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Shadowing in actions of some Abelian groups

by

Sergei Yu. Pilyugin and Sergei B. Tikhomirov (St. Petersburg)

Abstract. We study shadowing properties of continuous actions of the groups Zp
and Zp ×Rp. Necessary and sufficient conditions are given under which a linear action of
Zp on Cm has a Lipschitz shadowing property.

1. Introduction. One of the main fields of the classical theory of dy-
namical systems (i.e., of actions of the groups Z and R) is the theory of
structural stability.

This theory has influenced, in particular, the theory of shadowing of
approximate trajectories (pseudotrajectories) in dynamical systems. At
present, shadowing theory is well developed (see, for example, the mono-
graphs [6, 7]).

In parallell to the classical theory of dynamical systems, global qualita-
tive properties of actions of groups more general than Z and R have been
studied (let us mention structural stability and ergodicity of Anosov actions
[1, 8] and rigidity properties of hyperbolic actions [2, 3]).

In this paper, we study shadowing properties of the groups Zp and
Zp × Rq. We reduce the shadowing problem for a continuous action Φ(n, ·),
where n ∈ Zp, to well known shadowing and expansivity properties of a
single homeomorphism Φ(ν, ·) (Theorem 1). It is shown that a similar result
holds for actions of some infinite-dimensional groups (Theorem 1′).

We give necessary and sufficient conditions under which a linear action
of Zp on Cm has a shadowing property (Theorem 2).

Finally, we study shadowing properties of the group Zp × Rq (Theo-
rem 3).
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2. Actions of Zp. Let (M,%) be a metric space and let H(M) be the
set of homeomorphisms of M . Let G be an Abelian group with operation +.
A continuous action

Φ : G ×M →M(1)

is defined by the following conditions:

(i) Φ(n, ·) ∈ H(M) for n ∈ G;
(ii) Φ(0, x) = x for x ∈M ;

(iii) Φ(n+m, ·) = Φ(n,Φ(m, ·)) for n,m ∈ G.

We begin with actions of the group G = Zp.
Let us introduce some notation. Denote by N(a,A) the a-neighborhood

of a set A ⊂M .
Let I = {1, . . . , p}. Fix n = (n1, . . . , np) ∈ Zp, i ∈ I, and k ∈ Z. We

denote by n(i, k) the element n′ ∈ Zp such that n′j = nj for j ∈ I, j 6= i,
and n′i = ni + k. According to this notation, n(i, 0) = n for any i.

The definition of Φ implies that the homeomorphism

fi,k(n) = Φ(n(i, k), ·) ◦ Φ−1(n, ·)(2)

does not depend on n ∈ Zp. We denote it by fi,k.
Fix a positive number d. We say that a set ξ = {xn ∈ M : n ∈ Zp} is a

d-pseudotrajectory of Φ if

%(xn(i,±1), fi,±1(xn)) < d for any n ∈ Zp and i ∈ I.(3)

This definition is a natural generalization of the definition of a pseudotrajec-
tory of a homeomorphism h ∈ H(M) (see [7]). Let us recall that a sequence
ξ = {xn ∈M : n ∈ Z} is called a d-pseudotrajectory of h ∈ H(M) if

%(xn+1, h(xn)) < d for any n ∈ Z.(4)

Assume that h−1 is uniformly continuous on M . In this case, for any d′ > 0
there exists d ∈ (0, d′) such that inequalities (4) imply

%(xn−1, h
−1(xn)) < d′,

so that any d-pseudotrajectory of h is a d′-pseudotrajectory of the action
Ψ : Z×M →M , where Ψ(n, x) = hn(x).

The following two properties of continuous dynamical systems are well
known (see, for example, [7]).

We say that a homeomorphism h ∈ H(M) has the shadowing property
on a set V ⊂ M if given ε > 0 there exists d > 0 such that for any
d-pseudotrajectory {xn ∈ V : n ∈ Z} of h there is a point x ∈M such that

%(hn(x), xn) < ε for n ∈ Z.(5)

We say that a homeomorphism h ∈ H(M) is expansive on a set U ⊂M
if there exists a constant b > 0 (expansivity constant) such that if for two
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points x, y, we have

hn(x), hn(y) ∈ U, %(hn(x), hn(y)) < b, for all n ∈ Z,
then x = y.

Consider two sets V,U ⊂M . We say that a homeomorphism h ∈ H(M)
is topologically Anosov with respect to the pair (V,U) if the following con-
ditions are satisfied:

(TA1) there exists δ > 0 such that N(δ, V ) ⊂ U ;
(TA2) h has the shadowing property on V ;
(TA3) h is expansive on U .

In the case V = U = M , the definition above coincides with the standard
definition of a topologically Anosov homeomorphism [7].

Let us formulate a theorem giving sufficient conditions under which ac-
tion (1) has a property of shadowing its pseudotrajectories.

Recall that a family F of mappings of M is called equicontinuous if
given ε > 0 there exists δ > 0 such that if x, y ∈ M and %(x, y) < δ, then
%(f(x), f(y)) < ε for any f ∈ F .

Theorem 1. Assume that there exist V,U ⊂ M and ν ∈ Zp such that
the homeomorphism f = Φ(ν, ·) is topologically Anosov with respect to the
pair (V,U). Assume, in addition, that the family {fi,±1 : i ∈ I} is equicon-
tinuous. Then for any ε > 0 there exists d > 0 with the following property :
if {xn ∈ V : n ∈ Zp} is a d-pseudotrajectory of Φ then there exists a unique
point x such that

%(Φ(n, x), xn) < ε for all n ∈ Zp.(6)

Remark 1. Obviously, the assumptions of Theorem 1 are satisfied ifM is
a closed smooth manifold and V ⊂M is a hyperbolic set of a diffeomorphism
f = Φ(ν, ·). It is well known that in this case there exists a neighborhood
U of the compact set V such that f is topologically Anosov with respect to
the pair (V,U) (see [7]). Since M is compact, the family {fi,±1 : i ∈ I} is
obviously equicontinuous.

In addition, in this case the dependence of ε on d is Lipschitz, i.e., there
exist positive constants L and d0 such that if {xn ∈ V : n ∈ Z} is a
d-pseudotrajectory of f with d ≤ d0, then there is a point x such that
(5) holds with h = f and ε = Ld. The proof of Theorem 1 below shows
that if f = Φ(ν, ·) has such a Lipschitz shadowing property (instead of
the usual one), then there exist positive constants L and d′0 such that if
{xn ∈ V : n ∈ Zp} is a d-pseudotrajectory of Φ with d ≤ d′0, then there is a
point x such that (6) holds with ε = Ld.

A particular case of the above-mentioned situation is the so-called
Anosov action of Zp on M (see [1]), i.e., an action of Zp by diffeomor-
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phisms such that some diffeomorphism f = Φ(ν, ·) is Anosov (this means
that the manifold M is a hyperbolic set of f).

Proof of Theorem 1. Let N(δ, V ) ⊂ U and let b be an expansivity con-
stant of f on U . Fix ε > 0. Decreasing it if necessary, we may assume that

4ε < min(4δ, b)(7)

and that %(x, y) < ε implies

2%(fi,±1(x), fi,±1(y)) < b for any i ∈ I.(8)

For the fixed ε, we find d′ > 0 such that any d′-pseudotrajectory of f in V
is ε-shadowed by a trajectory of f (i.e., analogs of inequalities (5) hold).

Since the family {fi,±1 : i ∈ I} is equicontinuous, there exists d > 0
(depending only on

∑
i∈I |νi|) such that if {xn} is a d-pseudotrajectory of

(1), then

%(f(xn), xn+ν) < d′ for any n ∈ Zp.(9)

We assume, in addition, that

4d < b.(10)

We claim that this d has the desired property. Fix µ ∈ Zp and consider
the sequence

yk = xµ+kν , k ∈ Z.
It follows from (9) that {yk} is a d′-pseudotrajectory of f (lying in V ).
Hence, there exists a point z(µ) such that

%(fk(z(µ)), yk) < ε, k ∈ Z.(11)

Since yk ∈ V , inequalities (11) and (7) imply that

fk(z(µ)) ∈ U, k ∈ Z.(12)

Let z′(µ) be another point for which (11) holds. In this case (12) holds for
z′(µ) as well. It follows from (7) that then

%(fk(z(µ)), fk(z′(µ))) < 2ε < b, k ∈ Z,
and the expansivity of f on U implies that z(µ) = z′(µ). Hence, the point
z(µ) with property (11) is unique.

Now we fix i ∈ I. Let µ′ be any of the points µ(i,±1) and let χ be the
corresponding homeomorphism fi,1 or fi,−1. Consider the sequence

y′k = xµ′+kν , k ∈ Z,
and apply the same reasoning as above to find the point z ′ such that

%(fk(z′), y′k) < ε, k ∈ Z.(13)

We claim that
z′ = χ(z(µ)).(14)
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By the choice of ε, it follows from (11) that

2%(χ(fk(z(µ))), χ(yk)) < b, k ∈ Z.(15)

Since {xn} is a d-pseudotrajectory of (1),

%(χ(yk), y′k) < d.(16)

Combining (13)–(16) and taking into account the equality χ(f k(z(µ))) =
fk(χ(z(µ))), we see that

%(fk(z′), fk(χ(z(µ))))≤%(fk(z′), y′k) + %(y′k, χ(yk)) + %(χ(yk), χ(fk(z(µ))))

<ε+ d+ b/2 < b

(see (7) and (10)). Since (13) implies f k(z′) ∈ U , it follows from the estimate
above and from (12) that equality (14) holds.

Now (11) implies that

%(z(µ), xµ) < ε for any µ ∈ Zp.(17)

Our reasoning above shows that for any pair µ and µ′ = µ(i,±1), i ∈ I, the
points z(µ) and z(µ′) satisfy

z(µ(i,±1)) = fi,±1(z(µ)).

It follows immediately that z(µ) = Φ(µ, z(0)). Now (17) implies that

%(Φ(µ, z(0)), xµ) < ε for any µ ∈ Zp.
This differs from the desired inequality (6) only in notation.

To establish the uniqueness of a point x satisfying (6), note that such an
x must satisfy

%(fk(x), yk) < ε, k ∈ Z,
where yk = xkν , and z(0) is the unique point having this property.

The theorem is proved.

A statement similar to Theorem 1 can be proved for actions of some
infinite-dimensional groups. Let G be the subgroup of Z∞ defined by the
following condition: n = {ni : i ∈ Z} ∈ G if and only if

∑

i∈Z
|ni| <∞

(see, for example, [4]). For n ∈ G and i, k ∈ Z, we define n(i, k) ∈ G
and homeomorphisms (2) in the same way as above. The definition of a
d-pseudotrajectory of (1) is similar to that for an action of Zp (with Zp and
I replaced by G and Z, respectively).

For any n, n′ ∈ G, there exists a finite sequence

n0 = n, n1, . . . , nl = n′

with the following property: for any j ∈ {1, . . . , l−1} there exists i ∈ Z such
that either nj+1 = nj(i, 1) or nj+1 = nj(i,−1).
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Now it is easy to see that the reasoning in the proof of Theorem 1 yields
the following statement.

Theorem 1′. Assume that there exist V,U ⊂ M and ν ∈ G such that
the homeomorphism f = Φ(ν, ·) is topologically Anosov with respect to the
pair (V,U). Assume, in addition, that the family {fi,±1 : i ∈ Z} is equicon-
tinuous. Then for any ε > 0 there exists d > 0 with the following property : if
{xn ∈ V : n ∈ G} is a d-pseudotrajectory of (1), then there exists a unique
point x such that

%(Φ(n, x), xn) < ε for all n ∈ G.

3. Linear actions of Zp. Consider a linear action of Zp on Cm. In this
case, we fix p nonsingular m×m matrices A1, . . . , Ap. Assuming that they
pairwise commute, we get the action

Φ : Zp × Cm → Cm(18)

defined by

Φ(n, x) = An1
1 . . . A

np
p x(19)

for n = (n1, . . . , np) ∈ Zp and x ∈ Cm.
It is known [5] that for any family of pairwise commuting matrices Ai

there exists a unitary matrix U such that each matrix Ti = U−1AiU is upper
triangular. Obviously, the change of variables x = Uy preserves any shad-
owing and expansivity properties. Hence, we may assume that the matrices
Ai are upper triangular.

Denote by λij the jth diagonal element (i.e., the (j, j) entry) of Ai.

Theorem 2. Under the above conditions, the following statements are
equivalent :

(1) action (18) has the Lipschitz shadowing property , i.e., there exists
a constant L > 0 such that for any d-pseudotrajectory {xn : n ∈ Zp} of Φ
there is a point x satisfying

|Φ(n, x)− xn| ≤ Ld, n ∈ Zp,(20)

where | · | is the standard norm of Cm;
(2) for any j ∈ {1, . . . ,m} there exists i ∈ {1, . . . , p} such that |λij| 6= 1;
(3) there is no vector v 6= 0 such that

Aiv = µiv, i = 1, . . . , p, where |µi| = 1.(21)

Proof. Denote by (n1), (n2), and (n3) the negations of (1), (2), and (3),
respectively. We prove the implications

(n1)⇒(n2)⇒(n3)⇒(n1).

First we prove (n1)⇒(n2).
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It follows from Theorem 1.3.2 of [7] that if a matrix A is hyperbolic (i.e.,
its eigenvalues λi satisfy |λi| 6= 1), then the homeomorphism f(x) = Ax
of Cm has the Lipschitz shadowing property described in statement (1).
Obviously, this homeomorphism is expansive on Cm. Thus, it follows from
Theorem 1 and Remark 1 that to establish (1) it is enough to show that
there exists n = (n1, . . . , np) ∈ Zp such that the matrix

A = An1
1 . . . A

np
p(22)

is hyperbolic.
For contradiction, assume that condition (2) is satisfied while any matrix

(22) has an eigenvalue λ with |λ| = 1. Since the matrices Ai are upper
triangular, the set of eigenvalues of (22) is

{λn1
1j . . . λ

np
pj : j = 1, . . . ,m}.

By our assumption, for any n = (n1, . . . , np) there is j such that

|λn1
1j . . . λ

np
pj | = 1.(23)

To proceed, we need the following auxiliary statement.

Lemma 1. Assume that numbers µij , where i = 1, . . . , p and j = 1, . . . ,m,
satisfy the following condition: for any n1, . . . , np ∈ Z there exists j such that

n1µ1j + . . .+ npµpj = 0.(24)

Then there exists j such that

µij = 0, i = 1, . . . , p.(25)

Proof. We apply induction on p. If p = 1, our condition implies that for
n1 = 1 there exists j such that n1µ1j = 0. Thus, µ1j = 0, as required.

Now assume that our statement holds for p− 1. Fix n2, . . . , np ∈ Z and
define uj = n2µ2j + . . . + npµpj . By our assumption, for any n1 ∈ Z there
exists j such that n1µ1j + uj = 0, hence

P :=
m∏

j=1

(n1µ1j + uj) = 0.(26)

Since P is a polynomial in n1, and it equals zero for any n1, its coefficients
are zero. The leading coefficient (of nm1 ) equals

µ11µ12 . . . µ1m,

hence at least one of the µ1j is zero.
Let J ⊂ {1, . . . ,m} be the set of all j such that µ1j = 0. Let k be the

number of elements of J . The coefficient of nm−k1 in P equals
∏

j∈J
uj
∏

j 6∈J
µ1j = 0.
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Since the second product is nonzero, we see that∏

j∈J
uj = 0.

Thus, there exists j ∈ J such that uj = 0. Our reasoning shows that for any
n2, . . . , np there exists j′ such that

uj′ = n2µ2j′ + . . .+ npµpj′ = 0.

This means that the numbers µ2j, . . . , µpj, j ∈ J , satisfy the assumption of
our lemma. By the induction assumption, there exists j such that

µ2j = . . . = µpj = 0.
Since j ∈ J , we also have µ1j = 0, which completes the induction step. Our
lemma is proved.

Setting µij = log |λij |, we reduce condition (23) to (24). By Lemma 1,
there exists j such that |λij | = 1 for i = 1, . . . , p. The contradiction obtained
proves the implication (n1)⇒(n2).

Before proving (n2)⇒(n3), we establish an auxiliary statement.

Lemma 2. Let A′1, . . . , A
′
p be pairwise commuting linear operators on

Cm such that
ker(a1A

′
1 + . . .+ apA

′
p) 6= {0}(27)

for any real numbers a1, . . . , ap. Then
p⋂

i=1

kerA′i 6= {0}.(28)

Proof. In the proof, we often use the following simple statement. Let A
and B be commuting linear operators and let kerB = Y . Then A(Y ) ⊂ Y .
Indeed, if y ∈ Y , then By = 0, so ABy = 0 and B(Ay) = 0. Thus, Ay ∈ Y .

We prove the lemma by induction on p. The case p = 1 is trivial. Let
p = 2. Define

Ck = A′1 + kA′2 and Xk = kerCk
for nonnegative integer k. Obviously, Ci and Cj commute for any i and j.
Our statement above implies that

Ci(Xj) ⊂ Xj.(29)

Let Lin(Y1, . . . , Yr) be the linear hull of the linear subspaces Y1, . . . , Yr.
We claim that there exists n such that

Xn+1 ∩ Lin(X0, . . . ,Xn) 6= {0}.(30)

Indeed, if Xn+1 ∩ Lin(X0, . . . ,Xn) = {0} for any n, then

dim Lin(X0, . . . ,Xn) =
n∑

i=0

dimXi ≥ n+ 1,

which is impossible if n ≥ m.
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Let n be minimal satisfying (30). Consider x 6= 0 such that

x ∈ Xn+1 ∩ Lin(X0, . . . ,Xn).(31)

Represent x in the form x0 + . . .+ xn, where xi ∈ Xi. Note that

Cn+1x = Cn+1x0 + . . .+ Cn+1xn = 0.(32)

It follows from (29) that

yi := Cn+1xi ∈ Xi.

Relation (32) implies that

y0 + . . .+ yn = 0.

If we assume that yi 6= 0 for some i, and consider the maximal i with this
property, then

yi = −(y0 + . . .+ yi−1) ∈ Lin(X0, . . . ,Xi−1),

contradicting the choice of n and the inequality i− 1 < n. Thus,

yi = 0 for 0 ≤ i ≤ n.(33)

Since x 6= 0, there exists k ∈ {1, . . . , n} such that xk 6= 0. The equalities

yk = Cn+1xk = 0 and Ckxk = 0

(recall that xk ∈ kerCk) written in the form

(A′1 + (n+ 1)A′2)xk = 0 and (A′1 + kA′2)xk = 0

imply that xk ∈ kerA′1 ∩ kerA′2. Thus, our lemma is proved for p = 2.
Now assume that our statement holds for p. Define

Bi,k = A′1 + kA′i and Xi,k = kerBi,k.

Since the operators A′i pairwise commute, so do Bi,k and A′i. Condition (27)
implies that any linear combination of Bi,k and A′i has a nonempty kernel.

By the induction assumption applied to A′p+1, B2,k, . . . , Bp,k with any k,

Yk := kerA′p+1 ∩X2,k ∩ . . . ∩Xp,k 6= {0}.
The same reasoning as above shows that there exists n such that

Yn+1 ∩ Lin(Y0, . . . , Yn) 6= {0}.
Consider the minimal n with this property. Take yi ∈ Yi such that

yn+1 = y0 + . . .+ yn(34)

and yn+1 6= 0. Applying the operator B2,n+1 to (34) and taking into account
that yn+1 ∈ Yn+1 ⊂ X2,n+1, we see that

0 = B2,n+1y0 + . . .+B2,n+1yn.(35)

Since B2,n+1yl ∈ Yl, the reasoning applied to establish (33) shows that
B2,n+1yl = 0 for any l ∈ {0, . . . , n}.
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Consider yl 6= 0. We claim that

yl ∈ kerA′1 ∩ kerA′2 ∩ . . . ∩ kerA′p+1.(36)

Since yl ∈ Yl, we have yl ∈ kerA′p+1. The relations B2,n+1yl = 0 and yl ∈
Yi ⊂ X2,l imply that

(A′1 + (n+ 1)A′2)yl = 0 and (A′1 + lA′2)yl = 0.

It follows that A′1yl = 0 and A′2yl = 0. Since yl ∈ Xi,l = kerBi,l for any
l ∈ {3, . . . , p}, we see, in addition, that

(A′1 + lA′i)yl = 0.

Thus, A′iyl = 0 for these l, relation (36) holds, and the lemma is proved.

This lemma implies an important property of our pairwise commuting
triangular matricesA1, . . . , An generating action (18). Obviously, the desired
implication (n2)⇒(n3) follows from this property.

Corollary. For any j ∈ {1, . . . ,m} there exists a vector v 6= 0 such
that

Aiv = λijv, i = 1, . . . , p.(37)

Proof. Fix j and consider the matrices

A′i = Ai − λijEm,
where Em is the identity m×m matrix. These matrices are triangular and
pairwise commute. Their jth diagonal elements are zero.

Hence, condition (27) of Lemma 2 is satisfied. By Lemma 2, there exists
a vector v 6= 0 such that A′iv = 0 for i = 1, . . . , p. Obviously, v satisfies (37).

Now let us prove the implication (n3)⇒(n1). Fix a vector v with |v| = 1
satisfying (21). We claim that action (18) does not have the shadowing prop-
erty. Let us construct a pseudotrajectory as follows. Fix a positive number
d and a sequence {cl : l ∈ Z} of integers with the following properties:
|cl+1 − cl| = 1 for any l, the sequence |cl| is unbounded, and the limits

lim
|l|→∞

cl

do not exist. Define Λ = µ1 and set al = dclΛ
lv and

xn = An2
2 . . . A

np
p an1 for n = (n1, . . . , np).

The sequence {xn} is a 2d-pseudotrajectory of (18). Indeed,

x(n1,...,np)(i,±1) = A±1
i x(n1,...,np)

for i ≥ 2. Since v is an eigenvector of A2, . . . , Ap with eigenvalues |µi| = 1,
it follows from

|A±1
1 x(n1,...,np) − x(n1±1,n2,...,np)| = |An2

2 . . . A
np
p (A±1

1 an1 − an1±1)|
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and
A±1

1 an1 − an1±1 = εdv, where |ε| = 1,

that
|A±1

1 x(n1,...,np) − x(n1±1,n2,...,np)| = |εdv| = d.

To complete the proof, we claim that

sup
n
|Φ(n, y)− xn| =∞

for any y ∈ Cm. To see this, it is enough to show that

sup
(n1,0,...,0)

|Φ((n1, 0, . . . , 0), y)− x(n1,0,...,0)| =∞(38)

for any y ∈ Cm. Fix a basis e1, . . . , em in Cm as follows:

e1 = v, A1ei = Λei + ei−1 for 2 ≤ i ≤ k,
and

A1 =
(
B 0
0 C

)

in this basis, where B and C are k × k and (m − k) × (m − k) matrices,
respectively.

If a(1) is the first coordinate of a vector a ∈ Cm in the chosen basis, then

x
(1)
(l,0,...,0) = dclΛ

l.

For y = (y1, . . . , ym) ∈ Cm, write y′ = (y1, . . . , yk).
The matrix B has the form ΛEk + J , where J i = 0 for i ≥ k. Hence, for

any y ∈ Cm,

(Al1y)(1) = (Bly′)(1) =
( k−1∑

i=0

l!
(l − i)!i! Λ

l−iJ iy′
)(1)

= ΛlP (l),

where P (l) is a polynomial in l of degree not exceeding k − 1 (determined
by the fixed vector y).

If (38) does not hold for some y ∈ Cm, then the expression

|(Al1y)(1) − x(1)
(l,0,...,0)| = |dcl − P (l)|

is bounded in l. This contradicts the choice of the sequence cl since either
P (l) is constant (while cl is unbounded) or |P (l)| → ∞ as |l| → ∞ (while cl
does not have limits as |l| → ∞).

The proof is complete.

4. Actions of the group Zp×Rq. Now we pass to continuous actions
of the group G = Zp × Rq. As above, (M,%) is a metric space and H(M) is
the set of homeomorphisms of M .
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We represent n ∈ Zp × Rq in the form n = (nD, nC), where nD =
(n1, . . . , np) and nC = (np+1, . . . , np+q). Let I1 = {1, . . . , p}, I2 = {p + 1,
. . . , p + q}, and I = I1 ∪ I2. For any set m = {mi}, where i ∈ I1, i ∈ I2, or
i ∈ I, we define |m| = ∑i |mi|.

Fix n ∈ Zp × Rq, i ∈ I, and k ∈ Z (if i ∈ I1) or k ∈ R (if i ∈ I2). As
above, we denote by n(i, k) the element n′ ∈ Zp × Rq such that n′j = nj for
j ∈ I, j 6= i, and n′i = ni + k.

Consider the homeomorphisms

fi,±1 = Φ(n(i,±1), ·) ◦ Φ−1(n, ·), i ∈ I1,

gi−p(t, ·) = Φ(n(i, t), ·) ◦ Φ−1(n, ·), i ∈ I2.

We use different notation for dependence on “time” to emphasize the differ-
ence between the “discrete-time” generators fi,±1, i ∈ I1, and “continuous-
time” generators gi−p(t, ·), i ∈ I2.

Fix a positive number d. We say that a set ξ = {xn ∈M : n ∈ Zp ×Rq}
is a d-pseudotrajectory of Φ if

%(xn(i,±1), fi,±1(xn)) < d, i ∈ I1,(39)

%(xn(i,t), gi−p(t, xn)) < d, |t| ≤ 1, i ∈ I2,(40)

for any n ∈ Zp × Rq.
In the case of a flow (i.e., for I1 = ∅ and I2 = {1}), this definition

corresponds to the standard definition of a pseudotrajectory (see Remark 2
below and the books [6, 7] for the details and discussion).

Let us formulate two properties which we need to give conditions under
which Φ has a shadowing property.

Denote byR the set of orientation preserving homeomorphisms α : Rq →
Rq such that α(0) = 0. Let α = (α1, . . . , αq).

Fix ν = {ν1, . . . , νp+q} ∈ Zp × Rq and consider the corresponding hom-
eomorphism f = Φ(ν, ·). Fix, in addition, a homeomorphism α ∈ R and
consider the mapping

Ψ(k, α) = fkν1
1 ◦ . . . ◦ fkνpp ◦ g1(α1(kνC), ·) ◦ . . . ◦ gq(αq(kνC), ·),

where k ∈ Z.
To simplify the presentation, we formulate the properties (and the main

result of this section) for the phase space M (instead of its subsets); possible
generalizations (similar to properties defined in Sec. 2) are trivial.

We say that the homeomorphism f = Φ(ν, ·) has the flow-type shadowing
property (FTS property) if given ε > 0 there exists d > 0 such that for any
d-pseudotrajectory {yk : k ∈ Z} of f there is a homeomorphism α ∈ R and
a point z ∈M such that

%(Ψ(k, α)(z), yk) < ε for k ∈ Z.(41)
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We say that the homeomorphism f = Φ(ν, ·) is flow-type expansive (has
the FTE property) if given ∆ > 0 there exists δ > 0 with the following
property: if α, α′ ∈ R and

%(Ψ(k, α)(z), Ψ(k′, α′)(z′)) < δ, k ∈ Z,(42)

for some points z and z′, then there exist numbers τ1, . . . , τq such that

|τ1|+ . . .+ |τq| < ∆,(43)

z′ = g1(τ1, ·) ◦ . . . ◦ gq(τq, ·)(z).(44)

Remark 2. The introduced properties are natural generalizations of the
corresponding properties for flows.

Let φ be the flow of an autonomous system of differential equations on a
smooth manifold. Assume that the system has a hyperbolic set Λ containing
no rest points. It is known (see [6]) that the flow φ has the following analogs
of the FTS and FTE properties in a neighborhood U of Λ.

We say that {yt : t ∈ R} is a (d, 1)-pseudotrajectory of φ if

%(yt+τ , φ(τ, yt)) < d for any t ∈ R and |τ | ≤ 1.

Given ε > 0 there exists d > 0 such that if {yt ∈ U : t ∈ R} is a
(d, 1)-pseudotrajectory of φ, then there is a homeomorphism α ∈ R (here
q = 1) and a point z ∈M such that

%(φ(α(t), z), yt) < ε for t ∈ R.(45)

Given ∆ > 0 there exists δ > 0 with the following property: if α, α′ ∈ R,

φ(α(t), z), φ(α′(t), z′) ∈ U,
%(φ(α(t), z), φ(α′(t), z′)) < δ, t ∈ R,

for some points z and z′, then there exists a number τ such that

|τ | < ∆,(46)

z′ = φ(τ, z).(47)

In addition, there exist numbers L, d0, δ0 > 0 such that if d ≤ d0, then (45)
holds with ε replaced by Ld, and if δ ≤ δ0, then (46) holds with ∆ replaced
by Lδ.

The same reasoning as in the proof of Theorem 1 (with obvious modifi-
cations) establishes the following statement.

Theorem 3. Assume that there exists ν ∈ Zp×Rq such that the homeo-
morphism f = Φ(ν, ·) has the FTS and FTE properties. Assume, in addition,
that the family

F = {fi,±1 : i ∈ I1} ∪ {gi−p(t, ·) : |t| ≤ 1, i ∈ I2}
is equicontinuous. Then for any ε > 0 there exists d > 0 with the following
property : if {xn ∈ V : n ∈ Zp×Rq} is a d-pseudotrajectory of Φ, then there
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exists a point x and a mapping τ : Zp × Rq → Zp × Rq such that

%(Φ(τ(n), x), xn) < ε, n ∈ Zp × Rq,(48)

(τ(n))D = nD, |(τ(n))C − nC | ≤ ε(q + |n|).(49)
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