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Abstract. Associative algebras of fixed dimension over algebraically closed fields of
fixed characteristic are considered. It is proved that the class of algebras of tame represen-
tation type is axiomatizable. Moreover, finite axiomatizability of this class is equivalent to
the conjecture that the algebras of tame representation type form a Zariski-open subset
in the variety of algebras.

1. Introduction. The aim of this paper is to discuss connections be-
tween model-theoretical properties of the class of algebras of tame repre-
sentation type and the well known conjecture asserting that “tame repre-
sentation type is open” (see [8]) in the sense explained below. Recall that
a finite-dimensional algebra R over an algebraically closed field is of tame
representation type if in every dimension the indecomposable R-modules
admit a parameterization by a finite number of one-parameter families. A
precise formulation of this concept is given in Section 2.

Let us fix a natural number d and a number p which is zero or a prime.
Consider the class Algp(d) of all associative algebras with identity having
dimension d over the base field, which is assumed to be algebraically closed of
characteristic p. This class is axiomatizable in a suitable first order language.
Let T be the subclass consisting of algebras of tame representation type.

We prove in Theorem 2.3 that T is axiomatizable and an explicit system
of axioms is presented in Proposition 3.3. Our main result is Theorem 2.4
asserting that finite axiomatizability of this class is equivalent to the fact
that “tame is open”, that is, the tame algebras induce an open (in the
Zariski topology) subset in the variety of algebras over each algebraically
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closed field (of characteristic p). According to the author’s knowledge, the
question whether T is indeed finitely axiomatizable is still open.

The analogous problem for finite representation type was solved by Jen-
sen and Lenzing (see [11, Theorem 12.54], [10]). They prove that the class of
all algebras of finite representation type having a fixed dimension over the
(algebraically closed) base field, as well as the class of algebras of infinite
representation type, are finitely axiomatizable.

This is related to the theorem of Gabriel [6] that “finite representation
type is open”. One can observe that the final part of Gabriel’s proof can
be expressed very naturally in model-theoretical terms using the results of
Jensen and Lenzing.

The paper is organized as follows. Section 2 contains some preliminary
material and the formulation of the main theorems. In Section 3 we present
a set of axioms for the class of tame algebras and prove in 3.6 that finite
axiomatizability of this class implies openness of the set of tame algebras in
the variety of algebras. A result of Geiss [8] asserting that a degeneration of
a wild algebra is wild, or rather his main arguments for that theorem, are
an important ingredient of our proof.

The converse of the implication proved in 3.6 is shown (for a fixed char-
acteristic) in Section 4, where also a useful “geometric” criterion for axiom-
atizability is given. In Section 5 we restrict our attention to the class Q
of quasitilted algebras. We show in Lemma 5.1 that the tame quasitilted
algebras form a finitely axiomatizable subclass of Q and we discuss some
consequences of our main results.

2. Preliminaries. Let L be the first order language having countably
many variables, two binary function symbols + and · and two constants 0, 1.
We think about L as a language of the first order theory of fields or rings
with identity. Denote by A the two-sorted first order language of algebras
over fields (see [11]), that is, the disjoint union L1 q L2 of two copies of
L equipped with another function symbol ·. The terms from L1 (resp. L2)
are called terms of the first (resp. second) sort . The new function symbol
associates to a pair of variables of first and second sort a variable of the
second sort. The language A has the usual logical connectives: ∧, ∨, ¬, →
and allows quantifiers on both sorts of variables.

By a model for this language we mean a pair (K,R), where K and R are
models for L1 and L2 respectively and the new function symbol is interpreted
as a function

· : K ×R→ R.

It is clear that if K is a field and R is a K-algebra with identity then the
obvious interpretation of the symbols of the language A allows us to treat
the pair (K,R) as a model for A.
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Fix a natural number d and let Alg(d) be the class of all models (K,R)
for A such that K is an algebraically closed field and R is a d-dimensional
associative K-algebra with identity. If p is zero or a prime we denote by
Algp(d) the class of all models (K,R) in Alg(d) such that the characteristic
of the field K is p. It is easy to observe that Alg(d) and Algp(d) are (non-
finitely!) axiomatizable classes of models.

We use the standard notation: for a model (K,R) and a first order for-
mula φ we write (K,R) |= φ if φ is satisfied in (K,R). Two models are
elementarily equivalent if the sets of formulas satisfied in each of them co-
incide.

A nonempty family F of subsets of a set I is called an ultrafilter over I
if the following conditions are satisfied:

• ∅ 6∈ F ,
• if A,B ∈ F then A ∩B ∈ F ,
• if A ∈ F and B ⊆ I then A ∪B ∈ F ,
• if A 6∈ F then I \A ∈ F .

Given a family (Mi)i∈I of sets the ultrafilter F over I induces an equivalence
relation ∼ in the product

∏
i∈IMi defined by (mi)i∈I ∼ (m′i)i∈I if and only

if mi = m′i for F-almost all i ∈ I, that is, there is U ∈ F such that mi = m′i
for all i ∈ U . We denote by (mi)F the equivalence class of an element (mi)
with respect to the relation ∼ and by

∏
Mi/F the ultraproduct of (Mi)i∈I

with respect to F , that is, the set of all equivalence classes of ∼. To simplify
the formulas we omit the condition i ∈ I in the notation of the ultraproduct;
it does not lead to confusion.

If (Ki, Ri)i∈I is a family of models for A then by its ultraproduct we
mean the model ∏

(Ki, Ri)/F =
(∏

Ki/F ,
∏

Ri/F
)

with the obvious interpretations of all symbols in A.
The concept of ultraproduct appears in [14] under the name “operation

(P)”. The importance of this construction is established by the famous Łoś
Ultraproduct Theorem asserting that a first order sentence φ is satisfied in∏

(Ki, Ri)/F if and only if it is satisfied in (Ki, Ri) for F-almost all i ∈ I
(see [11, Theorem 1.5], [2, Theorem 4.1.9]).

Given a model (K,R) its ultrapower with respect to F is defined to be the
model (K,R)I/F =

∏
(Ki, Ri)/F , where (Ki, Ri) = (K,R) for every i ∈ I.

A class C of models is axiomatizable if there is a set Σ of first order
sentences such that a model (K,R) belongs to C if and only if all sentences
of Σ are satisfied in (K,R). A class C is axiomatizable if and only if it
is closed under elementary equivalence and formation of ultraproducts [14,
2.6], [11, Theorem 2.12].
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Let C ⊆ B be classes of models. A set Σ of sentences is a set of axioms for
C as a subclass of B if for every model M in B: M belongs to C if and only if
all sentences of Σ are satisfied in M . The class C is finitely axiomatizable as
a subclass of B provided there exists a finite set of axioms for C as a subclass
of B. This is equivalent to the existence of a set of axioms containing one
element.

The following theorem follows by standard model-theoretical arguments
[11, Theorem 2.13], [2, Theorem 4.1.12].

Theorem 2.1. Let B be an axiomatizable class of models. A class C ⊆ B
is finitely axiomatizable as a subclass of B if and only if both classes C and
B \ C are axiomatizable. If this is the case then from every set of axioms for
C as a subclass of B one can choose a finite one.

The reader is referred to [2], [11], [15] for detailed expositions of model
theory.

With a field K and a system γ = (γijk)di,j,k=1 ∈ Kd3
we associate a

model (K,RK(γ)) for A such that RK(γ) = Kd as a vector space and the
multiplication · in RK(γ) is given by the structure constants γ, that is,

ei · ej =
d∑

k=1

γijkek

for all i, j, 1 ≤ i, j ≤ d, if we denote the ith standard basis vector of RK(γ)
by ei. It is known (see [6], [13]) that the tuples γ such that (K,RK(γ)) ∈
Alg(d) form an affine algebraic variety AlgK(d) for every algebraically
closed field K.

Given a field K and a class C ⊆ Alg(d) we denote by CK the preimage
of C under the map γ 7→ (K,RK(γ)), that is,

CK = {γ ∈ Kd3
: (K,RK(γ)) ∈ C}.

Recall that a finite-dimensional algebra R over an algebraically closed
field K is of tame representation type provided for every number m there
exists a finite family N1, . . . , Nr of K[t]-R-bimodules that are free of rank
m as left K[t]-modules and such that every indecomposable m-dimensional
R-module is isomorphic to K[t]/(t−λ)⊗K[t]Ni for suitable i ≤ r and λ ∈ K
(see [19, Chapter 14]).

The algebra R is of wild representation type if there exists a K〈X,Y 〉-
R-bimodule M free of finite rank over K〈X,Y 〉 such that the functor

(−)⊗K〈X,Y 〉M : fin(K〈X,Y 〉) → mod(R)

preserves indecomposability and sends nonisomorphic modules to noniso-
morphis ones. Here K〈X,Y 〉 is the free associative K-algebra with two free
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generators X and Y and fin(K〈X,Y 〉) is the category of finite-dimensional
right K〈X,Y 〉-modules [4], [5].

We fix p which is zero or a prime and from now on consider algebraically
closed fields of characteristic p. Let T (resp. W) denote the class of all
models (K,R) ∈ Algp(d) such that R is of tame (resp. wild) representation
type. The famous Tame-Wild Dichotomy of Drozd [5], [3] can be expressed
in the following form.

Theorem 2.2. The class Algp(d) is the disjoint union of T and W.

The main results of this paper are the following two theorems.

Theorem 2.3. The class T of tame algebras is axiomatizable.

Theorem 2.4. The following assertions are equivalent :

(A) For every algebraically closed field K of characteristic p the set WK

is Zariski-closed in AlgK(d).
(B) There exists polynomials H1, . . . ,Hr in d3 variables with coefficients

in the prime field Fp of characteristic p such that

WK = {γ ∈ AlgK(d) : H1(γ) = . . . = Hr(γ) = 0}
for every algebraically closed field K of characteristic p.

(C) The class T is finitely axiomatizable as a subclass of Algp(d).
(D) The class W is axiomatizable.
(E) The class W is finitely axiomatizable as a subclass of Algp(d).

The proofs of Theorems 2.3 and 2.4 are given in Section 3.

Remark 2.4. It follows easily from the proof which we present below
that fixing the characteristic p is not essential for the implication (C)⇒(A)
and for the equivalence of (C), (D) and (E). So the following two assertions
are equivalent:

1. the tame algebras (of fixed dimension d) form a finitely axiomatizable
class,

2. the wild algebras form an axiomatizable class.

Both assertions imply that the tame algebras induce an open subset of the
variety of d-dimensional algebras for every algebraically closed field.

3. A set of axioms for tame algebras. In this section we give a
set of axioms for the class of tame algebras. Let (K,R) ∈ Algp(d). Fix a
basis in R and observe that any K〈X,Y 〉-R-bimodule M free of rank m over
K〈X,Y 〉 can be represented by a sequence M1, . . . ,Md of m ×m matrices
with coefficients in K〈X,Y 〉. By the degree of M we mean the minimal upper
bound for the degrees of these coefficients, where the minimum is taken over
all possible presentations M1, . . . ,Md.
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Fix two numbers m and l. Observe that the following property of (K,R)
can be expressed in the language A:

“There exists a K〈X,Y 〉-R-bimodule M free of rank m and of degree at
most l such that for any m-dimensional right K〈X,Y 〉-modules U , V the
R-modules U ⊗K〈X,Y 〉 M and V ⊗K〈X,Y 〉 M are isomorphic if and only if
U ∼= V .”

Denote the corresponding sentence by ωm,l. Given a field K let

WK(m, l) = {γ ∈ AlgK(d) : (K,RK(γ)) |= ωm,l}.
Lemma 3.1. (a) Let (K,R) ∈ Algp(d). Then (K,R) ∈ W if and only if

(K,R) |= ωm,l for some m, l.
(b) WK(m, l) ⊆ WK for every algebraically closed field K.

Proof. The implication “⇒” in (a) is a direct consequence of the def-
inition of wild representation type, whereas the opposite one follows from
(b). The assertion (b) is implicitly proved by Geiss in [8, Proposition 2]. For
convenience of the reader we recall the main arguments (see also [16]).

For this we need some notation introduced in [8]. Given a number z
denote by modR(z) the variety of R-module structures on Kz and for any
t ≤ z2 define modR(z, t) to be the (closed) subset of modR(z) consisting
of those module structures whose endomorphism rings have dimension at
least t.

The following facts are established in [8]:

1. R is tame if and only if dim modR(z, t) ≤ z2 + z − t for every z ∈ N
and t ≤ z2, and

2. the function

Θz,t : AlgK(d) → N, γ 7→ dim modR(γ)(z, t),

is upper semicontinuous for every z ∈ N and t ≤ z2.

Now assume that (K,R) |= ωm,l. The bimodule M whose existence is
postulated by the sentence ωm,l induces a regular map

` : U → modR(m2),

where U = Mm(K)×Mm(K). Here Mm(K) denotes the variety of all m by
m matrices with coefficients in K.

Recall that the general linear group Glm2(K) acts on modR(m2) by
conjugation in such a way that the orbits of this action correspond to the
isomorphism classes of m2-dimensional R-modules. Consider the map

% : Glm2(K)× U → modR(m2)

given by %(g, a, b) = g`(a, b)g−1. Let x be an element of the image of % having
the minimal dimension of the endomorphism ring, say, t0. Then the image of
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% is contained in modR(m2, t0). Let us investigate the fibre %−1(x). Assume
that %(g, a, b) = %(g1, a1, b1) = x. By properties of the bimoduleM described
by ωm,l there exists h ∈ Glm(K) such that (hah−1, hbh−1) = (a1, b1). The
matrix h induces (in a regular way) an element h̃ ∈ Glm2(K) such that
h̃`(a, b)h̃−1 = `(a1, b1). Then the element g1h̃g

−1 belongs to the stabilizer
Stab(x) of x. Now it is immediate that the image of the regular map

u : Stab(x)×Glm(K) → Glm2(K)× U
defined by (s, h) 7→ (sgh̃−1, hah−1, hbh−1) equals %−1(x). Each fibre of u is
at least one-dimensional, hence

dim %−1(x) ≤ t0 +m2 − 1

by the Fibre Dimension Theorem [18, Chapter I.6] and the equality
dim Stab(x) = t0.

Applying that theorem again to the map % (note that Glm2(K) × U is
irreducible) we get

dim modR(m2, t0) ≥ dim(Glm2(K)×U)− (t0 +m2−1) = m4 +m2− t0 +1.

We have shown that

WK(m, l) ⊆
⋃

t≤m4

{γ ∈ AlgK(d) : Θm2,t(γ) > m4 +m2 − t0}.

Since, by observations 1 and 2 above, the right hand side is a Zariski-closed
set contained in WK , the proof is complete.

Thanks to Lemma 3.1(b) we have the following generalization of the
theorem on degenerations of algebras [8]:

Corollary 3.2. Let γ ∈ WK . Denote by El(γ) the set of all points
γ′ ∈ AlgK(d) such that the algebras (K,RK(γ)) and (K,RK(γ′)) are ele-
mentarily equivalent. Then

El(γ) ⊆ WK .

Theorem 2.3 is a direct consequence of the following proposition.

Proposition 3.3. The set

Ω = {¬ωm,l : m, l ∈ N}
is a set of axioms for the class T of tame algebras.

Proof. Apply Lemma 3.1(a).

Corollary 3.4. (a) The class T is closed under elementary equivalence
and the formation of ultraproducts.

(b) The class W is closed under elementary equivalence.

Remark 3.5. The system of axioms in Proposition 3.3 is not optimal.
It is arranged in this way to have the geometric property in Lemma 3.1(b).
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Perhaps more natural is the system of sentences asserting the existence of
bimodules M satisfying the condition: U ⊗ M ∼= V ⊗ M ⇒ U ∼= V for
one-dimensional modules U, V instead of m-dimensional. Moreover by the
results of [7] it is enough to restrict the attention to bimodules of degree 1.

The crucial problem is to decide whether our system of axioms can be
replaced by a finite one.

Now we are in a position to prove one of the implications in Theorem
2.4.

3.6. Proof of (C)⇒(A). Assume that T is finitely axiomatizable as a
subclass of Algp(d). It follows (see Theorem 2.1) that there exists a finite
subset of the set Ω which is already a system of axioms for T as a subclass
of Algp(d). Let N be a number such that for every (K,R) ∈ Algp(d) the
model (K,R) is in W if and only if (K,R) |= ωm,l for some m, l ≤ N . In
terms of the corresponding subsets of the algebra varieties this means that

WK =
N⋃

m,l=1

WK(m, l)

for every field K. But WK(m, l) ⊆ WK , by Lemma 3.1(b). Hence

WK =
N⋃

m,l=1

WK(m, l)

and WK is closed in AlgK(d).

Corollary 3.7. Assume that assertion (C) is true. Then there is a
number N such that for any algebraically closed field K of characteristic
p and any d-dimensional K-algebra R of wild representation type there ex-
ists a K〈X,Y 〉-R-bimodule M free of rank m ≤ N such that for any m-
dimensional right K〈X,Y 〉-modules U , V the R-modules U ⊗K〈X,Y 〉M and
V ⊗K〈X,Y 〉M are isomorphic if and only if U ∼= V .

The corollary is an immediate consequence of the above proof. Varying
the system of axioms for T we obtain corresponding variations of the corol-
lary. However it is not clear if under assumption (C) one can prove that
there is a number N such that whenever (K,R) ∈ W then there exists a
K〈X,Y 〉-R-bimodule M free of K〈X,Y 〉-rank less than or equal to N such
that the functor

(−)⊗K〈X,Y 〉M : fin(K〈X,Y 〉) → mod(R)

preserves indecomposability and sends nonisomorphic modules to noniso-
morphic ones.
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4. A sufficient condition for axiomatizability. In order to prove
the remaining part of Theorem 2.4 we work in a little more general context.
Throughout this section C is a subclass of Algp(d). We say that C is geomet-
rically closed provided for every algebraically closed field of characteristic p
the set CK is a closed subset of AlgK(d).

Proposition 4.1. If C is closed under elementary equivalence and geo-
metrically closed then it is closed under formation of arbitrary ultraproducts
and hence axiomatizable.

Before giving the proof of the proposition we show that C is closed under
base field extensions. Given a K-algebra R and a field extension K ⊆ L we
set R(L) = R⊗K L and view it as an L-algebra in the obvious way.

Lemma 4.2. Assume that C is closed under elementary equivalence,
K ⊆ L is a field extension of algebraically closed fields of characteristic
p and (K,R) ∈ Algp(d). Then (K,R) ∈ C if and only if (L,R(L)) ∈ C.

Proof. Let I be a set of cardinality greater than or equal to the cardi-
nality of L and let F be a regular ultrafilter over I [15, Definition 18.34].
Then by [15, Theorem 18.37] the ultrapowers KI/F and LI/F are alge-
braically closed fields of characteristic p with the same cardinality 2|I| >
max{|L|, |K|}. There are canonical diagonal embeddings

∆ : K → KI/F , ∆ : L → LI/F
and we treat the ultrapowers as extensions of K. It follows that they have
the same transcendence degree over K and hence they are K-isomorphic,
that is, there exists a field isomorphism σ making the diagram

K ⊆ L

KI/F LI/F
∆
��

∆
��

σ //

commutative.
The isomorphism σ induces an isomorphism of models

(K,R)I/F ∼= (L,R(L))I/F .
Thanks to the Łoś Ultraproduct Theorem [11, Theorem 1.5], [2, Theorem
4.1.9] the model (K,R) is elementarily equivalent to the left hand side model
whereas (L,R(L)) is elementarily equivalent to the other one. Thus our as-
sertion follows from the assumption that C is closed under elementary equiv-
alence.

Applying Lemma 4.2 to C =W we see that R is of tame representation
type if and only if so is R(L) (comp. [12]).
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Assume that L is the ultrapower KI/F of a field K. For any number n
we denote by ∆ : Kn → Ln the map induced by the diagonal embedding.
Moreover if xi = (xi1, . . . , x

i
n) ∈ Kn for i ∈ I then we denote the element

((xi1)F , . . . , (xin)F) of Ln by (xi)F .

Lemma 4.3. Assume that the set V ⊆ Ln is Zariski-closed (over L) and
there are points xi ∈ Kn such that ∆(xi) ∈ V for F-almost all i ∈ I. Then

(xi)F ∈ V.
Proof. Without loss of generality we can assume that ∆(xi) ∈ V for

every i ∈ I. Let H ∈ L[X1, . . . ,Xn] be a polynomial vanishing on V ; assume
that it has degree r. There exist polynomials H i ∈ K[X1, . . . ,Xn], i ∈ I, of
degree at most r such that H = (H i)F . The condition H(∆(xi)) = 0 means
that there exists a set Ui ∈ F such that Hj(xi) = 0 for j ∈ Ui.

Let T be the space of K-linear functionals on the (finite-dimensional)
space of polynomials in K[X1, . . . ,Xn] of degree at most r and let ξi ∈ T
be the evaluation at xi for i ∈ I. Let ξi1 , . . . , ξis be a basis of the subspace
generated by all ξi, i ∈ I. Then

ξi(Hj) = Hj(xi) = 0

for j ∈ Ui1 ∩ . . . ∩ Uis and arbitrary i ∈ I. In particular H j(xj) = 0. Since
Ui1 ∩ . . . ∩ Uis ∈ F this means that

H((xi)F) = (H i(xi))F = 0,

and we are done.

Proof of Proposition 4.1. Take a family (Ki, Ri), i ∈ I, of models in
C and an arbitrary ultrafilter F over I. It is sufficient to prove that the
ultraproduct

∏
(Ki, Ri)/F belongs to C.

Since all fields Ki have the same characteristic p there exists an alge-
braically closed field K and field embeddings Ki ⊆ K for i ∈ I. Observe
that there is an isomorphism of models

∏
(K,Ri ⊗Ki K)/F ∼=

(
L,
(∏

Ri/F
)
⊗(

∏
Ki/F) L

)

where L is the ultrapower KI/F .
Thus thanks to Lemma 4.2 it is enough to prove the assertion under the

assumption that Ki = K for i ∈ I.
Let γi ∈ AlgK(d) be the point corresponding to the algebra Ri. Then

∆(γi) corresponds to the L-algebra R(L)
i and (γi)F corresponds to

∏
Ri/F .

By our assumptions and Lemma 4.2 we know that ∆(γi) ∈ CL for i ∈ I.
Since CL is Zariski-closed we conclude that (γi)F ∈ CL by Lemma 4.3. But
this means that (L,

∏
Ri/F) ∈ C as required.
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Proposition 4.4. Assume that C is finitely axiomatizable as a subclass
of Algp(d) and geometrically closed. If Fp is the prime field of characteristic
p then there exist polynomials

H1, . . . ,Hr ∈ Fp[Xijk]i,j,k=1,...,d

such that

CK = {γ ∈ AlgK(d) : H1(γ) = . . . = Hr(γ) = 0}
for every algebraically closed field K of characteristic p.

Proof. Denote by M the algebraic closure of Fp. Let F1, . . . , Fs be poly-
nomials defining the closed set CM in AlgK(d). There is a finite Galois
extension Fp ⊆ N such that all coefficients of all polynomials F1, . . . , Fs be-
long to N . Since the class C is closed under elementary equivalence it follows
that CM is stable under the action of the Galois group G = G(N/Fp) of the
extension Fp ⊆ N .

Let G = {σ1, . . . , σt}, where t = [N : Fp]. It follows that the poly-
nomial F σji (the result of the action of σj on Fi) vanishes on CM for ev-
ery i = 1, . . . , s, j = 1, . . . , t. Let S1, . . . , St be the elementary symmet-
ric polynomials in t variables. It is easy to observe that the polynomi-
als

Sk(F
σ1
i , . . . , F σti ), i = 1, . . . , s, k = 1, . . . , t,

have coefficients in Fp and define the variety CM .
Denote these polynomials by H1, . . . ,Hr, where r = st.
Now let φ be the axiom for C as a subclass of AlgK(d). Denote by ψφ(γ)

the corresponding formula in the language L expressing φ in terms of the
structure constants. More precisely, for γ ∈ AlgK(d) the formula ψφ(γ)
means that (K,RK(γ)) |= φ (see the proof of Corollary 12.57 in [11]). Let
α(γ) be a formula meaning that (L,RL(γ)) ∈ Algp(d) for γ ∈ Ld3

and every
algebraically closed field L of characteristic p.

We conclude that

M |= [α(γ)→ (ψφ(γ)⇔ H1(γ) = . . . = Hr(γ) = 0)].

Since all algebraically closed fields of the same characteristic are elementarily
equivalent [11, Theorem 1.13] it follows that M can be replaced by any
algebraically closed field K of characteristic p. But this means that

CK = {γ ∈ AlgK(d) : H1(γ) = . . . = Hr(γ) = 0},
as required.

4.5. Proof of Theorem 2.4. The implication (C)⇒(A) has been proved
in 3.6, (B)⇒(A) is obvious and the equivalence of (C), (D) and (E) fol-
lows by standard model theory (see e.g. [11, Theorem 2.13], [2, Theorem
4.1.12]).
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Now Proposition 4.1 applied to C = W proves (A)⇒(D) and finally
it follows from Proposition 4.4 that (A) and (E) imply (B). The proof is
complete.

Remark 4.6. The author does not know if the condition: “ CK is closed
in AlgK(d) for every algebraically closed field and C is closed under elemen-
tary equivalence” implies that C is axiomatizable in Alg(d) (without fixing
the characteristic).

5. Final comments. It seems interesting to consider classes of algebras
inside which the wild ones form an axiomatizable class. If the whole class
considered is axiomatizable we can use the above method in order to prove
that the tame algebras induce an open subset of the set of algebras in the
class. Below we analyse an example of this kind.

Let Q ⊆ Alg(d) be the class of all basic quasitilted algebras [9] (of
fixed dimension). Recall that (K,R) ∈ Q provided R has global dimension
less than or equal to 2 and every indecomposable finite-dimensional right
R-module has either projective or injective dimension at most one. There is
a criterion for tameness within this class of algebras. Using our notation we
can formulate it in the following way: (K,R) ∈ T if and only if the Euler
characteristic χR of R is weakly nonnegative [20].

Recall that for a K-algebra R of finite global dimension, χR is the
quadratic form defined on the Grothendieck group K0(R) of R by the for-
mula

χR([X]) =
∞∑

i=0

(−1)i dimK ExtiR(X,X)

where [X] denotes the class of a module X in K0(R). Let e1, . . . , en be a
complete set of primitive pairwise orthogonal idempotents of R. Given an
R-module X its dimension vector is defined to be

dim(X) = (dimK Xe1, . . . ,dimK Xen).

There is an isomorphism K0(R) ∼= Zn given by [X] 7→ dim(X). Let CR be
the Cartan matrix of R, that is, CR = [cij]i,j=1,...,n, where cij = dimK(ejRei)
for i, j = 1, . . . , n. Then

χR(x) = xT (CTR)−1x

for x ∈ Zn (we identify K0(R) with Zn). Here AT denotes the transpose of
the matrix A. See [17] for details.

The form χR is said to be weakly nonnegative if χR(x) ≥ 0 for every
vector x with nonnegative coordinates.

Lemma 5.1. The class Q is axiomatizable and Q∩ T is finitely axiom-
atizable as a subclass of Q.
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Proof. R being basic is equivalent to the fact that rs− sr belongs to the
Jacobson radical of R for every r, s ∈ R and this is easy to express as a first
order sentence. The axiomatization of the homological dimension properties
is standard, we refer to [11, Theorems 10.27, 12.61].

In order to see that the class Q ∩ T is finitely axiomatizable as a sub-
class of Q we use the criterion from [20] mentioned above. It is enough to
observe that there are only finitely many matrices which can be Cartan ma-
trices of d-dimensional algebras. Moreover it is easy to write a first order
sentence expressing that “the Cartan matrix of R equals C up to a simul-
taneous permutation of rows and columns” for every matrix C with integral
coefficients.

Using the arguments from Section 3 we get the following corollary.

Corollary 5.2. (a) There exists a number N such that if (K,R) ∈
Q ∩ W then there exists a K〈X,Y 〉-R-bimodule free of rank m ≤ N such
that for any m-dimensional right K〈X,Y 〉-modules U , V the R-modules
U ⊗K〈X,Y 〉M and V ⊗K〈X,Y 〉M are isomorphic if and only if U ∼= V .

Moreover , for every algebraically closed field K:

(b) (Q ∩W)K ⊆ WK .
(c) The set (Q ∩ T )K is open in QK .

Assertions (b) and (c) seem to be easy to obtain by purely geometrical
methods, but (a) does not seem to be obvious.

Let us note another consequence of axiomatizability of T . Given a K-
algebra R denote by τR the Auslander–Reiten transpose in mod(R) [1]. By
[3, Theorem D] if there is a number m such that there are infinitely many
pairwise nonisomorphic indecomposable modules M of K-dimension m such
that τRM 6∼= M then R is of wild representation type.

Corollary 5.3. There is a function β : N → N such that for every
(K,R) ∈ Alg(d): if there exist at least β(m) pairwise nonisomorphic inde-
composable modules M of K-dimension m such that τRM 6∼= M for some
m ∈ N then (K,R) ∈ W.

Proof. Let φm,n be a first order sentence expressing the property that
there exists at least n pairwise nonisomorphic indecomposable modules M of
K-dimension m such that τRM 6∼= M . Then by the result of Crawley-Boevey
[3, Theorem D] mentioned above the set {φm,n : n ∈ N} is inconsistent with
the set of axioms for T for every m. By the Compactness Theorem (see e.g.
[15, Theorem 11.22]) there is a finite set {φm,1, . . . , φm,β(m)} inconsistent
with the axioms for T . Therefore if (K,R) |= φm,β(m) for some m then
(K,R) ∈ W.
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Remark 5.4. (a) One can prove that φm,β(m) implies the existence of
a bimodule M as in Corollary 5.2(a) whose rank is bounded by a number
depending only on m.

(b) Assume that we have an axiomatizable class B of algebras for which
a converse of the result of Crawley-Boevey [3, Theorem D] is true in the
following strong sense: for every d-dimensional wild algebra R in B there ex-
ist infinitely many pairwise nonisomorphic indecomposable modules M with
dimension bounded by a number depending only on d such that τRM 6∼= M .
Then Corollary 5.3 implies that the wild algebras form an axiomatizable
subclass of B.
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