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Abstract. We give several topological/combinatorial conditions that, for a filter
on ω, are equivalent to being a non-meager P-filter. In particular, we show that a fil-
ter is countable dense homogeneous if and only if it is a non-meager P-filter. Here, we
identify a filter with a subspace of 2ω through characteristic functions. Along the way, we
generalize to non-meager P-filters a result of Miller (1984) about P-points, and we employ
and give a new proof of results of Marciszewski (1998). We also employ a theorem of
Hernández-Gutiérrez and Hrušák (2013), and answer two questions that they posed. Our
result also resolves several issues raised by Medini and Milovich (2012), and proves false
one “theorem” of theirs. Furthermore, we show that the statement “Every non-meager
filter contains a non-meager P-subfilter” is independent of ZFC (more precisely, it is a
consequence of u < g and its negation is a consequence of 3). It follows from results of
Hrušák and van Mill (2014) that, under u < g, a filter has less than c types of countable
dense subsets if and only if it is a non-meager P-filter. In particular, under u < g, there
exists an ultrafilter with c types of countable dense subsets. We also show that such an
ultrafilter exists under MA(countable).

1. Introduction. By filter we mean filter on ω, unless we explicitly say
otherwise. Furthermore, we assume that Cof ⊆ F for every filter F , where
Cof = {x ⊆ ω : |ω\x| < ω}. We identify every filter with a subspace of 2ω by
identifying every subset of ω with its characteristic function. In particular,
we say that a filter is non-meager if it is non-meager as a subset of 2ω. It
is well-known that ultrafilters are non-meager (see for example [MM, Sec-
tion 2]). A filter F is a P-filter if for every countable X ⊆ F there exists
z ∈ F such that |z\x| < ω for every x ∈ X . An ultrafilter that is a P-filter is
called a P-point. Ketonen showed that P-points (hence non-meager P-filters)
exist under d = c (see [Bl, Theorem 9.25]), while by a theorem of Shelah it
is consistent that there are no P-points (see [BJ, Theorem 4.4.7]). On the
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other hand, the following is a long-standing open problem (1) (see [JMPS,
Question 0.1] or [BJ, Section 4.4.C]).

Question 1 (Just, Mathias, Prikry, Simon). Is it possible to prove in
ZFC that there exists a non-meager P-filter?

Even though Question 1 was not the original motivation for our research,
we hope that the results obtained here might shed some light on it.

By space we mean separable metrizable topological space. By countable
we mean at most countable. Recall that a space X is completely Baire (2)
(briefly, CB) if every closed subspace of X is a Baire space. Recall that a
space X is countable dense homogeneous (briefly, CDH) if for every pair
(D,E) of countable dense subsets of X there exists a homeomorphism
h : X → X such that h[D] = E. See [AvM, Sections 14–16] for a nice
introduction to countable dense homogeneity.

Identifying filters with subsets of 2ω is certainly not a new approach to
the study of filters. For example, much is known about the delicate interplay
between category and measure in this context (see [BJ, Chapter 4]). How-
ever, in this article, we will focus on properties of a different flavor, such as
being CB or being CDH in the subspace topology, and investigate their rela-
tionship with the combinatorial property of being a non-meager (3) P-filter.
In fact, as one might suspect from the title, our main result (Theorem 10)
shows that being CB, being CDH, and several other properties (that are not
equivalent for arbitrary spaces) become equivalent (to being a non-meager
P-filter) when the spaces under consideration are filters. The following char-
acterization was already known (see [Ma, Theorem 1.2]), and the proof of
the right-to-left direction is used in the proof of Theorem 10.

Theorem 1 (Marciszewski). Let F be a filter. Then F is a non-meager
P-filter if and only if F is CB.

Apart from the “naturalistic” interest of this line of research, it is worth
noting that non-meager filters can be a fruitful source of counterexamples
in general topology. In fact, a non-meager filter F is automatically a Baire
topological group that is neither analytic nor coanalytic (by the arguments
in [MM, Section 2]), while, by constructing F carefully, one can ensure
that it has further topological properties. For example, Medini and Milovich
showed that under MA(countable) there exists a CDH ultrafilter (see [MM,

(1) It is known, however, that the statement “There are no non-meager P-filters” has
large cardinal strength (see [JMPS, Corollary 4.11] or [BJ, Corollary 4.4.15]).

(2) Some authors use “hereditarily Baire” or even “hereditary Baire” instead of “com-
pletely Baire” (see for example [Ma]).

(3) That non-meager filters can be characterized combinatorially is a well-known result
of Talagrand (see Theorem 4).
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Theorem 21]), and used the same methods to answer a question of Hrušák
and Zamora Avilés (4). As another example, Repovš, Zdomskyy and Zhang
recently constructed a non-meager filter F that is not CDH (see [RZZ, The-
orem 1]), thus strengthening a result of van Mill (5). Both results can now
be viewed as corollaries of Theorem 10.

The following result (see [HH, Theorem 1.6]) improves on the example
of Medini and Milovich mentioned above, and its proof is used in the proof
of Theorem 10.

Theorem 2 (Hernández-Gutiérrez, Hrušák). If F is a non-meager
P-filter then F is CDH.

The article [MM] also contains the claim that, under MA(countable),
there exists a CDH ultrafilter that is not a P-point (see [MM, Theorem 41]).
Unfortunately, the proof is wrong: [MM, Lemma 42] is correct, but it is easy
to realize that a stronger lemma is needed. In fact, as our Theorem 10 shows,
the claim itself is false.

An important step towards our main result is achieved in Section 3,
where we generalize to non-meager P-filters a result of Miller about P-points.
Inspired by his result, we give an explicit definition of a topological property
(the Miller property) which seems to be of independent interest. This will
allow us to give a new, more systematic proof of the left-to-right direction
of Theorem 1. Furthermore, the Miller property will be the key to proving
that every CDH filter must be a non-meager P-filter.

In Section 4, we give the seven characterizations promised in the title
and use them to answer several questions from the literature. Inspired by
the classical Cantor–Bendixson derivative, we also introduce a topological
property (the Cantor–Bendixson property) which seems to be of independent
interest. By Theorem 10, all the properties that we mentioned so far (and
stronger versions of some of them) are equivalent for filters. This result
would not be particularly interesting if some of these properties were actually
equivalent for arbitrary spaces. By giving suitable counterexamples, we show
that this is not the case.

At this point, it seems natural to investigate whether we can say more
about the number of types of countable dense subsets of a filter. Recall that
the type of a countable dense subset D of a space X is {h[D] : h is a homeo-

(4) More precisely, they showed that under MA(countable) there exists an ultrafilter
U such that Uω is CDH (see [MM, Theorem 24]). This gives a (consistent) example of a
non-Polish subspace X of 2ω such that Xω is CDH, which is what [HZ, Question 3.2] asks
for.

(5) Both F and the example X of van Mill (see [vM1]) are strongly locally homoge-
neous Baire spaces that are not CDH. On the other hand, F is a topological group, while
X is merely homogeneous (see the discussion in [MM, p. 1323]).
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morphism of X}. In particular, a space is CDH if and only if it has exactly 1
type of countable dense subsets. Also notice that the maximum possible
number of types of countable dense subsets of a space is c. See [HvM] for
more on this topic.

In Section 7, we show that it is consistent that every filter has either 1 or
c types of countable dense sets. More precisely, under the assumption u < g,
a filter has less than c types of countable dense subsets if and only if it is a
non-meager P-filter (see Theorem 23). To achieve this, we employ techniques
of Hrušák and van Mill (see Section 5) plus the fact that, under u < g, every
non-meager filter has a non-meager P-subfilter (see Section 6). In Section 9,
assuming 3, we construct an ultrafilter with no non-meager P-subfilters,
thus showing that the statement “Every non-meager filter contains a non-
meager P-subfilter” is independent of ZFC.

While the existence in ZFC of an ultrafilter that is not CDH follows
easily from Theorem 10 (see Corollary 11), we do not know whether it is
possible to construct in ZFC an ultrafilter (or a non-meager filter) with
c types of countable dense subsets (see Question 6). It follows from our
consistent characterization that such an ultrafilter exists under u < g (see
Corollary 24). In Section 8, we show that such an ultrafilter also exists under
MA(countable) (see Corollary 29).

2. More preliminaries. Our reference for general topology is [vM2].
For notions related to cardinal invariants, we refer to [Bl]. For all other
set-theoretic notions, we refer to [Ku2].

Recall that a space is crowded if it is non-empty and it has no isolated
points. We write X ≈ Y to mean that the spaces X and Y are homeo-
morphic. Given spaces X and Z, a copy of Z in X is a subspace Y of X
such that Y ≈ Z. We say that a subspace X of 2ω is relatively countable
dense homogeneous (briefly, RCDH) if for every pair (D,E) of countable
dense subsets of X there exists a homeomorphism h : 2ω → 2ω such that
h[X] = X and h[D] = E. We will need the following classical result (see
[vM2, Corollary 1.9.13]) on several occasions.

Theorem 3 (Hurewicz). A space is CB if and only if it does not contain
any closed copy of Q.

We denote by P(ω) the collection of all subsets of ω. Whenever X ⊆P(ω),
we freely identify X with the subspace of 2ω consisting of the characteristic
functions of the elements of X . Let Fin = {x ⊆ ω : |x| < ω}. Given z ⊆ ω,
let z↑ = {x ⊆ ω : z ⊆ x} and z↓ = {x ⊆ ω : x ⊆ z}.

Given x, y ⊆ ω, we will write x ⊆∗ y to mean |x\y| < ω. Given X ⊆ P(ω),
we will say that z ⊆ ω is a pseudointersection of X if z is infinite and z ⊆∗ x
for all x ∈ X . In particular, a filter F is a P-filter if and only if every
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countable X ⊆ F has a pseudointersection in F . A subfilter of a filter F is a
filter G such that G ⊆ F . A subfilter that is a P-filter is called a P-subfilter.

Recall that X ⊆ P(ω) has the finite intersection property if
⋂
F is infinite

for every non-empty F ∈ [X ]<ω. Given X ⊆ P(ω) with the finite intersection
property, the filter generated by X is

F = Cof ∪
{
x ⊆ ω :

⋂
F ⊆∗ x for some non-empty F ∈ [X ]<ω

}
.

It is easy to check that F is the smallest filter such that X ⊆ F . Given x ⊆ ω,
define x0 = ω\x and x1 = x. Recall that A ⊆ P(ω) is an independent family
if {xν(x) : x ∈ A} has the finite intersection property for every ν : A → 2.

The following well-known characterization of non-meager filters (see [Bl,
Proposition 9.4]) originally appeared as part of [Ta, Théorème 21], and it
will prove very useful for our purposes.

Theorem 4 (Talagrand). For a filter F , the following conditions are
equivalent:

• F is non-meager.
• For every partition Π of ω into finite sets there exists x ∈ F such that
x ∩ I = ∅ for infinitely many I ∈ Π.

3. Strengthening a result of Miller. Miller showed that P-points are
preserved in rational perfect set forcing extensions (see [Mi1, Theorem 3.1]),
and remarked that his proof can be adapted to obtain Theorem 6 below.

Definition 5. A space X has the Miller property (briefly, MP) if for
every countable crowded subspace Q of X there exists a copy K of 2ω in X
such that K ∩ Q is crowded. A subspace X of 2ω has the strong Miller
property (briefly, MP+) if for every countable crowded subspace Q of X
there exists a copy K of 2ω in X such that K ∩ Q is crowded and K ⊆ z↑
for some z ∈ X.

Notice that the MP+ implies the MP for every subspace of 2ω. See the
next section for a counterexample to the reverse implication.

Theorem 6 (Miller). Every P-point has the MP+.

Next, we generalize Miller’s result to non-meager P-filters (see Corol-
lary 8) by suitably modifying his proof. This will be a crucial ingredient in
the proof of Theorem 10. In fact, it will allow us to give a new, more sys-
tematic proof of the left-to-right direction of Theorem 1, and to show that
having the MP is actually equivalent to being a non-meager P-filter. Finally,
using this characterization, we will be able to prove that a CDH filter must
be a non-meager P-filter.



194 K. Kunen et al.

Lemma 7. Let F be a non-meager filter. Let Q be a countable crowded
subspace of F such that Q has a pseudointersection in F . Then there exists
a crowded Q′ ⊆ Q such that Q′ ⊆ z↑ for some z ∈ F .

Proof. Fix x ∈ F such that x ⊆∗ q for all q ∈ Q. Let

S = {∅} ∪ {s ∈ 2<ω : |s| ≥ 1 and s(|s| − 1) = 0}.
We will also need a bookkeeping function f : ω → ω such that the following
conditions are satisfied:

• f(n) < n for every n ≥ 1.
• f−1(m) is infinite for every m ∈ ω.

Constructing such a function is an easy exercise, left to the reader.
We will recursively choose natural numbers k0 < k1 < · · · and qs ∈ Q for

s ∈ S. By induction, we will make sure that conditions (1)–(3) below are sat-
isfied. Define `s ∈ ω for every s ∈ 2<ω so that {t ∈ S : t ( s} = {tsi : i < `s},
where ∅ = ts0 ( · · · ( ts`s−1. Also set qsi = qtsi for every i < `s. Notice that if

s′ ∈ 2<ω and s′ ⊇ s, then tsi = ts
′
i and qsi = qs

′
i for every i < `s.

(1) t ( s implies qt 6= qs for all t, s ∈ S.
(2) x \ kn ⊆

⋂
{qs : s ∈ S and |s| ≤ n} for all n ∈ ω.

(3) qs�k|s|−1 = qsf(`s)�k|s|−1 for every s ∈ S such that |s| ≥ 1.

Start by letting q∅ ∈ Q. Assume without loss of generality that x ⊆ q∅,
and let k0 = 0. Now fix n ≥ 1. Assume that qt has been constructed for
every t ∈ S such that |t| < n, and that ki has been constructed for every
i < n. Fix s ∈ S such that |s| = n. Define qs to be any element of

(Q ∩ [qsf(`s)�kn−1]) \ {q
s
i : i < `s}.

Now simply choose kn > kn−1 large enough so that condition (2) is satisfied.
Since F is a non-meager filter, applying Theorem 4 yields a function

φ : ω → 2 such that φ−1(0) is infinite, and w ∈ F such that

w ∩
⋃
{[kn, kn+1) : n ∈ φ−1(0)} = ∅.

Let z = x ∩ w and Q′ = {qs : s ⊆ φ and s ∈ S}.
First we will show that Q′ is crowded. So let q ∈ Q′ and fix ` ∈ ω. We will

find q′ ∈ Q′ such that q′ 6= q and q′�` = q�`. Let s ⊆ φ and m < `s be such
that q= qsm. Notice thatm= f(`s′) for infinitely many s′ ∈S such that s′⊆ φ,
therefore it is possible to choose one with n = |s′| > |s| large enough so that
kn−1 ≥ `. Let q′ = qs′ . Condition (1) implies that q′ 6= q. Condition (3)
implies that q′�kn−1 = qs

′

f(`s′ )
�kn−1, which is sufficient because qs

′

f(`s′ )
= qsm.

In conclusion, we will use induction on n to show that z ⊆ qφ�n for every
n ∈ ω such that φ�n ∈ S. The claim is clear for n = 0 by the choice of x.
Now assume that n ≥ 1 and s = φ�n ∈ S. Let k ∈ z. We will show that
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k ∈ qs by considering the following cases:

• k ∈ [0, kn−1).
• k ∈ [kn−1, kn).
• k ∈ [kn,∞).

By condition (3), there exists an m < `s such that qs�kn−1 = qsm�kn−1. Since
qsm = qt for some t ∈ S such that t ( s, the inductive hypothesis guarantees
that z ⊆ qsm. So k ∈ qs in the first case. Notice that φ(n−1) = s(n−1) = 0,
so [kn−1, kn)∩z = ∅. This shows that the second case never happens. Finally,
condition (2) implies that k ∈ qs in the third case.

Corollary 8. Every non-meager P-filter has the MP+.

4. The main result. This section contains our main result (Theo-
rem 10), which gives the seven characterizations promised in the title. The
proof of the implication (6)→(1) is due to Marciszewski (see [Ma, Lem-
ma 2.1]), and it is included for completeness.

Definition 9. A space X has the Cantor–Bendixson property (briefly,
CBP) if every closed subspace of X is either scattered or it contains a copy
of 2ω. A subspaceX of 2ω has the strong Cantor–Bendixson property (briefly,
CBP+) if every closed subspace of X is either scattered or it contains a copy
K of 2ω such that K ⊆ z↑ for some z ∈ X.

Notice that the CBP+ implies the CBP for every subspace of 2ω. Fur-
thermore, one can easily check that the MP implies the CBP for every space,
and that the MP+ implies the CBP+ for every subspace of 2ω. Finally, using
Theorem 3, one can show that every space with the CBP is CB.

The above definition is of course motivated by the classical Cantor–
Bendixson derivative. Notice that the CBP+ is to the CBP what the MP+

is to the MP. In both cases, one version of the property is purely topo-
logical, while the other requires that the copy K of 2ω can be bounded
(in the ordering given by reverse inclusion) by an element of the space (6).

(6) This is partly inspired by [Mi2], where Miller studies the relation between prop-
erty (s) and preservation by Sacks forcing for ultrafilters. Recall that a subset X of 2ω has
property (s) (or is Marczewski measurable) if every copy K of 2ω in 2ω contains a copy K′

of 2ω such that K′ ⊆ X or K′ ⊆ 2ω \X. We say that an ultrafilter U has property (s)+ if
every copy K of 2ω in 2ω contains a copy K′ of 2ω such that K′ ⊆ z↑ or K′ ⊆ (ω \ z)↓
for some z ∈ U . This notion is due to Miller (even though he did not give it a name), who
obtained the following results (see [Mi2, Theorem 1] and [Mi2, Theorem 3] respectively):

• An ultrafilter has property (s)+ if and only if it is preserved by Sacks forcing.
• Assume MA(countable). Then there exists an ultrafilter that has property (s) but

not property (s)+.

The second result seems particularly interesting to us, because it exhibits a property of
ultrafilters that is not equivalent to its strong version.



196 K. Kunen et al.

Furthermore, it is easy to realize that the strong versions of these properties
are only of interest under some additional combinatorial assumption on X
(such as being a filter). In fact, given a coinfinite z ⊆ ω and a non-empty
zero-dimensional space Z, one can always find a subspace X of 2ω such
that X ≈ Z and z ∈ X ⊆ z↑ (since z↑ ≈ 2ω and 2ω is homogeneous).
In particular, every zero-dimensional space with the MP (respectively, the
CBP) is homeomorphic to a subspace of 2ω with the MP+ (respectively,
the CBP+).

As we already mentioned, some obvious relationships hold among the
properties that we considered so far. Next, we will show that the implications
in the following diagram (and their obvious consequences) are the only ones
that hold in ZFC for arbitrary subspaces of 2ω.

MP

��

MP+

55

((

CBP // CB RCDH // CDH

CBP+

BB

For an example (based on a result of Brendle) of a subspace of 2ω that
has the CBP but not the MP, see [MZ, Proposition 3.2]. For an example of
a CB subspace of 2ω without the CBP, see [MZ, Proposition 3.3].

To see that the MP does not imply the MP+ and that the CBP does
not imply the CBP+, a single example will suffice. Let A be an independent
family that is homeomorphic to 2ω (see [MM, Lemma 7]). Since A is com-
pact, it is clear that A has the MP. Notice that A ∩ (z↑) = {z} for every
z ∈ A because A is an independent family. Since A is a non-scattered closed
subspace of itself, it follows that A does not have the CBP+.

To see that the CBP+ does not imply the MP+, let X be a subspace
of 2ω that has the CBP but not the MP. As we mentioned above, we can
assume without loss of generality that z ∈ X ⊆ z↑ for some coinfinite z ⊆ ω
(for example z = ∅). It is trivial to check that X has the desired properties.

For an example, under MA(σ-centered), of a CDH subspace of 2ω that
is not RCDH, see [MvMZ, Corollary 10]. Furthermore, an RCDH subspace
of 2ω need not be CB. In fact, Hernández-Gutiérrez, Hrušák and van Mill
recently gave ZFC examples of meager RCDH dense subspaces of 2ω (see
[HHvM, Theorem 4.1]).

Finally, to see that a subspace of 2ω with the MP+ need not be CDH,
consider X = {ω \ n : n ∈ ω} ∪ {∅}. Since X ≈ ω + 1 and ∅ ∈ X, it is clear
that X has the desired properties.
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Theorem 10. For a filter F , the following conditions are equivalent:

(1) F is a non-meager P-filter.
(2) F has the MP+.
(3) F has the MP.
(4) F has the CBP+.
(5) F has the CBP.
(6) F is CB.
(7) F is RCDH.
(8) F is CDH.

Proof. First we will show that the first six properties are equivalent.
The implication (1)→(2) is the content of Corollary 8. Given the discussion
above, it will be enough to prove the implication (6)→(1). Assume that F is
either meager or not a P-filter. If F is meager then F is not even Baire. So
assume that F is not a P-filter. Then there exists a sequence x0 ⊇ x1 ⊇ · · ·
consisting of elements of F with no pseudointersection in F . Without loss
of generality, we can assume that cn = xn \ xn+1 is infinite for each n and⋃
n∈ω cn = ω. Hence, we can also assume that F is a filter on ω × ω and

cn = {n} × ω for each n. It is clear that the following conditions hold:

• For all x ∈ F there exists n ∈ ω such that x ∩ cn is infinite.
•
⋃
m≥n cm ∈ F for every n ∈ ω.

Consider the set Q ⊆ 2ω×ω consisting of all x ∈ F that satisfy the following
requirements:

• If (i, j) ∈ x and k ≥ i then (k, j) ∈ x.
• If (i, j) ∈ x and k ≤ j then (i, k) ∈ x.

It is not hard to see that Q is a countable crowded closed subspace of F .
Therefore F is not CB.

We will finish the proof by showing that (1)→(7)→(8)→(3). The impli-
cation (1)→(7) follows from the proof of [HH, Theorem 1.6]. The implication
(7)→(8) is obvious. In order to show that (8)→(3), assume that F is CDH.
Fix a countable crowded subspace Q of F . Extend Q to a countable dense
subset D of F and let E = Cof. Since F is CDH, there exists a homeomor-
phism h : F → F such that h[D] = E. Let R = h[Q] and observe that R is a
countable crowded subspace of F with ω ∈ F as a pseudointersection. Also
notice that F must be non-meager by Corollary 17. Therefore, by Lemma 7,
there exists a crowded R′ ⊆ R and z ∈ F such that R′ ⊆ z↑. In particular,
R′ has compact closure in F . Let Q′ = h−1[R′]. Since h is a homeomor-
phism, it follows that Q′ ⊆ Q is crowded and has compact closure in F . It
is clear that the closure K of Q′ in F is a copy of 2ω such that K ∩ Q is
crowded.
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Clearly, Theorem 10 implies that, for an ultrafilter, being a P-point is
equivalent to being CDH. Hence, the well-known fact that there exist ultrafil-
ters that are not P-points (simply apply Lemma 25 with A = ∅) immediately
yields the following corollary. This answers [MM, Question 2] and simultane-
ously strengthens [MM, Theorem 15] (which gives, under MA(countable), an
ultrafilter that is not CDH) and [RZZ, Theorem 1] (which gives a non-meager
filter that is not CDH).

Corollary 11. There exists an ultrafilter that is not CDH.

Furthermore, since Shelah showed that it is consistent that there are no
P-points (see [BJ, Theorem 4.4.7]), it follows that it is consistent that there
are no CDH ultrafilters. This answers [MM, Question 3].

Similarly, Theorem 10 implies that, for an ultrafilter, being a P-point
is equivalent to being CB. This answers [MM, Question 10]. Therefore,
as above, it is consistent that there are no CB ultrafilters. This answers
[MM, Question 1]. However, the answer to both questions follows already
from Theorem 1, of which the authors of [MM] were not aware. Also notice
that Theorem 10 answers [MM, Question 4] (which asks whether a CDH
ultrafilter is necessarily CB).

We also remark that Theorem 10 and Corollary 11 answer two questions
of Hernández-Gutiérrez and Hrušák, and clarify a third. More precisely, the
equivalence (1)↔(8) answers [HH, Question 1.8] (which asks for a combina-
torial characterization of CDH filters), while Corollary 11 answers the second
part of [HH, Question 1.9]. The first part of [HH, Question 1.9] asks whether
the existence of a CDH filter can be proved in ZFC. By Theorem 10, this
is equivalent to Question 1, which is a long-standing open problem (see the
introduction).

Finally, it is natural to ask whether Theorem 10 can be improved. As we
have seen, none of the equivalences can be extended to arbitrary subspaces
of 2ω. However, we do not know to what extent the combinatorial assump-
tions on F can be relaxed. Recall that a collection F ⊆ P(ω) is a semifilter
if Cof ⊆ F and F is closed under supersets and finite modifications of its
elements (see [BZ]).

Question 2. Exactly which fragments of Theorem 10 remain valid for
semifilters (7)? For semifilters with the finite intersection property?

(7) It is not clear what the analogue of P-filter should be for semifilters. The follow-
ing is a plausible candidate. Define a semifilter F to be a P-semifilter if every sequence
x0 ⊇ x1 ⊇ · · · consisting of elements of F has a pseudointersection in F . Notice that a
filter is a P-semifilter if and only if it is a P-filter. Furthermore, it is easy to realize that
the proof of (6)→(1) would generalize to this context.
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5. How to obtain c types of countable dense subsets. The main
results of this section (Theorems 14 and 16) give conditions under which
a space is guaranteed to have c types of countable dense subsets, and are
essentially due to Hrušák and van Mill. In fact, even if they did not explicitly
notice them, the proofs are taken almost verbatim from [HvM, proof of
Theorem 4.5]. We decided to keep the weaker Proposition 13 as well, since
its proof seems particularly transparent.

The first of these conditions involves spaces that contain a dense CB
subspace. While it is easy to see that any space containing a dense Baire
subspace must be Baire, a space containing a dense CB subspace need not
be CB: consider for example the subspace C ∪ Q of 2ω × 2ω, where C =
2ω× (2ω \ {x}) and Q is a countable dense subset of 2ω×{x} for some fixed
x ∈ 2ω.

Lemma 12 first appeared in [MS], then Brian, van Mill and Suabedissen
gave a new proof (see [BvMS, Lemma 14] or [HvM, Lemma 4.3]).

Lemma 12 (Mazurkiewicz, Sierpiński). There exists a family C of size c
consisting of pairwise non-homeomorphic countable spaces.

Proposition 13. Assume that X is not CB but has a dense CB sub-
space C. Then X is not CDH.

Proof. Let D be a countable dense subset of C. By Theorem 3, we can
fix a closed copy Q of Q in X. Now extend Q to a countable dense subset E
of X. Clearly, there is no homeomorphism h : X → X such that h[D] = E.

Theorem 14. Assume that X is not CB but has a dense CB subspace C.
Then X has c types of countable dense subsets.

Proof. By Theorem 3, we can fix a closed copy Q of Q in X. Since X is
a Baire space (because it has a dense Baire subspace), Q must be nowhere
dense. Therefore, it is easy to obtain a countable dense subset D of X such
that D ⊆ C and D ∩Q = ∅.

By Lemma 12, there exists a family C of size c consisting of pairwise non-
homeomorphic countable spaces. Since Q ≈ Q ≈ Q2, we can also assume
that every member of C is a nowhere dense subspace of Q. For every A ∈ C,
define DA = (Q \ A) ∪D. We claim that DA and DB are countable dense
subsets of a different type whenever A,B ∈ C and A 6= B.

Assume that A,B ∈ C are such that there exists a homeomorphism
h : X → X with h[DA] = DB. We will show that A = B. Assume, in order
to get a contradiction, that h(x) /∈ Q for some x ∈ Q \ A. Since D is a
neighborhood of h(x) in DB, by continuity there exists a neighborhood U
of x in Q\A such that h[U ] ⊆ D. Notice that U \ cl(A) is a non-empty open
subset of Q because A is nowhere dense in Q. So there exists a non-empty
open subset V of Q such that V ⊆ cl(V ) ⊆ U \ cl(A) ⊆ Q\A. It follows that
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cl(V ) is a copy of Q that is closed in X. But then h[cl(V )] ⊆ D ⊆ C is also
a copy of Q that is closed in X, which contradicts the fact that C is CB.

So h[Q \ A] ⊆ Q. Since h[DA] = DB, we must have h[Q \ A] ⊆ Q \ B.
A similar reasoning yields h−1[Q \B] ⊆ Q \A. Therefore h[Q \A] = Q \B.
Notice that cl(Q \ A) = cl(Q \ B) = Q. Since h is a homeomorphism, it
follows that h[Q] = Q. Hence h[A] = B, which concludes the proof.

We will say that a space X has the perfect set property for open sets
(briefly, PSP(open)) if every uncountable open subset of X contains a copy
of 2ω. Lemma 15 first appeared as [FZ, Lemma 3.2].

Lemma 15 (Fitzpatrick, Zhou). Every meager space has a countable
dense Gδ subset.

Theorem 16. Assume that X has the PSP(open) but is not a Baire
space. Then X has c types of countable dense subsets.

Proof. Write X as the disjoint union S ∪ C, where S is scattered open
and C is crowded. Notice that C has the PSP(open) because S is countable.
Since C is invariant under every homeomorphism of X, if C has c types of
countable dense subsets then the same is true for X. Furthermore, using
the fact that every meager open subset of X is disjoint from cl(S), it is
easy to check that C is not Baire. Therefore, we can assume without loss of
generality that X is crowded.

First assume that some non-empty open subset of X is countable. Then

V =
⋃
{U : U is a countable open subset of X}

is a non-empty countable open subset of X. Since X is crowded, it follows
that V is crowded, hence V ≈ Q. As in the proof of Theorem 14, there
exists a family C of size c consisting of pairwise non-homeomorphic countable
nowhere dense subspaces of V . Fix a countable dense subset D of X \ V .
For every A ∈ C, define DA = (V \ A) ∪ D. Since V is invariant under
every homeomorphism of X, it is clear that DA and DB are countable dense
subsets of a different type whenever A,B ∈ C and A 6= B.

Now assume that every non-empty open subset of X is uncountable.
Since X is not Baire, there exists a non-empty open subset U of X such
that U is meager and X \ cl(U) is non-empty. Since X has the PSP(open),
there exists a copy K of 2ω contained in U . Notice that K is nowhere dense
because K is compact and U is meager. Therefore, using the compactness
of K, it is possible to construct a regular open subset W of X such that
W ⊆ U and K ⊆ cl(W ) \W .

As W is meager, it contains a countable dense Gδ subset D by Lemma 15.
Fix an open base {Un : n ∈ ω} for X \ cl(W ). Since X has the PSP(open),
each Un contains a copy Kn of 2ω. Fix a countable dense subset En of
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each Kn. Let E =
⋃
n∈ω En. Notice that O ∩ E is not a Gδ subset of O for

any non-empty open subset O of X \ cl(W ), otherwise Kn ∩E ⊇ En would
be a countable dense Gδ subset of Kn ≈ 2ω for some n.

By Lemma 12, there exists a family C of size c consisting of pairwise non-
homeomorphic countable subspaces of K. For every A ∈ C, define DA =
D ∪ A ∪ E. We claim that DA and DB are countable dense subsets of a
different type whenever A,B ∈ C and A 6= B. Assume that A,B ∈ C are
such that there exists a homeomorphism h : X → X with h[DA] = DB. We
will show that A = B. First we will show that h[W ] ⊆ cl(W ).

Let O=h[W ] \ cl(W ). Since O⊆h[W ] and E⊆DB, we have h−1[O]⊆W
and h−1[E] ⊆ DA. Therefore

h−1[O ∩ E] = h−1[O] ∩ h−1[E] ⊆W ∩DA = D.

But D is a countable Gδ subset of W by construction, so every subset of D
is also Gδ in W . In particular h−1[O ∩ E] is Gδ in W , hence in h−1[O]. It
follows that O ∩ E is a Gδ subset of O, which implies O = ∅.

Notice that h[W ] ⊆ cl(W ) implies h[W ] ⊆W , because W is regular open
and h is a homeomorphism. A similar argument shows that h−1[W ] ⊆ W .
Therefore h[W ] = W , which implies h[cl(W ) \ W ] = cl(W ) \ W . Hence
h[A] = B, which concludes the proof.

Corollary 17. Let F be a meager filter. Then F has c types of count-
able dense subsets.

Proof. It will be enough to show that every filter has the PSP(open).
This is trivial if F = Cof, so assume that F ) Cof. Let U be an uncountable
open subset of F . In particular U 6= ∅, so [s] ∩ F ⊆ U for some s ∈ 2<ω.
Now pick any coinfinite z ∈ F such that z�dom(s) = s. It is easy to see that
[s] ∩ (z↑) is a copy of 2ω contained in U .

6. Non-meager P-subfilters. Given a function f : ω → ω and
X ⊆ P(ω), define

f(X ) = {x ⊆ ω : f−1[x] ∈ X}.

Recall that a function f : ω → ω is finite-to-one if f−1(n) is finite for every
n ∈ ω. It is easy to check that if f is finite-to-one, then f(F) is a filter
(respectively ultrafilter) whenever F is a filter (respectively ultrafilter).

We will make use of the following well-known theorem. Recall that u < g,
for example, in Miller’s model (see [Bl, Section 11.9]).

Theorem 18. Assume u < g. Then there exists a P-point U such that
for every non-meager filter F there exists a finite-to-one f : ω → ω such
that f(F) = f(U).
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Proof. Let U be any ultrafilter generated by a set X ⊆ P(ω) such that
|X | < g. Notice that U is a P-point because g ≤ d by [Bl, Proposition 6.27],
and every ultrafilter generated by less than d sets is a P-point by [Bl, The-
orem 9.25]. The desired conclusion follows from the proof of [Bl, Theo-
rem 9.16].

Proposition 19. Let F be a filter, and let f : ω → ω be finite-to-one.
Notice that X = {f−1[x] : x ∈ F} has the finite intersection property, and
let G be the filter generated by X .

(1) If F is a P-filter then G is a P-filter.
(2) If F is non-meager then G is non-meager.

Proof. The straightforward proof of (1) is left to the reader. To show
that (2) holds, assume that F is non-meager. Fix a partition Π of ω into
finite sets, and let Π = {Ik : k ∈ ω} be an injective enumeration. In order
to show that G is non-meager, by Theorem 4, it will be enough to show that
there exists z ∈ G such that z ∩ Ik = ∅ for infinitely many k.

Since f is finite-to-one, there exists a sequence k0 < k1 < · · · of natural
numbers with f [Ikm ] ∩ f [Ikn ] = ∅ whenever m 6= n. Let Π ′ = {Jn : n ∈ ω}
be a partition of ω into finite sets such that f [Ikn ] ⊆ Jn for each n. By
Theorem 4, there exists x ∈ F such that x ∩ Jn = ∅ for infinitely many n.
It is easy to check that z = f−1[x] is the desired element of G.

Theorem 20. Assume u < g. Then every non-meager filter has a non-
meager P-subfilter.

Proof. Let U be the P-point given by Theorem 18. Fix a non-meager
filter F . Then there exists a finite-to-one f : ω → ω such that f(F) = f(U).
Let

X = {f−1[x] : x ∈ f(F)}.

Notice that X ⊆ F by the definition of f(F). Let G be the subfilter of F gen-
erated by X . It is easy to check that f(U) is a P-point, hence a non-meager
P-filter. Since X = {f−1[x] : x ∈ f(U)}, it follows from Proposition 19 that
G is a non-meager P-filter.

Corollary 21. Assume u < g. Then every non-meager filter has a
dense CB subspace.

Proof. Simply apply Theorem 10.

It is natural to ask whether the above theorem and corollary actually hold
in ZFC. In Section 9, we will show that this is not the case for Theorem 20
(see Corollary 31). However, we do not know the answers to the following
questions.
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Question 3. Is it possible to prove in ZFC that every non-meager filter
has a dense CB subspace?

Question 4. For a filter, is having a non-meager P-subfilter equivalent
to having a dense CB subspace?

Assume that D is a dense CB subspace of a filter F , and let then G denote
the subfilter of F generated by D. Notice that G is non-meager (because it
has a dense Baire subspace). Hence, in order to answer Question 4, one
might try to show that G is necessarily a P-filter. The following proposition
shows that this approach is not going to work.

Proposition 22. Assume MA(countable). Then there exists a dense CB
subspace A of 2ω with the finite intersection property such that the filter
generated by A is not a P-filter.

Proof. Let A be the independent family given by Theorem 26, and let
F be the filter generated by A. Fix B ∈ [A]ω. We claim that B has no
pseudointersection in F . Assume, in order to get a contradiction, that z ∈ F
is a pseudointersection of B. Since F is generated by A, there exists a non-
empty F ∈ [A]<ω such that

⋂
F ⊆∗ z. Fix x ∈ B\F , and notice that z ⊆∗ x

because z is a pseudointersection of B. Therefore
⋂
F ⊆∗ x. It follows that⋂

F ∩ (ω \ x) is finite, which contradicts the fact that A is an independent
family.

7. Two consistent characterizations. In this section, we will com-
bine several of the results discussed so far to show that, consistently, Theo-
rem 10 can be improved. Given a subspace X of 2ω and a countable dense
subset D of X, define the relative type of D to be

{h[D] : h is a homeomorphism of 2ω such that h[X] = X}.
Notice that a space is RCDH if and only if it has exactly one relative type
of countable dense subsets.

Theorem 23. Assume u < g. Then the following can be added to the
list of equivalent conditions in Theorem 10:

(9) F has less than c relative types of countable dense subsets.
(10) F has less than c types of countable dense subsets.

Proof. It is clear that (7)→(9)→(10). We will finish the proof by showing
that (10)→(6). Suppose that F is not CB. If F is meager then F has c types
of countable dense subsets by Corollary 17, so assume that F is non-meager.
Then F has a dense CB subspace by Corollary 21. Therefore F has c types
of countable dense subsets by Theorem 14.

Corollary 24. Assume u < g. Then there exists an ultrafilter with c
types of countable dense subsets.
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It is natural to ask whether the above theorem and corollary hold in
ZFC. Observe that, by Theorem 10, the answer to the following question is
“no” if and only if Theorem 23 holds in ZFC. See also Corollary 29.

Question 5. Is it consistent that there exists a filter with κ types of
countable dense subsets, where 1 < κ < c?

Question 6. Is it possible to construct in ZFC an ultrafilter (or a non-
meager filter) with c types of countable dense subsets?

8. Another ultrafilter with c types of countable dense subsets.
In this section, we construct an ultrafilter with c types of countable dense
subsets under MA(countable) (see Corollary 29). Notice that this result
does not overlap with Corollary 24 because the assumptions u < g and
MA(countable) are incompatible (since cov(B) ≤ r ≤ u by [Bl, Proposi-
tions 5.19 and 9.7], and MA(countable) is equivalent to cov(B) = c by [Bl,
Theorem 7.13]). We will need the following preliminary lemma, inspired
by [Ku1].

Lemma 25. Let A be an independent family. Then there exists an ultra-
filter U extending A that is not a P-point.

Proof. Without loss of generality, assume thatA is infinite. Fix B ∈ [A]ω.
It is easy to check that

X = A ∪ {ω \ x : x ⊆∗ y for every y ∈ B}
has the finite intersection property. Let U be any ultrafilter extending X . It
is clear that B has no pseudointersection in U .

Theorem 26. Assume MA(countable). Then there exists an independent
family A that is dense in 2ω and CB.

Proof. Enumerate as {Qη : η ∈ c} all copies of Q in 2ω, making sure
to list each one cofinally often. We will construct Aξ for every ξ ∈ c by
transfinite recursion. In the end, set A =

⋃
ξ∈cAξ. By induction, we will

make sure that the following requirements are satisfied:

(1) Aη ⊆ Aξ whenever η ≤ ξ < c.
(2) Aξ is an independent family for every ξ ∈ c.
(3) |Aξ| < c for every ξ ∈ c.
(4) If Qη ⊆ Aη then there exists z ∈ Aη+1 such that z ∈ cl(Qη) \Qη.
Start by letting A0 be a countable independent family that is dense in 2ω.

Take unions at limit stages. At a successor stage ξ = η+ 1, assume that Aη
is given. First assume that Qη * Aη. In this case, simply set Aξ = Aη. Now
assume that Qη ⊆ Aη. Apply Lemma 27 with A = Aη and Q = Qη to get
z ∈ cl(Qη) \ Qη such that Aη ∪ {z} is an independent family. Finally, set
Aξ = Aη ∪ {z}.
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Lemma 27. Assume MA(countable). Let A be an independent family
such that |A| < c. Let Q ⊆ A be crowded. Then there exists z ∈ cl(Q) \ Q
such that A ∪ {z} is an independent family.

Proof. Consider the countable poset

P = {s ∈ 2<ω : there exist q ∈ Q and n ∈ ω such that s = q�n}

with the natural order given by reverse inclusion.

For every σ ∈ [A]<ω, ν : σ → 2, ε ∈ 2 and ` ∈ ω, define

Dσ,ν,ε,` = {s ∈ P : there exists i ∈ dom(s) \ ` such that

s(i) = ε and x(i) = ν(x) for every x ∈ σ}.

Using the fact that Q is crowded and Q ⊆ A, one can show that each Dσ,ν,ε,`

is dense in P. For every q ∈ Q, define

Dq = {s ∈ P : there exists i ∈ dom(s) such that s(i) 6= q(i)}.

It is easy to see that each Dq is dense in P.

Since |A| < c and Q ⊆ A, the collection of dense sets

D = {Dσ,ν,ε,` : σ ∈ [A]<ω, ν : σ → 2, ε ∈ 2, ` ∈ ω} ∪ {Dq : q ∈ Q}

also has size less than c. Therefore, by MA(countable), there exists a
D-generic filter G ⊆ P. Let z =

⋃
G ∈ 2ω. The dense sets of the form

Dσ,ν,ε,` ensure that A ∪ {z} is an independent family. The definition of P
guarantees that z ∈ cl(Q). Finally, the dense sets of the form Dq guarantee
that z /∈ Q.

Corollary 28. Assume MA(countable). Then there exists an ultrafilter
that is not CB but has a dense CB subspace.

Proof. Let A be the independent family given by Theorem 26. By Lem-
ma 25, there exists an ultrafilter U ⊇ A that is not a P-point. It is clear that
A is a dense CB subspace of U . To see that U is not CB, use Theorem 10.

Corollary 29. Assume MA(countable). Then there exists an ultrafilter
with c types of countable dense subsets.

Proof. Let U be the ultrafilter given by Corollary 28. To see that U has
c types of countable dense subsets, apply Theorem 14.

Given Theorem 26, the following question seems natural. Notice that if
the answer to Question 7 is “yes”, then the answer to Question 6 is also
“yes” (see the proof of Corollary 29).

Question 7. Is it possible to construct in ZFC an independent family
that is dense in 2ω and CB?
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9. An ultrafilter with no non-meager P-subfilters. By The-
orem 20, the statement “Every non-meager filter contains a non-meager
P-subfilter” is consistent. In this section, we show that the negation of this
statement is also consistent (see Corollary 31).

Theorem 30. Assume 3. Then there exists an ultrafilter U such that
whenever X ⊆ U then either there exists a countable subset of X with no
pseudointersection in U , or X has a pseudointersection.

Proof. Let P(ω) = {zξ : ξ ∈ ω1} be an enumeration such that the
following conditions hold, where Lim = {ξ ∈ ω1 : ξ is a limit ordinal}:

• Bξ = {zη : η ∈ ξ} is a Boolean subalgebra of P(ω) for every ξ ∈ Lim.
• Bω = Fin ∪ Cof.

By 3, there exists a sequence 〈Xξ : ξ ∈ Lim〉 such that Xξ ⊆ Bξ for ev-
ery ξ ∈ Lim, and whenever X ⊆ P(ω) the set {ξ ∈ Lim : Xξ = X ∩ Bξ}
is stationary in ω1.

We will construct Uξ ⊆ Bξ and Pξ ⊆ Lim ∩ ξ for every ξ ∈ Lim by
transfinite recursion. In the end, set U =

⋃
ξ∈Lim Uξ and P =

⋃
ξ∈Lim Pξ.

Also define the ideal

Iξ = {z ⊆ ω : there exists k ∈ ω and {η0, . . . , ηk−1} ∈ [Pξ]
k such that

z ⊆∗ w0 ∪ · · · ∪ wk−1 whenever (w0, . . . , wk−1) ∈ Xη0 × · · · × Xηk−1
}

for every ξ ∈ Lim. By induction, we will make sure that the following re-
quirements are satisfied:

(1) Uξ is an ultrafilter on Bξ for every ξ ∈ Lim.
(2) Uη ⊆ Uξ whenever η, ξ ∈ Lim and η ≤ ξ.
(3) Pη ⊆ Pξ whenever η, ξ ∈ Lim and η ≤ ξ.
(4) Uξ ∩ Iξ = ∅ for every ξ ∈ Lim.

Start by setting Uω = Cof and Pω = ∅. Observe that Iω = Fin. Let
ξ ∈ Lim be such that ξ > ω, and assume that Uη and Pη are given for
every limit η < ξ. If ξ is a limit of limit ordinals, let Uξ =

⋃
η∈Lim∩ξ Uη and

Pξ =
⋃
η∈Lim∩ξ Pη. Now assume that ξ = η + ω for some η ∈ Lim. First

define Pξ = Pη ∪ {η}, if doing so does not violate condition (4); otherwise,
let Pξ = Pη. Then extend Uη to an ultrafilter Uξ on Bξ, by deciding whether
zη+n belongs to Uξ for every n ∈ ω so that condition (4) is preserved. This
concludes the construction.

To verify that U has the desired properties, let X ⊆ U . Then the set

S = {η ∈ Lim : X ∩ Bη = Xη}
is stationary in ω1. If S∩P 6= ∅, say η ∈ S∩P , then condition (4) guarantees
that Xη ⊆ X has no pseudointersection in U .
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So assume that S ∩ P = ∅. Then, for each η ∈ S, there must be z ∈ Uη,
k ∈ ω and σ = {η0, . . . , ηk−1} ∈ [Pη]

k such that

z ⊆∗ w0 ∪ · · · ∪ wk−1 ∪ w
whenever (w0, . . . , wk−1, w) ∈ Xη0×· · ·×Xηk−1

×Xη. By the Pressing-Down
Lemma and the Pigeonhole Principle, there exists an uncountable S′ ⊆ S
such that the same z, k and σ work for every η ∈ S′. Fix such S′, z, k and σ.
By condition (4), there exists (w0, . . . , wk−1) ∈ Xη0 × · · · × Xηk−1

such that
x = z\(w0∪· · ·∪wk−1) is infinite. Using the fact that S′ ⊆ S is uncountable,
it is easy to check that x ⊆∗ w for every w ∈ X .

Corollary 31. Assume 3. Then there exists an ultrafilter U such that
whenever F is a subfilter of U , either F is meager or F is not a P-filter.

Whenever one proves that a certain statement is a consequence of 3, it
is natural to wonder whether the same statement follows simply from CH.
The following question is a particular instance of this general principle.

Question 8. Can the assumption of 3 be weakened to CH in Corol-
lary 31?
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dénombrables, Fund. Math. 1 (1920), 17–27.

[MvMZ] A. Medini, J. van Mill, and L. Zdomskyy, A homogeneous space whose comple-
ment is rigid , Israel J. Math., to appear.

[MM] A. Medini and D. Milovich, The topology of ultrafilters as subspaces of 2ω,
Topology Appl. 159 (2012), 1318–1333.

[MZ] A. Medini and L. Zdomskyy, Between Polish and completely Baire, Arch. Math.
Logic 54 (2015), 231–245.

[vM1] J. van Mill, Strong local homogeneity does not imply countable dense homogene-
ity , Proc. Amer. Math. Soc. 84 (1982), 143–148.

[vM2] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-
Holland Math. Library 64, North-Holland, Amsterdam, 2001.

[Mi1] A. W. Miller, Rational perfect set forcing , in: Axiomatic Set Theory (Boul-
der, CO, 1983), Contemp. Math. 31, Amer. Math. Soc., Providence, RI, 1984,
143–159.

[Mi2] A. W. Miller, Ultrafilters with property (s), Proc. Amer. Math. Soc. 137 (2009),
3115–3121.
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