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The gap between I3 and the wholeness axiom

by

Paul Corazza (Fairfield, IA)

Abstract. ∃κ I3(κ) is the assertion that there is an elementary embedding i :Vλ→Vλ
with critical point below λ, and with λ a limit. The Wholeness Axiom, or WA, asserts
that there is a nontrivial elementary embedding j : V → V ; WA is formulated in the
language {∈, j} and has as axioms an Elementarity schema, which asserts that j is ele-
mentary; a Critical Point axiom, which asserts that there is a least ordinal moved by j;
and includes every instance of the Separation schema for j-formulas. Because no instance
of Replacement for j-formulas is included in WA, Kunen’s inconsistency argument is not
applicable. It is known that an I3 embedding i : Vλ → Vλ induces a transitive model
〈Vλ,∈, i〉 of ZFC + WA. We study here the gap in consistency strength between I3 and
WA. We formulate a sequence of axioms 〈In4 : n ∈ ω〉 each of which asserts the existence
of a transitive model of ZFC + WA having strong closure properties. We show that I3
represents the “limit” of the axioms In4 in a sense that is made precise.

1. Introduction. I3(κ) is the statement that there is an elementary
embedding i : Vλ → Vλ having critical point κ, where λ is a limit ordinal.
An I3 embedding is an embedding i : Vλ → Vλ that witnesses I3(κ) for some κ.
The axiom ∃κ I3(κ) arose in the work of Kunen [Ku] who observed that his
proof in KM-set theory that there is no elementary embedding V → V also
showed that there could be no embedding Vλ+2 → Vλ+2; he noted that his
proof did not rule out the possible existence of embeddings Vλ → Vλ (λ a
limit) or Vλ+1 → Vλ+1.

The Wholeness Axiom, or WA, is an axiom schema asserting the ex-
istence of a nontrivial elementary embedding j : V → V , formulated in
the extended language {∈, j}. WA is comprised of an Elementarity schema,
which asserts that j is an elementary embedding; a Nontriviality axiom,
which asserts that for some x, j(x) 6= x; and all instances of the Separation
schema for instances of Separation in which the symbol j occurs—we call
the latter schema Separationj. The Wholeness Axiom was developed in an
effort to formulate a schema asserting the existence of a j : V → V that is
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not provably inconsistent with ZFC via Kunen’s methods, but that retains
“most” of the strength of Reinhardt’s original (inconsistent) version of the
axiom. WA is successful in this regard because, on the one hand, it is known
to imply the existence of most large cardinals; yet, on the other hand, it is
not known to be inconsistent since no instance of Replacement for j formu-
las is assumed. (Such an instance is needed in order to arrive at Kunen’s
inconsistency, because Replacement is what allows one to prove the critical
sequence κ, j(κ), j2(κ), . . . forms a set, and therefore has a supremum. Here,
as usual, jn denotes the nth iterate of j under composition.) The Whole-
ness Axiom has been studied in [Co1]–[Co4] and [Ha]. It is known to have
consistency strength strictly between that of a cardinal that is super-n-huge
for every n and that of the axiom ∃κ I3(κ).

The purpose of this paper is to see “how big” the gap is between WA
and I3. All the well-known large cardinal notions that are weaker than I3
are also known to be weaker than WA, so we would expect the gap to be
“small” in a certain sense. Our approach to the problem is based on the
simple observation that if i : Vλ → Vλ is an I3 embedding, then 〈Vλ,∈, i〉 is a
transitive model of ZFC + WA ([Co3]). Our perspective here is that Vλ is a
highly closed transitive domain for a model of ZFC + WA. This perspective
suggests a way to measure the gap between I3 and WA: Formulate a sequence
of axioms asserting the existence of increasingly closed transitive models of
WA so that in the “limit”, we arrive at I3.

In the third section of this paper, we carry out this plan. We define,
for each m ∈ ω, an axiom Im4 asserting the existence of a certain type of
transitive model of ZFC + WA, and then we proceed to describe the sense
in which I3 represents the limit of these new axioms. Before proceeding with
the main results, we establish some preliminaries in the next section.

In concluding this introduction, we gratefully acknowledge the efforts of
the referee, which led to clarifications in a number of proofs.

2. Preliminaries. We begin with several definitions and propositions,
which form a proper subset of the material developed in [Co1]. The second
half of this section provides a quick review of extenders.

When working with the theory ZFC + WA, we will always be working in
the language L = {∈, j}, where j is a unary function symbol. j-formulas
are L-formulas that have an occurrence of the symbol j. Like ordinary
∈-formulas, L-formulas can be classified into complexity classes; the class
that will concern us here is the Σ0 L-formulas which consist of the L-formulas
in which every quantifier is bound.

We will need to refer to certain subtheories of ZFC + WA. For this pur-
pose, it is helpful to list a number of axioms that pertain to the language
{∈, j} (see [Co1] for a complete list):
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• Elementarity. Each of the following j-sentences is an axiom, where
φ(x1, . . . , xm) is an ∈-formula:

∀x1, . . . , xm (φ(x1, . . . , xm)⇔ φ(j(x1), . . . , j(xm))).

• Critical Point: There is a least ordinal moved by j.

• BTEE: Elementarity + Critical Point.

• Separationj: All instances of Separation for j-formulas.

• Σ0-Separation: All Σ0 instances of Separation for j-formulas.

• Cofinal Axiom: ∀α ∃n ∈ ω (κn exists and α ≤ κn).

• WA: Elementarity + Critical Point + Separationj.

• WA0: Elementarity + Critical Point + Σ0-Separationj.

Whenever Critical Point is included as an axiom in one of our subtheories
of ZFC + WA, the critical point of j is denoted κ; κ is understood to be a
constant added to the language by definitional extension. The reader will
notice that we refer to ‘κ’ in our formulation of the Cofinal Axiom; we
adopt the convention that the Cofinal Axiom is not included in any of our
subtheories unless Critical Point is also included. Moreover, in the Cofinal
Axiom, we define κ0 = κ and, for n ≥ 1, ‘κn’ stands for jn(κ), the nth
iterate of j applied to κ. To formulate this notion precisely, one defines the
relation y = jn(x) as a three-place predicate with an appropriate formula
Φ(n, x, y); then the statement “κn exists” (as in the statement of the Cofinal
Axiom) is simply an abbreviation for “∃y Φ(n, κ, y)”. The formula Φ(n, x, y)
is discussed in detail in [Co1].

The three theories that will concern us in this paper are:

(1) ZFC + BTEE,
(2) ZFC + WA0,
(3) ZFC + WA.

To specify the strengths of these theories, and for later work, let us first
recall the definition of n-huge cardinals and some variants (see [Ka]): For
1 ≤ n < ω, κ is n-huge if there exists an inner model M and an elementary
embedding j : V → M such that crit(j) = κ and M is closed under jn(κ)-
sequences; j(κ) is called the target of j and j is called an n-huge embedding.
κ is super-n-huge if, for every λ > κ, there is an n-huge embedding j such
that crit(j) = κ and j(κ) > λ. An equivalent form of the definition of n-huge
in terms of ultrafilters is well-known (see [Ka]). We state this equivalent form
in a somewhat nonstandard way, in terms of n-huge indexes, for use in later
sections.
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Definition 2.1. Suppose 1 ≤ n < ω, κ is an uncountable cardinal, and
λ > κ. Then λ is an n-huge index for κ if there is a κ-complete normal
ultrafilter U over P (λ) and cardinals κ = λ0 < λ1 < . . . < λn = λ so that
for each i < n, {x ∈ P (λ) : ot(x ∩ λi+1) = λi} ∈ U.

Now, by the usual proof, κ is n-huge if and only if there is an n-huge index
for κ. In that case, the witnessing ultrafilter is called an n-huge ultrafilter
(over P (λ)).

Proposition 2.2. (1) The consistency strength of ZFC + BTEE lies be-
tween that of an ineffable cardinal and that of 0#.

(2) The consistency strength of ZFC + WA lies between that of a cardinal
that is n-huge for every n and the existence of an I3 embedding.

To give the consistency strength of ZFC + WA0 we need to observe that
it is possible in a model of ZFC + WA0 that κn fails to exist for some non-
standard integer n. This peculiar problem (which does not arise in the theory
ZFC + WA) is mollified considerably by part (2) of the following:

Proposition 2.3. (1) The theory ZFC + WA proves

Vκ0 ≺ Vκ1 ≺ . . . ≺ Vκn ≺ . . . ≺ V.
(2) The theory ZFC + WA0 proves that if A is the class of n ∈ ω for

which κn exists, then {κn : n ∈ A} is cofinal in ON, and the Vκn for which
n ∈ A form an elementary chain whose union is V .

As a corollary, we have:

Proposition 2.4. Cofinal Axiom is derivable from each of the theories
ZFC + WA and ZFC + WA0.

Finally, we remark that different kinds of models of the language {∈, j}—
in particular, of the three main theories mentioned above—are possible,
depending on one’s assumptions about the surrounding universe. In this
paper (as in [Co1]), all models will live in a ZFC universe 〈V,∈〉, fixed once
and for all, and in particular, if 〈M,E, i〉 is a model of ZFCj, we assume
i is definable in V . Using the terminology of [Co1], we call such models
sharp-like. An important consequence of this assumption is the following:

Metatheorem 2.5. There is no proper class sharp-like transitive model
of ZFC + WA0; that is, if 〈M,∈, i〉 |= ZFC + WA0 and M is sharp-like and
transitive, then M is a set.

Proof. If 〈M,∈, i〉 |= ZFC + WA0, then in particular the Cofinal Axiom
holds in M . If M is a sharp-like transitive model containing all the ordinals,
(Cofinal Axiom)M would imply that there is a cofinal ω-sequence in the real
class ON of ordinals, violating Replacement. Therefore, if M is transitive,
it must only be a set.
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Metatheorem 2.5 does not rule out the possibility that 〈V,∈, j〉, where
j is an elementary embedding, is a model of ZFC + WA or ZFC + WA0; by
the theorem, though, such a model would not be sharp-like.

We begin the second half of this section with a review of extenders. Our
treatment follows [Ka, Section 26]. As in [Ka], we start with a discussion of
extenders derived from an embedding, though here we restrict attention to
embeddings i : M → M , and to just the (κ, i(κ))-extenders derived from i.
After fixing notation and stating some of the known results, we discuss the
more general M -(κ, λ)-extenders, and conclude with some lemmas that will
be needed in the next section.

For the next few paragraphs, we fix an elementary embedding i : M →M
with critical point κ, where M is a transitive set model (1) of ZFC. Let
λ = i(κ). For a ∈ [λ]<ω, define Ea from i by

Ea = {X ⊆ P (κ|a|) ∩M : a ∈ i(X)}.
Then 〈M,∈, Ea〉 |= “Ea is a κ-complete ultrafilter over [κ]|a|”. For f, g ∈M
with f : [κ]|a| → M and g : [κ]|a| → M , we write f ∼a g iff {b ∈
[κ]|a| : f(b) = g(b)} ∈ Ea. We denote the equivalence class containing
f by [f ]Ea . (Recall that Scott’s trick is used in this step.) Now the ul-
trapower of M by Ea is denoted Ult(M,Ea) and consists of all [f ]Ea for
which f : [κ]|a| → M and f ∈ M . It has a membership relation ∈a de-
fined by [f ]Ea ∈a [g]Ea iff {b ∈ [κ]|a| : f(b) ∈ g(b)} ∈ Ea. This relation is
well-defined. (Ult(M,Ea),∈a) is well-founded; we identify it with its tran-
sitive collapse (Ma,∈). The canonical embedding ja : M → Ma is given by
ja(x) = [cax]Ea , where cax : κ|a| → M is the constant function with value x.
Moreover, ka : Ma →M is defined by ka([f ]Ea) = i(f)(a); it is a well-defined
elementary embedding and i = ka ◦ ja.

The (κ, λ)-extender derived from i is now defined to be

E = 〈Ea : a ∈ [λ]<ω〉.
E gives rise to a directed system of models as follows: Suppose a ⊆ b and that
both are elements of [λ]<ω with |b| = n, |a| = m. Define πba : [κ]n → [κ]m by

πba({ξ1, . . . , ξn}) = {ξi1 , . . . , ξim},(2.1)

where we adopt the convention that elements ξ1, . . . , ξn occur in increasing
order and that if b = {α1 < . . . < αn}, then a = {αi1 , . . . , αim}. Now for
such a, b, define iab : Ma →Mb by

iab([f ]Ea) = [f ◦ πba]Eb .(2.2)

Then iab is a well-defined elementary embedding, and

(1) In [Ka], extenders are developed relative to M that are proper classes, but it is
pointed out in [MS] that the same treatment goes through for transitive set models of
ZFC.
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(a) iab ◦ ja = jb,
(b) kb ◦ iab = ka,
(c) 〈Ma; iab : a ⊆ b, a, b ∈ [λ]<ω〉 is a directed system.

We let 〈ME ,∈E〉 denote the direct limit of this directed system. In or-
der to fix notation, we review the elements of this construction. Let B =
{(a, [f ]Ea) : a ∈ [λ]<ω and [f ]Ea ∈ Ma} (the disjoint union of the classes
{a} ×Ma). Define ∼ on B by

(a, [f ]Ea) ∼ (b, [g]Eb) iff ∃c ⊇ a ∪ b (iac([f ]Ea) = ibc([g]Eb)).

The equivalence class containing (a, [f ]Ea) will be denoted by [a, [f ]Ea]. An
easy computation shows that

(2.3) (a, [f ]Ea) ∼ (b, [g]Eb) iff

∃c ⊇ a ∪ b ({d ∈ [κ]|c| : f(πca(d)) = g(πcb(d))} ∈ Ec).
The membership relation ∈E is defined similarly by

(a, [f ]Ea) ∈E (b, [g]Eb) iff ∃c ⊇ a ∪ b (iac([f ]Ea) ∈c ibc([g]Eb)).

We have the following criterion for membership, analogous to (2.3):

(2.4) (a, [f ]Ea) ∈E (b, [g]Eb) iff

∃c ⊇ a ∪ b ({d ∈ [κ]|c| : f(πca(d)) ∈ g(πcb(d))} ∈ Ec).
The class ME is defined by

ME = {[a, [f ]Ea] : a ∈ [λ]<ω, f : [κ]|a| →M, and f ∈M}.
By an abuse of notation, ME is also denoted Ult(M,E), the extender ul-
trapower of M by E. (ME ,∈E) is well-founded and is therefore identified
with its transitive collapse; both notations—ME and Ult(M,E)—are used
to denote the transitive collapse.

The embeddings kaE : Ma → ME , jE : M → ME , and kE : ME → M
are defined by:

kaE([f ]Ea) = [a, [f ]Ea],

jE(x) = kaE(ja(x)) for some (any) a ∈ [λ]<ω,

kE([a, [f ]Ea]) = i(f)(a).

These functions are well-defined elementary embeddings satisfying the
following relations:

(A) kE ◦ jE = i,
(B) kaE ◦ ja = jE ,
(C) kE ◦ kaE = ka.

An easy computation using (B) yields

jE(x) = [a, [cax]Ea ] for some (any) a ∈ [λ]<ω.(2.5)
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We have the following standard lemma:

Lemma 2.6 [Ka, Lemma 26.1(b),(c)]. Suppose i : M → M is an ele-
mentary embedding with critical point κ. Let λ = i(κ). Let E be the (κ, λ)-
extender derived from i. Let jE : M →ME denote the canonical embedding.
Then:

(1) λ = jE(κ).
(2) If (λ = |Vλ|)M , then V M

λ = V ME
λ .

We turn to a discussion of the abstract notion of an extender:

Definition 2.7 (extenders, [Ka, p. 354]). Suppose M is a transitive set
model of ZFC, κ is a cardinal in M , λ > κ, , and E = 〈Ea : a ∈ [λ]<ω〉. Then
E is an M -(κ, λ)-extender (or simply a (κ, λ)-extender whenever M = V )
if:

(1) For each a ∈ [λ]<ω, 〈M,∈, Ea〉 |= “Ea is a κ-complete ultrafilter over
[κ]|a|”, and:

(a) For at least one such a, 〈M,∈, Ea〉 |= “Ea is not κ+-complete”.

(b) For each ξ∈κ, there is such an a satisfying {s∈ [κ]|a| : ξ ∈ s}∈Ea.

(2) (Coherence) Suppose a ⊆ b are both in [λ]<ω. Then

X ∈ Ea iff {s : πba(s) ∈ X} ∈ Eb,
where πba is defined as in (2.1).

(3) (Well-foundedness) Whenever am ∈ [λ]<ω and Xm ∈ Eam for m ∈ ω,
there is d :

⋃
m am → κ such that d′′am ∈ Xm for every such m.

(4) (Normality) Whenever a ∈ [λ]<ω, f : [κ]|a| →M is an element of M ,
and {s ∈ [κ]|a| : f(s) ∈ max(s)} ∈ Ea, there is a b ∈ [λ]<ω with a ⊆ b such
that

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb,
where πba is defined as in (2.1).

With this definition, one builds a model ME in much the same way
as described earlier: For each a ∈ [λ]<ω, let Ult(M,Ea) be the ultrapower
of M by Ea, again using only functions that lie in M . Since Ult(M,Ea)
is well-founded, we again identify it with its transitive collapse Ma. We
again have the canonical map ja : M → Ma, defined as before. We again
obtain a directed system 〈Ma; iab : a ⊆ b both in [λ]<ω〉, where the maps
iab are defined as before in (2.2). The direct limit ME is obtained exactly
as before, and its membership relation ∈E and the maps kaE , jE have the
same definitions and properties as before (see (A) and (B) above). By an
abuse of notation, ME is sometimes referred to as Ult(M,E), though ME is
not itself an ultrapower. As before (but for different reasons), (ME ,∈E) is
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well-founded, and so we identify it with its transitive collapse. Again, both
ME and Ult(M,E) may be used to denote this transitive collapse.

One difference in the constructions is that we no longer define the maps
ka, a ∈ [λ]<ω, since in the present abstract context, we do not have an
ambient embedding i : M → M ; therefore, properties (c) and (C) above
are no longer relevant here. Also, the analogue to Lemma 2.6 is somewhat
weaker:

Lemma 2.8 [Ka, Lemma 26.2(b)]. Suppose M is a transitive set model
of ZFC, κ is a cardinal in M , λ > κ, E = 〈Ea : a ∈ [λ]<ω〉 is an M -(κ, λ)-
extender , and ME is the direct limit of the corresponding ultrapowers. Then
crit(jE) = κ and jE(κ) ≥ λ.

In Lemma 2.8, it is possible that jE(κ) > λ. Recall that κ is superstrong
if there is a nontrivial elementary embedding j : V →M with critical point
κ such that Vj(κ) ⊆M .

Proposition 2.9 [Ka, Exercise 26.7(c)]. κ is superstrong iff there is a
(κ, λ)-extender E for some λ > κ such that jE(κ) = λ and VjE(κ) ⊆ ME ,
where jE is the canonical embedding.

Actually, in [Ka], the condition “jE(κ)=λ” in Proposition 2.9 is dropped,
since it is not strictly necessary; however, if E is derived from a super-
strong embedding j : V → M with critical point κ, it follows from [Ka,
Lemma 26.1(c)] that jE(κ) = j(κ).

Because Lemma 2.8 is so weak, in order to verify that a given (κ, λ)-
extender E satisfies jE(κ) = λ and Vλ ⊆ ME (whence κ is superstrong),
the easiest approach (one that we will use) is to obtain E from another
embedding, and then make use of Lemma 2.6, or some variation thereof.

The following proposition shows the connection between the two types
of extenders we have discussed:

Proposition 2.10 [Ka, Exercise 26.3(a)]. Suppose i : M → M is an
elementary embedding with critical point κ, where M is a transitive set
model of ZFC. Let E be the (κ, i(κ))-extender derived from i. Then E is an
M -(κ, i(κ))-extender.

We introduce a definition pertaining to superstrong cardinals:

Definition 2.11. Suppose κ is superstrong and λ > κ. Then λ is a
target for κ if there is an elementary embedding j : V → M with critical
point κ such that Vj(κ) ⊆ M and λ = j(κ). Equivalently, λ is a target for
κ if there is a (κ, λ)-extender E such that if jE : V → ME is the canonical
embedding, then jE(κ) = λ and Vλ ⊆ME .

Our last technical lemma of this section recalls the well-known fact that,
in the definition of Normality (Definition 2.7(4)), one may restrict attention
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to functions f whose range lies in a sufficiently large rank. To state this in
the form of a lemma, we introduce two variants of the Normality condition:
NormalityV and NormalityVγ , where γ ≥ κ; NormalityV is what one gets
when M = V in the definition given above.

• NormalityV : Whenever a ∈ [λ]<ω, f : [κ]|a| → V , and {s ∈ [κ]|a| :
f(s) ∈ max(s)} ∈ Ea, there is a b ∈ [λ]<ω with a ⊆ b such that, with
πba as in (2.1),

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb.
Suppose γ ≥ κ.

• NormalityVγ : Whenever a ∈ [λ]<ω, f : [κ]|a| → Vγ , and {s ∈ [κ]|a| :
f(s) ∈ max(s)} ∈ Ea, there is a b ∈ [λ]<ω with a ⊆ b such that, with
πba as in (2.1),

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb.
Lemma 2.12. Suppose γ ≥ κ. Then the following are equivalent :

(1) NormalityV .
(2) NormalityVγ .

Proof. (1)⇒(2) is obvious. For (2)⇒(1), let a ∈ [λ]<ω, f : [κ]|a| → V ,
and assume A ∈ Ea where

A = {s ∈ [κ]|a| : f(s) ∈ max(s)}.
We show that

(2.6) there is a b ∈ [λ]<ω with a ⊆ b such that

{s ∈ [κ]|b| : f(πba(s)) ∈ s} ∈ Eb.
Notice that for all s ∈ A, rank(f(s)) < γ. Define g : [κ]|a| → Vγ by

g(s) =
{
f(s) if s ∈ A,

s if s 6∈ A.

Clearly f�A = g�A. By NormalityVγ , there is a b ∈ [λ]<ω with a ⊆ b such
that B ∈ Eb, where

B = {s ∈ [κ]|b| : g(πba(s)) ∈ s}.
By Coherence, we also have C ∈ Eb, where

C = {s ∈ [κ]|b| : πba(s) ∈ A}.
Then, letting D = B∩C, we have D ∈ Eb as well. We show D ⊆ {s ∈ [κ]|b| :
f(πba(s)) ∈ s}, and this will establish (2.6) and complete the proof. Let
s ∈ D. Then πba(s) ∈ A and g(πba(s)) ∈ s; since f and g agree on A, it
follows that f(πba(s)) ∈ s, as required.
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3. Main results. In this section, we formulate a sequence 〈In4 : n ∈ ω〉
of axioms, each asserting the existence of a transitive model of ZFC + WA
having closure properties that increase in strength as n increases; we show
that, in a sense to be made precise, I3 represents the limit of this sequence
of axioms. To motivate the formulation of these axioms, we begin by con-
sidering several kinds of closure, typically imposed on transitive set models
in studies of this kind. We start by showing that even countable closure of
transitive models of WA is inconsistent, and then turn to three other familiar
notions of closure, which we show are equivalent in this context. Motivated
by this observation, we use these latter notions of closure to formulate our
ω-sequence of axioms In4 . We compare the strengths of these axioms with
known large cardinals and finally demonstrate the sense in which the ax-
ioms In4 “converge” to I3. We begin with an observation that was made in
Section 2:

Proposition 3.1. No transitive model 〈M,∈, i〉 of ZFC + WA0 satisfies
ωM ⊆M .

Proof. Suppose M = 〈M,∈, i〉 |= ZFC + WA0 and ωM ⊆ M . By hy-
pothesis, f : ω → M : n 7→ in(κ) is a set in M . Therefore, the Cofinal
Axiom fails. This contradicts Proposition 2.4.

Theorem 3.2. Suppose 〈M,∈, i〉 is a transitive model of ZFC + WA,
and crit(i) = κ. Let UM = {X ∈ P (κ) ∩M : κ ∈ i(X)}. Then the following
are equivalent :

(1) P (κ) ⊆M .
(2) UM is a κ-complete nonprincipal ultrafilter on κ (in V ).
(3) Vκ+1 ⊆M .
(4) Whenever f : κ→ X and X ⊆ V M

κ , we have f ∈M .

Remark. We use the following elementary facts without special men-
tion (see [Je, p. 21]):

(a) There is a definable bijection Γ : ON×ON → ON having the prop-
erty that for any ordinal α for which

α = ωα (ordinal exponentiation),(3.1)

we have Γ ′′α× α = α.
(b) Every cardinal satisfies (3.1).
(c) The property (3.1) is absolute for transitive models of ZFC.

Proof of (1)⇒(2). Assuming (1), we first show that κ is a regular un-
countable cardinal. Suppose α < κ and f : α → κ (f is a potential witness
to “κ is not a cardinal” or “κ is singular”). We do not know yet that κ is
a cardinal; however, as κ is a cardinal in M , we see that “κ = ωκ” (un-
der ordinal exponentiation) holds in M and therefore in V . Thus, f can be
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coded as a subset of κ using Γ , and hence must already lie in M . But in
M , κ is a regular cardinal, so f must be bounded in M , and hence in V
by absoluteness. Thus, κ is a regular cardinal in V . Finally, since i(ω) = ω,
κ must be uncountable.

By (1), UM = {X ⊆ κ : κ ∈ i(X)}; also, UM is a nonprincipal M -
κ-complete ultrafilter. To prove that it is κ-complete, suppose that S =
{Xα : α < γ} ⊆ UM (where γ < κ). We can code S as the disjoint union of
its elements: Let S = {(α, x) ∈ κ×κ : α < γ and x ∈ Xα}. S in turn can be
coded as a subset of κ using Γ . Thus, S ∈ M , and by M -κ-completeness,⋂
S ∈ UM , as required.

Proof of (2)⇒(3). To begin, observe that P (κ) ⊆M : If X ∈ P (κ) \M ,
then certainly κ \ X 6∈ M , and UM would fail to be an ultrafilter in V ,
violating (2). Next, we prove that (3) holds. We show by induction that for
all α ≤ κ+1, Vα ∈M . Assuming Vα ∈M , the inaccessiblity of κ implies that
there is a γ ≤ κ and a bijection f : γ → Vα with f ∈M . Let X ⊆ Vα. There
is, in V , a set A ⊆ γ such that A = f−1(X). Because P (κ) ⊆ M , A ∈ M .
Thus X = f ′′A ∈ M . This shows that Vα+1 ⊆ M , whence Vα+1 ∈ M . The
limit case is easy, since unions are absolute. This completes the induction,
and we have V M

κ+1 = Vκ+1, as required.

Proof of (3)⇒(4). Given f : κ→ X ⊆ V M
κ , notice f ∈ Vκ+1. The result

follows by (3).

Proof of (4)⇒(1). Let X ⊆ κ and let f : κ → X be a surjection.
Since X ⊆ VM

κ , by (4), f ∈ M . But then X = f ′′κ ∈ M . It follows that
P (κ) ⊆M .

The theorem can be proven for transitive models of ZFC + BTEE—the
full strength of WA (or even WA0) is unnecessary. (Note that in the proof
of (1)⇒(2), we do not need to know whether or not UM is a set in M ; to
establish that it is (apparently) requires an application of Separationj, but
set-hood of UM is not needed for the proof.)

The theorem leads us to the definition of the following sequence {In4 :
n ∈ ω} of axioms:

In4 (κ): there exist sets M, i such that M is transitive, 〈M,∈, i〉 |=
ZFC + WA, crit(i) = κ, and Vin(κ)+1 ⊆M .

In this context, we interpret i0(κ) as κ.
Clearly, I3(κ) implies ∀n ∈ ω In4 (κ). Also notice that I0

4(κ) is already
slightly stronger than WA since it asserts the existence of a transitive model
of WA.

Before proving the large cardinal consequences of each of these axioms,
we first verify that for each n, the axiom In4 (κ) is strong enough to ensure
that in(κ) is a measurable cardinal:
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Proposition 3.3. Assume In4 (κ) is true, with witness 〈M,∈, i〉. Then
in(κ) is a measurable cardinal.

Proof. The case n = 0 follows from the fact that (3)⇒(2) in Theorem 3.2.
For n > 0, let 〈M,∈, i〉 satisfy the properties of In4 (κ). As in the proof of
(1)⇒(2) in Theorem 3.2, note that any function f : α → in(κ) that is a
potential witness to in(κ) being either a noncardinal or a singular cardinal
must already lie in M by coding. Thus in(κ) is, in V , a regular cardinal.
Let U = {X ⊆ κ : κ ∈ i(X)}, defined in M . In M , U is a κ-complete
nonprincipal ultrafilter on κ. By elementarity, in M, in(U) is an in(κ)-
complete nonprincipal ultrafilter on in(κ). Since in(U) ⊆ P (in(κ)) ⊆ M ,
one can use a coding argument as in the proof of (1)⇒(2) of Theorem 3.2
to conclude that in(U) is an in(κ)-complete nonprincipal ultrafilter on in(κ)
in V . The result follows.

Proposition 3.4. I0
4(κ) implies that κ is measurable, and that the set

{α < κ : α is measurable} has normal measure 1.

Proof. Proposition 3.3 shows κ is measurable. Let 〈M,∈, i〉 be a witness
to I0

4(κ). Since U = {X ⊆ κ : κ ∈ i(X)} ∈M , and since for all α < κ, “α is
measurable” is absolute for M , the second clause of the proposition follows,
where U is the required normal measure.

Theorem 3.5. I1
4(κ) implies that κ is superstrong , and that the set

{α < κ : α is superstrong} has normal measure 1.

Proof. Let 〈M,∈, i〉 be a model given by I1
4(κ). Let λ = i(κ). By Prop-

osition 2.10, E = 〈Ea : a ∈ [λ]<ω〉 is an M -(κ, λ)-extender, where Ea =
{X ∈ P ([κ]|a|) ∩M : a ∈ i(X)}. We wish to prove:

(A) E is a (κ, λ)-extender (in V ),
(B) the canonical embedding jE : V → Ult(V,E) satisfies jE(κ) = λ,
(C) Vλ ⊆ Ult(V,E).

The first part of the theorem will then follow by Proposition 2.9.
To prove (A), we verify that conditions (1)–(4) of Definition 2.7 hold true,

with M in each case being replaced by V . Several of the conditions follow
immediately from absoluteness between M and V ; in particular, conditions
(2) and (3) can be verified in this way. Also, for each Ea that is a κ-complete
ultrafilter in V , conditions (1a) and (1b) also hold by absoluteness. What
remains is to verify the following:

(i) Each Ea, a ∈ [i(κ)]<ω, is a κ-complete ultrafilter (in V ).
(ii) NormalityV .

Part (i) follows immediately from our assumption that Vi(κ)+1 ⊆ M . For
(ii), Lemma 2.12 tells us that it suffices to demonstrate NormalityVλ. But
again, NormalityVλ follows immediately from the fact that Vi(κ)+1 ⊆M .
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To prove (B) and (C), we begin with a number of easy observations.
For the next several paragraphs, until indicated otherwise, we let Ult(V,E),
Ult(M,E), and UltM (V,E) denote the “raw” direct limits, prior to applying
the Mostowski collapsing function. (To eliminate possible confusion here, the
notation UltM (V,E) signifies the extender ultrapower construction carried
out entirely in M ; in this context, we understand V to be the “extension” of
the predicate x = x, and so V M = M .) We explicitly refer to the relevant col-
lapsing functions as follows: pE : Ult(V,E)→ VE , pM,E : Ult(M,E)→ME ,
and pME : UltM (V,E) → V M

E , respectively. We denote the corresponding
ultrapower membership relations by ∈E ,∈M,E and ∈ME , respectively. Our
strategy is to show that initial segments of all three of these extender ultra-
powers are isomorphic and that, in fact, their transitive collapse is in every
case equal to Vλ. As we will show, this will establish (B) and (C).

We isolate the relevant “initial segments” as follows. Let

A = {[a, [f ]Ea] : a ∈ [λ]<ω and f : [κ]|a| → Vκ} ⊆ Ult(V,E),

AM = {[a, [f ]Ea] : a ∈ [λ]<ω and f : [κ]|a| → Vκ, f ∈M} ⊆ Ult(M,E),

AM = ({[a, [f ]Ea] : a ∈ [λ]<ω and f : [κ]|a| → Vκ})M ⊆ UltM (V,E).

Before proving that A, AM and AM are equal, we first mention that they
are not equal merely by definition. For instance, to verify that AM = AM ,
we wish to verify the fact that for all a ∈ [λ]<ω and f : [κ]|a| → Vκ in M ,
[a, [f ]Ea] = [a, [f ]Ea ]

M .
Because Scott’s trick is used in the formation of equivalence classes of

the form [f ]Ea in forming the ultrapowers by Ea, all functions g : [κ]|a| → N
(where N = V or N = M , depending on which model we are building)
that belong in the class [f ]Ea , including f : [κ]|a| → Vκ itself, must have the
least possible rank, namely κ. Thus, as a set, [f ]Ea ⊆ Vκ+1. Since the a’s
lie in [λ]<ω, each pair (a, [f ]Ea) has rank below λ, and the class [a, [f ]Ea]
belongs to Vλ+1. Since Vλ+1 ⊆ M , it follows that for each a ∈ [λ]<ω and
each f : [κ]|a| → Vκ, [a, [f ]Ea] is the same set as ([a, [f ]Ea])

M . Moreover, it
is clear that the sets A,AM and AM are equal. It also follows that each of
the structures A = 〈A,∈E〉, AM = 〈AM ,∈M,E〉, and AM = 〈AM ,∈ME 〉 is
well-founded in V . This observation is obvious for A and AM since Ult(V,E)
and Ult(M,E) are themselves well-founded (see the discussion in Section 2
or in [Ka, Chapter 26]). It is perhaps less obvious in the case of AM because
M is not even countably closed, as we showed in Lemma 3.1. However, if
F : ω → AM witnesses ill-foundedness, with F (n) = [an, [fn]Ean ], then

∃{cn : n ≥ 1} ∀n {d : fn(πcnan(d)) ∈ fn−1(πcn−1an−1(d))} ∈ Ecn .(3.2)

In fact, (3.2) is equivalent to ill-foundedness not only of AM , but of AM as
well. This contradicts the fact that AM is well-founded.
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Next we observe that, as ∈-structures, A, AM , and AM are isomorphic.
The proof in each case is easy. We show how to verify AM ∼= AM and leave
the other cases to the reader. We must show that for all a, b ∈ [λ]<ω and all
f : [κ]|a| → Vκ and g : [κ]|b| → Vκ in M ,

[a, [f ]Ea] ∈M,E [b, [g]Eb] iff ([a, [f ]Ea] ∈ME [b, [g]Eb])
M .(3.3)

Using the membership criterion (2.4), the display (3.3) is equivalent to

for some c ⊇ a ∪ b, {d : f(πca(d)) ∈ g(πcb(d))} ∈ Ec
iff (for some c ⊇ a ∪ b, {d : f(πca(d)) ∈ g(πcb(d))} ∈ Ec)M .

Since the statement “for some c ⊇ a ∪ b, {d : f(πca(d)) ∈ g(πcb(d))} ∈ Ec”
is absolute for M (since Vλ+1 ⊆M), the displayed equivalence is true.

The fact that A,AM , and AM are isomorphic leads to the conclusion
that their transitive collapses are all equal. We show that these in turn are
equal to Vλ. We do this by showing that the transitive collapse of AM is
V

Ult(M,E)
λ ; this will suffice because, by Lemma 2.6(2), V Ult(M,E)

λ = Vλ (note
that λ = |Vλ| because λ is inaccessible).

Recalling that pM,E : Ult(M,E)→ME denotes the collapsing function,

we now show that p′′M,EAM = V
Ult(M,E)
λ . Recall λ = i(κ) = (pM,E ◦ iE)(κ),

where iE : M → Ult(M,E) is the canonical embedding and iE(κ) = [a, [caκ]]
for some (any) a ∈ [λ]<ω. Thus, V Ult(M,E)

λ = pM,E([a, [caVκ ]) for some (any)
a ∈ [λ]<ω.

Suppose x ∈ V Ult(M,E)
λ . Let b, g be such that x = pM,E([b, [g]Eb]). Since

x ∈ V
Ult(M,E)
λ , it follows that [b, [g]Eb] ∈M,E [a, [caVκ ]Ea ]. Thus, for some

c ⊇ a ∪ b,
D = {d ∈ [κ]|c| : g(πcb(d)) ∈ Vκ} ∈ Ec.(3.4)

Let B = {e ∈ [κ]|b| : g(e) ∈ Vκ}. By Coherence, B ∈ Eb iff D′ ∈ Ec
where D′ = {d ∈ [κ]|c| : πcb(d) ∈ B}. But this follows easily since D ⊆ D′.
We have shown that g has values in Vκ on the set B ∈ Eb. Define g′ by
g′�B = g�B and g′(e) = 0 if e 6∈ B. Clearly, (b, [g′]Eb) ∼ (b, [g]Eb), and so we
can write x = pM,E([b, [g′]Eb ]) where now the representative function g′ has

range in Vκ. We have shown that V Ult(M,E)
λ ⊆ p′′M,EAM . For the converse,

suppose [b, [g]Eb] ∈ AM with g : [κ]|b| → Vκ. From our work above, it suffices
to prove that for some a ∈ [λ]<ω and c ⊇ a ∪ b, equation (3.4) holds. Let
a ∈ [λ]<ω and c ⊇ a ∪ b be chosen arbitrarily. Defining B as above by
B = {e ∈ [κ]|b| : g(e) ∈ Vκ}, it is clear that B ∈ Eb. By Coherence, we must
have D′ ∈ Ec, where D′ = {d ∈ [κ]|c| : πcb(d) ∈ B}. As is easily checked,
D′ ⊆ D, whence D ∈ Ec, as required.

We have therefore shown that Vλ is a subset of each of the (transitive
collapses of the) extender ultrapower models, namely VE ,ME , and VM

E .
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Next we wish to show that the canonical embeddings all take on the same
value at κ. For the rest of the proof of the theorem, we return to the point
of view that each of Ult(V,E), Ult(M,E) and UltM (V,E) is identified with
its transitive collapse. As a matter of notation, we denote the canonical
embeddings as follows:

jE : V → Ult(V,E), iE : M → Ult(M,E), jME : M → UltM (V,E).

By Lemma 2.6, iE(κ) = λ. We compute jE(κ): Suppose [b, [g]Eb] ∈E [a, [caκ]].
For some c ⊇ a ∪ b, {d : g(πcb(d)) ∈ κ} ∈ Ec. Reasoning as above, it follows
that on a set in Eb, g takes values in Vκ, and therefore the (transitive collapse
of) [b, [g]Eb] lies in Vλ. Therefore jE(κ) ≤ λ. But by Lemma 2.8, jE(κ) ≥ λ,
and the result follows. Exactly the same reasoning shows that jME (κ) = λ.

We have proven (B) and (C). To prove that the set {α < κ : α is super-
strong} has normal measure 1, we first observe thatM |= “κ is superstrong”:
Because Vλ+1 ⊆ M , M |= “E is a (κ, λ)-extender”. As we observed above,
jME (κ) = λ and Vλ ⊆ UltM (V,E). It follows from Proposition 2.9 that κ is
superstrong in M .

The fact that κ is superstrong in M is enough to ensure that those α
below κ that are superstrong in M form a normal measure 1 set; however,
to ensure that such α are also superstrong in V , we need to make fuller use
of elementarity. Recalling Definition 2.11, we observe that

M |= “κ is superstrong and has an inaccessible target < i(λ)”.

(In fact, λ is such a target in M .)
It follows therefore that if U = {X ⊆ κ : κ ∈ i(X)} and X = {α < κ :

(α is superstrong and has an inaccessible target < λ)M}, then X ∈ U . The
following Claim will complete the proof of the theorem; note that the re-
quired normal measure (mentioned in the statement of the theorem) is U .

Claim. For each α in X, α is superstrong.

Proof of Claim. Let α ∈ X and let γ < λ be, in M , an inaccessible target
for α. Moreover, let F be, in M , an (α, γ)-extender for which the canonical
embedding jMF (defined in M) maps α to γ and for which V M

γ = Vγ is a
subset of the resulting extender ultrapower UltM (V, F ). By considering sets
analogous to A, AM , and AM as we did earlier, one can perform a similar
analysis of the models Ult(V, F ), Ult(M,F ) and UltM (V, F ) to conclude
that Vγ is a subset of all of them and that the canonical embedding in each
case maps α to γ. It follows that α is superstrong, and the Claim is proved.

Theorem 3.6. For each n ≥ 1, In+1
4 (κ) implies that κ is n-huge and

that the set {α < κ : α is n-huge} has normal measure 1.

Proof. Let 〈M,∈, i〉 witness In+1
4 (κ). By Proposition 3.3, in+1(κ) is inac-

cessible. As usual, define an n-huge ultrafilter U ⊆ P (P (in(κ))) by putting
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X ∈ U if and only if X ⊆ P (in(κ)) and i′′(in(κ)) ∈ i(X). The defini-
tion makes sense since i′′(in(κ)) ∈ M . (Note that i′′(in(κ)) lies in a proper
initial segment of in+1(κ), and so must lie in Vin+1(κ).) Verification that
U is an n-huge normal measure involves verifying that U is closed un-
der diagonal intersections, is fine, and contains all collections of the form
{x ∈ P (in(κ)) : ot(x∩ im+1(κ)) = im(κ)} for m < n; all these arguments go
through because the relevant sets lie in Vin+1(κ)+1.

To prove the second part of the theorem, first note that as U ∈ Vin(κ)
⊆ M (and since in(κ) is inaccessible), we have M |= “κ is n-huge”. Let
λ = in(κ). Recalling Definition 2.1, we also have

M |= “κ is n-huge and has an n-huge index below i(λ).”

(In particular, λ itself is an n-huge index for κ in M .) It follows therefore
that if D = {X ⊆ κ : κ ∈ i(X)}, then X ∈ D, where

X = {α < κ : M |= “α is n-huge and has an n-huge index below λ”}.
Since D is a normal measure, the proof of the second part of the theorem
will be complete after we have demonstrated the following claim:

Claim. For all α ∈ X, α is n-huge (in V ).

Proof of Claim. Given α ∈ X, let γα be, in M , an n-huge index for α
such that γα < λ. It follows that there is a Uα ∈M such that

M |= “Uα is an n-huge ultrafilter on P (γα).”

Since Uα ∈ Vin(κ) ⊆M and in(κ) is inaccessible, Uα is an n-huge ultrafilter
on P (γα) in V . It follows that α is n-huge in V .

We do not believe that ∀n In4 (κ) implies I3(κ), but we do not have a
proof. We can show, however, that if we have embeddings in : Mn → Mn,
n ∈ ω, each witnessing In4 (κ) and collectively exhibiting enough “coherence”,
then we can obtain I3(κ). We will need the following definition:

Definition 3.7 (coherence of I4 embeddings). Suppose that I =
{in : Mn → Mn | n ∈ ω} is an enumeration of elementary embeddings,
all having critical point κ. Then I is called I4(κ)-coherent if for each n,
〈Mn,∈, in〉 witnesses In4 (κ), and for each m < n,

im�Vκ(m)+1 = in�Vκ(m)+1,(3.5)

where κ(m) = imm(κ) for each m ≥ 1 and κ(0) = κ.

In the theorem below, we show that an I3 embedding can be obtained
from an I4(κ)-coherent set of embeddings by taking an appropriate “limit.”

Theorem 3.8. The following are equivalent :

(1) I3(κ).
(2) There is an I4(κ)-coherent set of embeddings.
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Proof. For (1)⇒(2), letMn = Vλ and in = i for each n, where i : Vλ → Vλ
is an I3 embedding. For (2)⇒(1), let {in : Mn → Mn | n ∈ ω} be an
I4(κ)-coherent set of embeddings, and as in the definition of coherence, let
κ(m) = imm(κ) for each m ≥ 1, and κ(0) = κ. Let λ = sup{κ(m) : m ∈ ω}.
Then Vλ =

⋃
m∈ω Vκ(m) .

Claim. Vκ(0) ≺ Vκ(1) ≺ . . . ≺ Vκ(n) ≺ . . . ≺ Vλ forms an elementary
chain.

Proof of Claim. It suffices to show that Vκ(n) ≺ Vκ(n+1) for all n. Clearly,

Vκ ≺ Vκ(1) .(3.6)

We wish to apply the embedding inn to (3.6). First, we observe that by (3.5),

(a) for all n ≥ 1, in(i1(κ)) = in+1(i1(κ)); so by induction on n, inn(i1(κ))
= inn+1(i1(κ)),

(b) for all n ∈ ω, i1(κ) = in+1(κ).

Applying (a) and (b), we obtain

inn(κ(1)) = inn(i1(κ)) = inn+1(i1(κ)) = inn+1(in+1(κ)) = κ(n+1).

Now, applying inn to (3.6) yields Vκ(n) ≺ Vκ(n+1) , as required.

Continuation of proof of Theorem. We define i : Vλ → Vλ by i(x) =
im(x) for some (any) m for which x ∈ Vκ(m) . That i is well-defined fol-
lows from (3.5). To prove that i is elementary, we use the Tarski–Vaught
criterion: For a given φ(x, y) and set c ∈ Vλ, we show that if for some
b ∈ Vλ, Vλ |= φ[b, i(c)], then there is a ∈ Vλ such that Vλ |= φ[i(a), i(c)]. Let
n be such that b, c ∈ Vκ(n) . By the definition of i, i(c) = in+1(c). By the claim,
Vκ(n+1) ≺ Vλ. Hence Vκ(n+1) |= φ[b, in+1(c)]. Using (3.5), it is easy to verify
that in+1�Vκ(n) : Vκ(n) → Vκ(n+1) is elementary. Thus, there is a ∈ Vκ(n) such
that Vκ(n+1) |= φ[in+1(a), in+1(c)]. It follows that Vλ |= φ[in+1(a), in+1(c)]
and Vλ |= φ[i(a), i(c)]. Thus i : Vλ → Vλ is elementary and the result fol-
lows.

4. Open questions. The axioms In4 clearly appear to grow in strength
as n increases, but we are unable to prove this:

Question 1. Show that if m<n, then ZFC+In4 (κ) ` Con(ZFC +Im4 (κ)).

In a similar vein:

Question 2. Is there a model of ZFC + (∀n ∈ ω In4 (κ)) + ¬I3(κ)?
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