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Abstract. We prove that a Schauder frame for any separable Banach space is shrink-
ing if and only if it has an associated space with a shrinking basis, and that a Schauder
frame for any separable Banach space is shrinking and boundedly complete if and only if
it has a reflexive associated space. To obtain these results, we prove that the upper and
lower estimate theorems for finite-dimensional decompositions of Banach spaces can be
extended and modified to Schauder frames. We show as well that if a separable infinite-
dimensional Banach space has a Schauder frame, then it also has a Schauder frame which
is not shrinking.

1. Introduction. Frames for Hilbert spaces were introduced by Duf-
fin and Schaeffer in 1952 [DS] to address some questions in non-harmonic
Fourier series. However, the current popularity of frames is largely due
to their successful application to signal processing which was initiated by
Daubechies, Grossmann, and Meyer in 1986 [DGM]. A frame for an infinite-
dimensional separable Hilbert space H is a sequence of vectors (xi)

∞
i=1 ⊂ H

for which there exist constants 0 ≤ A ≤ B such that for any x ∈ H,

(1) A‖x‖2 ≤
∞∑
i=1

|〈x, xi〉|2 ≤ B‖x‖2.

If A = B = 1, then (xi)
∞
i=1 is called a Parseval frame. Given any frame

(xi)
∞
i=1 for a Hilbert space H, there exists a frame (fi)

∞
i=1 for H, called an

alternate dual frame, such that for all x ∈ H,

(2) x =

∞∑
i=1

〈x, fi〉xi.
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The equality in (2) allows the reconstruction of any vector x in the Hilbert
space from the sequence of coefficients (〈x, fi〉)∞i=1. The standard method to
construct such a frame (fi)

∞
i=1 is to take fi = S−1xi for all i ∈ N, where

S is the positive, self-adjoint invertible operator on H defined by Sx =∑∞
i=1〈x, xi〉xi for all x ∈ H. The operator S is called the frame operator

and the frame (S−1xi)
∞
i=1 is called the canonical dual frame of (xi)

∞
i=1.

In their AMS memoir [HL], Han and Larson initiated studying the dilation
viewpoint of frames, that is, analyzing frames as orthogonal projections of
Riesz bases, where a Riesz basis is a semi-normalized unconditional basis for
a Hilbert space. To start this approach, they proved the following theorem.

Theorem 1.1 ([HL]). If (xi)
∞
i=1 is a frame for a Hilbert space H, then

there exists a larger Hilbert space Z ⊃ H and a Riesz basis (zi)
∞
i=1 for Z

such that PXzi = xi for all i ∈ N, where PX is the orthogonal projection
onto X. Furthermore, if (xi)

∞
i=1 is Parseval, then (zi)

∞
i=1 can be taken to be

an orthonormal basis.

Recently, Theorem 1.1 was extended to operator-valued measures and
bounded linear maps [HLLL]. Recently as well, a continuous version of The-
orem 1.1 was given for vector bundles and Riemannian manifolds [FPWW].

The concept of a frame was extended to Banach spaces in 1988 by Feich-
tinger and Gröchenig [FG] (and more generally in [G]) through the intro-
duction of atomic decompositions. The main goal of [G] was to obtain for
Banach spaces the unique association of a vector with the natural set of
frame coefficients. In 2008, Schauder frames for Banach spaces were devel-
oped [CDOSZ] with the goal of creating a procedure to represent vectors
using quantized coefficients. A Schauder frame essentially takes as its defi-
nition an extension of the equation (2) to Banach spaces.

Definition 1.2. Let X be an infinite-dimensional separable Banach
space. A sequence (xi, fi)

∞
i=1 ⊂ X ×X∗ is called a Schauder frame for X if

x =
∑∞

i=1 fi(x)xi for all x ∈ X.

In particular, if (xi)
∞
i=1 and (fi)

∞
i=1 are frames for a Hilbert space H, then

(fi)
∞
i=1 is an alternate dual frame for (xi)

∞
i=1 if and only if (xi, fi)

∞
i=1 is a

Schauder frame for H. As noted in [CDOSZ], a separable Banach space
has a Schauder frame if and only if it has the bounded approximation
property. By the uniform boundedness principle, for any Schauder frame
(xi, fi)

∞
i=1 of a Banach space X, there exists a constant C ≥ 1 such that

supn≥m ‖
∑n

i=m fi(x)xi‖ ≤ C‖x‖ for all x ∈ X. The least such value C is
called the frame constant of (xi, fi)

∞
i=1. A Schauder frame (xi, fi)

∞
i=1 is called

unconditional if the series x =
∑∞

i=1 fi(x)xi converges unconditionally for
all x ∈ X. The following definitions allow the dilation viewpoint of Han and
Larson to be extended to Schauder frames.
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Definition 1.3. Let (xi, fi)
∞
i=1 be a frame for a Banach space X, and let

Z be a Banach space with basis (zi)
∞
i=1 and coordinate functionals (z∗i )∞i=1.

We call Z an associated space to (xi, fi)
∞
i=1, and (zi)

∞
i=1 an associated basis,

if the operators T : X → Z and S : Z → X are bounded, where T (x) =
T (
∑
fi(x)xi) =

∑
fi(x)zi for all x ∈ X and S(z) = S(

∑
z∗i (z)zi) =∑

z∗i (z)xi for all z ∈ Z.

Essentially, Theorem 1.1 states that a frame for a Hilbert space has an
associated basis which is a Riesz basis for a Hilbert space. Furthermore, the
proof in [HL] actually involves constructing the operators T and S given in
Definition 1.3, and thus the definition of an associated space is a very natu-
ral way to extend the notion of dilation of Hilbert space frames to dilation
of Schauder frames. In [CHL], it is shown that every Schauder frame has an
associated space, which is referred to as the minimal associated space in [L].
Being able to dilate a Parseval frame for a Hilbert space to an orthonormal
basis is very useful in understanding and working with frames for Hilbert
spaces. The minimal associated basis may be used similarly for studying
Schauder frames. However, if a Schauder frame has some useful property,
then an associated basis with a corresponding property should be used
to study the Schauder frame. To take full advantage of this approach, we
need to characterize Schauder frame properties in terms of associated bases.
This would allow the large literature on Schauder basis properties to be
applied to Schauder frames. For example, in [CHL] it is proven that a
Schauder frame is unconditional if and only if it has an unconditional asso-
ciated space.

If (xi, fi)
∞
i=1 is a Schauder frame, then the reconstruction operator, S,

for the minimal associated space contains c0 in its kernel if and only if a
finite number of vectors can be removed from (xi)

∞
i=1 to make it a Schauder

basis [LZ]. This implies in particular that except in trivial cases, the minimal
associated basis will not be boundedly complete and the minimal associated
space will not be reflexive. Thus, to work with a reflexive associated space,
we will need to consider a new method of constructing associated spaces.
A Banach space with a basis is reflexive if and only if the basis is shrinking
and boundedly complete. In order to characterize when a Schauder frame has
a reflexive associated space, it is then natural to consider a generalization of
the properties of being shrinking and boundedly complete from the context
of bases to that of Schauder frames.

Definition 1.4. Given a Schauder frame (xi, fi)
∞
i=1 ⊂ X ×X∗, let Tn :

X → X be the operator Tn(x) =
∑

i≥n fi(x)xi. The frame (xi, fi)
∞
i=1 is

called shrinking if ‖x∗ ◦ Tn‖ → 0 for all x∗ ∈ X∗. The frame (xi, fi)
∞
i=1 is

called boundedly complete if
∑∞

i=1 x
∗∗(fi)xi converges in norm to an element

of X for all x∗∗ ∈ X∗∗.
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As noted in [CL], if (xi)
∞
i=1 is a Schauder basis and (x∗i )

∞
i=1 are the

biorthogonal functionals of (xi)
∞
i=1, then the frame (xi, x

∗
i )
∞
i=1 is shrinking if

and only if the basis (xi)
∞
i=1 is shrinking, and the frame (xi, x

∗
i )
∞
i=1 is bound-

edly complete if and only if the basis (xi)
∞
i=1 is boundedly complete. Thus

the definition of a frame being shrinking or boundedly complete is consistent
with that of a basis. In [L], the frame properties “shrinking” and “boundedly
complete” are called “pre-shrinking” and “pre-boundedly complete”.

It is not difficult to see that if a Schauder frame has a shrinking associated
basis, then the frame must be shrinking as well, and that if a Schauder
frame has a boundedly complete associated basis, then the frame must be
boundedly complete. In [L], the minimal and maximal associated spaces
are defined, and it is proven that if a frame is shrinking and satisfies some
strong local conditions, then the minimal associated basis is shrinking, and
if a frame is boundedly complete and satisfies some strong local conditions,
then the maximal associated basis is boundedly complete. The advantage
of these theorems is that explicit associated bases are constructed with the
desired properties of being shrinking or boundedly complete. On the other
hand, not every Schauder frame with a shrinking or boundedly complete
associated basis satisfies the local conditions given in [L]. Thus, this is not
a complete characterization of which frames have a shrinking associated
basis or of which frames have a boundedly complete associated basis. In the
following theorem, we give a complete characterization.

Theorem 1.5. Let (xi, fi)
∞
i=1 be a Schauder frame for a Banach space X.

Then (xi, fi)
∞
i=1 is shrinking if and only if (xi, fi)

∞
i=1 has a shrinking asso-

ciated basis. Furthermore, (xi, fi)
∞
i=1 is shrinking and boundedly complete if

and only if (xi, fi)
∞
i=1 has a reflexive associated space.

The properties of being shrinking and boundedly complete do not im-
mediately give us much structure to directly create an associated space. To
obtain Theorem 1.5, we will prove a stronger result, involving upper and
lower estimates. In [OSZ2], it is shown that every Banach space with sepa-
rable dual satisfies certain upper estimates and that every separable reflexive
Banach space satisfies certain upper and lower estimates. As we will be us-
ing these estimates, we will define them precisely in Section 3. One of the
main results of [OSZ2] is that every separable reflexive Banach space em-
beds into a reflexive Banach space with a finite-dimensional decomposition
(FDD) satisfying the same upper and lower estimates, and one of the main
results of [FOSZ] is that every Banach space with separable dual embeds
into a Banach space with a shrinking FDD satisfying the same upper esti-
mate. We extend the techniques developed in [OSZ1] to Schauder frames,
and prove the following theorems which are extensions of the results from
[OSZ2] and [FOSZ], and will be used to prove Theorem 1.5.
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Theorem 1.6. Let X be a Banach space with a shrinking Schauder
frame (xi, fi)

∞
i=1. Let (vi)

∞
i=1 be a normalized, 1-unconditional, block stable,

right dominant, and shrinking basic sequence. If X satisfies subsequential
(vi)

∞
i=1-upper tree estimates, then there exist (ni)

∞
i=1, (Ki)

∞
i=1 ∈ [N]ω and an

associated spaceZwith a shrinking basis (zi)
∞
i=1 such that (spanj∈[ni,ni+1)zi)

∞
i=1

is an FDD that satisfies subsequential (vKi)
∞
i=1-upper block estimates.

Theorem 1.7. Let X be a Banach space with a shrinking and boundedly
complete Schauder frame (xi, fi)

∞
i=1. Let (ui)

∞
i=1 be a normalized, 1-uncondi-

tional, block stable, right dominant, and shrinking basic sequence, and let
(vi)

∞
i=1 be a normalized, 1-unconditional, block stable, left dominant, and

boundedly complete basic sequence such that (ui) dominates (vi). Then X
satisfies subsequential (ui)

∞
i=1-upper tree estimates and subsequential

(vi)
∞
i=1-lower tree estimates if and only if there exist (ni)

∞
i=1, (Ki)

∞
i=1 ∈ [N]ω

and a reflexive associated space Z with associated basis (zi)
∞
i=1 such that

the FDD (spanj∈[ni,ni+1)zj)
∞
i=1 satisfies subsequential (uKi)

∞
i=1-upper block

estimates and subsequential (vKi)
∞
i=1-lower block estimates.

Using the theory of trees and branches in Banach spaces developed by
Odell and Schlumprecht, we find that Theorem 1.5 follows immediately from
Theorems 1.6 and 1.7. The basic idea is that every Banach space with sepa-
rable dual satisfies subsequential (vi)

∞
i=1-upper tree estimates for some nor-

malized, 1-unconditional, block stable, right dominant, and shrinking basic
sequence (vi)

∞
i=1. If X is a Banach space with a shrinking Schauder frame,

then it is known that X must have separable dual, and hence we may ap-
ply Theorem 1.6 to obtain a shrinking associated basis to the shrinking
Schauder frame. Similarly, every separable reflexive Banach space satisfies
subsequential (ui)

∞
i=1-upper tree estimates and subsequential (vi)

∞
i=1-lower

tree estimates for some basic sequences (ui)
∞
i=1 and (vi)

∞
i=1 satisfying the

hypotheses of Theorem 1.7. If X is a Banach space with a shrinking and
boundedly complete Schauder frame, then it is known that X must be re-
flexive, and hence we may apply Theorem 1.7 to obtain a reflexive associated
space for the Schauder frame. Because Theorems 1.5–1.7 are our main the-
orems, at the end of Section 3 we will prove explicitly (assuming some well
known properties about Tsirelson spaces) how Theorem 1.5 follows from
Theorems 1.6 and 1.7.

One of the main goals in proving the upper and lower estimate theorems
in [OSZ1] and [FOSZ] was to obtain embedding results that preserve quan-
titative bounds on the Szlenk index. In [Z], Zippin proves that every Banach
space with separable dual embeds into a Banach space with a shrinking basis,
and that every separable reflexive Banach space embeds into a Banach space
with a shrinking and boundedly complete basis. On the other hand, there
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does not exist a single Banach space Z with a shrinking basis such that ev-
ery reflexive Banach space embeds into Z [Sz]. To prove this result, Szlenk
created an ordinal index Sz on the set of separable Banach spaces such that:
(1) Sz(X) is countable if and only if X has separable dual, (2) if X embeds
into Y then Sz(X) ≤ Sz(Y ), and (3) for every countable ordinal α there
exists a Banach space with separable dual X such that Sz(X) > α. Thus, if
Z is a separable Banach space such that every Banach space with separable
dual embeds into Z, then Sz(Z) is uncountable and hence Z does not have
separable dual. There have been many further results in this direction, for
example Bourgain [B] proved that if Z is a separable Banach space such
that every separable reflexive Banach space embeds into Z, then also every
separable Banach space embeds into Z. Bourgain then asked if there exists
a separable reflexive Banach space Z such that every separable uniformly
convex Banach space embeds into Z. In [OS2] Odell and Schlumprecht con-
struct such a space answering Bourgain’s question.

Inspired by [OS2], Pe lczyński asked if for every countable ordinal α there
exists a reflexive Banach space Z such that every separable reflexive Banach
space X with max(Sz(X),Sz(X∗)) ≤ α embeds into Z, which naturally leads
to the question if there exists a Banach space Z with separable dual such
that every separable Banach space X with Sz(X) ≤ α embeds into Z. There
have been two separate methods of answering these problems. The proofs of
Argyros and Dodos [AD] and Dodos and Ferenczi [DF] used the descriptive
set theory framework of studying sets of Banach spaces which was initiated
in Bossard’s PhD thesis [Bos]. The proofs in [OSZ2] and [FOSZ] used instead
the equivalence of a Banach space X satisfying Sz(X) ≤ ωαω with the Ba-
nach space having separable dual and satisfying certain upperTα,c-estimates,
where Tα,c is the Tsirelson space of order α and constant c. This approach
was later generalized to more ordinals than just ωαω by Causey [C1], [C2].
We will rely on many of the techniques used in these papers, but there will
be some notable distinctions. In all of [OS1], [OS2], [OSZ1], [OSZ2], [C1],
and [C2], the very first step in the embedding theorems is to use Zippin’s
theorem to embed the Banach space into either a reflexive Banach space with
a basis or a Banach space with a shrinking basis. In our case, obtaining a
reflexive associated space or shrinking associated basis is the conclusion of
our Theorem 1.5 rather than the first step in the proof. This is a significant
obstacle, and much of the theorems and lemmas that we prove in Section 2
are aimed at overcoming it. Using the equivalence between upper Tsirelson
estimates and bounds on the Szlenk index (namely [FOSZ, Theorem 1.3]
and [OSZ2, Theorem 21]), we obtain the following corollaries as immediate
applications of Theorems 1.6 and 1.7 (the necessary definitions will be given
in Section 3).
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Corollary 1.8. Let (xi, fi)
∞
i=1 be a shrinking Schauder frame for a

Banach space X and let α be a countable ordinal. Then the following are
equivalent:

(a) X has Szlenk index at most ωαω.
(b) X satisfies subsequential Tα,c-upper tree estimates for some constant

0< c< 1, where Tα,c is the Tsirelson space of order α and constant c.
(c) (xi, fi)

∞
i=1 has an associated shrinking basis (zi)

∞
i=1 such that there

exist (ni)
∞
i=1, (Ki)

∞
i=1 ∈ [N]ω and 0 < c < 1 such that the FDD

(spanj∈[ni,ni+1)zi)
∞
i=1 satisfies subsequential (tKi)

∞
i=1-upper block es-

timates, where (ti)
∞
i=1 is the unit vector basis for Tα,c.

(d) (xi, fi)
∞
i=1 has an associated Banach space with a shrinking basis and

Szlenk index at most ωαω.

Corollary 1.9. Let (xi, fi)
∞
i=1 be a shrinking and boundedly complete

Schauder frame for a Banach space X and let α be a countable ordinal. Then
the following are equivalent:

(a) X and X∗ both have Szlenk index at most ωαω.
(b) X satisfies subsequential Tα,c-upper tree estimates and subsequential

T ∗α,c-lower tree estimates for some constant 0 < c < 1.
(c) (xi, fi)

∞
i=1 has an associated shrinking and boundedly complete

basis (zi)
∞
i=1 such that there exist (ni)

∞
i=1, (Ki)

∞
i=1 ∈ [N]ω and 0 <

c < 1 such that the FDD (spanj∈[ni,ni+1)zi)
∞
i=1 satisfies subsequential

(tKi)
∞
i=1 upper block estimates and subsequential (t∗Ki)

∞
i=1-lower block

estimates, where (ti)
∞
i=1 is the unit vector basis for Tα,c.

(d) (xi, fi)
∞
i=1 has an associated reflexive Banach space Z such that

Z and Z∗ both have Szlenk index at most ωαω.

Both Schauder frames and atomic decompositions are natural extensions
of frame theory into the study of Banach space. These two concepts are
directly related, and some papers in the area, such as [CHL], [CL], and
[CLS], are stated in terms of atomic decompositions, while others, such as
[CDOSZ], [L], and [LZ], are stated in terms of Schauder frames.

Definition 1.10. Let X be a Banach space and Z be a Banach sequence
space. We say that a sequence of pairs (xi, fi)

∞
i=1 ⊂ X × X∗ is an atomic

decomposition of X with respect to Z if there exist positive constants A
and B such that for all x ∈ X:

(a) (fi(xi))
∞
i=1 ∈ Z,

(b) A‖x‖ ≤ ‖(fi(xi))∞i=1‖Z ≤ B‖x‖,
(c) x =

∑∞
i=1 fi(x)xi.

If the unit vectors in the Banach space Z given in Definition 1.10 form
a basis for Z, then an atomic decomposition is simply a Schauder frame with
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a specified associated space Z. We choose to use the terminology of Schauder
frames for this paper instead of atomic decomposition, as, to us, an associ-
ated space is an object which is useful for studying the Schauder frame but
is external to the space X and frame (xi, fi)

∞
i=1. Our goals are, essentially,

to construct “nice” associated spaces, given a particular Schauder frame.
However, our theorems can be stated in terms of atomic decompositions. In
particular, Theorem 1.5 can be formulated as follows.

Theorem 1.11. Let X be a Banach space and Z be a Banach sequence
space whose unit vectors form a basis for Z. Let (xi, fi)

∞
i=1 be an atomic

decomposition of X with respect to Z. Then (xi, fi)
∞
i=1 is shrinking if and

only if there exists a Banach sequence space Z ′ whose unit vectors form
a shrinking basis for Z ′ such that (xi, fi)

∞
i=1 is an atomic decomposition

of X with respect to Z ′. Furthermore, (xi, fi)
∞
i=1 is shrinking and boundedly

complete if and only if there exists a reflexive Banach sequence space Z ′

whose unit vectors form a basis for Z ′ such that (xi, fi)
∞
i=1 is an atomic

decomposition of X with respect to Z ′.

2. Shrinking and boundedly complete Schauder frames. It is well
known that a basis (xi) for a Banach space X is shrinking if and only if the
biorthogonal functionals (x∗i ) form a boundedly complete basis for X∗. The
following theorem extends this useful characterization to Schauder frames.

Theorem 2.1 ([CL, Proposition 2.3], [L, Proposition 4.8]). Let X be
a Banach space with a Schauder frame (xi, fi)

∞
i=1 ⊂ X × X∗. The frame

(xi, fi)
∞
i=1 is shrinking if and only if (fi, xi)

∞
i=1 is a boundedly complete

Schauder frame for X∗.

It is a classic and fundamental result of James that a basis for a Banach
space is both shrinking and boundedly complete if and only if the Banach
space is reflexive. The following theorem shows that one side of James’
characterization holds for frames.

Theorem 2.2 ([CL, Proposition 2.4], [L, Proposition 4.9]). If (xi, fi)
∞
i=1

is a shrinking and boundedly complete Schauder frame of a Banach space X,
then X is reflexive.

It was left as an open question in [CL] whether the converse of Theorem
2.2 holds. The following theorem shows that this is false for any Banach
space X, and is evidence of how general Schauder frames can exhibit fairly
unintuitive structure.

Theorem 2.3. Let X be a Banach space which admits a Schauder frame
(i.e. has the bounded approximation property). Then X has a Schauder frame
which is not shrinking.



Upper and lower estimates for Schauder frames 169

Proof. Let (xi, fi)
∞
i=1 be a Schauder frame for X. If (xi, fi)

∞
i=1 is not

shrinking, then we are done. Thus we assume that (xi, fi)
∞
i=1 is shrinking. Fix

x ∈ X such that x 6= 0, and choose (y∗i )
∞
i=1 ⊂ SX∗ such that y∗i →w∗ 0. For all

n ∈ N, we define elements (x′3n−2, f
′
3n−2), (x′3n−1, f

′
3n−1), (x′3n, f

′
3n) ∈ X×X∗

in the following way:

x̄3n−2 = xn, x̄3n−1 = x, x̄3n = x,

f̄3n−2 = fn, f̄3n−1 = −y∗n, f̄3n = y∗n.

As y∗i →w∗ 0, it is not difficult to see that (x̄i, f̄i)
∞
i=1 is a frame for X. How-

ever, (x̄i, f̄i)
∞
i=1 is not shrinking. Indeed, let x∗ ∈ X∗ be such that x∗(x) = 1.

As (xi, fi)
∞
i=1 is shrinking, there exists N0 ∈ N such that |

∑∞
i=M x∗(xi)fi(y)|

≤ 1
4‖y‖ for all y ∈ X and M ≥ N0. Let M ≥ N0 and choose y ∈ BX such

that y∗M (y) > 3/4. We now have the following estimate:

‖x∗ ◦ T3M‖ ≥ x∗ ◦ T3M (y) = x∗(x)y∗M (y) +
∞∑

i=M+1

fi(y)x∗(xi) >
3

4
− 1

4
=

1

2
.

Thus ‖x∗ ◦ TN‖9 0, and hence (x̄i, f̄i)
∞
i=1 is not shrinking.

As a Schauder frame must be shrinking in order to have a shrinking
associated basis, Theorem 2.3 implies that not every Schauder frame for a
reflexive Banach space has a reflexive associated space.

Definition 2.4. If (xi, fi)
∞
i=1 is a Schauder frame for a Banach space X

and (zi)
∞
i=1 is an associated basis, then (xi, fi)

∞
i=1 is called strongly shrinking

relative to (zi)
∞
i=1 if

‖x∗ ◦ Sn‖ → 0 for all x∗ ∈ X∗,
where Sn : Z → X is defined by Sn(z) =

∑∞
i=n z

∗
i (z)xi.

It is clear that if a Schauder frame is strongly shrinking relative to some
associated basis, then the Schauder frame must be shrinking. Also, if a
Schauder frame has a shrinking associated basis, then the frame is strongly
shrinking relative to the basis. In [CL], examples of shrinking Schauder
frames are given which are not strongly shrinking relative to some given
associated spaces. However, we will prove later that for any given shrink-
ing Schauder frame, there exists an associated basis such that the frame is
strongly shrinking relative to the basis. Before proving this, we state the
following theorem which illustrates why the concept of strongly shrinking
will be important to us, and allows us to use frames in duality arguments.

Theorem 2.5 ([CL, Lemma 1.7, Theorem 1.8]). If (xi, fi)
∞
i=1is a Schauder

frame for a Banach space X, and (zi)
∞
i=1 is an associated basis for (xi, fi)

∞
i=1,

then (z∗i )∞i=1 is an associated basis for (fi, xi)
∞
i=1 if and only if (xi, fi)

∞
i=1 is

strongly shrinking relative to (zi)
∞
i=1.
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Furthermore, given operators T : X → Z and S : Z → X defined by
T (x) =

∑
fi(x)zi for all x ∈ X and S(z) =

∑
z∗i (z)xi for all z ∈ Z, if

(xi, fi)
∞
i=1 is strongly shrinking relative to (zi)

∞
i=1, then S∗ : X∗ → [z∗i ] and

T ∗ : [z∗i ] → X∗ are given by S∗(x∗) =
∑
x∗(xi)z

∗
i for all x∗ ∈ X∗ and

T ∗(z∗) =
∑
z∗(zi)fi for all z∗ ∈ [z∗i ].

Applying Theorem 2.5 to reflexive Banach spaces gives the following
corollary.

Corollary 2.6. If (xi, fi)
∞
i=1 is a shrinking frame for a reflexive Banach

space X and (zi)
∞
i=1 is an associated basis such that (xi, fi)

∞
i=1 is strongly

shrinking relative to (zi)
∞
i=1, then (fi, xi)

∞
i=1 is strongly shrinking relative to

(z∗i )∞i=1.

Before proceeding further, we need some stability lemmas. Note that if
(zi)

∞
i=1 is a basis for a Banach space Z, with projection operators P(n,k) :

Z → Z given by P(n,k)(
∑
aizi) =

∑
i∈(n,k) aizi, then P(1,k) ◦ P(n,∞) = 0

and P(n,∞) ◦ P(1,k) = 0 for all k < n. The analogous property fails when
working with frames. However, the following lemmas will essentially allow
us to obtain this property within some given ε > 0 if n is chosen sufficiently
larger than k.

Lemma 2.7. Let (xi, fi)
∞
i=1 be a Schauder frame for a Banach space X.

Then for all ε > 0 and k ∈ N, there exists N ∈ N such that N > k and

sup
n≥m≥N>k≥n0≥m0

∥∥∥ n∑
i=m

fi

( n0∑
j=m0

fj(x)xj

)
xi

∥∥∥ ≤ ε‖x‖ for all x ∈ X.

Proof. As (xi, fi)
∞
i=1 is a Schauder frame, for each 1 ≤ ` ≤ k with f` 6= 0,

there exists N` > k such that supn≥m≥N` ‖
∑n

i=m fi(x`)xi‖ < ε/(k‖f`‖). Let
N = max1≤`≤kN`. We now obtain the following estimate for n ≥ m ≥ N >
k ≥ n0 ≥ m0 and x ∈ X:∥∥∥ n∑

i=m

n0∑
j=m0

fj(x)fi(xj)xi

∥∥∥ ≤ k max
1≤`≤k

∥∥∥ n∑
i=m

f`(x)fi(x`)xi

∥∥∥ as k ≥ n0

≤ k max
1≤`≤k

∥∥∥ n∑
i=m

fi(x`)xi

∥∥∥ ‖f`‖ ‖x‖ ≤ ε‖x‖ as n ≥ m ≥ N`.

In terms of operators, Lemma 2.7 can be stated as follows: for all k ∈ N,
if (xi, fi)

∞
i=1 is a Schauder frame then limN→∞ ‖TN ◦ (IdX −Tk)‖ = 0, where

Tn : X → X is given by Tn(x) =
∑∞

i=n fi(x)xi for all n ∈ N. We now
prove that for all k ∈ N, if (xi, fi)

∞
i=1 is a shrinking Schauder frame then

limN→∞ ‖(IdX − Tk) ◦ TN‖ = 0. The frame given in the proof of Theorem
2.3 shows that we cannot drop the condition of shrinking.
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Lemma 2.8. Let (xi, fi)
∞
i=1 be a shrinking Schauder frame for a Banach

space X. Then for all ε > 0 and k ∈ N, there exists N ∈ N such that N > k
and

sup
n≥m≥N>k≥n0≥m0

∥∥∥ n0∑
i=m0

fi

( n∑
j=m

fj(x)xj

)
xi

∥∥∥ ≤ ε‖x‖ for all x ∈ X.

Proof. By Theorem 2.1, (fi, xi)
∞
i=1 is a Schauder frame for X∗. Thus for

each 1 ≤ ` ≤ k with x` 6= 0, there exists an integer N` > k such that
supn≥m≥N` ‖

∑n
j=m f`(xj)fj‖ < ε/(k‖x`‖). Let N = max1≤`≤kN`. We now

obtain the following estimate for n ≥ m ≥ N > k ≥ n0 ≥ m0 and x ∈ X:∥∥∥ n0∑
i=m0

fi

( n∑
j=m

fj(x)xj

)
xi

∥∥∥
≤ k sup

1≤`≤k

∥∥∥f`( n∑
j=m

fj(x)xj

)
x`

∥∥∥ as k ≥ n0

= k sup
1≤`≤k

∣∣∣ n∑
j=m

fj(x)f`(xj)
∣∣∣ ‖x`‖

≤ k sup
1≤`≤k

∥∥∥ n∑
j=m

f`(xj)fj

∥∥∥ ‖x‖ ‖x`‖ ≤ ε‖x‖ as n ≥ m ≥ N`.

Our method for proving that every shrinking frame has a shrinking asso-
ciated basis is to first prove that every shrinking frame is strongly shrinking
with respect to some associated basis, and then renorm that associated basis
to make it shrinking. The following theorem is thus our first major step.

Theorem 2.9. Let (xi, fi)
∞
i=1 be a shrinking Schauder frame for a Ba-

nach space X. Then (xi, fi)
∞
i=1 has an associated basis (zi)

∞
i=1 such that

(xi, fi)
∞
i=1 is strongly shrinking relative to (zi)

∞
i=1.

Proof. We repeatedly apply Lemma 2.8 to obtain a subsequence (Nk)
∞
k=1

of N such that for all k ∈ N,

(3) sup
n≥m≥Nk

∥∥∥ k∑
i=1

fi

( n∑
j=m

fj(x)xj

)
xi

∥∥∥ ≤ 2−2k‖x‖ for all x ∈ X.

We assume without loss of generality that xi 6= 0 for all i ∈ N. We denote
the unit vector basis of c00 by (zi)

∞
i=1, and define the following norm ‖ · ‖Z

for all (ai) ∈ c00:

(4)
∥∥∥∑ aizi

∥∥∥
Z

= max
n≥m

∥∥∥ n∑
i=m

aixi

∥∥∥ ∨ max
k∈N, n≥m≥Nk

2k
∥∥∥ k∑
i=1

fi

( n∑
j=m

ajxj

)
xi

∥∥∥.
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It follows easily that (zi)
∞
i=1 is a bimonotone basic sequence, and thus (zi)

∞
i=1

is a bimonotone basis for the completion of c00 under ‖·‖Z , which we denote
by Z. We first prove that (zi)

∞
i=1 is an associated basis for (xi, fi)

∞
i=1. Let

C be the frame constant of (xi, fi)
∞
i=1, that is, maxn≥m ‖

∑n
i=m fi(x)xi‖ ≤

C‖x‖ for all x ∈ X. By (3) and (4), the operator T : X → Z, defined by
T (x) =

∑
fi(x)zi for all x ∈ X, is bounded and ‖T‖ ≤ C. We know that

‖
∑n

i=m aizi‖Z ≥ ‖
∑n

i=m aixi‖, and hence the operator S : Z → X defined
by S(z) =

∑
z∗i (z)xi is bounded and ‖S‖ = 1. Thus (zi)

∞
i=1 is an associated

basis for (xi, fi)
∞
i=1.

We now prove that (xi, fi)
∞
i=1 is strongly shrinking relative to (zi)

∞
i=1.

Let ε > 0 and x∗ ∈ BX∗ . As (xi, fi)
∞
i=1 is shrinking, we may choose k ∈ N

such that 2−k < ε/2 and ‖
∑∞

j=k+1 x
∗(xj)fj‖ < ε/2. We obtain the following

estimate for any N ≥ Nk and z =
∑
aizi ∈ Z:

x∗
( ∞∑
i=N

aixi

)
=

∞∑
j=1

x∗(xj)fj

( ∞∑
i=N

aixi

)
as (fi, xi)

∞
i=1 is a frame for X∗

=
k∑
j=1

x∗(xj)fj

( ∞∑
i=N

aixi

)
+

∞∑
j=k+1

x∗(xj)fj

( ∞∑
i=N

aixi

)

≤ ‖x∗‖
∥∥∥ k∑
j=1

fj

( ∞∑
i=N

aixi

)
xj

∥∥∥+
∥∥∥ ∞∑
j=k+1

x∗(xj)fj

∥∥∥ ‖z‖Z
≤ ‖x∗‖2−k‖z‖Z +

∥∥∥ ∞∑
j=k+1

x∗(xj)fj

∥∥∥ ‖z‖Z by (4) as N ≥ Nk

< (ε/2)‖z‖Z + (ε/2)‖z‖Z .
Thus, for all x∗ ∈ X∗ and ε > 0, there exists M ∈ N such that

|x∗(
∑∞

i=N z
∗
i (z)xi)| < ε for all N ≥ M and z∗ ∈ BZ∗ . Hence, (xi, fi)

∞
i=1

is strongly shrinking relative to (zi)
∞
i=1.

The following lemmas incorporate an associated basis into the tail and
initial segment estimates of Lemmas 2.7 and 2.8.

Lemma 2.10. Let X be a Banach space with a shrinking Schauder frame
(xi, fi)

∞
i=1. Let Z be a Banach space with a basis (zi)

∞
i=1 such that (xi, fi)

∞
i=1

is strongly shrinking relative to (zi)
∞
i=1. Then for all k ∈ N and ε > 0, there

exists N ∈ N such that

sup
k≥n≥m

∥∥∥ ∞∑
i=N

( n∑
j=m

x∗(xj)fj(xi)
)
z∗i

∥∥∥ < ε‖x∗‖ for all x∗ ∈ X∗.

Proof. Let k ∈ N and ε > 0. By renorming Z, we may assume without
loss of generality that (zi)

∞
i=1 is bimonotone. Let K ≥ 1 be the frame con-

stant of the frame (fi, xi)
∞
i=1 for X∗. We choose a finite ε

2‖S‖ -net (y∗α)α∈A in
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{y∗ ∈ K ·BY ∗ : y∗ ∈ span1≤i≤k fi}. By Theorem 2.5, the bounded operator
S∗ : X∗ → [z∗i ] is given by S∗(x∗) =

∑∞
i=1 x

∗(xi)z
∗
i for all x∗ ∈ X∗. As

(z∗i )∞i=1 is a basis for [z∗i ]∞i=1, for each α ∈ A, there exists Nα ∈ N such that
‖P[Nα,∞) ◦ S∗(y∗α)‖ = ‖

∑∞
i=Nα

y∗α(xi)z
∗
i ‖ < ε/2. We set N = maxα∈ANα.

Given, x∗ ∈ B∗X and m,n ∈ N such that k ≥ n ≥ m, we choose α ∈ A for
which ‖y∗α −

∑n
j=m x

∗(xj)fj‖ < ε/(2‖S‖). Consequently,∥∥∥ ∞∑
i=N

( n∑
j=m

x∗(xj)fj(xi)
)
z∗i

∥∥∥ =
∥∥∥P[N,∞) ◦ S∗

( n∑
j=m

x∗(xj)fj

)∥∥∥
≤ ‖P[N,∞) ◦ S∗(y∗α)‖+

∥∥∥P[N,∞) ◦ S∗
(
y∗α −

n∑
j=m

x∗(xj)fj

)∥∥∥
≤ ‖P[N,∞) ◦ S∗(y∗α)‖+ ‖P[N,∞)‖ ‖S‖

∥∥∥y∗α − n∑
j=m

x∗(xj)fj

∥∥∥
<
ε

2
+ ‖S‖ ε

2‖S‖
= ε.

Lemma 2.11. Let X be a Banach space with a shrinking Schauder frame
(xi, fi)

∞
i=1 ,and let Z be a Banach space with a basis (zi)

∞
i=1. Then for all

k ∈ N and ε > 0, there exists N ∈ N such that

sup
n≥m≥N

∥∥∥ k∑
i=1

( n∑
j=m

x∗(xj)fj(xi)
)
z∗i

∥∥∥ < ε‖x∗‖ for all x∗ ∈ X∗.

Proof. Let k ∈ N and ε > 0. As (xj , fj)
∞
j=1 is a Schauder frame for X, the

series
∑∞

j=1 fj(xi)xj converges in norm to xi for all i ∈ N. Thus there exists

N ∈ N such that supn≥m≥N ‖
∑n

j=m fj(xi)xj‖ < ε/(k‖z∗i ‖) for all 1 ≤ i ≤ k.
For x∗ ∈ BX∗ and n ≥ m ≥ N , we have∥∥∥ k∑

i=1

( n∑
j=m

x∗(xj)fj(xi)
)
z∗i

∥∥∥ ≤ k∑
i=1

∥∥∥ n∑
j=m

fj(xi)xj

∥∥∥ ‖z∗i ‖
<

k∑
i=1

ε

k‖z∗i ‖
‖z∗i ‖ = ε.

The following lemma and theorem are based on an idea of W. B. Johnson
[J], and are analogous to Proposition 3.1 in [FOSZ], and Lemma 4.3 in [OS1].
Their importance comes from allowing us to use arguments that require
“skipping coordinates”, and in particular, will allow us to apply Proposition
2.14.

Lemma 2.12. Let X be a Banach space with a boundedly complete Schauder
frame (xi, fi)

∞
i=1 ⊂ X × X∗. Let εi ↘ 0 and (pi)

∞
i=1 ∈ [N]ω. There exists
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(ki)
∞
i=1 ∈ [N]ω such that for all x∗∗ ∈ X∗∗ and all N ∈ N there exists M ∈ N

such that kN < M < kN+1 and

sup
pM+1>n≥m≥pM−1

∥∥∥ n∑
i=m

x∗∗(fi)xi

∥∥∥ < εN‖x∗∗‖.

Proof. Assume not; then there exist ε > 0 and K0 ∈ N such that for
all K > K0 there exists x∗∗K ∈ BX∗∗ such that for all K0 < M < K
there exists nK,M ,mK,M ∈ N with pM−1 ≤ mK,M ≤ nK,M < pM+1 and
‖
∑nK,M

i=mK,M
x∗∗K (fi)xi‖ > ε. As [pM−1, pM+1] is finite, we may choose a se-

quence (Ki)
∞
i=1 ∈ [N]ω such that for every M ∈ N there exist nM ,mM ∈ N

such that nKi,M = nM and mKi,M = mM for all i ≥ M . After passing to a
further subsequence of (Ki)

∞
i=1, we may assume that there exists x∗∗ ∈ X∗∗

such that x∗∗Ki(fj) → x∗∗(fj) for all j ∈ N. Thus ‖
∑nM

i=mM
x∗∗(fi)xi‖ ≥ ε.

This contradicts the series
∑∞

i=1 x
∗∗(fi)xi being norm convergent.

Theorem 2.13. Let X be a Banach space with a shrinking Schauder
frame (xi, fi)

∞
i=1. Let Z be a Banach space with a basis (zi)

∞
i=1 such that

(xi, fi)
∞
i=1 is strongly shrinking relative to (zi)

∞
i=1. Let (pi)

∞
i=1 ∈ [N]ω and

(δi)
∞
i=1 ⊂ (0, 1) with δi ↘ 0. Then there exist (qi)

∞
i=1, (Ni)

∞
i=1 ∈ [N]ω such

that for any (ki)
∞
i=0 ∈ [N]ω and y∗ ∈ SX∗, there exist y∗i ∈ X∗ and ti ∈

(Nki−1−1, Nki−1
) for all i ∈ N with N0 = 0 and t0 = 0 such that:

(a) y∗ =
∑∞

i=1 y
∗
i

and for all ` ∈ N we have

(b) either ‖y∗` ‖ < δ`, or suppqt`−1
≥n≥m ‖

∑n
j=m y

∗
` (xj)fj‖ < δ`‖y∗` ‖ and

supn≥m≥pqt`
‖
∑n

j=m y
∗
` (xj)fj‖ < δ`‖y∗` ‖,

(c) ‖P[pqNk`
,pqNk`+1

) ◦ S∗(y∗`−1 + y∗` + y∗`+1 − y∗)‖Z∗ < δ`,

where PI is the projection operator PI : [z∗i ] → [z∗i ] given by PI(
∑
aiz
∗
i ) =∑

i∈I aiz
∗
i for all

∑
aiz
∗
i ∈ [z∗i ] and all intervals I ⊆ N.

Proof. By Theorems 2.1 and 2.5, (fi, xi)
∞
i=1 is a boundedly complete

frame for X∗ with associated basis (z∗i )∞i=1. After renorming, we may assume
without loss of generality that (zi)

∞
i=1 is bimonotone. We let K be the frame

constant of (fi, xi)
∞
i=1. Let εi ↘ 0 be such that 2εi+1 < εi < δi and (1 +K)εi

< δ2
i+1 for all i ∈ N.
By repeatedly applying Lemma 2.8 to the frame (xi, fi)

∞
i=1 of X, we may

choose (qk)
∞
k=1 ∈ [N]ω such that for all k ∈ N,

(5) sup
n≥m≥pqk+1

>pqk≥n0≥m0

∥∥∥ n0∑
i=m0

fi

( n∑
j=m

fj(x)xj

)
xi

∥∥∥
≤ εk‖x‖ for all x ∈ X.
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By Lemma 2.11, after possibly passing to a subsequence of (qk)
∞
k=1, we may

assume that for all k ∈ N,

(6) sup
n≥m≥pqk+1

∥∥∥ pqk∑
i=1

( n∑
j=m

x∗(xj)fj(xi)
)
z∗i

∥∥∥ ≤ εk‖x∗‖ for all x∗ ∈ X∗.

By applying Lemma 2.7 to the frame (xi, fi)
∞
i=1 of X, after possibly passing

to a subsequence of (qk)
∞
k=1, we may assume that for all k ∈ N,

(7) sup
n≥m≥pqk+1

>pqk≥n0≥m0

∥∥∥ n∑
i=m

fi

( n0∑
j=m0

fj(x)xj

)
xi

∥∥∥
≤ εk+1‖x‖ for all x ∈ X.

By Lemma 2.10, after possibly passing to a subsequence of (qk)
∞
k=1, we may

assume that for all k ∈ N,

(8) sup
pqk>n≥m≥1

∥∥∥ ∞∑
i=pqk+1

( n∑
j=m

x∗(xj)fj(xi)
)
z∗i

∥∥∥
≤ εk+1‖x∗‖ for all x∗ ∈ X∗.

By Lemma 2.12, there exists (Ni)
∞
i=0 ∈ [N]ω such that N0 = 0, and for all

x∗ ∈ X∗ and for all k ∈ N there exists tk ∈ N such that Nk < tk < Nk+1

and suppqtk−1≤n≤m<pqtk+1
‖
∑m

i=n x
∗(xi)fi‖ < εk‖x∗‖.

Let (ki)
∞
i=0 ∈ [N]ω and let y∗ ∈ SX∗ . For each i ∈ N, we choose

ti ∈ (Nki , Nki+1
) with t0 = 1 such that

(9) sup
pqti+1>n≥m≥pqti−1

∥∥∥ n∑
j=m

y∗(xj)fj

∥∥∥ < εi.

We now set y∗i =
∑pqti

−1

j=pqti−1

y∗(xj)fj for all i ∈ N. We obtain

∞∑
i=1

y∗i =

∞∑
i=1

pqti
−1∑

j=pqti−1

y∗(xj)fj =

∞∑
j=1

y∗(xj)fj = y∗.

Thus (a) is satisfied.

In order to prove (b), we let ` ∈ N and assume that ‖y∗` ‖ > δ`. Let
m,n ∈ N be such that n ≥ m ≥ pqt` . To prove property (b), we consider the
inequalities
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∥∥∥ n∑
j=m

y∗` (xj)fj

∥∥∥ =
∥∥∥ n∑
j=m

pqt`
−1∑

i=pqt`−1

y∗(xi)fi(xj)fj

∥∥∥
≤
∥∥∥ n∑
j=m

pqt`
−1∑

i=pqt`−1

y∗(xi)fi(xj)fj

∥∥∥+
∥∥∥ n∑
j=m

pqt`−1−1∑
i=pqt`−1

y∗(xi)fi(xj)fj

∥∥∥
≤ K

∥∥∥ pqt`
−1∑

i=pqt`−1

y∗(xi)fi

∥∥∥+
∥∥∥ n∑
j=m

pqt`−1−1∑
i=pqt`−1

y∗(xi)fi(xj)fj

∥∥∥
< Kεt` + εt` by (9) and (7)

< (1 +K)εt`‖y
∗
` ‖/δ` < (1 +K)ε`‖y∗` ‖/δ` < δ`‖y∗` ‖.

Thus supn≥m≥pqt`
‖
∑n

j=m y
∗
` (xj)fj‖ < δ`‖y∗` ‖, proving the first of the two

inequalities in (b). We now assume that ` > 1, and let m,n ∈ N be such that
pqt`−1

≥n≥m. To prove the remaining inequality in (b), we observe that∥∥∥ n∑
j=m

y∗` (xj)fj‖ =
∥∥∥ n∑
j=m

pqt`
−1∑

i=pqt`−1

y∗(xi)fi(xj)fj

∥∥∥
≤
∥∥∥ n∑
j=m

pqt`
−1∑

i=pqt`−1+1

y∗(xi)fi(xj)fj

∥∥∥+
∥∥∥ n∑
j=m

pqt`−1+1−1∑
i=pqt`−1

y∗(xi)fi(xj)fj

∥∥∥
≤
∥∥∥ n∑
j=m

pqt`
−1∑

i=pqt`−1+1

y∗(xi)fi(xj)fj

∥∥∥+K
∥∥∥ pqt`−1+1−1∑

i=pqt`−1

y∗(xi)fi

∥∥∥
< εt`−1+1 +Kε`−1 by (5) and (9)

< (εt`−1+1 +Kε`−1)‖y∗` ‖/δ` < (1 +K)ε`−1‖y∗` ‖/δ` < δ`‖y∗` ‖.
Thus suppqt`−1

≥n≥m ‖
∑n

j=m y
∗
` (xj)fj‖ < δ`‖y∗` ‖, and hence all of (b) is sat-

isfied.

To prove (c), we note that∥∥∥P[pqNk`
,pqNk`+1

)S
∗(y∗`−1 + y∗` + y∗`+1 − y∗)

∥∥∥
Z∗

=
∥∥∥
pqNk`+1

−1∑
i=pqNk`

(y∗`−1 + y∗` + y∗`+1 − y∗)(xi)z∗i
∥∥∥

=
∥∥∥
pqNk`+1

−1∑
i=pqNk`

( pqt`−2
−1∑

j=1

y∗(xj)fj(xi) +

∞∑
j=pqt`+1

y∗(xj)fj(xi)
)
z∗i

∥∥∥
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≤
∥∥∥
pqNk`+1

−1∑
i=pqNk`

( pqt`−2
−1∑

j=1

y∗(xj)fj(xi)
)
z∗i

∥∥∥+
∥∥∥
pqNk`+1

−1∑
i=pqN`

( ∞∑
j=pqt`+1

y∗(xj)fj(xi)
)
z∗i

∥∥∥
≤
∥∥∥ ∞∑
i=pqNk`

( pqt`−2
−1∑

j=1

y∗(xj)fj(xi)
)
z∗i

∥∥∥+
∥∥∥
pqNk`+1∑
i=1

( ∞∑
j=pqt`+1

y∗(xj)fj(xi)
)
z∗i

∥∥∥
< εNk`−1 + εNk`+1

< ε` by (8) and (6).

Thus (c) is satisfied.

Properties of coordinate systems for Banach spaces such as frames, bases,
and FDDs can impose certain structure on infinite-dimensional subspaces.
For our purposes, this structure can be intrinsically characterized in terms
of even trees of vectors [OSZ1]. In order to index even trees, we define

T even
∞ = {(n1, . . . , n2`) : n1 < · · · < n2` are in N and ` ∈ N}.

If X is a Banach space, an indexed family (xα)α∈T even
∞ ⊂ X is called an

even tree. Sequences of the form (x(n1,...,n2`−1,k))
∞
k=n2`−1+1 are called nodes.

This should not be confused with the more standard terminology where a
node would refer to an individual member of the tree. Sequences of the form
(n2`−1, x(n1,...,n2`))

∞
`=1 are called branches. A normalized tree, i.e. one with

‖xα‖ = 1 for all α ∈ T even
∞ , is called weakly null (resp. w∗-null) if every node

is a weakly null (resp. w∗-null) sequence.
Given 1>ε> 0 and A⊂ (N×SX∗)ω, we let Aε = {(li, y∗i )∈ (N× SX∗)ω :

there exists (ki, x
∗
i ) ∈ A such that ki ≤ `i, ‖x∗i − y∗i ‖ < ε2−i for all i ∈ N},

and we let Aε be the closure of Aε in (N×SX∗)ω. We consider the following
game between players S (subspace chooser) and P (point chooser). The
game has an infinite sequence of moves; on the nth move S picks kn ∈ N
and a finite-codimensional w∗-closed subspace Zn of X∗ and P responds by
picking an element x∗n ∈ SX∗ such that d(x∗n, Zn) < ε2−n. Now, S wins the
game if the sequence (ki, xi)

∞
i=1 the players generate is an element of A5ε,

otherwise P is declared the winner. This is referred to as the (A, ε)-game
and was introduced in [OSZ1]. The following proposition is essentially an
extension of Proposition 2.6 in [FOSZ] from FDDs to frames, and relates
properties of w∗-null even trees and winning strategies of the (A, ε)-game to
blockings of a frame.

Proposition 2.14. Let X be an infinite-dimensional Banach space with
a shrinking Schauder frame (xi, fi)

∞
i=1. Let A ⊆ (N× SX∗)ω. The following

are equivalent:

(1) For all ε > 0 there exist (Ki)
∞
i=1 ∈ [N]ω and δ̄ = (δi) ⊂ (0, 1)

with δi ↘ 0 and (pi)
∞
i=1 ∈ [N]ω such that if (y∗i )

∞
i=1 ⊂ SX∗ and
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(ri)
∞
i=0 ∈ [N]ω satisfy suppri−1+1≥n≥m≥1 ‖

∑n
j=m y

∗
i (xj)fj‖ < δi and

supn≥m≥pri
‖
∑n

j=m y
∗
i (xj)fj‖ < δi for all i∈N, then (Kri−1 , y

∗
i )∈Aε.

(2) For all ε > 0, S has a winning strategy for the (A, ε)-game.
(3) For all ε > 0 every normalized w∗-null even tree in X∗ has a branch

in Aε.

Proof. The equivalence (2)⇔(3) is given in [FOSZ].
We assume (1) holds, and will prove (3). Let (x∗(n1,...,n2`)

)(n1,...,n2`)∈T even
∞

be a w∗-null even tree in X∗, and let ε > 0.
We shall construct by induction sequences (ri)

∞
i=0, (ni)

∞
i=1 ∈ [N]ω such

that Kri = n2i+1 and suppri−1+1≥n≥m≥1 ‖
∑n

j=m x
∗
(n1,...,n2i)

(xj)fj‖ < δi and

supn≥m≥pri
‖
∑n

j=m y
∗
i (xj)fj‖ < δi for all i ∈ N. To start, we let r0 = 1

and n1 = K1. Now, if ` ∈ N and (ri)
`
i=0 and (ni)

2`+1
i=1 have been cho-

sen, then since (x∗(n1,...,n2`+1,k))
∞
k=n2`+1+1 is w∗-null, we may choose n2`+2 >

n2`+1 such that ‖x∗(n1,...,n2`+1,n2`+2)(xj)fj‖ < (pr` + 1)−1δ`+1. Thus, we have

suppr`+1≥n≥m≥1 ‖
∑n

j=m x
∗
(n1,...,n2`+1,n2`+2)(xj)fj‖ < δ`+1. As (xj , fj)

∞
i=1 is a

Schauder frame, we may choose r`+1 > r` such that

sup
n≥m≥pr`+1

∥∥∥ n∑
j=m

x∗(n1,...,n2`+1,n2`+2)(xj)fj

∥∥∥ < δ`+1.

We then let n2`+2 = Kr`+1
. Thus, (ri)

∞
i=0 and (ni)

∞
i=1 may be constructed

by induction to have the desired properties, giving (n2i−1, x
∗
(n1,...,n2i)

)∞i=1 =

(Kri−1 , x
∗
(n1,...,n2i)

)∞i=1 ∈ Aε.
We now assume (2) holds, and will prove (1). Let ε > 0. The fact that

player S has a winning strategy for the (A, ε)-game means that there exist
an indexed collection (k(x∗1,...,x

∗
` ))(x∗1,...,x

∗
` )∈X<N of natural numbers and an

indexed collection (X∗(x∗1,...,x∗` ))(x∗1,...,x
∗
` )∈X<N of cofinite-dimensional w∗-closed

subsets of X∗ such that if (x∗i )
∞
i=1 ⊂ SX∗ and d(x∗i , X

∗
(x∗1,...,x

∗
i )) <

1
10ε2

−i for

all i ∈ N, then (k(x∗1,...,x
∗
i ), X

∗
(x∗1,...,x

∗
i ))
∞
i=1 ∈ Aε/2 and (k(x∗1,...,x

∗
i ))
∞
i=1 ∈ [N]ω.

We construct by induction (Ki)
∞
i=1, (pi)

∞
i=1 ∈ [N]ω, (δi)

∞
i=1 ∈ (0, 1)ω,

and a nested collection (Di)
∞
i=1 ⊂ [X<ω]ω such that Di is 1

20ε2
−i-dense

in [fj ]
pi
j=1 and if (y∗i )

∞
i=1 ⊂ SX∗ and (ri)

∞
i=0 ∈ [N]ω are such that both

suppri−1+1≥n≥m≥1 ‖
∑n

j=m y
∗
i (xj)fj‖ < δi and supn≥m≥pri

‖
∑n

j=m y
∗
i (xj)fj‖

< δi for all i ∈ N, and x∗i ∈ Dri+1 are such that ‖y∗i − x∗i ‖ < 1
20ε2

−i for all

i ∈ N, then Kri−1 ≥ k(x∗1,...,x
∗
i−1) and d(x∗i , X

∗
(x∗1,...,x

∗
i )) <

1
10ε2

−i. This would

imply that (k(x∗1,...,x
∗
i ), X

∗
(x∗1,...,x

∗
i ))
∞
i=1 ∈ Aε/2. Hence, (Kri−1 , y

∗
i )
∞
i=1 ∈ Aε as

Kri−1 ≥ k(x∗1,...,x
∗
i−1) and ‖y∗i − x∗i ‖ < 1

20ε2
−i for all i ∈ N. Thus all that

remains is to show that (Ki)
∞
i=1, (pi)

∞
i=1 ∈ [N]ω and (Di)

∞
i=1 ⊂ [X<ω]ω may

be constructed inductively with the desired properties.



Upper and lower estimates for Schauder frames 179

We start by choosing K1 = k∅. As (xi, fi)
∞
i=1 is a shrinking Schauder

frame for X and X∗∅ ⊂ X
∗ is cofinite-dimensional and w∗-closed, by Lemma

2.8 there exist p1 ∈N and δ1 > 0 such that if supp1≥n≥m≥1‖
∑n

j=my
∗(xj)fj‖

< δ1 for some y∗ ∈ SX∗ , then d(y∗, X∗∅ ) <
1
20ε. We then let D1 be some

finite 1
20ε-net in [fi]

p1
i=1. Now we assume n ∈ N and that (Ki)

n
i=1 ∈ [N]<ω,

(pi)
n
i=1 ∈ [N]<ω, (δi)

n
i=1 ∈ (0, 1)<ω, and (Di)

n
i=1 ⊂ [X<ω]<ω have been

suitably chosen. As (xi, fi)
∞
i=1 is a shrinking Schauder frame for X, and

X∗(x∗1,...,x∗` ) ⊂ X∗ is cofinite-dimensional and w∗-closed for all (x∗1, . . . , x
∗
` )

in [Dn]<ω, by Lemma 2.8 there exist pn+1 ∈ N and δn+1 > 0 such that
if suppn+1≥n≥m≥1 ‖

∑n
j=m y

∗(xj)fj‖ < δn+1 for some y∗ ∈ SX∗ , then

d(y∗,
⋂

(x∗1,...,x
∗
` )∈[Dn]<ω X

∗
(x∗1,...,x

∗
` )) <

1
20ε2

−n−1. We then let

Kn+1 = max
(x∗1,...,x

∗
` )∈[Dn]<ω

k(x∗1,...,x
∗
` )

and let Dn+1 be a finite 1
20ε2

−n−1-net in [fi]
pn+1

i=1 .

3. Upper and lower estimates. If (xi)
∞
i=1 and (vi)

∞
i=1 are two se-

quences in Banach spaces and C∈R, then we say that (xi)
∞
i=1 is C-dominated

by (vi)
∞
i=1 if ‖

∑
aixi‖ ≤ C‖

∑
aivi‖ for all (ai) ∈ c00. Let Z be a Banach

space with an FDD (Ei)
∞
i=1, let V = (vi)

∞
i=1 be a normalized 1-unconditional

basis, and let 1 ≤ C < ∞. We say that (Ei)
∞
i=1 satisfies subsequential

C-V -upper block estimates if every normalized block sequence (zi)
∞
i=1 of

(Ei)
∞
i=1 in Z is C-dominated by (vmi)

∞
i=1, where mi = min suppE(zi) for

all i ∈ N. We say that (Ei)
∞
i=1 satisfies subsequential C-V -lower block esti-

mates if every normalized block sequence (zi)
∞
i=1 of (Ei)

∞
i=1 in Z C-dominates

(vmi)
∞
i=1, where mi = min suppE(zi) for all i ∈ N. We say that (Ei)

∞
i=1 sat-

isfies subsequential V -upper (resp. lower) block estimates if it satisfies sub-
sequential C-V -upper (resp. lower) block estimates for some 1 ≤ C <∞.

Note that if (Ei)
∞
i=1 satisfies subsequential C-V -upper block estimates

and (zi)
∞
i=1 is a normalized block sequence with max suppE(zi−1) < ki ≤

min suppE(zi) for all i > 1, then (zi)
∞
i=1 is C-dominated by (vki)

∞
i=1 (and a

similar remark holds for lower estimates). The following well known lemma
shows why upper estimates are useful for proving theorems about shrinking
basic sequences, and why lower estimates are useful for proving theorems
about boundedly complete basic sequences.

Lemma 3.1. Let (Ei)
∞
i=1 be an FDD and let (vi)

∞
i=1 be a normalized basic

sequence. If (vi)
∞
i=1 is weakly null and (Ei)

∞
i=1 satisfies subsequential V -upper

block estimates, then (Ei)
∞
i=1 is shrinking. If (vi)

∞
i=1 is boundedly complete

and (Ei)
∞
i=1 satisfies subsequential V -lower block estimates, then (Ei)

∞
i=1 is

boundedly complete.
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Proof. We first assume that (vi)
∞
i=1 is weakly null and (Ei)

∞
i=1 satisfies

subsequential C-V -upper block estimates for some C > 0. Let (zi)
∞
i=1 be a

normalized block sequence of (Ei)
∞
i=1. We know that (zi)

∞
i=1 is C-dominated

by (vmi)
∞
i=1 where mi = min suppE(zi) for all i ∈ N. Let ε > 0. Because

(vi)
∞
i=1 is weakly null, there exists (λi)

n
i=1 ⊂ (0,∞) such that

∑
λi = 1

and ‖
∑
λivmi‖ < ε/C. Hence, ‖

∑
λizi‖ ≤ C‖

∑
λivi‖ < ε. We infer that

0 is contained in the closed convex hull of every normalized block sequence
of (Ei), and hence (Ei) is shrinking.

We now assume that (vi)
∞
i=1 is boundedly complete and (Ei)

∞
i=1 satis-

fies subsequential V -lower block estimates. Let (zi)
∞
i=1 be a seminormalized

block sequence of (Ei)
∞
i=1. We see that (vmi)

∞
i=1 is dominated by (zi)

∞
i=1

where mi = min suppE(zi) for all i ∈ N. As (vmi)
∞
i=1 is boundedly complete,

supn∈N ‖
∑n

i=1 vmi‖ = ∞. Hence, supn∈N ‖
∑n

i=1 zi‖ = ∞, and thus (Ei)
∞
i=1

is boundedly complete as well.

Subsequential V (∗)-upper block estimates and subsequential V-lower block
estimates are dual properties, as shown in the following proposition from
[OSZ1].

Proposition 3.2 ([OSZ1, Proposition 2.14]). Assume that Z has an
FDD (Ei)

∞
i=1, and let V = (vi)

∞
i=1 be a normalized and 1-unconditional basic

sequence. The following statements are equivalent:

(a) (Ei)
∞
i=1 satisfies subsequential V -lower block estimates in Z.

(b) (E∗i )∞i=1 satisfies subsequential V (∗)-upper block estimates in Z(∗).

(Here subsequential V (∗)-upper estimates are with respect to (v∗i )
∞
i=1, the

sequence of biorthogonal functionals to (vi)
∞
i=1.)

Moreover, if (Ei)
∞
i=1 is bimonotone in Z, then the equivalence holds true

if one replaces, for some C ≥ 1, V -lower estimates by C-V -lower estimates
in (a) and V (∗)-upper estimates by C-V (∗)-upper estimates in (b).

Note that by duality, Proposition 3.2 holds if we interchange the words
“upper” and “lower”.

We are interested in creating associated spaces which have coordinate
systems satisfying certain upper and lower block estimates. The particular
Banach spaces that we start with do not themselves have such coordinate
systems, and hence we need to consider intrinsic coordinate-free proper-
ties of a Banach space which characterize when a Banach space embeds
into a different Banach space with a coordinate system having certain up-
per and lower block estimates. These intrinsic coordinate-free Banach space
properties are defined in terms of even trees. Let X be a Banach space,
V = (vi)

∞
i=1 be a normalized 1-unconditional basis, and 1 ≤ C < ∞. We

say that X satisfies subsequential C-V -upper tree estimates if every weakly
null even tree (xα)α∈T even

∞ in X has a branch (n2`−1, x(n1,...,n2`))
∞
`=1 such that



Upper and lower estimates for Schauder frames 181

(x(n1,...,n2`))
∞
`=1 is C-dominated by (vn2`−1

)∞`=1. We say that X satisfies sub-
sequential V -upper tree estimates if it satisfies subsequential C-V -upper tree
estimates for some 1 ≤ C < ∞. If X is a subspace of a dual space, we say
that X satisfies subsequential C-V -lower w∗ tree estimates if every w∗-null
even tree (xα)α∈T even

∞ in X has a branch (n2`−1, x(n1,...,n2`))
∞
`=1 such that

(x(n1,...,n2`))
∞
`=1 C-dominates (vn2`−1

)∞`=1.
A basic sequence V = (vi)

∞
i=1 is called C-right dominant if for all se-

quences m1 < m2 < · · · and n1 < n2 < · · · of positive integers with mi ≤ ni
for all i ∈ N, the sequence (vmi)

∞
i=1 is C-dominated by (vni)

∞
i=1. We say that

(vi)
∞
i=1 is right dominant if for some C ≥ 1 it is C-right dominant.

Lemma 3.3 ([FOSZ, Lemma 2.7]). Let X be a Banach space with sepa-
rable dual, and let V = (vi)

∞
i=1 be a normalized, 1-unconditional, right domi-

nant basic sequence. If X satisfies subsequential V -upper tree estimates, then
X∗ satisfies subsequential V ∗-lower w∗ tree estimates.

Let (xi, fi)
∞
i=1 be a shrinking Schauder frame for a Banach space X, and

let (vi)
∞
i=1 be a normalized, 1-unconditional, block stable, 1-right dominant,

and shrinking basic sequence. For any C > 0, we may apply Proposition 2.14
to the set A = {(ni, x∗i )∞i=1 ∈ (N × SX∗)ω : (x∗i )

∞
i=1 C-dominates (v∗ni)

∞
i=1}

to obtain the following corollary.

Corollary 3.4. Let (xi, fi)
∞
i=1 be a shrinking Schauder frame for a

Banach space X, and let V = (vi)
∞
i=1 be a normalized, 1-unconditional,

block stable, right dominant, and shrinking basic sequence. The following
are equivalent:

(1) There exist C > 0, (Ki)
∞
i=1, (pi)

∞
i=1 ∈ [N]ω, and δ̄ = (δi) ⊂ (0, 1)

with δi ↘ 0 such that if (y∗i )
∞
i=1 ⊂ SX∗ and (ri)

∞
i=0 ∈ [N]ω are se-

quences such that both sup1≤n≤m≤pri−1+1
‖
∑m

j=n y
∗
i (xj)fj‖ < δi and

suppri≤n≤m
‖
∑m

j=n y
∗
i (xj)fj‖ < δi then (y∗i ) �C (v∗Kri−1

).

(2) X satisfies subsequential V -upper tree estimates.

Let Z be a Banach space with a basis (zi)
∞
i=1, let (pi)

∞
i=1 ∈ [N]ω with

p1 = 1, and let V = (vi)
∞
i=1 be a normalized 1-unconditional basic sequence.

The space ZV (pi) is defined to be the completion of c00 with respect to the
following norm ‖ · ‖ZV where for (ai)

∞
i=1 ∈ c00:∥∥∥∑ aizi

∥∥∥
ZV

= max
M∈N, 1≤r0≤r1<···<rM

∥∥∥∥ M∑
i=1

∥∥∥ pri+1−1∑
j=pri

ajzj

∥∥∥
Z
vri

∥∥∥∥
V

.

Note that (zi)
∞
i=1 is a Schauder basis for ZV (pi) and (spanj∈[pi,pi+1) zj)

∞
i=1

is an FDD for ZV (pi). The following proposition from [OSZ1] is what makes
the space ZV essential for us. Recall that in [OSZ1], a basis, (vi)

∞
i=1, is called

C-block stable for some C ≥ 1 if any two normalized block bases (xi)
∞
i=1 and

(yi)
∞
i=1 with max(supp(xi), supp(yi)) < min(supp(xi+1), supp(yi+1)) for all
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i ∈ N are C-equivalent. We say that (vi)
∞
i=1 is block stable if it is C-block

stable for some constant C. We will make use of the fact that the property
of block stability dualizes. That is, if (vi)

∞
i=1 is a block stable basic sequence,

then (v∗i )
∞
i=1 is also a block stable basic sequence. Another simple, though

important, consequence of a normalized basic sequence (vi)
∞
i=1 being block

stable is that there exists a constant c ≥ 1 such that (vni)
∞
i=1 is c-equivalent

to (vni+1)∞i=1 for all (ni)
∞
i=1 ∈ [N]ω. Block stability has been considered be-

fore in various forms and under different names. In particular, it has been
called the blocking principle [CJT] and the shift property [CK] (see [FR]
for alternative forms). The following proposition recalls some properties of
ZV (pi) which were shown in [OSZ1].

Proposition 3.5 ([OSZ1, Corollary 3.2, Lemmas 3.3, 3.5, and 3.6]).
Let V = (vi)

∞
i=1 be a normalized, 1-unconditional, and C-block stable basic

sequence. If Z is a Banach space with a basis (zi)
∞
i=1 and (pi)

∞
i=1 ∈ [N]ω with

p1 = 1, then (spanj∈[pi,pi+1) zj)
∞
i=1 satisfies subsequential 2C-V -lower block

estimates in ZV (pi). If the basis (vi)
∞
i=1 is boundedly complete, then (zi)

∞
i=1

is a boundedly complete basis for ZV (pi). If the basis (vi)
∞
i=1 is shrinking and

(zi)
∞
i=1 is shrinking in Z, then (zi)

∞
i=1 is a shrinking basis for ZV (pi).

If U = (ui)
∞
i=1 is a normalized, 1-unconditional, and block stable basic

sequence such that (vi)
∞
i=1 is dominated by (ui)

∞
i=1 and (spanj∈[pi,pi+1) zj)

∞
i=1

satisfies subsequential U-upper block estimates in Z, then (spanj∈[pi,pi+1) zj)
∞
i=1

also satisfies subsequential U -upper block estimates in ZV (pi).

Theorem 3.6. Let X be a Banach space with a shrinking Schauder
frame (xi, fi)

∞
i=1 which is strongly shrinking relative to some Banach space Z

with basis (zi)
∞
i=1 and bounded operators T : X → Z and S : Z → X defined

by T (x) =
∑
fi(x)zi for all x ∈ X and S(z) =

∑
z∗i (z)xi for all z ∈ Z. Let

V = (vi)
∞
i=1 be a normalized, 1-unconditional, block stable, right dominant,

and shrinking basic sequence. If X satisfies subsequential V -upper tree es-
timates, then there exist (ni)

∞
i=1, (Ki)

∞
i=1 ∈ [N]ω such that Z∗(v∗Ki )

(ni) is an

associated space of (fi, xi)
∞
i=1 with bounded operators S∗ : X∗ → Z∗(v∗Ki )

(ni)

and T ∗ : Z∗(v∗Ki )
(ni)→ X given by S∗(x∗) =

∑
x∗(xi)z

∗
i for all x∗ ∈ X∗ and

S∗(z∗) =
∑
z∗(zi)fi for all z∗ ∈ Z∗(v∗Ki )

(ni).

Proof. After renorming, we may assume that the basis (zi)
∞
i=1 is bimono-

tone. The sequence (fi, xi)
∞
i=1 is a boundedly complete Schauder frame for

X∗ by Theorem 2.1, and we find that X∗ satisfies subsequential V ∗-lower
w∗ tree estimates by Lemma 3.3. By Theorem 2.5, the basis (z∗i )∞i=1 is
an associated basis for (fi, xi)

∞
i=1 with bounded operators S∗ : X∗ → Z∗

and T ∗ : Z∗ → X given by S∗(x∗) =
∑
x∗(xi)z

∗
i for all x∗ ∈ X∗ and

S∗(z∗) =
∑
z∗(zi)fi for all z∗ ∈ Z∗. Let ε > 0. By Corollary 3.4, there
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exist C > 0, (Ki)
∞
i=1, (pi)

∞
i=1 ∈ [N]ω, and δ̄ = (δi) ⊂ (0, 1) with δi↘ 0

and
∑
δi < ε such that if (y∗i )

∞
i=1 ⊂ SX∗ and (ri)

∞
i=0 ∈ [N]ω satisfy

sup1≤n≤m≤pri−1+1
‖
∑m

j=n y
∗
i (xj)fj‖ < δi and suppri≤n≤m

‖
∑m

j=n y
∗
i (xj)fj‖

< δi, then (y∗i ) �C (v∗Kri−1
). We apply Theorem 2.13 to (xi, fi)

∞
i=1, (pi)

∞
i=1

∈ [N]ω, and (δi)
∞
i=1 ⊂ (0, 1) to obtain (qi)

∞
i=1, (Ni)

∞
i=1 ∈ [N]ω satisfying the

conclusion of Theorem 2.13.

By Theorem 2.5, (z∗i )∞i=1 is an associated basis for (fi, xi)
∞
i=1, and we

denote the norm on Z∗ by ‖ · ‖Z∗ . We block the basis (z∗i )∞i=1 into an FDD
by setting Ei = spanj∈[pqNi

,pqNi+1
) z
∗
j for all i ∈ N. We now define a new

norm ‖ · ‖Z̄∗ on span(z∗i )∞i=1 by setting, for all (ai) ∈ c00,

∥∥∥∑ aiz
∗
i

∥∥∥
Z̄∗

= max
M∈N, 1≤r0≤r1<···<rM

∥∥∥∥ M∑
i=1

∥∥∥ pqNri+1
−1∑

j=pqNri

ajz
∗
j

∥∥∥
Z∗
v∗KNri

∥∥∥∥
V ∗
.

We let Z̄∗ be the completion of span(z∗i )∞i=1 under the norm ‖ · ‖Z̄∗ . Note
that ‖z∗‖Z∗ ≤ ‖z∗‖Z̄∗ for all z∗ ∈ Z∗. As (v∗i )

∞
i=1 is block stable, there exists

a constant c ≥ 1 such that (v∗ni)
∞
i=1 ≈c (v∗ni+1

)∞i=1 for all (ni)
∞
i=1 ∈ [N]ω. We

now show that ‖S∗(y∗)‖Z̄∗ ≤ (1 + 2ε)3cC‖S‖ ‖y∗‖ for all y∗ ∈ X∗.
Let y∗ ∈ X∗ with ‖y∗‖ = 1, M ∈ N, and 1 ≤ r0 ≤ r1 < · · · < rM . We will

show that (1+2ε)3cC‖S‖ ‖y∗‖ ≥ ‖
∑M

i=1 ‖
∑pqNri+1

−1

j=pqNri
y∗(xj)z

∗
j ‖v∗pNri ‖V

∗ . By

Theorem 2.13, there exist y∗i ∈ X∗ and ti ∈ (Nri−1−1, Nri−1) for all i ∈ N
with N0 = 0 and t0 = 0 such that

(a) y∗ =
∑∞

i=1 y
∗
i

and that for all i ∈ N we have

(b) either ‖y∗i ‖ < δi, or suppqti−1
≥n≥m ‖

∑n
j=m y

∗
i (xj)fj‖ < δi‖y∗i ‖ and

supn≥m≥pqti
‖
∑n

j=m y
∗
i (xj)fj‖ < δi‖y∗i ‖,

(c) ‖P ∗[pqNki ,pqNki+1
) ◦ S

∗(y∗i−1 + y∗i + y∗i+1 − y∗)‖Z∗ < δi.

We let A = {i ∈ N : ‖y∗i ‖ > δi}. By our choice of (pi)
∞
i=1, we deduce that

(y∗i /‖y∗i ‖)i∈A �C (v∗Kri−1
)i∈A. Thus, C‖

∑
i∈A y

∗
i ‖ ≥ ‖

∑
i∈A ‖y∗i ‖v∗Kri−1

‖V ∗ .
We now obtain the following lower estimate for ‖y∗‖:

‖y∗‖ =
∥∥∥∑ y∗i

∥∥∥ by (a)

≥
∥∥∥∑
i∈A

y∗i

∥∥∥+
∑
i 6∈A
‖y∗i ‖ − ε as

∑
δi < ε

≥ 1

C

∥∥∥∑
i∈A
‖y∗i ‖v∗Kri−1

∥∥∥
V ∗

+
∑
i 6∈A
‖y∗i ‖ − ε ≥

1

C

∥∥∥∑ ‖y∗i ‖v∗Kri−1

∥∥∥
V ∗
− ε
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≥ 1

3cC

(∥∥∥∑‖y∗i ‖v∗Kri−1

∥∥∥
V ∗

+
∥∥∥∑‖y∗i−1‖v∗Kri−1

∥∥∥
V ∗

+
∥∥∥∑‖y∗i+1‖v∗Kri−1

∥∥∥
V ∗

)
−ε

≥ 1

3cC

∥∥∥∑ ‖y∗i−1 + y∗i + y∗i+1‖v∗Kri−1

∥∥∥
V ∗
− ε

≥ 1

3cC‖S‖

∥∥∥∑ ‖S∗(y∗i−1 + y∗i + y∗i+1)‖Z∗v∗Kri−1

∥∥∥
V ∗
− ε

≥ 1

3cC‖S‖

∥∥∥∑ ‖P ∗[pqNi ,pqNi+1
)S
∗(y∗i−1 + y∗i + y∗i+1)‖Z∗v∗Kri−1

∥∥∥
V ∗
− ε

≥ 1

3cC‖S‖

∥∥∥∑ ‖
pqNi+1

−1∑
j=pqNi

y∗(xj)zj‖v∗Kri−1

∥∥∥
V ∗
− 2ε by (c).

Thus ‖S∗y∗‖Z̄∗ ≤ (1 + 2ε)3cC‖S‖ ‖y∗‖ for all y∗ ∈ X∗. Furthermore, as
‖z∗‖Z∗≤‖z∗‖Z̄∗ for allz∗∈Z∗, we have‖y∗‖≤‖T ∗‖ ‖S∗y∗‖Z∗≤‖T ∗‖ ‖S∗y∗‖Z̄∗
for all y∗ ∈ X∗. Hence, S∗ : X∗ → Z̄∗ is an isomorphism. We observe that
T ∗ : Z∗ → X∗ is bounded, and hence T ∗ : Z̄∗ → X∗ is bounded as well, since
‖z∗‖Z∗ ≤ ‖z∗‖Z̄∗ for all z∗∈Z∗. Thus, Z̄∗ is an associated space of X∗.

We now restate and prove Theorem 1.6, which is an extension of Theorem
1.1 in [FOSZ] to Schauder frames.

Theorem 3.7. Let X be a Banach space with a shrinking Schauder
frame (xi, fi)

∞
i=1. Let (vi)

∞
i=1 be a normalized, 1-unconditional, block stable,

right dominant, and shrinking basic sequence. If X satisfies subsequential
(vi)

∞
i=1-upper tree estimates, then there exist (ni)

∞
i=1, (Ki)

∞
i=1 ∈ [N]ω and an

associated spaceZ with a shrinking basis (zi)
∞
i=1 such that (spanj∈[ni,ni+1) zi)

∞
i=1

is an FDD which satisfies subsequential (vKi)
∞
i=1-upper block estimates.

Proof. As (xi, fi)
∞
i=1 is a shrinking Schauder frame, it is strongly shrink-

ing relative to some associated basis (zi)
∞
i=1 for a Banach space Z by Theo-

rem 2.9. We thus have bounded operators T : X → Z and S : Z → X defined
by T (x) =

∑
fi(x)zi for all x ∈ X and S(z) =

∑
z∗i (z)xi for all z ∈ Z. By

Theorem 3.6, there exist (ni)
∞
i=1, (Ki)

∞
i=1 ∈ [N]ω such that Z∗(v∗Ki )

(ni) is an

associated space of (fi, xi)
∞
i=1 with bounded operators S∗ : X∗ → Z∗(v∗Ki )

(ni)

and T ∗ : Z∗(v∗Ki )
(ni)→ X given by S∗(x∗) =

∑
x∗(xi)z

∗
i for all x∗ ∈ X∗ and

T ∗(z∗) =
∑
z∗(zi)fi for all z∗ ∈ Z∗(v∗Ki )

(ni). We define Z̄ as the completion

of [zi]
∞
i=1 under the norm∥∥∥∑ aizi

∥∥∥
Z̄

= sup
z∗∈BZ∗

(v∗
Ki

)
(ni)

z∗
(∑

aizi

)
.

As (z∗i )∞i=1 is a boundedly complete basis of Z∗(v∗Ki )
(ni) by Proposition 3.5,

we see that (zi)
∞
i=1 is a shrinking basis for Z̄ and that the dual of Z̄ is

Z∗(v∗Ki )
(ni). We now prove that Z̄ is an associated space for (xi, fi)

∞
i=1.
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If (y∗i )
∞
i=1 ⊂ X∗ and y∗i →w∗ 0, then (S∗(y∗i ))

∞
i=1 converges w∗ to 0

as a sequence in Z∗. Thus ((S∗(y∗i ))(zj))
∞
i=1 converges to 0 for all j ∈ N.

Furthermore, (S∗(y∗i ))
∞
i=1 is bounded in Z∗(v∗Ki )

(ni) as Z∗(v∗Ki )
(ni) is an asso-

ciated space of (fi, xi)
∞
i=1. Proposition 3.5 shows that (z∗i )∞i=1 is a boundedly

complete basis for Z∗(v∗Ki )
(ni), and hence converging w∗ to 0 in Z∗(v∗Ki )

(ni) is

equivalent to converging coordinatewise to 0 for bounded sequences. Hence,
(S∗(y∗i ))

∞
i=1 converges w∗ to 0 in Z∗(v∗Ki )

(ni). Thus S∗ : X∗ → Z∗(v∗Ki )
(ni) is

w∗-to-w∗ continuous, and hence is a dual operator. Thus, S : Z̄ → X is well
defined and bounded.

If (y∗i )
∞
i=1 ⊂ Z∗(v∗Ki )

(ni) converges w∗ to 0 in Z∗(v∗Ki )
(ni), then (y∗i )

∞
i=1 is

bounded and converges coordinatewise to 0. Hence, (y∗i )
∞
i=1 is bounded and

converges coordinatewise to 0 in Z∗ as ‖z∗‖Z∗ ≤ ‖z∗‖Z∗
(v∗
Ki

)
(ni) for all z∗∈Z∗.

Hence, (y∗i )
∞
i=1 converges w∗ to 0 in Z∗ as (z∗i )∞i=1 is a boundedly complete

basis for Z∗. Thus, (T ∗(y∗i ))
∞
i=1 →w∗ 0 inX∗. Hence T ∗ : Z∗(v∗Ki )

(ni)→X∗ is

w∗-to-w∗ continuous, and so a dual operator. Thus, T : X → Z̄ is well de-
fined and bounded. This tells us that Z̄ is an associated space for (xi, fi)

∞
i=1.

By Proposition 3.5, the FDD (spanj∈[ni,ni+1) z
∗
j )∞i=1 satisfies (v∗Ki)-lower block

estimates in Z̄∗, and hence (spanj∈[ni,ni+1) zj)
∞
i=1 satisfies (vKi)

∞
i=1-upper

block estimates in Z̄. By Lemma 3.1 we conclude that (zi)
∞
i=1 is shrinking.

We now restate and prove Theorem 1.7, which is an extension of Theorem
4.6 in [OSZ1] to frames.

Theorem 3.8. Let X be a Banach space with a shrinking and
boundedly complete Schauder frame (xi, fi)

∞
i=1. Let (ui)

∞
i=1 be a normalized,

1-unconditional, block stable, right dominant, and shrinking basic sequence,
and let (vi)

∞
i=1 be a normalized, 1-unconditional, block stable, left domi-

nant, and boundedly complete basic sequence such that (ui) dominates (vi).
Then X satisfies subsequential (ui)

∞
i=1-upper tree estimates and subsequential

(vi)
∞
i=1-lower tree estimates if and only if there exist (ni)

∞
i=1, (Ki)

∞
i=1 ∈ [N]ω

and a reflexive associated space Z with associated basis (zi)
∞
i=1 such that

the FDD (spanj∈[ni,ni+1) zj)
∞
i=1 satisfies subsequential (uKi)

∞
i=1-upper block

estimates and subsequential (vKi)
∞
i=1-lower block estimates.

Proof. By Theorem 3.7, (xi, fi)
∞
i=1 has an associated space Z with a

shrinking basis (zi)
∞
i=1 such that there exist (mi)

∞
i=1, (ki)

∞
i=1 ∈ [N]ω such that

the FDD (spanj∈[mi,mi+1) zj)
∞
i=1 satisfies subsequential (uki)

∞
i=1-upper block

estimates. We notice that (fi, xi)
∞
i=1 is a shrinking frame for X∗ which is

strongly shrinking relative to the associated basis (z∗i )∞i=1 by Corollary 2.6.
The space X satisfying subsequential (vi)

∞
i=1-lower tree estimates implies
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that X∗ satisfies subsequential (v∗i )
∞
i=1-upper tree estimates. Thus we may

apply Theorem 3.6 to the space X∗, the frame (fi, xi)
∞
i=1, and the associated

basis (z∗i )∞i=1 to obtain (ni)
∞
i=1, (Ki)

∞
i=1 ∈ [N]ω such that Z(vKi )

(ni) is an

associated space for (xi, fi)
∞
i=1. Furthermore, we may assume that (ni)

∞
i=1 is a

subsequence of (mi)
∞
i=1 and that (Ki)

∞
i=1 is a subsequence of (ki)

∞
i=1 as (vi)

∞
i=1

is left dominant. By Lemma 3.5, the FDD (spanj∈[ni,ni+1) zj)
∞
i=1 satisfies

subsequential (uKi)
∞
i=1-upper block estimates and subsequential (vKi)

∞
i=1-

lower block estimates. By Lemma 3.1 we deduce that (zi)
∞
i=1 is shrinking

and boundedly complete. Thus, Z is reflexive.

We now show that Theorem 1.5 follows immediately from Theorems 3.7
and 3.8.

Proof of Theorem 1.5. Let (xi, fi)
∞
i=1 be a shrinking Schauder frame for

a Banach space X. Then X must have separable dual by Theorem 2.1. We
claim that X must satisfy subsequential (vi)

∞
i=1-upper tree estimates for

some normalized, 1-unconditional, block stable, right dominant, and shrink-
ing basic sequence (vi)

∞
i=1. Indeed, as X has separable dual, X must have

countable Szlenk index. In particular, Sz(X) ≤ ωαω for some countable or-
dinal α. By [FOSZ, Theorem 1.3], there exists a constant c ∈ (0, 1) such that
X satisfies subsequential Tα,c-upper tree estimates, where Tα,c is Tsirelson’s
space of order α and constant c. The unit vector basis for Tα,c is a nor-
malized, 1-unconditional, block stable, right dominant, and shrinking basic
sequence (see [OSZ2, Proposition 3] as well as [CJT] and [LT] for a proof).
Thus, we may apply Theorem 3.7 to obtain a shrinking associated basis for
the shrinking Schauder frame (xi, fi)

∞
i=1.

We now assume that (xi, fi)
∞
i=1 is a shrinking and boundedly complete

Schauder frame for a Banach space X. Then X must be reflexive by The-
orem 2.2. We claim that X must satisfy subsequential (ui)

∞
i=1-upper tree

estimates and subsequential (u∗i )
∞
i=1-lower tree estimates for some normal-

ized, 1-unconditional, block stable, right dominant, and shrinking basic se-
quence (ui)

∞
i=1. Indeed, as X is separable and reflexive, both X and X∗

must have countable Szlenk index. In particular, Sz(X),Sz(X∗) ≤ ωαω for
some countable ordinal α. By [OSZ2, Theorem 21], there exists a constant
c ∈ (0, 1) such that X satisfies subsequential Tα,c-upper tree estimates and
T ∗α,c-lower tree estimates. The unit vector basis for Tα,c is a normalized,
1-unconditional, block stable, right dominant, and shrinking basic sequence.
Thus the unit vector basis for T ∗α,c is a normalized, 1-unconditional, block
stable, left dominant, and boundedly complete basic sequence. We apply
Theorem 3.8 to obtain a reflexive associated space for the shrinking and
boundedly complete Schauder frame (xi, fi)

∞
i=1.
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