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Sturdy frames of type (2, 2) algebras
and their applications to semirings

by

X. Z. Zhao (Xi’an), Y. Q. Guo (Beibei) and
K. P. Shum (Hong Kong)

Abstract. We introduce sturdy frames of type (2, 2) algebras, which are a common
generalization of sturdy semilattices of semigroups and of distributive lattices of rings
in the theory of semirings. By using sturdy frames, we are able to characterize some
semirings. In particular, some results on semirings recently obtained by Bandelt, Petrich
and Ghosh can be extended and generalized.

1. Introduction. A strong semilattice of semigroups Sα, denoted by
[Y ;Sα;ψα,β], is called a sturdy semilattice of semigroups if the set of struc-
ture homomorphisms ψα,β which map Sα into Sβ for α ≥ β is a transitive
system and in addition, all mappings ψα,β are one-to-one. We usually denote
a sturdy semilattice of semigroups Sα by 〈Y ;Sα;ψα,β〉. Sturdy semilattices
of semigroups were first introduced by Petrich and Reilly [7]. They are an
important tool for the construction of some semigroups of certain varieties.
In the investigation of semirings, S. Ghosh [2] has recently introduced dis-
tributive lattices of rings. On the other hand, in the study of the structure
of idempotent semirings, Sen, Guo and Shum [9] have defined the concept
of a distributive lattice of semirings.

In this paper, we introduce the concept of a sturdy frame of type (2, 2)
algebras which is a common generalization of the above two concepts. We
will show that by using sturdy frames of type (2, 2) algebras, we can char-
acterize some important varieties of semirings. In particular, some results
on semirings obtained by H. J. Bandelt and M. Petrich [1] and S. Ghosh [2]
are extended and generalized.
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By a frame B, we mean a type (2, 2) algebra (B,+, ·) endowed with an
upper semilattice order ≤ satisfying the following frame conditions:

a+ b ≤ a ∨ b, ab ≤ a ∨ b,
for all a, b ∈ B, where a ∨ b = lub(a, b).

Clearly, a lattice is a frame. Also any semilattice Y can be regarded as a
frame because we can consider it as a type (2, 2) algebra on which addition
and multiplication coincide and the partial order is an upper semilattice
order ≤ defined by

a ≤ b ⇔ ab = b

for any a, b ∈ Y.
By an upper semilattice type (2, 2) algebra, we mean a semilattice ordered

type (2, 2) algebra (B,+, ·) satisfying the identity

x+ x ≈ x · x ≈ x
with an upper semilattice order ≤ compatible with both addition and mul-
tiplication on B. Let (B,+, ·,≤) be an upper semilattice type (2, 2) algebra.
Then B is clearly an upper semilattice. Since a ≤ a ∨ b for any a, b ∈ B,
we have a + b ≤ a + a ∨ b ≤ a ∨ b + a ∨ b = a ∨ b. Similarly, ab ≤ a ∨ b.
Thus, (B,+, ·,≤) satisfies the frame conditions. In other words, an upper
semilattice type (2, 2) algebra is always a frame.

The converse is not necessarily true; for example, let S be a frame with
the following additive reduct (S,+) and multiplicative reduct (S, ·):

+ a b 0

a a b a

b b b b

0 a b 0

· a b 0

a a a 0

b b b 0

0 0 0 0

together with an upper semilattice order defined by u ≤ v if and only if
uv = vu = u. Then S is not an upper semilattice type (2, 2) algebra because
a ∨ b = 0, b ≤ 0, but b+ a = b 6≤ a = 0 + a.

Similar to the construction of a sturdy semilattice of semigroups, we can
also define a sturdy frame of type (2, 2) algebras.

Let {(Sα,+, ·) | α ∈ B} be a family of disjoint type (2, 2) algebras
indexed by a frame B. Let ϕα,β : Sα → Sβ (α ≤ β) be a family of monomor-
phisms satisfying the following conditions: for any α, β, γ ∈ B,

(i) ϕα,α = 1Sα ;
(ii) if α ≤ β ≤ γ, then ϕα,βϕβ,γ = ϕα,γ;

(iii) if α ∨ β ≤ γ, then

Sαϕα,γ + Sβϕβ,γ ⊆ Sα+βϕα+β,γ,(1)

Sαϕα,γ · Sβϕβ,γ ⊆ Sαβϕαβ,γ .(2)
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Now, we form the set union S =
⋃
α∈BSα and define addition and multipli-

cation on S by

a+ b = (aϕα,α∨β + bϕβ,α∨β)ϕ−1
α+β,α∨β,(3)

ab = (aϕα,α∨βbϕβ,α∨β)ϕ−1
αβ,α∨β,(4)

for any a ∈ Sα, b ∈ Sβ . We can easily check that (S,+, ·) forms a type (2, 2)
algebra, denoted by S = 〈B,≤ Sα, ϕα,β〉. We call it the sturdy frame of the
type (2, 2) algebras Sα on the frame B.

It is clear that sturdy semilattices of semigroups studied by Petrich and
Reilly [7], distributive lattices of rings studied by S. Ghosh [2], and distribu-
tive lattices of semirings studied by other authors in [1], [4], [6], [9] are all
special cases of sturdy frames of type (2, 2) algebras because semilattices
and distributive lattices are frames and a semigroup can always be regarded
as a type (2, 2) algebra on which addition and multiplication coincide. We
will see that sturdy frames of type (2, 2) algebras provide a new tool in the
investigation of semirings.

Because a semiring (S,+, ·) is a type (2, 2) algebra whose additive and
multiplicative reducts are both semigroups and multiplication distributes
over addition, we can study the structure of a semiring by using the proper-
ties of its reducts. We now call a semiring (S,+, ·) an A-completely regular
semiring if it is a union of some subsemirings whose additive reducts are
rectangular groups. We will show that if a type (2, 2) algebra S is repre-
sented by a sturdy frame of type (2, 2) algebras on a frame B, then S can
be constructed as a subdirect product of the frame B and a type (2, 2) fac-
tor algebra S/θ, where θ is a congruence on S. This result is particularly
useful in the study of varieties of type (2, 2) algebras. For example, if S is
an A-completely regular semiring, then we can show that S is a subdirect
product of a semiring whose additive reduct is a rectangular group and an
idempotent semiring with semilattice additive reduct. This is equivalent to
saying that (S,+) is a subdirect product of a rectangular group and a semi-
lattice. Some other characterization theorems for idempotent semirings can
also be obtained by using sturdy frames of type (2, 2) algebras. In fact, many
of our results generalize the results recently obtained by S. Ghosh [2].

Throughout this paper, we denote the class of all semirings with com-
pletely regular additive reducts by CR+, the class of all semirings with
completely simple additive reducts by CS+, the class of all semirings whose
additive reducts are rectangular groups by ReG+, the class of all idempotent
semirings whose additive reducts are semilattices by S`+, and the class of
all idempotent semirings whose multiplicative reducts are rectangular bands
by R•. We also denote Green’s D-relation on the semiring additive [multi-

plicative] reduct by
+
D [Ḋ]. For other notation and terminology not explained
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in this paper, the reader is referred to Grätzer [3], Howie [5] or Petrich and
Reilly [7].

2. Properties of sturdy frames of type (2, 2) algebras. In this
section, we study some properties of sturdy frames of type (2, 2) algebras.
We will show that some results on semirings obtained by S. Ghosh [2] are
corollaries of our results.

Theorem 2.1. Let V be the variety of type (2, 2) algebras. If for all
α ∈ B, the frame B and the type (2, 2) algebras Sα are in the variety V,
then the sturdy frame S = 〈B,≤;Sα, ϕα,β〉 of the type (2, 2) algebras Sα on
the frame B is also in V.

Proof. We only need to consider a term T (x1, . . . , xn) over the set
{x1, . . . , xn}. We first claim that for all ai ∈ Sαi , we have

T (a1, . . . , an) = T (a1ϕα1,α0 , a2ϕα2,α0 , . . . , anϕαn,α0)ϕ−1
T (α1,α2,...,αn),α0

,

where α0 = lub(α1, . . . , αn) ∈ B, and therefore T (a1, . . . , an) ∈ ST (α1,...,αn).

In fact, if T (x1, . . . , xn) = xi, then

T (a1, . . . , an) = ai = (aiϕαi,α0)ϕ−1
αi,α0

= (T (a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
T (α1,...,αn),α0

.

Hence, our claim is established.
Now, to T1(x1, . . . , xn) and T2(x1, . . . , xn), we assign the following sym-

bols:

α = T1(α1, . . . , αn), β = T2(α1, . . . , αn),

T1(a1, . . . , an) = T1(a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
α,α0

,

T2(a1, . . . , an) = T2(a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
β,α0

.

Then for T (x1, . . . xn) = T1(x1, . . . , xn) + T2(x1, . . . , xn), we can write

T (a1, . . . , an) = T1(a1, . . . , an) + T2(a1, . . . , an)

= T1(a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
α,α0

+ T2(a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
β,α0

.

= {(T1(a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
α,α0

)ϕα,α∨β

+ (T2(a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
β,α0

)ϕβ,α∨β}ϕ−1
α+β,α∨β

= {T1(a1ϕα1,α0 , , . . . , anϕαn,α0)(ϕ−1
α,α0

ϕα,α∨β)

+ T2(a1ϕα1,α0 , . . . , anϕαn,α0)(ϕ−1
β,α0

ϕβ,α∨β)}ϕ−1
α+β,α∨bβ



Sturdy frames of type (2, 2) algebras 73

= {T1(a1ϕα1,α0 , . . . , anϕαn,α0)ϕα0,α∨β

+ T2(a1ϕα1,α0 , . . . , anϕαn,α0)ϕα0,α∨β}ϕ−1
α+β,α∨β

= {T1(a1ϕα1,α0ϕα0,α∨β, . . . , anϕαn,α0ϕα0,α∨β)

+ T2(a1ϕα1,α0ϕα0,α,∨β , . . . , anϕαn,α0ϕα0,α∨β)}ϕ−1
α+β,α∨β

= {T1(a1ϕα1,α∨β, . . . , anϕαn,α∨β)

+ T2(a1ϕα1,α∨β , . . . , anϕαn,α∨β)}ϕ−1
α+β,α∨β

= T (a1ϕα1,α∨β , . . . , anϕαn,α∨β)ϕ−1
α+β,α∨β

= (T (a1ϕα1,α∨β, . . . , anϕαn,α∨β)(ϕα,∨β,α0ϕ
−1
α∨β,α0

)ϕ−1
α+β,α∨β

= (T (a1ϕα1,α∨β, . . . , anϕαn,α∨β)ϕα∨β,α0)(ϕ−1
α∨β,α0

ϕ−1
α+β,α∨β)

= T (a1ϕα1,α∨βϕα∨β,α0 , . . . , anϕαn,α∨βϕα∨β,α0)(ϕα+β,α∨βϕα∨β,α0)−1

= T (a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
α+β,α0

= T (a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
T (α1,α2,...,αn),α0

.

For T = T1 · T2, we can similarly write

T (a1, . . . , an) = T (a1ϕα1,α0 , . . . , anϕαn,α0)ϕ−1
T (α1,...,αn),α0

.

As a consequence of our claim, we can easily see that if the frame (B,+, ·)
and each type (2, 2) algebra (Sα,+, ·) (α ∈ B) satisfy an identity then
the sturdy frame S also satisfies the same identity. Thus, Theorem 2.1 is
proved.

By Theorem 2.1, we can immediately see that if the frame B and
all type (2, 2) algebras Sα (α ∈ B) are semirings, then the sturdy frame
〈B,≤;Sα, ϕα,β〉 is also a semiring. In particular, Theorem 1.2 of [2] becomes
a special case of our Theorem 2.1 when the frame B is a distributive lattice
on which the upper semilattice order ≤ is defined by

a ≤ b if and only if a+ b = b,

and all the semirings Sα are rings.

Theorem 2.2. Define a binary relation θ on S = 〈B,≤;Sα, ϕα,β〉 by

aθb ⇔ aϕα,α∨β = bϕβ,α∨β

for any a, b ∈ S. Then θ is a congruence on S and S is a subdirect product
of B and S/θ.

Proof. It is clear that θ is reflexive and symmetric. To see that it is
transitive, we let a ∈ Sα, b ∈ Sβ , and c ∈ Sγ , where α, β, γ ∈ B. Assume
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that aθb and bθc. Then

aϕα,α∨β = bϕβ,α∨β , bϕβ,β∨γ = cϕγ,β∨γ .

Consequently,

aϕα,α∨β∨γ = aϕα,α∨βϕα∨β,α∨β∨γ = bϕβ,α∨βϕα∨β,α∨β∨γ
= bϕβ,α∨β∨γ = bϕβ,β∨γϕβ∨γ,α∨β∨γ
= cϕγ,β∨γϕβ∨γ,α∨β∨γ = cϕγ,α∨β∨γ .

Thus,

aϕα,α∨γ = a(ϕα,α∨β∨γϕ
−1
α∨γ,α∨β∨γ) = (aϕα,α∨β∨γ)ϕ−1

α∨γ,α∨β∨γ
= (cϕγ,α∨β∨γ)ϕ−1

α∨γ,α∨β∨γ = cϕγ,α∨γ .

This shows that aθc and hence θ is transitive. In other words, θ is an equiv-
alence relation on S.

To show that θ is a congruence relation on S, we first assume that aθb.
Then aϕα,α∨β = bϕβ,α∨β . Now, for the term T (x1, x2) = x1 + x2, x2 + x1,
x1x2, or x2x1, we have

T (a, c)ϕT (α,γ),α∨β∨γ

= (T (aϕα,α∨γ, cϕγ,α∨γ)ϕ−1
T (α,γ),α∨γ)ϕT (α,γ),α∨β∨γ

= (T (aϕα,α∨γ, cϕγ,α∨γ)ϕ−1
T (α,γ),α∨γ)ϕT (α,γ),α∨γϕα∨γ,α∨β∨γ

= T (aϕα,α∨γ , cϕγ,α∨γ)ϕα∨γ,α∨β∨γ

= T (aϕα,α∨γϕα∨γ,α∨β∨γ , cϕγ,α∨γϕα∨γ,α∨β∨γ)

= T (aϕα,α∨β∨γ , cϕγ,α∨β∨γ)

= T (aϕα,α∨βϕα∨β,α∨β∨γ , cϕγ,α∨β∨γ)

= T (bϕβ,α∨βϕα∨β,α∨β∨γ , cϕγ,α∨β∨γ)

= T (bϕβ,α∨β∨γ , cϕγ,α∨β∨γ) = T (b, c)ϕT (β,γ),α∨β∨γ .

This leads to

T (a, c)ϕT (α,γ),T (α,γ)∨T (βγ) = T (a, c)ϕT (α,γ),α∨β∨γϕ
−1
T (α,γ)∨T (βγ),α∨β∨γ

= T (b, c)ϕT (β,γ),α∨β∨γϕ
−1
T (α,γ)∨T (βγ),α∨β∨γ

= T (b, c)ϕT (β,γ),T (α,γ)∨T (βγ).

Thus, we have shown that T (a, c)θT (b, c), and θ is a congruence on S =⋃
α∈B Sα.

Finally, we can easily verify that the mapping ψ : S → B×(S/θ), defined
by aψ = (α, aθ) for any a ∈ Sα (α ∈ B), is a monomorphism, and also the
projections which map Sψ onto B and S/θ respectively are homomorphisms.
Therefore, S is a subdirect product of B and S/θ.
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Remark. In Theorem 2.2, we can see that S/θ is a direct limit of certain
subalgebras A = 〈A,≤;Sα, ϕα,β〉 [4, pp. 128–139].

Since B is a factor of the subdirect product decomposition of S by The-
orem 2.2 and every Sα is a subalgebra of S, we see that if S satisfies a given
identity, then B and every Sα also satisfy the same identity. Thus, using
Theorem 2.1, we deduce the following theorem.

Theorem 2.3. The frame (B,+, ·) and every type (2, 2) algebra (Sα,+, ·)
(α∈B) satisfy a given identity if and only if the sturdy frame 〈B,≤;Sα, ϕα,β〉
also satisfies the same identity.

3. A-completely regular semirings. Recall that a completely regular
semigroup is a union of groups. In particular, a semigroup is completely
regular if and only if it is a semilattice of completely simple semigroups.
An orthodox completely simple semigroup is called a rectangular group. We
will use the symbols CR+, CS+ and S`+ to denote the classes of semirings
defined in the introduction.

We define S = W ◦V to be the Mal’tsev product of the classes W and
V of semirings if there exists a congruence % on S with S/% ∈ V and all
%-classes that are subsemirings are in W.

We now study the Mal’tsev product of two important classes of semirings,
namely CS+ and S`+.

Lemma 3.1. The following conditions on a semiring S are equivalent.

(i) S is a union of subsemirings which are members of CS+.
(ii) S is a disjoint union of subsemirings which are the members of CS+.

(iii) S is in the Mal’tsev product CS+ ◦ S`+.

(iv) S is in CR+ and every
+
D-class of S is a subsemiring of S.

Proof. (iii)⇒(ii) and (ii)⇒(i) are trivial. To prove that (iv)⇒(iii), sup-
pose that (iv) holds. Then the semiring S is in CR+, i.e., (S,+) is a com-

pletely regular semigroup. In this case, we immediately see that Green’s
+
D

relation is a congruence on S. Also, by our assumption, every
+
D-class of S

is a subsemiring of S. Hence every
+
D-class of S is in CS+ and so the factor

semiring S/
+
D is an idempotent semiring in S`+. This implies that S is in

CS+ ◦ S`+.
(i)⇒(iv). Assume that S is the union of subsemirings Sα which are mem-

bers of CS+. Then S is in CR+. Also, since each Sα is in CS+, Sα is con-

tained in a
+
D-class of S. This implies that every

+
D-class of S is a subsemiring

of S.
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Definition 3.2. A semiring is said to be A-completely regular if it sat-
isfies the conditions in Lemma 3.1.

Semirings which are unions of rings are special A-completely regular
semirings. The structure of A-completely regular semirings has recently been
investigated by Pastijn and Guo [6].

Lemma 3.3. If we define an upper semilattice order ≤ on a semiring
B ∈ S`+ by

a ≤ b ⇔ a+ b = b,

then B becomes a frame.

Proof. Assume that B ∈ S`+, i.e, B is an idempotent semiring whose
additive reduct is indeed a semilattice. Define an upper semilattice order on
B as in the lemma. Then

(a+ b) + a ∨ b = a+ (b+ a ∨ b) = a+ a ∨ b = a ∨ b
and

ab+ a ∨ b = ab+ (a+ b+ a ∨ b) = (ab+ a+ b) + a ∨ b
= (ab+ (a+ b)2) + a ∨ b = (ab+ a2 + ab+ ba+ b2) + a ∨ b
= (a+ ab+ ba+ b) + a ∨ b = (a+ b) + a ∨ b = a ∨ b.

These equalities imply that a+b ≤ a∨b and ab ≤ a∨b. Hence, B is a frame,
as required.

Lemma 3.4. Let S be an A-completely regular semiring. Then S is a
sturdy frame 〈B,≤;Sα, ϕα,β〉 of semirings in the class ReG+, where B is
the frame as described in Lemma 3.3, if and only if the additive reduct (S,+)
is a sturdy semilattice of rectangular groups.

Proof. The necessity part is evident. We only need to prove the suf-
ficiency. Let S be an A-completely regular semiring. Assume that (S,+)
is a sturdy semilattice of rectangular groups. Then, by Theorem IV.1.6,
Lemma IV.1.7, and Theorem IV.3.6 of [1], we can express (S,+) =
〈B;Sα, ϕα,β〉 as a sturdy semilattice of additive semigroups Sα, where B

is the quotient semiring S/
+
D and each Sα is a

+
D-class of S; moreover, each

ϕα,β is a monomorphism which maps the rectangular group (Sα,+) into
(Sβ ,+), and aϕα,β is the unique element of Sβ satisfying a ≤ aϕα,β.

Now, by Lemma 3.1, we immediately see that B = S/
+
D is an idempotent

semiring. Furthermore, according to Lemma 3.3, B is a frame.
On the other hand, by our assumption and Lemma 3.1, we can see that

the
+
D-classes of S, i.e., the semirings Sα, are members of CS+.
We now prove that every ϕα,β is a monomorphism from Sα to Sβ. For

any α, β ∈ B with α ≤ β and a, b ∈ Sα, c, d ∈ Sβ satisfying a ≤ c (i.e.,
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aϕα,β = c) and b ≤ d (i.e., bϕα,β = d), we may take e, f, g, h ∈ E+(Sβ)
such that c = e + a = a + g and d = f + b = b + h. Thus, we have
cd = (e+a)(f+b) = ef+af+eb+ab = (a+g)(b+h) = ab+gb+ah+gh. By
Lemma 1.1 in [6], we see that every element in the set {ef, af, eb, gb, ah, gh}
is in E+(S). On the other hand, by Theorem II.5.3 and Corollary III.5.3 of
[1], we see that E+(S) forms a subband of (S,+). Hence, both ef + af + eb
and gb+ ah+ gh are in E+(S). Furthermore, we get cd ≤ ab. This implies
that

aϕα,βbϕα,β = cd = abϕα,β

and hence every mapping ϕα,β is a semiring monomorphism from Sα to Sβ .
Finally, it is trivial to see that for any a ∈ Sα, b ∈ Sβ, we have

a+ b = (aϕα,α∨β + bϕβ,α∨β)ϕ−1
α+β,α∨β, ab = (aϕα,α∨βbϕβ,α∨β)ϕ−1

αβ,α∨β.

This proves that S = 〈B,≤;Sα, ϕα,β〉 is indeed a sturdy frame of semirings
Sα, where every Sα is in ReG+.

As a consequence of Lemma 3.4, we can deduce the following character-
ization theorem for ReG+ semirings.

Theorem 3.5. Let S be an A-completely regular semiring. Then S is a
subdirect product of a semiring in the class ReG+ and another semiring in
the class S`+ if and only if the additive reduct (S,+) is a subdirect product
of a rectangular group and a semilattice.

Proof. The necessity part is evident. We only need to prove the suffi-
ciency. Assume that S is an A-completely regular semiring, and (S,+) is a
subdirect product of a rectangular group and a semilattice. Then, by The-
orem II.5.3, Corollary III.5.3 and Theorem IV.3.6 of [1], (S,+) is a sturdy
semilattice of rectangular groups. Then, by Lemma 3.4, S = 〈B,≤;Sα, ϕα,β〉
is a sturdy frame of semirings, where B is the frame described in Lemma 3.3

and each semiring Sα is a
+
D-class of S in the class ReG+. Also, if we define

a binary relation θ on S by

aθb ⇔ aϕα,α∨β = bϕβ,α∨β ,

then, by Theorem 2.2, θ is a congruence on S. Consequently, S can be
expressed as a subdirect product of B and S/θ. Also, it can be easily seen
that (S/θ,+) is a rectangular group, as required.

By using the concept of the sturdy frame of type (2, 2) algebras, we are
now able to give another proof of Lemma 3.4 of [6].

We first let A be a semiring in the Mal’tsev product Ri ◦ S`+, where
Ri denotes the class of all rings. Then Green’s H+-relation on the additive
reduct (A,+) is the least S`+-congruence on A, and I = A/H+ ∈ S`+ is
the frame described in Lemma 3.3. Now, we consider the ring RA associated
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with the semiring A, defined by Pastijn and Guo [6]. For any α ∈ I, we let

S′α =
{∑

i∈I
ai ∈ RA

∣∣∣ if ai 6= 0i, then i ≤ α
}

and Sα = (α, S′α). We can see that every S ′α is clearly a subring of RA and
Sα ⊆ Sβ for any α ≤ β ∈ I. Clearly, every S ′α with coordinatewise opera-
tions is a ring which is isomorphic to Sα. We now define a monomorphism
ϕα,β of S′α to S′β for α ≤ β by ϕα,β(α,

∑
i∈I ai) = (β,

∑
i∈I ai). Then, by

Theorem 2.2, the sturdy frame 〈I,≤;Sα, ϕα,β〉 is a subdirect product of I
and RA. Moreover, we can easily check that it is exactly the semiring TA of
[6]. This shows that Lemma 3.4 of [6] holds.

As an analogy of a well known result that every Clifford semigroup has
an E-unitary cover (Lemma IV.4.4 of [7]), Pastijn and Guo [6] also defined a
homomorphism ϕ of the semiring TA to the semiring A so that ϕ separates
the additive idempotents of the semiring A (Lemma 3.5 of [6]). The above
results are particularly important in the study of the semiring variety O
introduced by Pastijn and Guo [6].

4. Semirings whose additive reducts are semilattices. In this sec-
tion, we study the structure of idempotent semirings whose additive reducts
are semilattices. A structure theorem for this kind of idempotent semirings
is given.

Lemma 4.1. Let S be an idempotent semiring whose additive reduct is a
semilattice, i.e., S ∈ S`+. Then S satisfies the identities

x+ y + xy = x+ y, x+ y + yx = x+ y.

Proof. The proof is straightforward and is hence omitted.

A (meet) distributive bisemilattice B is an idempotent semiring satisfying
the following identities:

x+ y = y + x, xy = yx.

As an analogy of Lemma 3.3, we have the following lemma.

Lemma 4.2. Let B be a distributive bisemilattice. If ≤ is an upper semi-
lattice order on B defined by

a ≤ b ⇔ ab = b,

then B is a frame.

Theorem 4.3. Let S be an idempotent semiring whose additive reduct
is a semilattice. Then S can be expressed as a sturdy frame 〈B,≤;Sα, ϕα,β〉
of semirings Sα in the class R• on the frame B as described in Lemma 4.2
if and only if (S, ·) is a sturdy semilattice of rectangular bands.
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Proof. The necessity part is evident. For the sufficiency, we consider
an idempotent semiring S whose mutiplicative reduct (S, ·) is a sturdy
semilattice of rectangular bands. Also, we may assume that the semigroup
(S, ·) = 〈B;Sα, ϕα,β〉 is a sturdy semilattice B of rectangular bands Sα,
where B = S/Ḋ and each Sα is a Ḋ-class of S and each ϕα,β (α ≤ β), de-
fined by aϕα,β = b for the unique element b of Sβ such that ab = ba = b, is
a monomorphism from the rectangular band (Sα, ·) to the rectangular band
(Sβ , ·) (refer to Proposition IV.6.1 of [1], and Propositions 4.6.13 and 4.6.14
of [2]).

To prove that S = 〈B;Sα, ϕα,β〉 is a sturdy frame of some members Sα
of R• on the frame B as described in Lemma 4.2, we need to prove that
Ḋ is also a congruence on the semiring S. Since (S, ·) is a normal band, it
satisfies the identity xyzx = xzyx. Thus, if a Ḋ b, by Lemma 4.1, then

(a+ c)(b+ c)(a+ c) = (ab+ cb+ ac+ c)(a+ c)

= aba+ cba+ aca+ ca+ abc+ cbc+ ac+ c

= (a+ aca+ ca+ ac+ c) + cba+ abc+ cbc

= a+ c+ (ac+ aca+ ca) + cba+ abc+ cbc

= a+ c+ cba+ abc+ cbc

= a+ c+ caba+ abac+ cbabc

= a+ c+ ca+ ac+ cabc

= a+ c+ cabac = a+ c+ cac = a+ c

for any a, b, c ∈ S. Also, by interchanging the roles of a and b, we obtain
(b+ c)(a+ c)(b+ c) = b+ c, and consequently, a+ c Ḋ b+ c. This shows that
Ḋ is a congruence on the semiring S. Moreover, it can be easily seen that
B = S/Ḋ is a semiring so that B turns out to be a frame as described in
Lemma 4.2. On the other hand, each Ḋ-class of S is an idempotent semiring
in R•.

Since (S, ·) is a sturdy semilattice of rectangular bands, we may assume
that the semigroup (S, ·) = 〈B;Sα, ϕα,β〉 is a sturdy semilattice B of rect-
angular bands Sα, where B = S/D and each Sα is a D-class of S and each
ϕα,β (α ≤ β) is defined by aϕα,β = b for the unique element b of Sβ such
that ab = ba = b. Also, it follows from Proposition 4.6.14 of [5] and Propo-
sition IV.6.1 of [7] that every mapping ϕα,β (α ≤ β ∈ B) is a semigroup
monomorphism from the rectangular band (Sα, ·) into the rectangular band
(Sβ , ·) such that for any α, β, γ ∈ B, we have

(i) ϕα,α = 1Sα ;
(ii) if α ≤ β ≤ γ, then ϕα,βϕβ,γ = ϕα,γ .

We will next show that for any a ∈ Sα and b ∈ Sβ with α, β ≤ γ ∈ B,
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we have
aϕα,γ + bϕβ,γ = (a+ b)ϕα+β,γ.

In fact, by the definition of ϕ and Lemma 4.1, we can derive the following:

(a+ b)(aϕα,γ + bϕβ,γ)

= a(aϕα,γ) + a(bϕβ,γ) + b(aϕα,γ) + b(bϕβ,γ)

= (aϕα,γ) + a(bϕβ,γ) + b(aϕα,γ) + (bϕβ,γ)

= aϕα,γ + a(bϕβ,γ)(aϕα,γ)(bϕβ,γ) + b(aϕα,γ)(bϕβ,γ)(aϕα,γ) + bϕβ,γ

= aϕα,γ + a(aϕα,γ)(bϕβ,γ)(bϕβ,γ) + b(bϕβ,γ)(aϕα,γ)(aϕα,γ) + bϕβ,γ

= aϕα,γ + (aϕα,γ)(bϕβ,γ) + (bϕβ,γ)(aϕα,γ) + bϕβ,γ

= aϕα,γ + bϕβ,γ .

Dually, we also have

(aϕα,γ + bϕβ,γ)(a+ b) = aϕα,γ + bϕβ,γ .

Therefore,
aϕα,γ + bϕβ,γ = (a+ b)ϕα+β,γ.

Also, if we put α = β in the above formula, then it follows immediately that
every ϕα,β is indeed a monomorphism from the semiring Sα to the semiring
Sβ . This shows that conditions (1) and (3) in the definition of a sturdy frame
of type (2, 2) algebras hold.

On the other hand, we can easily see that for any a ∈ Sα, b ∈ Sβ and
α, β ≤ γ ∈ B, we have

aϕα,γbϕβ,γ = (ab)ϕαβ,γ

and so conditions (2) and (4) are also satisfied.

As a consequence of Theorem 4.3, we obtain immediately the following
corollary, which extends the results of Ghosh [2] and Bandelt and Petrich [1].

Corollary 4.4. Let S be an idempotent semiring whose additive reduct
is a semilattice. Then S is a subdirect product of a bisemilattice and an
idempotent semiring in R• if and only if (S, ·) is a subdirect product of a
semilattice and a rectangular band.
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