the pull-back of Bε(0) by P kc0 to z is
univalent, so by the Koebe 1

4 Theorem |(P kc0)′(z)| ≥ 1
4(ε/2)|z|−1. By [CJY]

and Schwarz’ Lemma we have |(P kc0)′(z)| ≥ (ε/2)C−1θ−k, so the lemma
follows in this case with constant A1 = (ε/2) min(1/4, C−1).

Suppose that P kc0(z) 6∈ Bδ(Jc0), so we may assume that k ≥ 1. Note that
there is a constant A2 > 0 such that for all w 6∈ Bδ(Jc0) and all n ≥ 0 we
have |(Pnc0)′(z)| ≥ A2θ

−n. Thus we may assume that P k−1
c0 (z) ∈ Bδ(Jc0), so

P ic0(z) ∈ Bκε/2(Jc0) for 0 ≤ i ≤ k.
If Pmc0 (z) 6∈ Bε/2(0) for 0 ≤ m < k, then the pull-back of Bκε/2(P kc0(z)) to

z is univalent and the lemma follows as before in this case with constant κA1.
Otherwise let 0 ≤ m < k be the greatest integer such that Pm

c0 (z) ∈
Bε/2(0). As before the pull-back of Bκε/2(P kc0(z)) by P k−mc0 to Pmc0 (z) is uni-
valent so |(P k−mc0 )′(z)| ≥ κA1 max(θ−(k−m), |Pmc0 (z)|−1); thus the assertion
holds if m = 0. If m > 0 we have |(Pmc0 )′(z)| ≥ κA1 max(θ−m, |z|−1), so the
lemma follows.

Proof of the Almost Uniform Expansion property. Let κ ∈ (0, 1) be as
in Lemma 3.1 for N = d and γ = C−1ε/2 as before and let δ > 0 be as
in Lemma 3.2. As in the proof of Lemma 3.2 we may assume that P k

c0(z)
belongs to Bδ(Jc0) so that P ic0(z) ∈ Bκε/2(Jc0) for 0 ≤ i ≤ k. Consider the
pull-back Bi of Bk = Bκε/2(P kc0(z)) by P k−ic0 to P ic0(z); so by definition of κ
we have diam(Bi) < ε/2.

If |P jc0(z)| ≥ ε/2 then P k−jc0 is univalent in Bj so |(P k−jc0 )′(z)|−1 ≥
(ε/2)C−1θ−(k−j) by Schwarz’ Lemma. In a similar way the pull-back of
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Bκε/2(P jc0(z)) by P jc0 to z is univalent and |(P jc0)′(z)| ≥ A3θ
−j , where A3 =

κ(ε/2)C−1.
If |P jc0(z)| < ε/2 we see by Lemma 3.2 that |(P jc0)′(z)| ≥ A0θ

−j . If P k−jc0

is univalent in Bj then |(P k−jc0 )′(z)| ≥ A3θ
−(k−j) and we are done. Otherwise

there is a unique j ≤ i < k so that 0 ∈ Bi. In this case Bi ⊂ Bε/2(0), so
by Lemma 3.2, |(P j−ic0 )′(z)| ≥ A0θ

−(j−i) and on the other hand P k−i−1
c0 is

univalent in Bi+1 so |(P k−i−1
c0 )′(P i+1

c0 (z))| ≥ A3θ
−(k−i−1). Considering that

by hypothesis |P ′c0(P jc0(z))|−1 ≥ |P ′c0(P i−1
c0 (z))|−1, it follows that

|P i−j−1
c0 (P j+1

c0 (z))| ≥ |P i−j−1
c0 (P jc0(z))| ≥ A3θ

−(i−j−1).

3.1. Backward stability and shadowing. In this section we prove the fol-
lowing lemma.

Main Lemma. Let V be the neighborhood of Jc0 bounded by the equipo-
tential with potential 1. Then there is a constant M > 0, only depending on
Pc0 , such that for % > 0 small there is a finite collection {Di} of open sets
with the following properties:

• diam(Di) ≤M%1/d.
• For all z ∈ V there is Di such that B%(z) ⊂ Di.
• For all Di and any connected component W of P−1

c0 (B%(Di)) there is
Dj such that W ⊂ Dj.

The proof of the Main Lemma is at the end of this section and is based
on Lemmas 3.3 and 3.4 below. Note that this lemma implies that for % > 0
small any % backward pseudo-orbit in V is M%1/d-shadowed by a backward
orbit of Pc0 .

Let us introduce some notation for the next lemmas. Fix α ∈ (1/d −
1/d2, 1/d) only depending on d. For given R > 0 and % > 0 small put
η = 1 +M1R%

1/d−α, for some M1 > 0 to be chosen in Lemma 3.4. Let V be
as in the Main Lemma and put V ′ = P−1

c0 (V ) ⊂ V . If ζ is a preimage of 0
or ζ ∈ V − Jc0 let rζ be defined by

rζ =





R%1/d if |ζ| < %α,

R% if ζ ∈ V − V ′,
rζ = η|P ′c0(ζ)|−1(rPc0(ζ) + 4%) otherwise.

Lemma 3.3. There is M2 > 0 only depending on Pc0 such that if % is
small enough then for every preimage ζ of 0 and for ζ ∈ V − Jc0 , we have
rζ ≤M2R%

1/d.

Proof. Let ζ be a preimage of 0 or let ζ ∈ V − Jc0 . So there is n ≥ 0
such that Pnc0(ζ) ∈ B%α(0), resp. P nc0(ζ) ∈ V −V ′; let n be minimal with this
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property. Then we have the following recursive formula for rζ :

rζ = ηn|(Pnc0)′(ζ)|−1rPnc0(ζ) + 4%
n∑

m=1

ηm|(Pmc0 )′(ζ)|−1,

where rPnc0 (z) = R% or R%1/d. By Lemma 3.2, |(P nc0)′(ζ)|−1 ≥ A0θ
−n. So if

% > 0 is small enough so that ηθ < 1 we have

ηn|(Pnc0)′(ζ)|−1 ≤ A−1
0 (ηθ)n ≤ A−1

0 .

By the Almost Uniform Expansion property, for all m≤n we have |(Pm
c0 )′(ζ)|

≥ A2θ−(m−1)d(%α)d−1. Therefore there is a constant M3 > 0 only depending
on Pc0 such that for % small,

rζ ≤M3(R%1/d + %1−(d−1)α) ≤ 2M3R%
1/d,

the last considering that by definition α < 1/d.

Lemma 3.4. For appropriate choices of M1 > 0 and R > 0, only de-
pending on Pc0 , if % > 0 is small enough, then for any preimage ζ 6= 0 of 0
and for any ζ ∈ V ′ − Jc0 , if W is the connected component of

P−1
c0 (BrPc0(ζ)+4%(Pc0(ζ)))

containing ζ, then W ⊂ Brζ (ζ).

Proof. 1. Suppose |ζ|≥%α so by definition rζ =η|P ′c0(ζ)|−1(rPc0(ζ)+4%).
Note that Pc0 is univalent in Bµd%α(ζ) where µd > 0 is a constant that only
depends in d (the degree of Pc0). By the previous lemma rζ ≤ M2R%

1/d,
so the distortion of Pc0 in Brζ (ζ) is bounded by 1 +KM2R%

1/d−α for some
constant K > 0 given by the Koebe Distortion Theorem. Since M2 only
depends on Pc0 , we may choose a priori M1 = KM2 so that the distortion
of Pc0 in Brζ (ζ) is bounded by η = 1 + M1R%

1/d−α. Therefore Pc0(Brζ (ζ))
contains the ball of radius η−1|P ′c0(ζ)|rζ = rPc0 + 4% centered at Pc0(ζ).

2. Now suppose that |ζ| < %α and put ζ1 = Pc0(ζ). We will prove that
there is a constant K1 > 0 only depending on Pc0 , and not on R, so that
if % is small enough then rζ1 ≤ K1%. Let n > 1 be the first integer such
that |Pnc0(ζ1)| < %α, resp. Pnc0(ζ1) ∈ V ′ − V . Thus |P ′c0(ζ)| ≤ |P ′c0(Pmc0 (ζ1))|
for 0 ≤ m < n, and by the Almost Uniform Expansion property applied to
z = ζ, we have |(Pmc0 )′(ζ1)|−1 ≤ A−1θm, so

n−1∑

m=1

ηm|(Pmc0 )′(ζ1)|−1 ≤ K2 = A−1 ηθ

1− θη .

On the other hand, by Lemma 3.2 we have

d|ζ|d−1|(Pnc0)′(ζ1)| = |(Pn+1
c0 )′(ζ)| ≥ A0 max(θ−n, |ζ|−1), so

|(Pnc0)′(ζ1)| ≥ A0d
−1|ζ|−d ≥ A0d

−1%−dα,
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and we may suppose % > 0 small enough so that |(P nc0)′(ζ1)| ≥ θ−n. Thus
ηn = θ−nβ ≤ |(Pnc0)′(ζ1)|β, where β = −ln θ/ln η > 0 goes to 0 as η → 1, so
β → 0 as %→ 0. Therefore,

ηn|(Pnc0)′(ζ1)|−1 ≤ |(Pnc0)′(ζ1)|−(1−β) ≤ K3%
(1−β)dα,

where K3 = (A0d
−1)−(1−β). By the recursive formula for rζ1 , as in the proof

of the previous lemma we have

rζ1 ≤ K3%
(1−β)dαR%1/d + 4%(K2 +K3%

(1−β)dα).
Since by definition dα > 1− 1/d we have 1/d+ (1− β)dα > 1 if % is small
enough. Thus we may suppose that % is close enough to 0 so that rζ1 ≤ 8K2%.
This is the assertion with K1 = 8K2.

3. If |ζ1 − c0| ≤ 2(K1 + 4)% then Brζ1+4%(ζ1) ⊂ B4(K1+4)%(c0) so

P−1
c0 (Brζ1+4%(ζ1)) ⊂ B(4(K1+4)%)1/d(0).

Moreover |ζ| ≤ (2(K1+4))1/d, thus if R ≥ 2(4(K1+4))1/d the lemma follows
in this case.

If |ζ1 − c0| > 2(K1 + 4)% then the corresponding inverse branch of P−1
c0

defined in Brζ1+4%(ζ1) is univalent and has distortion bounded by some con-
stant K4 > 0, given by the Koebe Distortion Theorem. Hence, if W is the
connected component of P−1

c0 (Brζ1+4%(ζ1)) that contains ζ then

W ⊂ BK4|P ′c0 (ζ)|−1(rζ1+4%)(ζ),
but

K4|P ′c0(ζ)|−1(rζ1 + 4%) ≤ K4d(2(K1 + 4)%)−(d−1)/d(K1 + 4)%

= K4d2−1(2(K1 + 4)%)1/d.

Thus the lemma holds with

R = max(K4d2−1(2(K1 + 4))1/d, 2(4(K1 + 4))1/d).

Proof of the Main Lemma. Let {zi} be a %-dense set in V and let ri =
supζ∈B%(zi) rζ where the supremum is over all ζ for which rζ is defined. Put
Di = Bri+2%(zi). By Lemma 3.3 there is a constant M > 0 only depending
on Pc0 such that diam(Di) ≤M%1/d.

Since {zi} is %-dense in V , for all z ∈ Jc0 there is zi at a distance at most
% from z and therefore B%(z) ⊂ B2%(zi) ⊂ Di.

Fix i and let ζk be a convergent sequence in B%(zi) such that rζk → ri
as k → ∞. Moreover choose a convergent sequence of preimages ζ ′k of ζk
under Pc0 . Taking a subsequence if necessary we may assume that there is
zj such that |ζ ′k− zj | ≤ %, so rζ′k ≤ rj . By Lemma 3.4 if Wk is the connected
component of P−1

c0 (Brζk+4%(ζk)) that contains ζ ′k then

Wk ⊂ Brζ′
k

(ζ ′k) ⊂ Dj.

Since B%(Di) ⊂
⋃
k Brζk+4%(ζk), the lemma follows.
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4. Similarities between dynamical and parameter planes. In
this section we prove Theorems B and C. Fix a semihyperbolic parame-
ter c0 ∈ ∂Md throughout this section. In this section the positive constants
C0, C1, . . . and all implicit constants depend on Pc0 only.

Consider a Markov partition Ua, a ∈ A, for ω(0) as in Section 2. Recall
that l > 1 is the least integer such that P lc0(0) ∈ ω(0). Let z0 = P lc0(0). We
will denote by Un the nth step piece of the Markov partition that contains
z0. By the Univalent Extension Property and Koebe Distortion Theorem
it follows that dist(z0, Un) ∼ diam(Un); see Section 2.2. Denote by Vn the
pull-back of Un to 0 by P lc0 . Then we have

dist(∂Vn, 0) ∼ diam(Vn) ∼ (diam(Un))1/d.

It follows by the Markov property and considering that the Ua are puzzles
that if W is a pull-back of Vn, then either W ∩Vn = ∅ or W ⊂ Vn. We define

Kn = {z | P kc0(z) 6∈ Vn for k ≥ 0},
which is a closed and forward invariant set. It follows that Vn is the connected
component of C −Kn that contains 0 and for every connected component
W of C−Kn there is k so that P kc0 : W → Vn is a biholomorphism. Let us
consider the following easy lemma about the geometry of Kn.

Lemma 4.1. There is a constant C1 > 0 only depending on Pc0 such that
for n large and any connected component W of C−Kn,

(i) diam(W ) ≤ C1 diam(Vn).
(ii) diam(W ) ≤ C1 dist(W, c0) diam(Vn).

Proof. Consider the constants ε > 0, θ ∈ (0, 1) and C > 0 given by
[CJY]; see Preliminaries. Choose n large enough so that Vn ⊂ Bε/2(0). Thus,
if m ≥ 0 is such that Pmc0 : W → Vn is a biholomorphism, the corresponding
pull-back W0 of Bε(0) is univalent and moreover c0 6∈W0. Denote by W ′ the
corresponding pull-back of Bε/2(0). So by the Koebe Distortion Theorem
there is a constant D > 0 so that diam(W ) ≤ D diam(W ′) diam(Vn) ≤
DCθm diam(Vn).

Hence (i) follows for C1 ≥ DC. On the other hand, note that the modulus
of the annulus W0−W ′ is equal to the modulus of the annulus Bε−Bε/2(0),
which does not depend on ε. Since c0 6∈ W0, there is a universal constant
K0 > 0 so that

diam(W ′) ≤ K0 dist(W ′, c0) ≤ K0 dist(W, c0),

and so (ii) follows.

4.1. Holomorphic motions compatible with dynamics. Recall that a holo-
morphic motion j of a set X ⊂ C defined in an open set W ⊂ C is a map
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j : W ×X → C so that for all λ ∈ W , the map jλ : X → C is injective and
for every x ∈ X, jλ(x) depends holomorphically on λ.

Proposition 4.2. Let V be the neighborhood of Jc0 bounded by the equi-
potential with potential 1, as in the Main Lemma. Then there are constants
ν > 0 and C2 > 0, only depending on Pc0 , such that for large n, there exists
a holomorphic motion in : Bn ×Kn → C, where Bn = Bν diam(Un)(c0), such
that :

(i) (in)c0 is the identity.
(ii) in is compatible with dynamics, that is, (in)c(Pc0(z)) = Pc((in)c(z))

for all (c, z) ∈ Bn ×Kn.
(iii) For (c, z) ∈ Bn × (Kn ∩ V ) we have |(in)c(z)− z| ≤ C2 diam(Vn).

Moreover , if (c, z)∈Bn×Kn is such that c=(in)c(z), then c=ϕ−1
Md
◦ϕc0(z).

Before proving this proposition let us deduce Theorem C from it.

Proof of Theorem C. We will prove that dH(Jc0 ,Kc) ≤ C3|c − c0|1/d
for some constant C3 > 0 only depending on Pc0 . The assertion about
dH(Jc0 , Jc) follows in a similar way. Consider n large and let c ∈ Bn−Bn+1
be so that |c− c0| ∼ diam(Un). By Proposition 4.2 we have

dH(Jc0 , (in)c(Kn ∩ Jc0)) ≤ C4|c− c0|1/d.
Moreover by Lemma 4.1 every connected component of C − (in)c(Kn) has
diameter less than C5|c− c0|1/d. Hence (in)c(Kn∩Jc0) ⊂ Kc is C5|c− c0|1/d-
dense in Kc. Therefore dH(Jc0 ,Kc) ≤ (C4 + C5)|c− c0|1/d as wanted.

Proof of Proposition 4.2.

1. Put V ′ = P−1
c0 (V ) and let δ > 0 be so small that for all c ∈ Bδ(c0),

the function ϕ−1
c is well defined in {ln |ζ| ≥ 1/d}; so the holomorphic motion

i : Bδ(c0)×(C−V ′)→ C defined by ic = ϕ−1
c ◦ϕc0 has properties (i) and (ii).

2. Note that there is a constant µd > 0 only depending on d so that if
D ⊂ C satisfies diam(D) < µd dist(0,D), then Pc0 is univalent in D. Let n be
large and recall that dist(0, ∂Vn) ∼ diam(Vn) ∼ (diam(Un))1/d. Then there
is ν0 > 0 only depending on Pc0 such that if we take % = %n = ν0 diam(Un) in
the Main Lemma, then the Di (given by the Main Lemma) intersecting Kn

satisfy diam(Di) < µd dist(Di, 0) and therefore Pc0 is injective in such Di.
Note that for w ∈ V −V ′ and c ∈ Bδ(c0), ic(w) is bounded independently

of c and w. Thus there is a constant C6 > 0 only depending on Pc0 such
that for every w ∈ V −V ′ and c ∈ Bδ(c0) we have |ic(w)−w| ≤ C6δ. Hence,
by Schwarz’ Lemma, for all w ∈ V − V ′ and all c ∈ Bmin(%n,δ)(0) we have
|ic(w) − w| ≤ C6%n. So we may choose ν ∈ (0, ν0), only depending on Pc0 ,
so that |ic(w)− w| ≤ %n for all c ∈ Bν diam(Un)(c0) = Bn and w ∈ V − V ′.
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3. We define in to be equal to i in Bn × (C − V ′). Let z ∈ Kn − Jc0
be such that z ∈ V ′ and let k be such that P kc0(z) ∈ V − V ′. Moreover let
c ∈ Bn = Bν diam(Un)(c0).

By the above, |ic(P kc0(z)) − P kc0(z)| ≤ %n. So by the Main Lemma there
is Di so that ic(P kc0(z)) ∈ Di and there is Dj containing the connected
component W of P−1

c0 (B%n(Di)) that contains P k−1
c0 (z). Moreover, since c ∈

Bn ⊂ B%n(c0), we have Pc(W ) ⊂ B%n(Pc0(W )) for c ∈ Bn. So it follows that
there is a unique preimage of ic(P kc0(z)) under Pc in Dj.

Repeating this process we obtain a sequence ij , for 0 ≤ j ≤ k, such
that P jc0(z) ∈ Dij and a uniquely determined orbit z0, . . . , zk = ic(P kc0(z))
of Pc such that zj ∈ Dij . We define (in)c(z) = z0, which clearly depends
holomorphically on c and satisfies (i) and (ii).

Let us prove that (in)c is injective in Kn−Jc0 , so that in is a holomorphic
motion of Kn − Jc0 defined in Bn. If not we would have different w0, w1 ∈
Kn such that for some c ∈ Bn, (in)c(w0) = (in)c(w1). Considering that
(in)c0 = id we must have ic(w0) = ic(w1) = 0, since (in)c is compatible with
dynamics. But this is not possible since (in)c(w0) is contained is some Di

intersecting Kn and by hypothesis we have dist(Di, 0) ≥ µd diam(Di) > 0.
So in : Bn × (Kn − Jc0) → C is a holomorphic motion. Since Vn is a

puzzle we may suppose that for any z ∈ Kn ∩ Jc0 there is a ray contained
in Kn landing at z. So Kn − Jc0 = Kn and by the λ-Lemma of [MSS], the
holomorphic motion in extends to Kn.

4. It remains to prove that if (c, z) ∈ Bn × (Kn − Jc0) is such that
c = (in)c(z), then c = ϕ−1

Md
◦ ϕc0(z). Let ζ = ϕc0(z). Since Vn is a puzzle

we may suppose that the piece of ray R = {ϕ−1
c0 (rζ) | r > 1} is contained

in Kn, so (in)c(R) is a piece of ray for Pc with the same angle as R and by
construction the potential of c = (in)c(z) for Pc is the same as that of z for
Pc0 . Thus ϕMd

(c) = ϕc(c) = ϕc0(z).

4.2. Conformality of external maps. In this section we prove Theorem B
about the C1+1/d-conformality of the map ϕ−1

Md
◦ ϕc0 and its inverse at c0.

The proof depends on Lemma 4.3 below. We also prove the sharpness of
Theorem C at the end of this section.

Lemma 4.3. Let n be large and let Bn = Bν diam(Un)(c0) be as in Proposi-
tion 4.2. Then there is a constant C7 > 0 only depending on Pc0 such that for
S > 1 given and w ∈ Kn such that S−1 diam(Un) ≤ |w − c0| ≤ S diam(Un)
we have, for n ≥ N0(S) and c ∈ Bn,

|(in)c(w)− w − (z(c)− c0)| ≤ C7(diam(Un))1+1/d.

Proof. 1. By the expansive property of hyperbolic sets there is ε0 > 0
such that for any w close to c0 there is N = N(w) > 0 such that
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|PNc0 (w)− PNc0 (c0)| > ε0.

For fixed w, consider the smallest such N . Reducing ε0 if necessary we may
assume that

ε0 < |PNc0 (w)− PNc0 (c0)| < ε0D � min
a∈A

diam(Ua),

where D is the supremum of |P ′c0(z)| over z ∈ ⋃a∈A Ua. By the Bounded
Distortion Property,

|(PNc0 )′(c0)| · |w − c0| ≥ K−1|PNc0 (w)− PNc0 (c0)| ≥ K−1ε0.

So |(PNc0 )′(c0)|−1 ≤ Kε−1
0 |w − c0| ≤ Kε−1

0 S%n, where %n = diam(Un).

2. Consider the holomorphic motion j : Bδ(c0)×⋃a∈A Ua → C given by
Proposition 2.3 and let R > 0 be such that j(Bδ(c0) ×⋃a∈A Ua) ⊂ BR(0);
see Section 2.2.

Fix c ∈ Bn and let w′ be such that jc(w′) = (in)c(w), so jc(PNc0 (w′)) =
(in)c(PNc0 (w)). By Schwarz’ Lemma applied to the function ĉ 7→ jĉ(PNc0 (w′))
we have

|PNc0 (w′)− (in)c(PNc0 (w))| ≤ C8|c− c0| ≤ C8ν%n,

where C8 = 2R/δ. By Proposition 4.2,

|(in)c(PNc0 (w))− PNc0 (w)| ≤ C9%
1/d
n ,

so for large n we have |PNc0 (w′)− PNc0 (w)| ≤ C9%
1/d
n +C8ν%n ≤ 2C9%

1/d
n and

by the Bounded Distortion Property,

|w′ − w| ≤ K|(PNc0 )′(c0)|−1|PNc0 (w′)− PNc0 (w)| ≤ K2ε−1
0 2C9S%

1+1/d
n .

So, if n is larger than some N0 (depending on S), we have (2S)−1%n ≤
|w′ − c0| ≤ 2S%n.

3. By 2 we have

|c− c0|
(

ln
(

1
2R
|w′ − c0|

))−1

≤ C10%n(ln(S%n))−1 → 0 as n→∞.

Considering that jc(w′) = (in)c(w) we have, by Lemma 2.4,

|w′ − jc(w′)− (c0 − jc(c0))| ≤ 4
|c− c0|

diam(B)
|w′ − c0|

(
ln
(

1
2R
|w′ − c0|

))−1

≤ 8
diam(B)

C10S%
2
n(ln(S%n))−1.

Since jc(w′) = (in)c(w) and jc(c0) = (in)c(c0), it follows that for n large,

|w − (in)c(w)− (c0 − (in)c(c0))|

≤ K2ε−1
0 2C9S%

1+1/d
n +

8C10

diam(B)
S%2

n(ln(S%n))−1 ≤ C7S%
1+1/d
n .
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Proof of Theorem B. We will prove the C1+1/d-conformality of ξ = ϕ−1
Md
◦

ϕc0 at c0; the conformality of its inverse follows in the same way. Note that
ξ is defined in C− Jc0 .

Let z(c) = jc(c0) be the dynamical continuation of the critical value c0,
so that 1 − z′(c0) 6= 0; see Section 2.2 and Appendix 2. Since c − z(c) =
λ(c− c0) +O(|c− c0|2), it is enough to prove that for w 6∈ Jc0 close to c0 we
have

|w − c0 − (ξ(w)− z(ξ(w)))| = O(|w − c0|1+1/d).

Fix w 6∈ Jc0 close to c0 and let c′ close to c0 be such that w = c0+c′−z(c′),
so |w − c0| = |c′ − z(c′)| ∼ |c′ − c0|. Let n be the greatest integer such that
c′ ∈ Bn+1, so diam(Un) ∼ |c′ − c0|. Given C > 0, to be chosen below, let
η : [0, 1]→ C be defined by

η(θ) = c′ + C|c′ − c0|1+1/de2πiθ.

Then there are two cases.

Case 1: w ∈ Kn. By Lemma 4.3, for all c̃ ∈ Bn we have

|(in)c̃(w)− w − (z(c̃)− c0)| = O(|c′ − c0|1+1/d).

We may suppose that w is close enough to c0 so that η(θ) ∈ Bn for all
θ ∈ [0, 1]. Note that |w− c0− (c̃− z(c̃))| = |c′− z(c′)− (c̃− z(c̃))| ∼ |c′− c̃|.
So we may choose C > 0 large enough so that for all θ ∈ [0, 1],

|(in)η(θ)(w)− w − (z(η(θ))− c0)| < |w − c0 − (η(θ)− z(η(θ)))|.
Thus by the Rouché theorem there is c ∈ Bn such that (in)c(w) = c and
|c− c′| ≤ C|c′ − c0|1+1/d. It follows that c = ξ(w) and

|w − c0 − (c− z(c))| = |c′ − z(c′)− (c− z(c))| = O(|w − c0|1+1/d).

Case 2: w 6∈ Kn. Let y ∈ ∂Kn be the unique point which is in the
same ray as w and let l be the piece of ray joining them. Let U be the
connected component of C −Kn containing w. By Lemma 4.1, diam(U) =
O(|y−c0|1+1/d), therefore |y−w| = O(|y−c0|1+1/d) and |y−c0| ∼ |w−c0| ∼
|c′ − c0|. So diam(U) = O(|c′ − c0|1+1/d).

By [Sł], in extends to a continuous function in Bn×C such that for each
c̃ ∈ Bn, the (in)c̃ is a homeomorphism of C. Then it follows from the last
observation and from Lemma 4.3 that, for c̃ ∈ Bn,

diam((in)c̃(U)) = O(|c′ − c0|1+1/d).

Given c̃ ∈ Bn and w0 ∈ ϕ−1
c̃ (ϕc0(w)) consider the Green line l̃ joining w0 and

(in)c̃(y). Then l̃ ∩Kn = {ic̃(y)}. It follows that l̃ ⊂ (in)c̃(U), so w0 ∈ ic̃(U)
and ϕ−1

c (ϕc0(w)) ⊂ ic̃(U).
Therefore, for all c̃ ∈ Bn and ζ ∈ ϕ−1

c̃ (ϕc0(w)) we have |ζ − ic̃(y)| ≤
diam(ic̃(U)) = O(|c′ − c0|1+1/d). Thus, by the considerations of Case 1 ap-
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plied to y instead of w, we may choose the constant C > 0 large enough so
that

|ζ − w − (z(η(θ))− c0)| < |w − c0 − (η(θ)− z(η(θ)))|
for all ζ ∈ ϕ−1

η(θ)(ϕc0(w)) and θ ∈ [0, 1]. Then by the Rouché theorem there

is c such that ϕMd
(c) = ϕc(c) = ϕc0(w) and |c − c′| ≤ C|c′ − c0|1+1/d. It

follows that c = ξ(w) and

|w − c0 − (c− z(c))| = |c′ − z(c′)− (c− z(c))| = O(|w − c0|1+1/d).

Similarity factor. Recall that λ = 1 − z′(c0) 6= 0; see Appendix 2. For
n ≥ 0 let zn(c) = Pnc (z(c)), which is equal to jc(Pnc (z(c))) for n ≥ l. Since
the image of the holomorphic motion j is bounded, it follows by Schwarz’
Lemma that there is D > 0 such that |z′n(c0)| ≤ D for n ≥ 0. By the
equation zn+1(c) = zn(c)d + c we have

z′n+1(c) = dzn(c)d−1z′n(c) + 1 = P ′c(zn(c))z′n(c) + 1.

Thus, for n ≥ 0 we have

z′0(c) = −
(

1
P ′c(z0(c))

+
1

(P 2
c )′(z0(c))

+ . . .+
1

(Pnc )′(z0(c))

)
+

z′n(c)
(Pnc )′(z0(c))

.

Considering that z = z0, z(c0) = c0 and that (P nc0)′(c0)→∞ as n→∞, we
have

λ = 1− z′(c0) =
∑

n≥0

1
(Pnc0)′(c0)

.

Sharpness of Theorem C. Now we can prove that the estimate of Theo-
rem C is sharp. We will use the fact that Jc0 is a John domain; see [CJY].
This means that there is δ > 0 such that for any ray R landing at a point
z ∈ Jc0 and any w ∈ R the ball Bδ|w−z|(w) is disjoint from Jc0 .

Let z(c) = jc(c0) be the dynamical continuation of the critical value c0,
so that z′(c0) 6= 0; see Section 2.2 and Appendix 2. In particular, we have
|z(c)−c0| ∼ |c−c0|. Hence, if w ∈ P−1

c (z(c)) then |w| ∼ |c−c0|1/d. One may
choose c such that w belongs to the ray of Jc0 landing at 0, so by the John
property dist(w, Jc0) ∼ |c − c0|1/d. But z(c) ∈ Jc so w ∈ Jc, and therefore
dH(Jc0 , Jc) ∼ |c− c0|1/d.

5. Hausdorff dimension. In this section we prove Theorem A that
follows easily from Theorem B and the HD Lemma stated below. This lemma
is a criterion for the convergence of the Hausdorff dimension of Julia sets,
and follows from a similar lemma in [BR].

In this section the positive constants C1, C2, . . . and all implicit constants
depend on Pc0 only.
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HD Lemma. Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic and con-
sider a sequence cn → c0 such that

|cn − c0|d/(d−1)(dist(cn, Jcn))−1 → 0.

Then HD(Jcn)→ HD(Jc0).

The proof of this lemma is in Section 5.1. The proof of Theorem A is
based on the following lemma.

Lemma 5.1. Let c0 ∈ ∂Md be such that Pc0 is semihyperbolic and let c be
close to c0. Then there is a constant C > 0, only depending on Pc0 , such that

if dist(c,Md) ≥ C|c− c0|1+1/d, then dist(c, Jc) ≥ |c− c0|1+1/d.

Proof. Let c ∈ C be such that dist(c,Md) > C|c − c0|1+1/d for some
constant C > 0 to be determined later, and let z = ϕ−1

c0 ◦ϕMd
(c). For m� 1

let Bm = Bν diam(Um)(c0) and im : Bm ×Km → C be as in Proposition 4.2.
Let m be such that c ∈ Bm − Bm+1. By Theorem B there is S > 1, only
depending on Pc0 , such that S−1 diam(Um) < |z − c0| < S diam(Um).

If C > 0 is large enough there is C ′ > 0 so that dist(z, ∂Km) >
C ′|z− c0|1+1/d (cf. Lemma 4.1). Moreover we may choose C ′ > 0 arbitrarily
large, by choosing C large.

Consider w such that |w − z| = C ′|z − c0|1+1/d. Thus w ∈ Km − Jc0 .
Moreover, if c is close enough to c0, then (2S)−1 diam(Um) < |w − c0| <
2S diam(Um). Let C7 > 0 be the constant given by Lemma 4.3. Since c =
(im)c(z), for any ζ ∈ B|c−c0|1+1/d(c) we have

|(im)c(w)− ζ| ≥ |(im)c(w)− c| − |c− ζ|
≥ |w − z| − |c− c0|1+1/d

− |(im)c(z)−z(c)− (z − c0)|− |(im)c(w)−z(c)− (w − c0)|.
By Lemma 4.3 the last two quantities do not exceed 2C7S(diam(Um))1+1/d.
Since c ∈ Bm, we have |c − c0| ≤ ν diam(Um). Thus, choosing C > 0 large
enough so that C ′ > 4C7S + ν1+1/d, we have |(im)c(w)− ζ| > 0.

Since this holds for every w such that |w − z| = C ′|z − c0|1+1/d,
it follows by the Rouché theorem that there is wζ such that |wζ − z| <
C ′|z− c0|1+1/d and (im)c(wζ) = ζ. As remarked above wζ 6∈ Jc0 in this case,
so ζ = (im)c(wζ) 6∈ Jc. Thus B|c−c0|1+1/d(c) ∩ Jc = ∅.

Proof of Theorem A. Let C > 0 be as in the previous lemma and suppose
that the sequence cn → c is such that dist(cn,Md) ≥ C|cn − c0|1+1/d. By
the previous lemma dist(cn, Jcn) ≥ |cn − c0|1+1/d. Thus,

|cn − c0|d/(d−1)(dist(cn, Jcn))−1 ≤ |cn − c0|1/(d(d−1)) → 0

as n→∞. Hence, by the HD Lemma, HD(Jcn)→ HD(Jc0).
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5.1. Conformal measures and atoms. The proof of the HD Lemma is as
follows. For c ∈ C −Md there is a unique conformal probability measure
µc for Pc supported in Jc. Moreover µc has exponent dc = HD(Jc); see
[Su]. This means that for every measurable set U where Pc is injective,
µc(Pc(U)) =

�
U |P ′c|dc dµc. Furthermore the µc measure of a point is zero,

that is, µc is not atomic.
The unique conformal probability measure for Pc0 , supported in Jc0 ,

either has exponent dc0 = HD(Jc0) or is atomic, supported in {P−nc0 (0)}n≥0;
see [DU] and [McM]. Thus to prove that

lim
n→∞

HD(Jcn) = HD(Jc0),

it is enough to prove that

lim
r→0

lim
n→∞

µcn(Br(0)) = 0.

In fact, if µc0 is any weak limit of {µcn}n≥1, then µc0 is a conformal proba-
bility measure supported in Jc0 . The previous limit implies that the measure
µc0 is not atomic at 0, so it has exponent dc0 and it follows that dcn → dc0 ;
see also [McM], [DSZ] and [UZ].

Consider a Markov partition Ua, a ∈ A, as in Section 2 and consider a
holomorphic motion j : Bδ(c0) × ⋃a∈A Ua → C given by Proposition 2.3.
Taking δ > 0 smaller if necessary we may assume that there are constants
C0 > 0 and θ0 ∈ (0, 1) such that for all m ≥ 1, all c ∈ Bδ(c0) and all
w ∈ ic(ω(0)), we have |(Pmc )′(w)|−1 ≤ C0θ

m
0 . Moreover we may suppose

that there is a uniform Bounded Distortion Property: There is a constant
K > 1 so that for every c ∈ Bδ(c0), every k ≥ 1 and every kth step piece W
of the Markov partition jc(Ua), a ∈ A, the distortion of P kc in W is bounded
by K; cf. Section 2.2.

Recall that Un is the nth step piece containing P lc0(0) ∈ ω(0) and Vn is
the pull-back of Un by P lc0 containing 0. Denote jc(Un) by U cn and let V c

n be
the pull-back of U c

n by P lc containing 0. It follows that for r > 0 small there
is n = n(r)→∞ as r → 0 so that Br(0) ⊂ V c

n for all c sufficiently close c0.
Hence it is enough to prove that

lim
n→∞

lim
s→∞

µcs(V
cs
n ) = 0.

Proof of HD Lemma. 1. Let D be a disc containing 0, small enough
so that for c ∈ Bδ(c0), P lc |D is at most of degree d. Refining the Markov
partition if necessary, suppose that U c

1 ⊂ P lc(D) for all c ∈ Bδ(c0).
Since for c 6∈ Md the probability measure µc is not atomic, for all n ≥ 1

we have
µc(V c

n ) =
∑

m≥n
µc(V c

m − V c
m+1).



312 J. Rivera-Letelier

Recall that z(c) = jc(c0) is the dynamical continuation of the criti-
cal value c0 and z′(c0) 6= 1; see Appendix 2. For c ∈ Bδ(c0) let ζ(c) =
jc(P l−1

c0 (c0)) = P l−1
c (z(c)) and put qc = P lc(0). Note that for m ≥ 1 we have

µc(Vm − V c
m) ≤ dµc(U cm − U cm+1) inf

(V cm−V cm+1)∩Jc
|(P lc)′(z)|−dc.

By the uniform Bounded Distortion Property and considering that µc is a
probability measure, we have

µc(U cm − U cm+1) ≤ Kdc |(Pmc )′(ζ(c))|−dc.
On the other hand there is C1 > 0 such that for all c ∈ Bδ(c0) and z ∈ V c

1 ,

|(P lc)′(z)| > C1|P lc(z)− qc|(d−1)/d.

2. Let k = k(c) be the greatest integer such that qc ∈ U ck ; see Figure 2.
Let m ≥ 1. Then there are three cases.

U

U

V

V

c
c

c
k

k-1

l
cP

k-1

k
c

q
c

0 Uc
k+1

Fig. 2. Relative position of qc = ic(P lc0(0)) in the Markov partition

Case 1: k−1 ≤ m ≤ k+1. By the uniform Bounded Distortion Property
and by Transversality (Appendix 2), we have

|(Pmc )′(ζ(c))|−1 ∼ |ζ(c)− qc| ∼ |z(c)− c| ∼ |c− c0|,
with implicit constants independent of c ∈ Bδ(c0). Hence |(Pmc )′(ζ(c))|−1 ≤
C2|c− c0| for some C2 > 0 independent of c. On the other hand

dist(qc, (U cm − U cm+1) ∩ Jc) ≥ dist(qc, Jc) ≥ C3 dist(c, Jc).

So for all z ∈ V c
m − V c

m+1 ∩ Jc
|(P lc)′(z)| > C1C

(d−1)/d
3 (dist(c, Jc))(d−1)/d,

thus
µc(Vm − Vm+1) ≤ C4|c− c0|dc(dist(c, Jc))−dc(d−1)/d,

where C4 = d(KC2(C1C
(d−1)/d
3 )−1)dc.
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Case 2: m < k − 1. Note that

dist(qc, U cm − U cm+1) ≥ dist(∂U cm+1, U
c
m+2),

thus by the uniform Bounded Distortion Property,

dist(qc, U cm − U cm+1) > C5|(Pmc )′(ζ(c))|−1.

Hence, by 1 we have

|(P lc)′(z)| > C1(dist(qc, U cm − U cm+1))(d−1)/d

≥ C1C
(d−1)/d
5 |(Pmc )′(ζ(c))|−(d−1)/d.

Therefore,

µc(V c
m−V c

m+1)≤dKdc |(Pmc )′(ζ(c))|−dc(C1C
(d−1)/d
5 )−dc |(Pmc )′(ζ(c))|dc(d−1)/d.

Thus µc(V c
m − V c

m+1) ≤ C6θ
mdc/d
0 , where C6 = dKdc(C1C

(d−1)/d
5 )−dcCdc/d0 .

Case 3: m > k + 1. We have dist(qc, U cm − U cm+1) ≥ dist(∂U cm−1, U
c
m).

Thus reducing C5 > 0 if necessary, we have, as in Case 2,

dist(qc, U cm − U cm+1) > C5|(Pmc )′(ζ(c))|−1,

and µc(V c
m − V c

m+1) ≤ C6θ
mdc/d
0 .

3. By 1 and 2, for n ≥ 1 we have

µc(V c
n ) ≤ 3C4|c− c0|dc(dist(c, Jc))−dc(d−1)/d + C6

∑

m≥n,m6=k−1,k,k+1

θ
mdc/d
0 .

Since ∑

m≥n
θ
mdc/d
0 =

(θdc0 /d)n

1− θdc/d

and since by hypothesis |cs − c0|(dist(cs, Jcs))
−(d−1)/d → 0 as s → ∞, we

conclude that
lim
n→∞

lim
s→∞

µcs(V
cs
n ) = 0.

Appendix 1. Proof of corollaries of Theorem B

Proof of asymptotic similarity. We only use the conformality of ϕ−1
Md
◦ϕc0

at c0 and that Jc0 has empty interior. Put ξ = ϕ−1
Md
◦ϕc0 : C−Jc0 → C−Md,

which is a proper map.
Let w ∈ Jc0 and put r = |w−c0|. Consider a sequence {wi} disjoint from

Jc0 such that wi → w. Since ξ is proper we may suppose that ci = ξ(wi)→
c ∈ Md. Thus, by Theorem B there is C1 > 0 only depending on Pc0 such
that |w − c0 − λ(c− c0)| ≤ C1r

1+1/d.
Let c ∈ Md be close to c0 and put r = |c− c0|. By the Rouché theorem

and by Theorem B there is C2 > 0, only depending on Pc0 , such that if w
satisfies |w− c0| ∼ r and BC2r1+1/d(w)∩Jc0 =∅, then c′=c0 +λ−1(w − c0) 6∈
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Md. Thus, if w = c0 + λ(c − c0), then BC2r1+1/d(w) ∩ Jc0 6= ∅. Let w′ ∈
BC2r1+1/d(w) ∩ Jc0 . By Theorem B there is C3 > 0, only depending on Pc0 ,
such that |c− c0 − λ(w′ − c0)| ≤ C3r

1+1/d. Then the corollary follows.

Proof of the second corollary. It follows by [Ma] that Pc0 is uniformly ex-
panding in the set of accumulation points of the orbit of 0, denoted by ω(0).
So the Bounded Distortion Property holds: for δ > 0 small and z ∈ ω(0)
there is n ≥ 0 so that P nc0(Br(z)) is of unit size and the distortion of P nc0 in
Bδ(z) is bounded by some constant independent of z; see Section 2.

By [DU] for all z ∈ Jc0 and r > 0 small mD(Br(z)) ∼ rD, where mD

denotes the restriction to Jc0 of theD-dimensional Hausdorff measure. Hence
Jc0 can be covered with a collection of ∼ r−D/d balls of radius r1/d. By
the Bounded Distortion Property (Jc0 − c0)r can also be covered by such a
collection of balls and by the previous corollary this also holds for (Md−c0)r.
Hence the measure of (Md−c0)r is O(r−D/dr2/d), and therefore the measure
of Md ∩Br(c0) is O(r2+(2−D)/d).

Appendix 2. Transversality. Fix d ≥ 2 and consider a semihyperbolic
polynomial Pc0(z) = zd + c such that c0 ∈ ∂Md. By [Ma], Pc0 is uniformly
expanding in ω(0). So for some δ > 0 there is a holomorphic motion j :
Bδ(c0) × ω(0) → C which is compatible with dynamics; see [Sh]. By the
expansive property of hyperbolic sets there is l > 1 such that P l

c0(0) ∈ ω(0),
so there is a holomorphic function z(c) such that z(c0) = c0 and P l−1

c (z(c)) =
jc(P l−1

c (c0)) for c ∈ Bδ(c0).
The objective of this appendix is to prove the following property.

Transversality. The graph of the function z is transversal to the di-
agonal at (c0, c0); that is, z(c0) = c0 and z′(c0) 6= 1.

In the Misiurewicz case, this property is well known and there are various
different proofs of this fact. For example there is an algebraic proof by
A. Gleason in [DH2] and there is a proof of A. Epstein from a more abstract
result (in [E]) based on infinitesimal Thurston rigidity.

We prove Transversality in the more general semihyperbolic case, using
Thurston rigidity. For d = 2 this also follows from [vS], which was done in-
dependently. The idea is to argue by contradiction. So if Transversality does
not hold, then one can find two different parameters c1 and c2, close to c0,
such that their respective polynomials have the same dynamical properties
and then we prove that in fact c1 = c2. More concretely it will be proved
that the polynomials Pc1 and Pc2 are equivalent in the sense of Thurston;
see [DH3]. This implies that Pc1 and Pc2 are holomorphically conjugate and
since c1 and c2 are close to c0 it follows that c1 = c2. One may also argue
with external rays, but with Thurston rigidity the argument generalizes to
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rational functions. I am grateful to A. Douady who suggested to me to argue
by contradiction.

Let us consider a Markov partition Ua, a ∈ A, as in Section 2 and note
that as in Section 4.2 we may suppose that j is defined in

⋃
a∈A Ua. Denote

by Kc0 the maximal invariant set for the Markov partition. Enlarging it if
necessary, we may suppose that P lc0(0) is an accumulation point of periodic
points in Kc0 .

Proof of Transversality. Suppose that Transversality does not hold. By
[DH2] we have z(c) 6≡ c, therefore there is m > 1 such that |z(c) − c| ∼
|c−c0|m. Let w be close to c0 so that P l−1

c0 (w) ∈ Kc0 and let c′1 6= c′2 be such
that c′i − z(c′i) + c0 = w for i = 1, 2. Thus, if w is close enough to c0 then

|c′1 − c′2|
|c′1 − c0|

>
1
2
|e2πi/m − 1|.

Applying the Rouché theorem as in the proof of Theorem B (with the help
of Lemma 4.3) there are c1 6= c2 such that P l−1

ci (ci) = jci(P
l−1
c0 (w)) with

ci ∈ D close to c0 for i = 1, 2; see also Lemma 5.1.

1. Put U ′ =
⋃
a∈A Ua and let U ′∞ be a neighborhood of ∞ such that U ′

and U ′∞ are disjoint.
Let D be a small disc centered at c0 and let i : D × (U ′ ∪ U ′∞) → C

be the holomorphic motion that coincides with j in U ′ and is defined by
ic(z) = ϕ−1

c ◦ ϕc0(z) for z ∈ U ′∞. So i is compatible with dynamics.
By hypothesis P l−1

c0 (c0) is an accumulation point of periodic points in
Kc0 , so c0 is the limit of a sequence of preperiodic points w with P l−1

c0 (w) ∈
Kc0 . Extend i to

⋃
0<m<l P

m
c0 (w) so that i is compatible with dynamics. Let

c1 and c2 be the parameters corresponding to w as above, so that ici(w) = ci.
Put V ′ = U ′ ∪ U ′∞ ∪

⋃
0<m<l P

m
c0 (w) and V = P−1

c0 (V ′). Extend i to
V − {0} by dynamics and let ic(0) ≡ 0. Since D is conformally equivalent
to a disc, one can extend i to D × C; see [Sł].

2. For c ∈ D consider the homeomorphism θ′c = ic ◦ i−1
c1 of C, so that

θ′c1 ≡ id. For z ∈ V − {0} let θc(z) = j−1
c ◦ jc1(z), so Pc ◦ θc = θ′c ◦ Pc1(z) in

ic1(V ) and θc coincides with θ′c in ic1(Kc0) and in ic1(
⋃

0<m<l P
m
c0 (w)).

Choose δ > 0 such that {|z − c0| < δ} ∩ ic(V ′) = ic(w) for c ∈ D; such a
δ can be chosen before choosing w. For c ∈ D let hc be a homeomorphism
of C depending continuously on c so that hc is the identity outside the ball
{|z − c0| < δ} and hc(c) = ic(w). So hci(ci) = ci for i = 1, 2. Moreover we
assume that hci is the identity for i = 1, 2.

Then for c ∈ D we see that hc ◦Pc : C− V → C− V ′ is a d-fold covering
map. Since hc ◦ Pc ◦ θc ≡ θ′c ◦ Pc1 in ic1(V ), there is a unique way to extend
θc to a homeomorphism so that hc ◦ Pc ◦ θc ≡ θ′c ◦ Pc1 .
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3. Considering that hci is the identity for i = 1, 2, we have Pc2 ◦ θc2 ≡
θ′c2 ◦ Pc1 . Moreover θc1 = θ′c1 = id and for all c ∈ D, the homeomorphism
θ−1
c ◦θ′c is the identity on Kc0∪ic1(

⋃
0<m<l P

m
c0 (w)). So θ−1

c ◦θ′c is the identity
in the post-critical set of Pc1 .

Consider a path γ : [0, 1] → D such that γ(0) = c1 and γ(1) = c2.
Then t 7→ θ−1

γ(t) ◦ θ′γ(t) is an isotopy between id and θ−1
c2 ◦ θ′c2 , relative to the

post-critical set of Pc1 . This means exactly that Pc1 and Pc2 are equivalent in
the sense of Thurston. Therefore Pc1 and Pc2 are holomorphically conjugate;
see [DH3]. Since c1 and c2 are close to c0 we find that c1 = c2, which is a
contradiction.
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