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Abstract. We define and study two classes of uncountable ⊆∗-chains: Hausdorff tow-
ers and Suslin towers. We discuss their existence in various models of set theory. Some of
the results and methods are used to provide examples of indestructible gaps not equivalent
to a Hausdorff gap. We also indicate possible ways of developing a structure theory for
towers based on classification of their Tukey types.

1. Introduction. We say that subsets A, B of ω are in the relation
of almost inclusion (denoted by A ⊆∗ B) if A \ B is finite. One of the
motivations of this article is the following question:

Question 1. Is there an uncountable well-ordered ⊆∗-chain which con-
sists of pairwise ⊆-incomparable elements?

In a sense this is the question how “far” ⊆∗ is from ⊆.
The answer to Question 1 is positive. We will call well-ordered increas-

ing ⊆∗-chains towers. (We do not assume that towers are maximal with
respect to end-extension as is often done in the literature, but we treat only
uncountable towers.) There are both towers witnessing the positive answer
to Question 1 (we will call them special) and towers which do not have
an uncountable subtower consisting of ⊆-incomparable sets (called Suslin).
Examples of both sorts are implicitly mentioned in [28].

A tower (Tα)α<ω1 satisfies condition (H) if the set {ξ < α : Tξ \ Tα ⊆ n}
is finite for each α < ω1 and n < ω. Although it seems that this notion
has not appeared explicitly in the literature, the reader can recognize a
resemblance between condition (H) and the well-known Hausdorff condition
for gaps (see Section 2). This is not a coincidence: the “left half” of every
Hausdorff gap is a Hausdorff tower, i.e. a tower containing a cofinal subtower
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which satisfies condition (H). It turns out that Hausdorff towers are natural
examples of special towers. Moreover, by an easy modification of arguments
used for analyzing gaps, one can show that under MAω1 all towers of length
ω1 are Hausdorff. So despite the fact that an object as in Question 1 could
seem unusual at first glance, it is quite common. In Section 4 we discuss
models in which all ω1-towers are special. Moreover, we show that for every
κ-tower (where κ > ω is regular) there is a ccc forcing making it special
in the extension. In fact, under MAκ each κ-tower is very close to being
a ⊆-antichain of size κ (Theorem 21). An analysis of the analogous Luzin
condition for almost disjoint systems in P(ω) was done by Guzmán and
Hrušák. Not surprisingly, many results about Hausdorff towers and Luzin
gaps are in direct correspondence (see [13]).

To the best of our knowledge, the first example of a tower which does not
contain an uncountable ⊆-antichain was given in [29] under the assumption
of CH. More examples are provided by results from [28]. Todorčević proved
there a theorem (see Theorem 28 in Section 5 below) which implies that
every tower of uncountable cofinality generating a non-meager ideal is Suslin.
That is, every tower rich enough (e.g. generating a maximal ideal) cannot be
special. There are also Suslin towers generating meager ideals (see Section 5).

The analogy between towers and gaps is strong, at least in the sense that
many results about gaps can be easily modified for the case of towers. For
instance, under MAω1 each gap is Hausdorff as well as each tower (of size ω1)
contains a subtower with condition (H). In a model obtained by adding a
single Cohen real we can produce a non-special gap and a non-special tower
practically in the same manner. However, this analogy breaks down in many
ways. Under PID each gap is Hausdorff, but we show that the existence of a
non-special tower is consistent with PID (see Section 4). On the other hand,
Theorem 23 states that PID+ω1 < b is a sufficient condition for all towers to
be Hausdorff. It becomes apparent in Section 7 that this result is related to
the “only five Tukey types” theorems. We also prove that consistently there is
a Hausdorff tower which generates a dense ideal and thus cannot be a half of
any gap (Example 32), and a special tower which is equivalent (in the sense
of generating the same ideal) to a Suslin tower and thus is not Hausdorff
(Example 33). Some of these results are implicitly contained in [28].

The theory of towers is a debtor of the theory of gaps, but it is not an
ungrateful one. In fact, the analysis of the property of being a special tower
has led us to an example of a gap which is special but not equivalent to a
Hausdorff gap (Example 38). Scheepers [19] asked about the existence of such
an object and Hirschorn [12] answered this question affirmatively. Our ex-
ample is of a different sort than Hirschorn’s and it has a simpler description.
Namely, Hirschorn showed that there is a special gap which does not satisfy
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a certain condition weaker than being Hausdorff (we call it left-oriented). We
present an example which is left-oriented but not Hausdorff. In Section 6 we
offer other examples of this kind (many of them exist in any model obtained
by adding ω1 Cohen reals). In particular, we prove the consistent existence of
a Hausdorff gap (Lα, Rα)α<ω1 such that (Rα, Lα)α<ω1 is not Hausdorff (Ex-
ample 39), a special gap (Lα, Rα)α<ω1 such that neither (Lα, Rα)α<ω1 nor
(Rα, Lα)α<ω1 is left-oriented (Example 40), and a gap (Lα, Rα)α<ω1 which
is left-oriented but not Hausdorff and (Rα, Lα)α∈ω1 is special but not left-
oriented (Theorem 41). At the end of Section 6 we come back to towers to
construct a special non-Hausdorff tower which is not equivalent to a Suslin
tower.

Towers are often used as a combinatorial tool in set theory, set-theoretic
topology and functional analysis. For instance, the Stone spaces of Boolean
subalgebras of P(ω) generated by towers (and [ω]<ω) are ordered compacta
being continuous images of ω∗. Bell [3] used a tower to construct a compact
separable space which does not continuously map onto [0, 1]ω1 and which
does not have a countable π-base. In [29] a non-special tower generates an
L-space and an S-space, both subspaces of P(ω) equipped with the Vietoris
topology. However, no additional properties of towers are usually needed
(with the exception of the last result), except possibly some maximality
properties like generating a dense ideal (i.e. such that every infinite subset
of ω contains an infinite element of the ideal), or a maximal ideal. Perhaps
this is the reason why there were not many attempts to develop a structure
theory for towers.

This article can be treated as a modest contribution to the program of
filling this gap. Properties of being special or Hausdorff demarcate some
dividing lines in the class of towers. In Section 7 we try to examine possible
ways to expand this research. We use the Tukey ordering, a tool which has
proved its worth in exploring the structure of ultrafilters (see [4]). We show
that an ω1-tower is Hausdorff if and only if it is Tukey top among directed
sets of size ω1. Using results from [4], we observe that consistently there
are 2c pairwise incomparable Tukey types of ω1-towers.

2. Preliminaries on gaps. It will be convenient to start with defini-
tions and basic facts about gaps. More details can be found in [19] and [31].

Recall that (Lα, Rα)α<ω1 is a pre-gap if Lα ∩ Rα = ∅ for each α < ω1

and both (Lα)α<ω1 and (Rα)α<ω1 are towers. A pre-gap (Lα, Rα)α<ω1 forms
an (ω1, ω1)-gap if there is no set L interpolating it, i.e. no set L such that
Lα ⊆∗ L and Rα ∩ L =∗ ∅ for every α < ω1.

More generally, (Lα, Rβ)α<λ,β<κ is a (λ, κ)-gap if Lα ∩Rβ =∗ ∅ for every
α < λ and β < κ, and there is no L such that Lα ⊆∗ L and L (∗ Rcβ
for every α < λ and β < κ. Notice that the last inequality is slightly more
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complicated than the equality L ∩ Rβ =∗ ∅ but this setting enables us to
consider (λ, 1)-gaps. In what follows, a gap is an (ω1, ω1)-gap unless stated
otherwise.

We say that a gap (Lα, Rα)α<ω1 satisfies condition (H) if

{ξ < α : Lξ ∩Rα ⊆ n} is finite
for each α < ω1 and n < ω. Similarly, a (pre-)gap satisfies condition (K) if

(Lα ∩Rβ) ∪ (Lβ ∩Rα) 6= ∅
for each α < β < ω1. Finally, a (pre-)gap satisfies condition (O) if

Lα ∩Rβ 6= ∅
for each α < β < ω1.

Now we are ready to define basic types of gaps (the first two are well-
known in the literature).

Definition 2. A subgap of a gap (Lα, Rα)α<κ is a gap (Lα, Rα)α∈I
where I is a cofinal subset of κ. A gap is called Hausdorff if it contains
a subgap satisfying condition (H). A gap is called special (or indestructible)
if it contains a subgap satisfying condition (K). A gap (Lα, Rα)α<ω1 is called
left-oriented (or just oriented) if it contains a subgap satisfying condition (O).
It is right-oriented if (Rα, Lα)α<ω1 is left-oriented.

The name “indestructible” for special gaps is due to the fact that these
are precisely gaps indestructible by ω1 preserving forcing notions.

Theorem 3 (Kunen, see [19]). For a gap G = (Lα, Rα)α<ω1 the following
are equivalent:

(1) G is special;
(2) G is a gap in every ω1 preserving extension of the universe of sets V ;
(3) G is a gap in every generic extension of the universe obtained by a

ccc forcing.

For i < 2 consider the gaps (Liα, R
i
α)α<ω1 . We say that these two gaps

are equivalent if L0 = L1 and R0 = R1, where Li is the ideal generated
by (Liα)α<ω1 (i.e. Li = {A ⊆ ω : ∃α < ω1 A ⊆∗ Liα}), and Ri is the ideal
generated by (Riα)α<ω1 .

Lemma 4. The properties in Definition 2 respect equivalence of gaps.

Proof. Suppose (L′α, R
′
α) satisfies condition (?) (where ? is one of H, K, O)

and (Lα, Rα) is an equivalent gap. We can find cofinal subgaps

(L′α, R
′
α)α∈I′ = (O′α, P

′
α)α<ω1 , (Lα, Rα)α∈I = (Oα, Pα)α<ω1

and an integer n such that O′α \ n ⊆ Oα, P ′α \ n ⊆ Pα, and both O′α ∩ n and
P ′α ∩n are constant for each α < ω1. Since (O′α, P

′
α)α<ω1 satisfies (?) and for

α, β < ω1, O′α ∩ P ′β ⊆ Oα ∩ Pβ , the gap (Oα, Pα)α<ω1 satisfies (?) as well.
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The following simple fact reveals the connection between Hausdorff and
left-oriented gaps.

Fact 5. Every Hausdorff gap G = (Lα, Rα) is a left-oriented (special)
gap.

Proof. Define a set mapping f : ω1 → [ω1]<ω by

f(α) = {ξ < α : Lξ ∩Rα = ∅}.
Hajnal’s free set theorem (see e.g. [6, Corollary 44.2]) implies that there is
an unbounded X ⊆ ω1 such that ξ /∈ f(α) for all ξ, α ∈ X. This means that
Lξ ∩Rα 6= ∅ for all ξ < α ∈ X.

Under MAω1 or PID (see [1]) every gap is Hausdorff. It is consistent
to have special non-Hausdorff gaps; the first example of such a gap was
constructed in [12]. In Section 6 we provide a construction of a special non-
Hausdorff gap of a quite different nature.

For a given tower (Tα)α<ω1 it is always possible to construct a Hausdorff
gap (Lα, Rα)α<ω1 such that Lα∪Rα = Tα for each α < ω1. It is even possible
to construct a large system of such gaps [22, 7, 16].

It is worth mentioning that there is an analogy between gaps and Aron-
szajn trees in which destructible gaps correspond to Suslin trees (see [1,
Section 2.2]). Indeed, if for a given pre-gap G = (Lα, Rα)α<ω1 we introduce a
compatibility relation on ω1 in the following way: α, β < ω1 are compatible if

(Lα ∩Rβ) ∪ (Lβ ∩Rα) = ∅,
then G is a gap if and only if there are no uncountable chains (of pairwise
compatible elements) in P(ω1). Moreover, G is destructible if and only if there
are no uncountable antichains (of pairwise incompatible elements) in P(ω1).
This remark explains an analogy in results about destructible gaps and Suslin
trees. For instance, adding a Cohen real adds both a destructible gap and
a Suslin tree; under MAω1 there are neither Suslin trees nor destructible
(ω1, ω1)-gaps. We will see that we can add towers to this picture.

3. Basic definitions. We consider towers, i.e. families (Tα)α<κ such
that Tα \ Tβ is finite if and only if α ≤ β. We do not assume that towers are
maximal, κ is always a regular cardinal, and we consider mainly towers of
length ω1. We say that two towers are equivalent if they generate (together
with Fin) the same ideal in P(ω).

We shall define three properties of towers similar to properties used for
classification of gaps. It is convenient to reveal some connections between
towers and gaps first.

Every gap consists of two towers and every tower is a half of a gap (the
other half can be built by induction). Under MAω1 even more is true: every
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ω1-tower is a half of an (ω1, ω1)-gap (see [21] and [20, Remark 2.4]). However,
this is not a ZFC theorem. Indeed, if an ω1-tower is maximal, then it could
be only a half of an (ω1, 1)-gap.

There are also ω1-towers of different nature which cannot be a half of
an (ω1, ω1)-gap. If there is an ω1-scale (i.e. a strictly ≤∗-increasing sequence
(fα)α<ω1 of elements of ωω eventually dominating all elements of ωω), then
the tower defined by Tα = {(n,m) : m ≤ fα(n)} is not maximal (and its
orthogonal is not generated by a single set), but it cannot be a half of an
(ω1, ω1)-gap. To see this, notice that every set in the orthogonal of (Tα)α<ω1

is a subset of n × ω for some n ∈ ω. Assume that (Tα, Rα)α<ω1 forms an
(ω1, ω1)-pre-gap. Since there are only countably many choices of n, without
loss of generality there is a fixed n for which Rα ⊆ n × ω. Clearly, n × ω
interpolates (Tα, Rα)α<ω1 .

We say that a tower of length κ satisfies condition (K) if Tα * Tβ for
each α, β < κ.

Definition 6. A tower (Tα)α<κ is special if it contains a cofinal subtower
satisfying condition (K). A tower which is not special is called Suslin.

The name “Suslin” is justified by the fact that the poset (T ,⊆) contains
neither uncountable ⊆-chains nor uncountable ⊆-antichains if T is a Suslin
ω1-tower. We will later see that if we add a tower by forcing, then checking
that this forcing is ccc is often the same as checking that the generic tower
is Suslin.

We say that a tower (Tα)α<ω1 satisfies condition (H) if

{ξ < α : Tξ \ Tα ⊆ n} is finite
for each α < ω1 and n < ω. (Note that this condition cannot be directly
generalized to longer towers.)

Definition 7. A tower (Tα)α<ω1 is Hausdorff if it contains a subtower
satisfying condition (H).

The following fact implies that Hausdorff towers are quite common.

Proposition 8. Let (Lα, Rα)α<ω1 be a Hausdorff gap. The tower
(Lα)α<ω1 is Hausdorff.

Proof. Since Lα ∩ Rα = ∅ for each α < ω1, for every α < β < ω1 if
Lα ∩Rβ * n, then Lα \ Lβ * n.

Similarly one can prove the following:

Proposition 9. Let (Lα, Rα)α<ω1 be a left-oriented gap. The tower
(Lα)α<ω1 is special.

The proof of the next fact is essentially the same as the proof of Fact 5.



Hausdorff gaps and towers in P(ω)/Fin 203

Proposition 10. If (Tα)α<ω1 satisfies condition (H), then there is an
unbounded X ⊆ ω1 such that Tα \ Tβ 6= ∅ for all distinct α, β ∈ X.

Proof. Define f : ω1 → [ω1]<ω by

f(α) = {ξ < α : Tξ ⊆ Tα}.
Hajnal’s free set theorem implies that there is an unbounded X ⊆ ω1

such that ξ /∈ f(α) for all ξ, α ∈ X. This means that Tξ \ Tα 6= ∅ for all
ξ < α ∈ X.

Corollary 11. Every Hausdorff tower is special.

In particular, Hausdorff gaps provide examples of uncountable towers
which form antichains if ordered by ⊆. Since Hausdorff gaps exist in ZFC, it
follows that special towers exist in ZFC.

There are facts indicating that the notion of a Hausdorff tower is more
natural than the notion of a special tower. The next proposition shows that
this is a “global” property, whereas Example 33 will demonstrate that this is
not the case of special towers. (Another fact supporting the statement above
is discussed in Section 7.)

Proposition 12. If a tower (Tα)α<ω1 is equivalent to a Hausdorff tower
(Sα)α<ω1, then (Tα)α<ω1 is Hausdorff.

Proof. We can suppose that (Sα)α<ω1 satisfies condition (H). There exist
some n < ω and cofinal subtowers (T ′α)α<ω1 and (S′α)α<ω1 such that S′α\n ⊆
T ′α ⊆∗ S′α+1 for each α < ω1. Suppose that (T ′α)α<ω1 does not satisfy (H).
There are β < ω1 and m < ω such that I = {ξ < β : T ′ξ \ T ′β ⊆ m} is
infinite. Fix k > max(n,m) such that T ′β ⊆ S′β+1 ∪ k. Now I ⊆ {ξ < β + 1 :

S′ξ \ S′β+1 ⊆ k}, and this contradicts (H) of (S′α)α<ω1 .

The property of being a special tower is invariant under a slightly stronger
equivalence relation:

Proposition 13. Assume λ is a cardinal with uncountable cofinality and
T = (Tα)α<λ is a special tower. If T ′ = (T ′α)α<λ is such that Tα =∗ T ′α for
each α < λ, then T ′ is special.

Proof. There is X ⊆ λ cofinal in λ such that (Tα)α∈X is a ⊆-antichain.
We can find X ′ ⊆ X cofinal in λ such that both T ′α \ Tα and Tα \ T ′α are
constant for every α ∈ X ′. Clearly, T ′α * T ′β for all α < β, α, β ∈ X ′.

We finish this section by a comment on Proposition 8.
Remark 14. We are not aware of any way of constructing (in ZFC) a

Hausdorff tower without producing a Hausdorff gap (i.e. without implicitly
constructing the other half of the gap). However, there are several generic
examples of Hausdorff towers which are not halves of Hausdorff gaps. For in-
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stance, in every model obtained by forcing with a Suslin tree, there is a Haus-
dorff tower which is maximal. Let S be a Suslin tree. Define ϕ : S→ P(ω) in
such a way that:

(1) ϕ(s) ∩ ϕ(t) =∗ ∅ for any incompatible s, t ∈ S;
(2) ϕ(s) ⊆∗ ϕ(t) if t ≤ s;
(3) if S is a branch of the tree, then {ϕ(s)c : s ∈ S} satisfies (H).

Such a ϕ can be constructed by induction on levels of S, using the fact that
all branches of S are countable and a simplifying assumption that S does not
split at limit levels. Having such a ϕ, we can see that the S-generic branch
through ϕ′′[S] is a tower which is maximal (in principle because S does not
add new subsets of ω, see e.g. [8, Lemma 2]) and Hausdorff.

This provides another example of a family generating a dense ideal which
does not realize oscillation 1 (cf. [28, Example 1] and Section 5 below).

4. Special towers. We already know that special towers do exist in ZFC.
We will see that consistently there are no other towers of length ω1. The
simplest way to see this is to use OCA. For the formulation of OCA see
e.g. [25]; we will only use the following consequence of OCA (see [25, Propo-
sition 8.4]):

Proposition 15 (Todorčević). Under OCA every uncountable subset of
P(ω) contains an uncountable ⊆-chain or ⊆-antichain.

A tower is well-ordered by ⊆∗, so it cannot contain an uncountable chain.
Hence the following holds:

Proposition 16. Under OCA every ω1-tower is special.

It is unclear for us whether OCA implies that all towers of length ω1 are
Hausdorff. However, this is true if we assume MAω1 .

Lemma 17. Let (Aα, Bα)α<ω1 be a sequence such that Aα ⊆Bα ⊆∗Aβ ⊆ ω
and Aα+1 \ Bα is infinite for each for α < ω1. There exist ξ < ζ < ω1 such
that Aξ * Bζ .

Proof. Suppose Aα ⊆ Bβ for each α ≤ β < ω1. Set Cα =
⋃
{Aξ : ξ ≤ α}.

We have Cα⊆Bα, and since Aα+1 \Bα is infinite, Cα 6=Cα+1 for all α < ω1.
Thus (Cα)α<ω1 is an increasing ⊆-chain of type ω1, a contradiction.

Proposition 18. Let T = (Tα)α<ω1 be a tower. There exists a ccc forc-
ing making T Hausdorff in the extension.

Proof. Acondition in the desired forcing is a pair p= (Fp, np)∈ [ω1]<ω×ω.
A condition q is stronger than p if Fp ⊆ Fq, np ≤ nq, and for all α < β,
α ∈ Fq \Fp, β ∈ Fp, there exists some m ∈ (Tα \Tβ)\np. For each condition
p and each ordinal α < ω1, Fp < α, the pair 〈Fp ∪ {α}, n〉 (where n > np) is
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a condition stronger than p, and thus this forcing adds a subtower cofinal in
T which fulfills condition (H) (provided that ω1 is preserved).

To prove ccc, let {pα = 〈Fα, nα〉 : α < ω1} be a set of conditions. We
can suppose that nα = n for each α < ω1 and that {Fα : α < ω1} forms
a ∆-system with core F . Denote F ′α = Fα \ F . Assume without loss of
generality that maxF < minF ′α < maxF ′α < minF ′β if α < β.

For α < ω1 set Aα =
⋂
{Tξ : ξ ∈ F ′α} \ n and Bα =

⋃
{Tξ : ξ ∈ F ′α} \ n.

Lemma 17 shows that there are α < β < ω1 such that Aα 6⊆ Bβ. Note that
〈Fα ∪ Fβ, n〉 is a condition stronger than both pα and pβ.

Corollary 19 (MAω1). Every tower of length ω1 is Hausdorff.

Since there are no Hausdorff towers of length greater than ω1, this result
does not generalize to higher cardinals. However, the following is still true.

Theorem 20. Let κ be a regular uncountable cardinal and let T =
(Tα)α<κ be a tower. There is a ccc forcing making T special in the extension.

Theorem 20 can be proved in a way similar to [29, Theorem 1.4], see also
[30, Theorem 4.4]. The forcing consists simply of finite subsets F of κ \ γ
(for a suitably chosen γ ∈ κ) such that Tα * Tβ if α 6= β, and α, β ∈ F . This
forcing is ccc (checking this needs some work but it is not difficult). Therefore
there is γ < κ such that for any condition F ⊆ κ\γ there are cofinally many β
such that F∪{β} is a condition (otherwise we could construct an uncountable
set of pairwise incompatible conditions). Hence this forcing adds a cofinal
subtower satisfying (K). Instead of proving Theorem 20 directly, we show a
slightly stronger theorem. Namely, under MAκ every tower of length λ ≤ κ
(with λ of uncountable cofinality) can be modified to a tower with condition
(K) by a minor cosmetic operation: it is enough to add at most one integer
to each level and to remove at most one integer from each level. Proving ccc
for this forcing is similar to proving it for the forcing mentioned above.

Theorem 21. Let κ be a regular uncountable cardinal and let T =
(Tα)α<κ be a tower. There is a ccc forcing P which generically adds a tower
T ′ = (T ′α)α<κ such that |Tα \ T ′α| ≤ 1 and |T ′α \ Tα| ≤ 1 for each α < ω1,
and P forces that T ′ satisfies condition (K).

This theorem together with Proposition 13 implies Theorem 20.

Lemma 22. For k < ω and each i < k let Ti = (T iα)α<ω1 be a tower.
There exist ζ < ξ < ω1 such that T iζ * T iξ for each i < k.

Proof. We prove the lemma by induction on k. The statement holds true
for k = 1. At the (k + 1)th step use the induction hypothesis to find pairs
ζα < ξα for α < ω1 such that T iζα * T iξα and ξα < ζβ for each i < k and
α < β < ω1.
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Claim. We can moreover assume that T iζα 6⊆ T iξβ for all α, β < ω1 and
i < k.

Proof. We can first refine the system so that there is n < ω such that
T iζα ∩ n * T iξα ∩ n for all i < k and α < ω1. After that refine further to get
T iζα ∩ n and T iξα ∩ n constant for a fixed i.

We are done if T kζα 6⊆ T kξα for some α < ω1, so suppose the opposite.
Lemma 17 states that there are α < β < ω1 such that T kξα 6⊆ T kζβ . Thus
ξ = ξα and ζ = ζβ are as required.

Proof of Theorem 21. A condition p ∈ P is of the form (Fp, ap, rp), where

• Fp ∈ [κ]<ω;
• ap : F → ω and rp : F → ω;
• for every α < β ∈ F we have

Tα ∪ {ap(α)} \ {rp(α)} * Tβ ∪ {ap(β)} \ {rp(β)}.
The ordering is given by q ≤ p if Fp ⊆ Fq, aq|Fp = ap, and rq|Fp = rp. Notice
that for each condition p ∈ P and α < κ there is q ∈ P such that α ∈ Fq and
q ≤ p. Indeed, choose

m /∈
⋃{

Tξ ∪ {ap(ξ)} : ξ ∈ Fp \ α
}

and
n ∈

⋂{
Tξ \ {rp(ξ)} : ξ ∈ Fp ∩ α

}
\ {m},

and define Fq = Fp ∪ {α}, aq(α) = m, rq(α) = n. Let G be a P-generic,
a =

⋃
p∈G ap, r =

⋃
p∈G rp. Clearly, the tower defined by

T ′α = Tα ∪ {a(α)} \ {r(α)}
is as desired.

It only remains to show that our forcing is ccc. Let {pα : α < ω1} be a set
of conditions. We will denote Fα=Fpα , aα= apα and rα= rpα . By thinning out
the sequence if necessary, we may assume that Fα = {ξ0

α < ξ1
α < · · · < ξk−1

α }
for each α < ω1 and that aα(ξiα) and rα(ξiα) depend only on i. Using the
∆-lemma we further assume that Fα = F ∪ F ′α for each α < ω1, where
(F ′α)α<ω1 is pairwise disjoint and there is I ⊆ k such that F = {ξiα : i ∈ I}
for every α < ω1. So for each i < k the sequence (ξiα)α<ω1 is either constant
or injective. Considering a subsequence once again (if necessary), we may
assume that (ξiα)α<ω1 is either constant or strictly increasing for each i < k.
We may also assume that there is l < ω such that the sequence(((

Tξiα ∪ {aα(ξiα)}
)
\ {rα(ξiα)}

)
∩ l
)
α<ω1

is constant for each i < k, where l is such that((
Tξiα ∪ {aα(ξiα)}

)
\ {rα(ξiα)}

)
∩ l and

((
T
ξjα
∪ {aα(ξjα)}

)
\ {rα(ξjα)}

)
∩ l
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are ⊆-incompatible for i 6= j. Apply Lemma 22 to find α, β such that(
Tξiα ∪ {aα(ξiα)}

)
\ {rα(ξiα)} *

(
Tξiβ
∪ {aβ(ξiβ)}

)
\ {rβ(ξiβ)}

for each i ∈ k \ I. Now q = (Fα ∪ Fβ, aα ∪ aβ, rα ∪ rβ) is a condition in P,
and q ≤ pα, q ≤ pβ .

Proposition 18 is an analogue of the theorem stating that under MAω1 ev-
ery gap is Hausdorff. In [1] the authors prove that the same statement holds
assuming the P-ideal dichotomy. This is not true for towers. The P-ideal di-
chotomy is compatible with CH, and under CH Suslin towers do exist. How-
ever, if we additionally assume that b is big, the P-ideal dichotomy implies
that every ω1-tower is Hausdorff. Recall that b is the minimal cardinality
of a family in ωω which cannot be ≤∗-dominated by a single function. The
P-ideal dichotomy (PID) is the assertion: for every P-ideal I ⊆ [ω1]ω one of
the following holds:

• there is an uncountable K ⊆ ω1 such that [K]ω ⊆ I;
• ω1 =

⋃
n<ω An and An ∩ I is finite for each n < ω and I ∈ I.

Notice that if for each uncountable K ⊆ ω1 there is an infinite I ⊆ K, I ∈ I,
then the second alternative cannot hold.

Theorem 23. Assume PID. Every ω1-tower is Hausdorff if and only if
b > ω1.

Remark. A related result with a similar proof was obtained indepen-
dently in [17]. Namely:

Theorem. Assume PID. The following are equivalent:

(1) min{b, cof(Fσ)} > ω1.
(2) There are only five Tukey types of directed sets of size at most ω1.

For the definition of the cardinal invariant cof(Fσ) see [17]. The rela-
tion of these results becomes apparent in Section 7, where it is shown that
Hausdorff towers correspond to the Tukey type [ω1]<ω.

Proof of Theorem 23. In the next section we shall prove that a Suslin
tower of length b always exists (Proposition 26). We prove here only the “if”
part of the theorem.

Define an ideal I ⊆ [ω1]≤ω by

I ∈ I iff Cnα(I) = {ξ ∈ α ∩ I : Tξ \ Tα ⊆ n} is finite for all α < ω1, n < ω.

Claim. If b > ω1, then I is a P-ideal.

Proof. Consider a sequence {In : n < ω} ∈ [I]ω. Assume without loss
of generality that (In)n<ω is pairwise disjoint, and fix an enumeration In =
{ξnk : k < ω} for each n. For every α < ω1 define a function fα : ω → ω by

fα(n) = max{k : Tξnk \ Tα ⊆ n}.
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Let g : ω → ω be a function ≤∗-dominating {fα : α < ω1}. Let

I =
⋃
n<ω

In \ {ξnk : k ≤ g(n)}.

It is straightforward to check that I ∈ I and In ⊆∗ I for each n.

The first alternative of PID for I gives us a subtower which fulfills con-
dition (H), so we only need to refute the second alternative of PID. We shall
show that for each uncountable K ⊆ ω1 there is I ∈ I ∩ [K]ω.

Claim. There exists x ∈ 2ω such that x ∈ {Tα : α ∈ K} (the closure in
the Cantor space) but x /∈ 〈Tα〉α<ω1 (the ideal generated by the tower).

Proof. If {Tα : α ∈ K} ⊆ 〈Tα〉α<ω1 , then the ideal 〈Tα〉α<ω1 is generated
by a closed set and thus it is an analytic P-ideal. On the other hand, an
analytic P-ideal which is not countably generated cannot be generated by
less than d sets [26, Theorem 6].

Fix I ∈ [K]ω such that x is the single accumulation point of {Tα : α ∈ I}.
To conclude that I ∈ I, notice that if for some β < ω1 and n < ω we have
Tα ⊆ Tβ ∪n for infinitely many α ∈ I, there would be an accumulation point
of {Tα : α ∈ I} which would be a subset of Tβ ∪ n and hence in 〈Tα〉α<ω1 .

This seems a convenient moment at which to mention the following two
results. Note that none of them directly implies Corollary 19.

Theorem 24 (Shelah [20]). MAω1 implies that every ω1-tower is the right
half of a Hausdorff gap.

Theorem 25 (Spasojević [21]). MAω1(σ-centered) implies that every
ω1-tower is the right half of the left-oriented gap.

In Section 6 we present ideas behind the proof of the above theorem (see
Example 42).

5. Suslin towers. We know that consistently there are no Suslin
ω1-towers. However, Suslin towers, perhaps longer than ω1, always exist:

Proposition 26. There is a tower T = (Tα)α<b which is Suslin.

Proof. Let {fα : α < b} ⊆ ωω be a ≤∗-unbounded family which is
≤∗-strictly increasing. Define

Tα = {(m,n) : n ≤ fα(m)}
for every α. This is a b-tower (on ω × ω). If K ⊆ b is cofinal, then
{fα : α ∈ K} is ≤∗-unbounded, and thus there are α < β, α, β ∈ K, such
that fα(m) ≤ fβ(m) for each m < ω (see [24]). Therefore Tα ⊆ Tβ and
(Tα)α<b is a Suslin tower.
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The above fact and Theorem 23 may suggest that the existence of a
Suslin ω1-tower is equivalent to b = ω1 in ZFC. This is not the case.

Proposition 27. Let κ be an uncountable regular cardinal. It is consis-
tent that b = κ and there is a Suslin ω1-tower.

Proof. Start with a model of b = ω1 with a Suslin tower. Then use
a finite support iteration of Hechler forcings H (for adding a dominating
real) of length κ. This will make b = κ in the extension. Hechler forcing
is σ-centered and thus has the Knaster property (i.e. for every uncountable
X ⊆ H there is an uncountable linked X0 ⊆ X), which is preserved in
finite-support iterations.

We will prove that a forcing with the Knaster property does not destroy
a Suslin tower (Tα)α<ω1 . (This also follows from the general well-known fact
that such forcing preserves ccc-ness of ground model relations.) Suppose
that P is such a forcing, p ∈ P is any condition, and Ẋ is a P-name for an
uncountable subset of ω1. Consider

X = {α < ω1 : ∃pα < p, pα  α ∈ Ẋ}.
There is an uncountable X0 ⊆ X such that pα ‖ pβ for all α, β ∈ X0.
The tower (Tα)α<ω1 is Suslin, hence there are distinct α, β ∈ X0 such that
Tα ⊆ Tβ and any q < pα, pβ forces that α, β ∈ Ẋ. Therefore the tower
remains Suslin in the extension.

The crux of Proposition 26 is Todorčević’s result on oscillations of func-
tions. His work on oscillations of subsets of ω in [28] sheds even more light
on the existence of Suslin towers. Recall that the oscillation of A,B ⊆ ω
(denoted by osc(A,B)) is the cardinality of the set A4B/∼, where ∼ is the
equivalence relation defined on A4B by

m ∼ n iff [n,m] ∩ (A4B) ⊆ A \B or [n,m] ∩ (A4B) ⊆ B \A.
(We slightly abuse the notation treating [n,m] as [m,n] for m < n.) We say
that a family A ⊆ P(ω) realizes an oscillation n if there are A,B ∈ A such
that osc(A,B) = n.

The following is a special case of [28, Corollary 2].

Theorem 28 (Todorčević [28]). If a family A ⊆ P(ω) generates a non-
meager P-ideal, then it realizes all finite oscillations.

Notice that if A (∗ B, then A ⊆ B if and only if osc(A,B) = 1. It
follows that each tower generating a non-meager ideal is Suslin. We enclose
here for the reader’s convenience the sketch of the proof of the latter assertion
(extracted from [28]):

Proof. We will say that a tower T = (Tα)α<κ has property (ξ) if for an
arbitrarily large n < ω there is t ⊆ n such that for each m > n there are
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arbitrarily large β < κ with the properties

• Tβ ∩ n = t;
• [n,m) ⊆ Tβ .
Claim (ξ). Let T be a tower of size κ of uncountable cofinality such that

every cofinal subtower of T has property (ξ). This T is a Suslin tower.

Proof. This is basically [28, Lemma 2]. Since P (ω) is hereditary separa-
ble, we can fix a countable set D ⊆ T dense in T . There is α < κ such that
D ⊆∗ Tα for each D ∈ D. Without loss of generality we can assume that
there is m0 < ω such that Tα \m0 ⊆ Tβ for every β > α. Using property (ξ)
we can fix m1 > m0 and t ⊆ m1 such that for every m > m1 there is β > α
such that Tβ ∩m1 = t and [m1,m) ⊆ Tβ .

Pick D ∈ [t] ∩ D. Fix m > m1 such that D \m ⊆ Tα, and β such that
[m1,m) ⊆ Tβ . Then
• D ∩m1 = t = Tβ ∩m1;
• D ∩ [m1,m) ⊆ [m1,m) = Tβ ∩ [m1,m);
• D \m ⊆ Tα \m0 ⊆ Tβ .

Hence D ⊆ Tβ .
It is enough to show that every tower which generates a non-meager

ideal has property (ξ). This is basically the beginning of the proof of
[28, Theorem 1] and the proof of [28, Lemma 1]. We may assume that for
each finite F ⊆ ω the set {α : F ⊆ Tα} is either empty or cofinal in T . This
is standard (since [ω]<ω is countable). Then we argue a contrario. Subse-
quently negating (ξ) we obtain an increasing sequence of natural numbers
(nk)k<ω witnessing the fact that T generates a meager ideal.

As a corollary we obtain many examples of Suslin towers. For instance,
each tower generating a maximal ideal is Suslin.

In a somewhat similar manner (to Claim (ξ)) we can prove that adding
a Cohen real adds a Suslin tower. This result is not a surprise; the proof
mimics the well-known argument used by Todorčević to show that Cohen
reals produce destructible gaps.

Proposition 29. Let (Tα)α<ω1 be a tower and let c be a Cohen generic
real in an extension. Then (Tα ∩ c)α<ω1 is a Suslin tower.

Proof. To see that the tower is not eventually constant notice that
c ∩ (Tβ \ Tα) is infinite for each α < β < ω1.

Let p ∈ n2 be a Cohen condition and Ẋ be a name for an uncountable
subset of ω1. We can assume that X = Ẋ belongs to the ground model (by
taking a stronger condition if necessary). Consider α < β (α, β ∈ X) such
that Tα ∩ n = Tβ ∩ n and fix m > n such that Tα ⊂ Tβ ∪m. Extend p to
q ∈ m2 such that q−1(1) = p−1(1). Now q  Tα ∩ ċ ⊆ Tβ ∩ ċ.
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This simple example is of some importance, since the resulting Suslin
tower will be used in the next section to produce a special non-Hausdorff gap.
Notice also that intersecting a Cohen real with a gap gives us a destructible
gap with both sides being Suslin towers. So it is possible to have Suslin towers
which are far from being non-meager (whose orthogonal is not generated by
a single set).

One way to add a tower generically is to use a standard technique inspired
by Hechler’s work [10]. It allows one to prove (see e.g. [9, Theorem 5.8,
Chapter 2]) that whenever P is a partial order, there is a forcing notion
P such that P  “P̌ embeds in P(ω)/Fin”. It seems that whenever P is a
partial order and C ⊆ P is an uncountable chain, then in Hechler’s extension
the embedding of C into P(ω)/Fin will be Suslin unless we impose some
additional restrictions on the conditions of P. We will try to justify this by
examples below and in the next section.

Example 30 (The classical Hechler forcing for adding a tower). A condi-
tion in P is a triple p = (Fp, np, Ap) where Fp ∈ [ω1]<ω, np < ω
and Ap ⊆ Fp × np. For two conditions p, q we use the notation p ∪ q =
(Fp ∪ Fq, np ∪ nq, Ap ∪ Aq). The condition q is stronger than p if np ≤ nq,
Fp ⊆ Fq, Aq ∩ (Fp×np) = Ap, and for all α, β ∈ Fp, α < β, and i ∈ [np, nq),

if (α, i) ∈ Aq, then (β, i) ∈ Aq.
Claim. P is ccc.

Proof. Fix a set of conditions {pα : α < ω1}. Use the ∆-lemma to find
an uncountable set I such that {Fpα : α ∈ I} forms a ∆-system with core ∆,
and npα is constant for α ∈ I. We can further refine I to an uncountable I ′
so that Apα ∩ (∆× npα) is constant. Now for all α, β ∈ I ′ the conditions pα
and pβ are compatible since pα ∪ pβ is their common extension.

Let G be a generic filter. Set A =
⋃
p∈GAp. For α < ω1 define

Tα = {i < ω : (α, i) ∈ A}.
Claim. (Tα)α<ω1 is a Suslin tower.

Proof. It is obvious that (Tα)α<ω1 is non-constant. Consider a name Ẋ
for an uncountable subset of ω1 and a condition p. There is an uncountable
set

X = {α < ω1 : ∃pα < p, α ∈ Fpα , pα  α ∈ Ẋ}.
Now proceed in the same way as in the proof of the previous claim to get an
uncountable set I ⊆ X.Wemay further suppose that {i < npα : (α, i) ∈ Apα}
is constant for α ∈ I. Hence pα ∪ pβ < pα, pβ and

pα ∪ pβ  (α, β ∈ Ẋ and Tα ⊆ Tβ)

for α, β ∈ I, α < β.
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The forcing in this example is in fact equivalent to the forcing adding ω1

Cohen reals. In what follows we denote the latter by Cω1 .

Proposition 31. P is equivalent to Cω1.

Proof. Using [14, Main Theorem], it is enough to find a sequence of
(Pα)α<ω1 such that:

(1) Pγ =
⋃
α<γ Pα for each limit γ ≤ ω1;

(2) for α < β, Pα is a complete suborder of Pβ ;
(3) Pα+1/Pα is equivalent to Cohen forcing.

For α < ω1 let Pα = {(F, n,A) ∈ P : F ⊆ α}. Only checking (2) is
non-trivial.

It is enough to show that for α < β ≤ ω1 there is a pseudo-projection
p : Pβ → Pα (see [2, Proposition 2]). That is, we need to define for each
q = (Fq, nq, Aq) ∈ Pβ a condition p(q) ∈ Pα such that whenever r < p(q),
r ∈ Pα, then r is compatible with q (in P). It is trivial to check that p(q) =
(Fq ∩ α, nq, Aq ∩ (α× nq)) works.

In what follows we will present several other incarnations of Cω1 used for
producing peculiar towers and gaps.

Example 32 (Hechler’s forcing with the Hausdorff restriction). Consider
a modification of the forcing from Example 30. We add one more requirement
for q < p. Namely, for each α ∈ Fp and ξ ∈ Fq \ Fp, ξ < α, there has to be
some i ≥ np such that (ξ, i) ∈ Aq and (α, i) /∈ Aq.

This forcing adds a generic tower (Tα)α<ω1 satisfying condition (H) in
the same way as the forcing from Example 30 adds a Suslin tower. As in
Example 30 we can show that this forcing is equivalent to Cω1 (and so it
is ccc); the same definition of Pα pseudo-projections works also for this forc-
ing. Notice, however, that checking this is not as trivial as before (but not
difficult either).

Notice also that the tower added by this forcing is maximal (and so this
is another example of a maximal Hausdorff tower, see Remark 14). Indeed,
let P ⊆ ω be an infinite set from the extension. It is enough to check that
P intersects some Tα on an infinite set. Because of ccc, the name for P is
guessed at some intermediate step, so we can forget about an initial segment
of the tower and assume that P is from the ground model. Then the set

Dn = {p ∈ P : 0 ∈ Fp, ∃m > n, (0,m) ∈ Ap and m ∈ P}
is dense in P for each n. This proves that P ∩ T0 is infinite in the extension.

Probably the most interesting example of this sort is the following one.
Example 33 (A special tower equivalent to a Suslin tower). Let κ be

an uncountable regular cardinal. We construct a forcing which adds a pair
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of equivalent towers of length κ, one of them being special and the other one
Suslin (in a strong sense).

A condition is a sequence p = (Fp, np, 〈Tαp , Sαp 〉α∈Fp), where Fp ∈ [κ]<ω,

np < ω, and Tαp , Sαp ⊆ np for each α ∈ Fp, and Sαp 6⊆ S
β
p for α < β ∈ Fp.

A condition q is stronger than p if np ≤ nq, Fp ⊆ Fq, T
α
q ∩ np = Tαp ,

Sαq ∩ np = Sαp for α ∈ Fp, and for all α, β ∈ Fp, α < β, and i ∈ [np, nq),

if i ∈ Tαq ∪ Sαq then i ∈ T βq ∩ Sβq and if i ∈ Tαq then i ∈ Sαq .
It is easy to see that for each α < κ the set {p : α ∈ Fp} is dense, and

hence this forcing adds a couple of equivalent towers of length κV , (Tα)α<κ
and (Sα)α<κ defined by Tα =

⋃
p∈G T

α
p and Sα =

⋃
p∈G S

α
p for α < κ.

The tower (Sα)α<κ satisfies condition (K). On the other hand (Tα)α<κ is
far from being special.

Claim. Every uncountable subtower of (Tα)α<κ is Suslin.

Proof. Consider a name Ẋ for an uncountable subset of κ and a condi-
tion p. There is an uncountable set

X = {α < κ : ∃pα < p, α ∈ Fpα , pα  α ∈ Ẋ}.
Use the ∆-lemma to find an uncountable set I such that {Fpα : α ∈ I}

forms a ‘nice’ ∆-system with core ∆. Each Fpα , α ∈ I, is split into blocks

Fpα = F 0
α ∪∆0 ∪ F 1

α ∪∆1 ∪ · · · ∪ F k−1
α ∪∆k−1,

∆ =
⋃

∆i, maxF iα < min ∆i, max ∆i−1 < minF iα, maxF iα < minF iβ , and

F iα = {ξi0(α) < ξi1(α) < · · · < ξij(i)−1(α)}

for any α < β < ω1 (α, β ∈ I) and i < k. (F 0
α and some ∆is may be empty,

in that case disregard the required inequalities.)
We may moreover assume that T ξpα and Sξpα are constant for any ξ ∈ ∆,

that npα , T
ξim(α)
pα , and Sξ

i
m(α)
pα are constant (ranging over α ∈ I) for all i < k,

m < j(i), and that there are J,M < ω such that α = ξJM (α) for α ∈ I.
Pick any α < β ∈ I. Define a condition q by Fq = Fpα ∪ Fpβ , nq =

npα + k + 1, and furthermore:

• for i < J and χ ∈ F iα ∪∆i let

Tχq = Tχpα ∪ [npα , npα + i+ 1) and Sχq = Sχpα ∪ [npα , npα + i+ 1);

• for i < J and χ ∈ F iβ let

Tχq = Tχpβ ∪ [npβ , npβ + i) and Sχq = Sχpβ ∪ [npβ , npβ + i);

• for i > J and χ ∈ F iα ∪∆i let

Tχq = Tχpα ∪ [npα , npα + i+ 2) and Sχq = Sχpα ∪ [npα , npα + i+ 2);
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• for i > J and χ ∈ F iβ let
Tχq = Tχpβ ∪ [npβ , npβ + i+ 1) and Sχq = Sχpβ ∪ [npβ , npβ + i+ 1);

• for χ ∈ ∆J let
Tχq = Tχpα ∪ [npα , npα + J + 2) and Sχq = Sχpα ∪ [npα , npα + J + 2);

• for m < M and χ = ξJm(α) let
Tχq = Tχpα ∪ [npα , npα + J + 1) and Sχq = Sχpα ∪ [npα , npα + J + 1);

• for m < M and χ = ξJm(β) let
Tχq = Tχpβ ∪ [npβ , npβ + J) and Sχq = Sχpβ ∪ [npβ , npβ + J);

• for m > M and χ = ξJm(α) let
Tχq = Tχpα ∪ [npα , npα + J + 2) and Sχq = Sχpα ∪ [npα , npα + J + 2);

• for m > M and χ = ξJm(β) let
Tχq = Tχpβ ∪ [npβ , npβ + J + 1) and Sχq = Sχpβ ∪ [npβ , npβ + J + 1);

• for χ = ξJM (α) let
Tχq = Tχpα ∪ [npα , npα + J + 1) and Sχq = Sχpα ∪ [npα , npα + J + 2);

• for χ = ξJM (β) let
Tχq = Tχpβ ∪ [npβ , npβ + J + 1) and Sχq = Sχpβ ∪ [npβ , npβ + J + 1).

To show that q is a condition of P is straightforward. The condition q is
a common extension of both pα and pβ , q  α, β ∈ Ẋ, and q  Ṫα ⊆ Ṫβ.

The proof of the claim also shows that the forcing is ccc. In case κ = ω1

this forcing is equivalent to Cω1 . To check this, use the same strategy as in
the proof of Proposition 31. Define Pα = {q ∈ P : Fq ⊆ ω · α} for α < ω1.
For γ < β and q ∈ Pβ define a pseudo-projection p(q) ∈ Pγ as follows. First
find a set F ⊆ ω · γ such that |F | = |Fq \ (ω · γ)| and Fq ∩ (ω · γ) < F , and
fix an order preserving bijection b : Fq \ (ω · γ)→ F . Define

p(q) =
(
Fp(q) = (Fq ∩ (ω · γ)) ∪ F, nq, 〈Tαp(q), S

α
p(q)〉α∈Fp(q)

)
,

where

(Tαp(q), S
α
p(q)) =

{
(Tαq , S

α
q ) for α /∈ F ,

(Tαp(q), S
α
p(q)) = (T

b−1(α)
q , S

b−1(α)
q ) for α ∈ F .

We will sketch the proof that p(q) is a pseudo-projection. Suppose that
r < p(q) and r ∈ Pγ . We want to find s ∈ Pβ such that s < r and s < q.
Let Fs = Fr ∪ Fq, ns = nr + 1. For η ∈ Fq \ (ω · γ) set T ηs = T

b(η)
r . If ξ ≤

max(Fq∩(ω·γ)) or ξ ≥ ω·γ let nr /∈ T ξs∪Sξs , and for ξ ∈ (max(Fq∩(ω·γ)), ω·γ)

let nr ∈ T ξs ∩ Sξs . We have to show that for each ξ ∈ Fr and η ∈ Fq \ (ω · γ)

we have Sξs * Sηs . If ξ ∈ (max(Fq ∩ (ω · γ)), ω · γ), then nr ∈ Sξs \ Sηs . If
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ξ ≤ max(Fq ∩ (ω · γ)), then Sξs * Sηs since Sξr * S
b−1(η)
r . Hence s ∈ Pβ . It is

easy to check that s < r and s < q.
This example refutes the natural conjecture that each special tower is

in fact Hausdorff (since a Hausdorff tower cannot be equivalent to a Suslin
tower). Moreover, it proves that the property of being special, unlike the
Hausdorff property, is not invariant under the equivalence of towers (cf.
Proposition 12).

In the following section we provide another example of a tower of this
kind: a tower which is neither Hausdorff nor equivalent to a Suslin tower.

Notice that most of the examples presented in this section exist in models
obtained by adding ω1 Cohen reals. It seems that the structure of towers is
particularly rich in such models. We will show that adding ω1 Cohen reals
produces various interesting gaps.

6. Structure of gaps after adding ω1 Cohen reals. One of the most
natural questions related to destructibility of gaps is asking whether the
class of special (ω1, ω1)-gaps coincides with the class of Hausdorff gaps. It
was posed in [19] as Problem 2. Since we isolated another property lying in
between of the above ones, we can ask more specifically:

Problem 34 ([19, Problem 1]). Is every special gap left-oriented?

Problem 35. Is every left-oriented gap equivalent to a Hausdorff gap?

Hirschorn [12] answered Scheepers’s problem. More precisely, he gave an
example of a left-oriented gap which is not equivalent to any Hausdorff gap,
so he answered Problem 35 in the negative. It turns out that the answer to
Problem 34 is also negative.

Theorem 36. There is a special gap which is not left-oriented.

First, we give an example which relies only on simple facts and known
results. In particular, we need the following theorem due to Roitman:

Theorem 37 ([18]). Adding a single Cohen real to a model satisfying
MA(σ-centered) preserves MA(σ-centered).

Example 38 (An inverted Spasojević gap). Work in a model ofMAω1(σ-
centered). Using Proposition 29 and the theorem above, we can add a Co-
hen real and get a Suslin tower (Rα)α<ω1 in the extension without loos-
ing MA(σ-centered). Of course, the tower cannot be maximal since t > ω1.
Theorem 25 now gives a special gap (Lα, Rα)α<ω1 fulfilling condition (O).
Consider the gap (Rα, Lα)α<ω1 . Inverting the sides of an indestructible gap
cannot make it destructible, so (Rα, Lα)α<ω1 is still special. However, it can-
not be left-oriented. Indeed, in this case Proposition 9 would imply that
(Rα)α<ω1 is special, but this tower is Suslin.
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The reader perhaps wonders if the gap (Lα, Rα)α<ω1 introduced by the
forcing from Theorem 25 is Hausdorff. We will show that it is not. Actually,
Example 42 will show that gaps introduced by Spasojević’s forcing are left-
oriented, but not Hausdorff. Thus to obtain a special non-Hausdorff gap, we
do not need to invert the gap in Example 38. As a corollary we observe that
left-oriented gaps are not necessarily right-oriented. The following example
shows that the Hausdorff condition for gaps is not symmetric either. There
is a Hausdorff gap such that the inverted gap is not Hausdorff. We start
Hechler’s machinery again.

Example 39 (An asymmetric Hausdorff gap). We define a forcing P
consisting of conditions of the form

p = (Fp, np, 〈Lαp , Rαp 〉α∈Fp),
where

(1) Fp ∈ [ω1]<ω;
(2) np < ω;
(3) Lαp , Rαp ⊆ np for each α ∈ Fp;
(4) Lαp ∩Rαp = ∅ for each α ∈ Fp.

A condition q is stronger than p if

(a) np ≤ nq and Fp ⊆ Fq;
(b) Lαq ∩ np = Lαp and Rαq ∩ np = Rαp for α ∈ Fp;
(c) for any α, β ∈ Fp, α < β, and i ∈ [np, nq),

if i ∈ Lαq then i ∈ Lβq and if i ∈ Rαq then i ∈ Rβq ;

(d) for each α ∈ Fp and ξ ∈ Fq \ Fp, ξ < α, there is some i ≥ np such
that i ∈ Lξq ∩Rαq .

It is easy to see that for each α < ω1 the set {p : α ∈ Fp} is dense. Let G
be a P-generic filter, and let Lα =

⋃
p∈G L

α
p and Rα =

⋃
p∈GR

α
p for α < ω1.

Then (Lα, Rα)α<ω1 is Hausdorff provided P preserves ω1.

Claim. P is equivalent to adding ω1 Cohen reals.

Proof. As in Proposition 31, the forcing Pβ consists of the conditions
q = (Fq, nq, 〈Lαq , Rαq 〉α∈Fq) with Fq ⊆ β. The pseudo-projection p : Pβ → Pγ
is defined by

p(q) = (Fq ∩ γ, nq, 〈Lαq , Rαq 〉α∈Fq∩γ).

Claim. (Rα)α<ω1 is a Suslin tower.

Proof. Consider a name Ẋ for an uncountable subset of ω1 and a condi-
tion p ∈ P. There is an uncountable set

X = {α < ω1 : ∃pα < p, α ∈ Fpα , pα  α ∈ Ẋ}.
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We will proceed in the same way as in the examples from the previous section.
Use the ∆-lemma to find an uncountable set I such that {Fpα : α ∈ I} forms
a ∆-system with core ∆, max ∆ < minFpα \ ∆ for α ∈ I, and npα = n∆

is constant for α ∈ I. We may assume that maxFpα < minFpβ \ ∆ for
α < β < ω1. We can further refine I to an uncountable I ′ so that all Rαpα ,
Lξpα and Rξpα are constant for all ξ ∈ ∆, α ∈ I ′. Pick any α < β ∈ I ′ \ ∆,
and define a condition q by Fq = Fpα ∪ Fpβ , nq = n∆ + 1,

(i) Lξq = Lξpα and Rξq = Rξpα for ξ ∈ ∆,
(ii) Lξq = Lξpα ∪ {n∆} and Rξq = Rξpα for ξ ∈ Fpα \∆,
(iii) Lξq = Lξpβ and Rξq = Rξpβ ∪ {n∆} for ξ ∈ Fpβ \∆.

The condition q is a common extension of both pα and pβ , q  α, β ∈ Ẋ
and q  Ṙα ⊆ Ṙβ.

To show that P is ccc, we do the same reductions for an arbitrary un-
countable set of conditions.

We now present another example witnessing the negative answer for
Problem 34.

Example 40 (A special gap which is neither left- nor right-oriented). We
define a forcing P similar to the poset from the previous example (and also
equivalent to Cω1). A condition p∈ P is of the form p= (Fp, np, (L

α
p , R

α
p )α∈Fp)

and it satisfies properties (1)–(4) from Example 39. We impose the following
additional restriction:

• (Lαp ∩R
β
p ) ∪ (Lβp ∩Rαp ) 6= ∅ for each α < β ∈ Fp.

The ordering on P is defined by conditions (a)–(c) from the previous example.
Let G be a P-generic filter. Set Lα =

⋃
p∈G L

α
p and Rα =

⋃
p∈GR

α
p for

α < ω1. It is clear that (Lα, Rα)α<ω1 is a special gap.

Claim. Both (Lα)α<ω1 and (Rα)α<ω1 are Suslin towers.

Proof. We deal with the right side; the proof for the left side is exactly the
same. Consider a name Ẋ for an uncountable subset of ω1 and a condition p.
There is an uncountable set

X = {α < ω1 : ∃pα < p, α ∈ Fpα , pα  α ∈ Ẋ}.
Now proceed in the same way as in Example 39 to get an uncountable set
I ⊆ X. Pick α < β ∈ I \ ∆ and define a condition q by Fq = Fpα ∪ Fpβ ,
nq = npα + 1, and by (i)–(iii) from the previous example. The condition q is
a common extension of both pα and pβ , q  α, β ∈ Ẋ and q  Ṙα ⊆ Ṙβ.

The proof that this forcing is equivalent to Cω1 works in a way similar
to Example 33. Let Pβ be generated by conditions q such that Fq ⊆ ω · β,
and define the pseudo-projection in the same way as in Example 33.
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We now prove that consistently there is a gap providing answers to both
questions from the beginning of this section.

Theorem 41. In a model obtained by adding ω1 Cohen reals there is a
gap (Lα, Rα)α<ω1 such that

• (Lα, Rα)α<ω1 is left-oriented but not Hausdorff;
• (Rα, Lα)α<ω1 is special but not left-oriented.

Proof. Define a forcing notion equivalent to adding ω1 Cohen reals which
forces the existence of the desired gap. A condition in P is a sequence

p = (Fp, np, 〈Lαp , Rαp 〉α∈Fp)
satisfying properties (1)–(4) of Example 39 and such that additionally

• Lαp ∩R
β
p 6= ∅ for each α < β ∈ Fp.

The ordering of P is defined by (a)–(c) of Example 39.
As in the previous examples, it is easy to see that P adds a generic gap

which is left-oriented (provided ω1 is preserved).

Claim. The forcing P is equivalent to Cω1 (and so it is ccc).

Proof. This is exactly the same proof as in Example 40 (which is in turn
similar to the proof from Example 33).

Claim. The tower (Lα)α<ω1 is not Hausdorff and the tower (Rα)α<ω1

is Suslin.

Proof. We prove both statements simultaneously. We need to show that
there is no cofinal subtower (Lα)α∈Ẋ satisfying condition (H). Consider a
name Ẋ for an uncountable subset of ω1, and suppose that some condition p
forces that (Lα)α∈Ẋ satisfies (H). We show that this leads to a contradiction,
and (Lα)α<ω1 is not Hausdorff. Moreover, we will prove that there are q < p
and α < β ∈ Ẋ such that q  Ṙα ⊆ Ṙβ , showing that (Rα)α<ω1 is Suslin.

There is an uncountable set

I = {α < ω1 : ∃pα < p, α ∈ Fpα , pα  α ∈ Ẋ}.
Using the ∆-lemma we may assume that ∆ < F ′α = Fpα \∆, and npα = n

is constant for α ∈ I. Moreover, F ′α < F ′β for α < β, and Lξpα and Rξpα are
constant for all ξ ∈ ∆. For some ` < ω we have F ′α = {ξ0

α < ξ1
α < · · · < ξ`−1

α }
for each α, and Lξ

i
α
pα = L

ξiβ
pβ and Rξ

i
α
pα = R

ξiβ
pβ for α, β ∈ I, i ∈ `. Finally, there

is i′ < ` for which α = ξi
′
pα for all α ∈ I.

Let α0 be the first element of I and let β ∈ I be some ordinal with
infinitely many predecessors in I. Define a condition q by Fq = Fα0 ∪ Fβ ,
nq = n+ 1 and

• Lξq = Lξpβ for ξ ∈ Fpβ ,
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• Lξq = Lξpα0 ∪ {n} for ξ ∈ F
′
α0
,

• Rξq = Rξpα0 for ξ ∈ Fpα0 ,
• Rξq = Rξpβ ∪ {n} for ξ ∈ F ′β .

It is straightforward to check that q ∈ P and q < pα0 , pβ . Notice also
that q  Ṙα0 ⊆ Ṙβ (at this point we already know that (Rα)α<ω1 is Suslin).
According to our assumption on Ẋ, there exist some k < ω and a condition
r < q such that

r  |{α ∈ Ẋ ∩ β : Lα \ Lβ ⊆ n+ 1}| < k.

Since Fr is finite, we can find {α1 < · · · < αk} ⊆ I ∩ β such that α0 < α1

and
Fr ∩ [minF ′α1

,maxF ′αk ] = ∅.

Define a condition s by Fs = Fr ∪
⋃
j≤k F

′
αj , ns = nr + k and

• Lξs = Lξr for ξ ∈ Fr, ξ ≤ max ∆,
• Lξs = Lξr ∪ {nr} for ξ ∈ Fr, max ∆ < ξ < minF ′α1

,
• Lξs = Lξr ∪ [nr, nr + k) for ξ ∈ Fr, maxF ′αk < ξ,

• L
ξiαj
s = (L

ξiα0
r ∪ {nr + j}) ∩ ns for i < `, j ≤ k,

• Rξs = Rξr for ξ ∈ Fr,

• R
ξiαj
s = R

ξiα0
r ∪ [nr, nr + j) for i < `, j ≤ k.

It is not difficult to verify that s ∈ P and s < r, s < pαj for each j ≤ k.
Hence

s  {α0, α1, . . . , αk, β} ⊆ Ẋ.

Moreover Lαjs \ Lβs = {n} for each j ≤ k, and thus s  Lαj \ Lβ = {n}. But
this contradicts s < r.

Notice that Proposition 8 implies that (Lα, Rα)α<ω1 is not Hausdorff
(but it is left-oriented). Moreover, the gap (Rα, Lα)α<ω1 is still special, but
Proposition 9 implies that it cannot be left-oriented.

In fact, by a slight modification of the above proof, we can show that
the original (σ-centered) forcing of Spasojević from [21] also produces a left-
oriented non-Hausdorff gap.

Example 42 (A left-oriented gap not equivalent to any Hausdorff gap).
Let R = {Rα : α < ω1} be a given tower. Spasojević introduced (1) a
σ-centered forcing P adding a tower (Lα)α<ω1 such that (Lα, Rα)α<ω1 is an
oriented gap. We show that the tower (Lα)α<ω1 is not Hausdorff.

(1) In fact, Spasojević dealt with gaps in (ωω,<∗) rather than ([ω]ω,⊂∗) but the
construction is analogous.
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A condition in P is a triple

p = (Fp, np, (L
α
p )α∈Fp),

where

(1) Fp ∈ [ω1]<ω;
(2) np < ω;
(3) Lαp ⊆ np for each α ∈ Fp;
(4) Lαp ∩Rα = ∅ and Lαp ∩Rβ 6= ∅ for all α < β ∈ Fp;
(5) Rα \Rβ ⊆ np for all α < β ∈ Fp.

A condition q is stronger than p if

(a) np ≤ nq and Fp ⊆ Fq;
(b) Lαq ∩ np = Lαp for α ∈ Fp;
(c) for α < β ∈ Fp we have Lαq ∩ [np, nq) ⊆ Lβq .
Lemma 43. P is σ-centered.

Proof. This is proved in [21] in more detail for an analogous forcing. We
present a sketch of the argument for the reader’s convenience.

For each γ ≤ ω1 define a forcing Pγ consisting of the conditions

p = (Fp, Gp, np, (L
α
p )α∈Gp),

where
(2) Fp ∈ [ω1]<ω, Gp ⊆ Fp ∩ γ;
(3) np < ω;
(4) Lαp ⊆ np for each α ∈ Gp;
(5) Lαp ∩Rα = ∅ and Lαp ∩Rβ 6= ∅ for all α < β, α ∈ Gp, β ∈ Fp.

A condition q is stronger than p if

(a) np ≤ nq, Fp ⊆ Fq and Gp ⊆ Gq;
(b) Lαq ∩ np = Lαp for α ∈ Gp;
(c) for all α < β ∈ Gp we have Lαq ∩ [np, nq) ⊆ Lβq ;
(d) Lαq ∩ [np, nq) ∩Rβ = ∅ for α ∈ Gp, β ∈ Fp.

It is easy to check that Pω1 is a forcing equivalent to P.
Claim. Pγ ⊆ Pδ is a regular embedding for γ < δ ≤ ω1.

Proof. The inclusion is an embedding of posets. To show regularity define
π : Pδ → Pγ by

(F,G, n, (Lα)α∈G) 7→ (F,G ∩ γ, n, (Lα)α∈G∩γ).

It is straightforward to check that π is a pseudo-projection from Pδ to Pγ .
Claim. Pγ is σ-centered for each γ < ω1.

Proof. The set of conditions sharing the same G, n and (Lα)α∈G is cen-
tered.
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To conclude the proof of Lemma 43 notice that Pω1 is a direct limit of
the sequence of σ-centered posets {Pγ : γ < ω1}, and hence is σ-centered.

In the generic extension define Lα =
⋃
p∈G L

α
p . Now (Lα, Rα)α<ω1 is an

oriented gap.

Claim. The tower (Lα)α<ω1 is not Hausdorff. Consequently, the gap
(Lα, Rα)α<ω1 is not equivalent to a Hausdorff gap.

Proof. For a contradiction, take a name Ẋ for an uncountable subset of
ω1 and assume that some condition p forces that (Lα)α∈Ẋ satisfies (H).

There is an uncountable set

I = {α < ω1 : ∃pα < p, α ∈ Fpα , pα  α ∈ Ẋ}.

Fix some large enough cardinal θ and countable elementary submodels
M,N ≺ H(θ), I,R ∈ N,M such that M ∈ N . Notice that M ⊆ N (since
M is countable) and M 6= N . Fix some α0 ∈ I ∩N \M .

Work in M . By passing to a subset we can suppose that all conditions
pα for α ∈ I are isomorphic to pα0 and form a ‘nice’ ∆-system with core
∆ = Fα0 ∩M . In particular, we assume that ∆ < F ′α = Fpα \∆ and npα =

np0 = n for α ∈ I. Moreover, F ′α < F ′β for α < β, and Lξpα ∩n and Rξ ∩n are
constant for all ξ ∈ ∆. For some ` < ω we have F ′α = {ξ0

α < ξ1
α < · · · < ξ`−1

α }
for each α, and Lξ

i
α
pα ∩ n = L

ξiβ
pβ ∩ n, Rξiα ∩ n = Rξiβ

∩ n for α, β ∈ I, i < `.

Finally, there is i′ < ` for which α = ξi
′
pα for all α ∈ I.

For α ∈ I denote

Rα =
⋃
{Rξ : ξ ∈ F ′α} and Rα =

⋂
{Rξ : ξ ∈ F ′α}.

Fix β ∈ I \ N . There is some n0 > n, n0 ∈ Rβ , such that n0 6∈ Rα0 .
Define a condition q by Fq = Fα0 ∪ Fβ , nq = max(n0, Rα0 \Rβ) + 1 and

• Lξq = Lξpβ for ξ ∈ Fβ ,
• Lξq = Lξpα0 ∪ {n0} for ξ ∈ F ′α0

.

Thus q < pα0 , pβ . There exist some k < ω and a condition r < q such that

r  |{α ∈ Ẋ ∩ β : Lα \ Lβ ⊆ nq}| < k.

Denote A = Fr ∩ N , B = Fr \ N , and let RA =
⋃
{Rξ : ξ ∈ A},

RB =
⋃
{Rξ : ξ ∈ B}, Rr = RA ∪RB.

Claim. There exist a sequence {α1 < · · · < αk} ⊆ I ∩ N , maxA <
minF ′α1

, such that Rξiαj ∩ nr = Rξiα0
∩ nr for j ≤ k, i < `, and a sequence

{nj : nj > nr, 0 < j ≤ k} ⊆ ω \ Rr such that for 0 < j ≤ k, i ≤ k we have
nj ∈ Rαi if j ≤ i and nj 6∈ Rαi if j > i.
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Proof. Let I0 be such that Rξiα∩nr = Rξiα0
∩nr for each α ∈ I0 and i < `.

Notice that I0 ∈ M since I ∈ M and the refinement procedure is definable.
Moreover, |I0| = ω1. Otherwise, I0 ⊆M and, in particular, α0 ∈M .

To choose α1, consider the increasing tower {Rα \ RA : α ∈ I0} ∈ N .
This tower is not bounded by the set RB, hence there exist some α′1 /∈ N
and n1 > nr such that n1 ∈ Rα′1 \ Rr. Define I1 = {α ∈ I0 : n1 ∈ Rα} ∈ N .
Since N ≺ H(θ) and α′1 /∈ N , the set I1 is uncountable. Pick any α1 ∈ I1∩N
such that maxA < minF ′α1

.
Suppose that αj , Ij ∈ N are defined for some j < k. Set Z = RA∪

⋃
{Rαi :

i ≤ j}. Consider the tower {Rα \ Z : α ∈ Ij} ∈ N . This tower is not
bounded by RB, hence there exist some α′j+1 /∈ N and nj+1 > nr such that
nj+1 ∈ Rα′j+1

\ (Z ∪Rr). Define

Ij+1 = {α ∈ Ij : nj+1 ∈ Rα} ∈ N.
Again, since N ≺ H(θ) and α′j+1 /∈ N , the set Ij+1 is uncountable. Pick any
αj+1 ∈ Ij+1 ∩N , αj+1 > αj .

Define a condition s by Fs = Fr ∪
⋃
j≤k F

′
αj , ns > max{ni : i ≤ k}+ nr,

• Lξs = Lξr for ξ ∈ Fr, ξ ≤ max ∆,
• Lξs = Lξr ∪

⋃
{nj : 0 < j ≤ k} for ξ ∈ Fr, max ∆ < ξ,

• L
ξiαj
s = L

ξiα0
r ∪ {nj+1} for i < `, 0 < j < k,

• L
ξiαk
s = L

ξiα0
r for i < `.

It is not difficult to verify that s ∈ P and s < r, s < pαj for each j ≤ k. Now

s  {α0, α1, . . . , αk, β} ⊆ Ẋ.

Moreover Lαjs \Lβs = {n0} for each j ≤ k, and so s  Lαj \Lβ = {n0}. This
contradicts s < r.

Theorem 41 together with Proposition 9 immediately gives us the corol-
lary promised in the previous section:

Corollary 44. There is an ω1-tower equivalent neither to a Hausdorff
nor to a Suslin tower in models obtained by adding ω1 Cohen reals.

Remark 45. Perhaps the left half of the gap constructed byHirschorn [12]
also has the above property. Hirschorn showed that in the model obtained by
adding ω1 random reals, one can generically add a gap (Lα, Rα)α<ω1 which
is left-oriented but not Hausdorff. Hence (Lα)α<ω1 cannot be equivalent to
a Suslin tower. To show that (Lα, Rα)α<ω1 is not Hausdorff, Hirschorn used
a certain fact based on the Gilles theorem [12, Lemma 5.5]. This fact can
be immediately modified for the case of towers in the following way. Assume
that (R, λ) is the random algebra with the standard measure and (Ṫα)α<ω1
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is an R-name for a tower. If there is a function h : ω → R+ converging to 0
such that

λ(‖Ṫα ⊆ Ṫβ ∪ n‖) ≤ h(n)

for all α < β < ω1 and n < ω, then (Ṫα)α<ω1 is not Hausdorff. (Here ‖ϕ‖
represents the Boolean value of the sentence ϕ.) However, it does not seem
that (Lα)α<ω1 satisfies this condition for any h : ω → R+ converging to 0.

7. Towards a structure theory: Tukey order on towers. Through-
out this section we deal only with towers of length ω1. As we have seen, we
can single out several classes of towers defined by their “inclusion structure”.
It is natural to ask if we can go further in this analysis. A research of this
kind was done for ultrafilters in [4], using the classification of Tukey types.

We present here basic facts concerning the Tukey order. See [23, 4] for
more details and for the complete bibliography.

Definition 46. Let D and E be directed sets. A function g : D → E is
Tukey if the image of every unbounded subset of D is unbounded in E . In
that case, we say that E is Tukey above D (D ≤T E). If D ≥T E ≥T D, then
D and E are said to be Tukey equivalent, written D ≡ E .

Proposition 47. If D, E are directed posets such that D is a cofinal
subset of E, then D ≡ E.

Theorem 48 (see [23]). Let D be a directed poset of size at most ω1.
Then either D ≡ 1, or D ≡ ω, or D ≡ ω1, or [ω1]<ω ≥T D ≥T ω × ω1.
Moreover, under PFA there are no Tukey types in between ω×ω1 and [ω1]<ω.

We have to agree on which emanations of towers we want to examine.
Towers ordered by “⊆” are not satisfactory because we do not really want to
pay attention to finite modifications of levels. It is also more convenient to
deal with directed sets. Structure theory for non-directed posets is available
(see [27]), but seems to be a bit cumbersome. The right structure to study
seems to be the ideal generated by the tower (and all finite subsets of ω). As
before, we denote it by 〈T 〉 for a given tower T , this time understanding it
as the structure (〈T 〉,⊆). The only inconvenience is that 〈T 〉 has cardinal-
ity continuum. For this reason we also consider a cofinal directed subset of
(〈T 〉,⊆) consisting of finite modifications of elements of T ,

〈T 〉∗ = {T ∪ n : T ∈ T , n ∈ ω}.

Definition 49 ([23]). Let D be a directed poset of cardinality ω1. We
say that D has property (†) if every uncountable subset of D contains a
countable unbounded subset.

It is easy to see that if D has (†), then ω × ω1 <T D.
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Theorem 50 ([23]). Assume MAω1. If a directed poset D of cardinality
ω1 has (†), then D ≡ [ω1]<ω.

Proposition 51. The poset 〈T 〉∗ has property (†) for every tower T .

Proof. Let S be an uncountable subset of 〈T 〉∗. We can assume that S is
an increasing tower cofinal in T , S = {Sα : α < ω1}. Suppose that for each
β < ω1 the set {Sα : α < β} is bounded by an element of 〈S〉∗. In particular,
this means that (

⋃
α<β Sα)β<ω1 does not stabilize. Hence (

⋃
α<β Sα)β<ω1 is

an uncountable strictly increasing ⊆-chain, a contradiction.

Theorem 50 now implies that under MAω1 there is only one Tukey type
of ω1-towers.

Corollary 52. Every ideal generated by a tower is Tukey top under
MAω1.

This should be contrasted with the following.

Theorem 53. Assume 2ω1 > ω2 and CH. There are 2c incomparable
Tukey classes represented by tower ideals.

Proof. According to [4, Corollary 23], if 2ω1 > ω2, then there are 2c

incomparable Tukey types of P-points. Each P-point is generated by a tower
filter (which is its cofinal subset). Now use Proposition 47.

Theorem 54. A tower T is Hausdorff iff 〈T 〉 ≡ [ω1]<ω.

Proof. Let H be a cofinal subtower of T satisfying (H). We show that
each infinite subset of H is unbounded in 〈T 〉∗ (and hence any injective
map from [ω1]<ω into H is a Tukey function from [ω1]<ω to 〈T 〉∗). Pick any
countable set A = {Tα : α ∈ I} ⊆ H and suppose that X ∈ 〈T 〉∗ is an
upper bound of A. There is some Tβ ∈ H, sup I < β, and n < ω such that
X ⊆ Tβ ∪ n. The set {α ∈ I : Tα ⊆ Tβ ∪ n} is finite since H satisfies (H).
Thus there is some α ∈ I such that Tα * Tβ ∪ n, and hence Tα * X,
a contradiction.

For the other direction, consider a Tukey map f : [ω1]<ω → 〈T 〉∗. We
may suppose without loss of generality that f({β}) \ f({α}) is infinite iff
α < β < ω1. We show that the tower S = (f({α}))α<ω1 satisfies condi-
tion (H). Suppose that for some β < ω1 and n < ω the set A =
{α < β : f({α}) \ f({β}) ⊆ n} is infinite. Then {f({α}) : α ∈ A} is
bounded by f({β}) ∪ n in 〈T 〉∗, a contradiction. Notice that the towers T
and S generate the same ideal, so T is Hausdorff.

Proposition 55. Consistently, there are Suslin towers T 0, T 1 such that
〈T 0〉 × 〈T 1〉 is Tukey top.
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Proof. Consider a Hausdorff tower T = (Tα)α<ω1 . Then in a model ob-
tained by adding a Cohen real c ⊆ ω define T 0

α = Tα ∩ c and T 1
α = Tα \ c.

By Proposition 29 both of these towers are Suslin. The map f : 〈T 〉∗ →
〈T 0〉∗ × 〈T 1〉∗ defined by Tα ∪ n 7→ ((Tα ∩ c) ∪ n, (Tα \ c) ∪ n) for α < ω1,
n < ω is Tukey, so 〈T 0〉 × 〈T 1〉 ≡ 〈T 〉.

We do not know if the statement of the above proposition is true when
there is a Suslin ω1-tower.

Notice that by putting together Theorem 54 and Corollary 52, we get

Corollary 56. If T is a Suslin tower, then 〈T 〉 <T [ω1]<ω.

The last fact is of course an immediate consequence of Theorem 54, but
it can be proved directly using the fact that each uncountable subtower of a
Suslin tower contains a ⊆-chain of order type ω + 1. Indeed, by the Erdős–
Dushnik–Miller theorem (ω1 → (ω1, ω+1)2) (see [6, Theorem 11.3]) we know
that either there is an uncountable ⊆-antichain in the subtower or a ⊆-chain
of length ω + 1. The first alternative is clearly impossible. It follows that
uncountable well-ordered subsets of the ideals generated by Suslin towers
have infinite bounded subsets, so they cannot be Tukey equivalent to [ω1]<ω.

Theorem 54 gives us one more useful piece of information along these
lines. It is not easy to point out the reason why a given tower is not Haus-
dorff other than the lack of uncountable ⊆-antichains. Consider the following
property of a tower (Tα)α<ω1 : for every uncountable X ⊆ ω1 there is an in-
finite I ⊆ X and α > sup I such that

⋃
ξ∈I Tξ ⊆∗ Tα. By Theorem 54, this

property is equivalent to saying that (Tα)α<ω1 is not Hausdorff.
Tukey theory harmonizes with the intuition that the Hausdorff property

is in a sense more important than the property of having an uncountable
⊆-antichain. It is not clear for us if there are other critical Tukey types of
tower ideals.

Remark 57. The above approach has a disadvantage. Generating an
ideal can lose the information if the generating tower is Suslin. Instead
of examining ideals generated by towers, one can investigate the structure
〈{T =∗ Tα : α < ω1},⊆,∪,∩〉 for a given tower (Tα)α<ω1 . It is easy to see
that being Suslin is invariant under isomorphism of such lattices.

8. Questions. In this section we list some questions and open problems
related to the topic of this paper.

Problem 58. Is it consistent that each Hausdorff tower is the left half
of a Hausdorff gap?

Notice that the standard Hausdorff construction (of a Hausdorff gap)
cannot be modified in an obvious way to produce a Hausdorff tower without
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creating the other half of a Hausdorff gap as a byproduct. In Section 3 we
showed a consistent example of a Hausdorff tower which is maximal (see
Remark 14), and hence is not a half of any gap.

Problem 59. Is it consistent that all ω1-towers/gaps are special but
there is a non-Hausdorff tower/gap?

In particular, we can ask the following:

Problem 60. Does OCA imply that every ω1-tower/gap is Hausdorff?

The natural attempt to answer this question in the negative would be to
start with a model with a special non-Hausdorff tower/gap and show that
forcing OCA preserves its non-Hausdorffness.

Every ⊆∗-descending tower generates a filter in P(ω)/Fin, a closed subset
of the space of ultrafilters ω∗. It is natural to ask if the closed sets generated
by Hausdorff towers have some special properties.

Problem 61. Is there a characterization of the Hausdorff property of
towers in topological terms?

Perhaps the next question can be solved using coherent sequences. They
produce towers in a nice way, but it is not clear how to analyze the properties
of those resulting towers.

Problem 62. Does t = ω1 imply that there is a maximal Hausdorff
tower?

Since each Hausdorff tower generates a meager ideal, a positive answer
would provide a dense meager ω1-generated P-ideal. Example 1 in [28] shows
that the existence of these objects is in fact equivalent.

Problem 63. Is there a model in which every ideal generated by an
(ω1-)tower is dense only if it is non-meager?

Note that this problem for ω1-towers is interesting only if we add the
requirement t = ω1. The conjecture here is that there is no such model,
i.e. a meager dense ω1-generated P-ideal should be constructible from the
assumption t = ω1. Obviously, if ω1 < b, every ω1-generated ideal is meager.
If non(M) = ω1 (M is the ideal of meager subsets of 2ω), then there is such
an ideal by the following argument due to M.Hrušák.

For a tall ideal I ⊆ P(ω) define

cov∗(I) = min{|A| : A ⊂ I, (∀X ∈ [ω]ω)(∃A ∈ A)(|A ∩X| = ω)}.
It follows from [11, Propositions 1.5, 3.1, 3.2] that cov∗(I) ≤ non(M) for
each tall analytic P-ideal I. Thus if non(M) = ω1, for any given tall analytic
P-ideal I there is a tall ω1-tower which generates an ideal contained in I,
hence is meager.
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A gap (fα, gα)α<ω1 in (ωω,<∗) is tight if (fα�A, gα�A)α<ω1 is a gap in
(ωA,<∗) for each infinite A ⊆ ω. A positive answer to the following problem
would provide a negative answer to Problem 63.

Problem 64. Is the assumption t = ω1 equivalent to the existence of a
tight gap in (ωω,<∗).

In connection with the previous problem, let us mention that the Borel
weak diamond principle ♦(2,=) of [15] implies the existence of a tight gap
(this was suggested by M.Hrušák). In fact, it even implies the existence of
a peculiar gap (see [20] for definition). Note also that there are no peculiar
gaps in the model from [5], but b = ω1.

We know that there can be Suslin towers generating meager ideals. How-
ever, it is unclear whether they are not equivalent to special towers.

Problem 65. Is there a tower generating a tall meager ideal which is
not equivalent to a special tower?

In Section 7 we have mentioned that in each Suslin tower there is a
⊆-chain of order type ω + 1. It seems natural to ask the following:

Problem 66. How long ⊆-chains have to exist in Suslin towers?
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