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Abstract. We investigate quotient structures and quotient spaces of a space of order-
ings arising from subgroups of index two. We provide necessary and sufficient conditions
for a quotient structure to be a quotient space that, among other things, depend on the
stability index of the given space. The case of the space of orderings of the field Q(x) is
particularly interesting, since then the theory developed simplifies significantly. A part of
the theory firstly developed for quotients of index 2 generalizes to quotients of index 2n

for arbitrary finite n. Numerous examples are provided.

1. Introduction and notation. The theory of abstract spaces of or-
derings was developed in the late 1970s, and provides an abstract framework
for studying orderings of fields and the reduced theory of quadratic forms
in general. The monograph [16] will be of frequent use here as far as back-
ground, notation, and main results are concerned. Spaces of orderings also
occur in a natural way in other more general settings: from considering max-
imal orderings on semi-local rings, orderings on skew fields, to orderings on
ternary fields. The axioms for spaces of orderings have also been generalized
in various directions—to quaternionic schemes, to spaces of signatures of
higher level, or to abstract real spectra that are used to study orderings on
commutative rings.

A first-order description of spaces of orderings is given in [18]. Here,
we prefer to use the earlier description from [16]: a space of orderings is a
pair (X,G) such that X is a non-empty set, G is a subgroup of {1,−1}X
which contains the constant function −1, separates points of X, and satis-
fies two additional axioms. Considering X as a subset of the character group
χ(G) (here by characters we mean group homomorphisms x : G→ {−1, 1})
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via the natural embedding X ↪→ χ(G) obtained by identifying x ∈ X
with the character G 3 a 7→ a(x) ∈ {−1, 1}, and denoting, for any pair
a, b ∈ G,

D(a, b) = {c ∈ G : ∀x ∈ X (c(x) = a(x) ∨ c(x) = b(x))},

the two additional axioms state

(1) if x ∈ χ(G) satisfies x(−1) = −1, and if

∀a, b ∈ ker(x) (D(a, b) ⊆ ker(x)),

then x is in the image of the natural embedding X ↪→ χ(G), and
(2) ∀a1, a2, a3, b, c ∈ G ∃d ∈ G [(b ∈ D(a1, c) ∧ c ∈ D(a2, a3)) ⇒

(b ∈ D(d, a3) ∧ d ∈ D(a1, a2))].

Spaces of orderings are easily made into a category by introducing morphisms
in the following way: a morphism F from a space of orderings (X1, G1) to a
space of orderings (X2, G2) is a function F : X1 → X2 such that

∀b ∈ G2 (b ◦ F ∈ G1).

In this paper we shall investigate quotient objects in the category of
spaces of orderings. They have been first studied in [11] and, up to present
day, remain rather mysterious creatures: if (X,G) is a space of orderings,
and G0 is a subgroup of G containing the element −1, we denote by X0 the
set X|G0 of all characters from X restricted to G0, and call the pair (X0, G0)
a quotient structure. In the case when (X0, G0) is a space of orderings, we
call it a quotient space of (X,G). It has been shown in [11] that quotient
spaces are, indeed, quotients in the category of spaces of orderings. At the
same time the problem of determining whether a given quotient structure
is a quotient space proves to be surprisingly challenging. The main objec-
tive of the present paper is to address this question in some special cases.
In what follows we shall introduce some more notation, and then proceed
to explain our motivation for the current work as well as present our main
results.

A space of orderings (X,G) has a natural topology introduced by the
family of subbasic clopen Harrison sets:

HX(a) = {x ∈ X : a(x) = 1}

for a given a ∈ G, which makes X into a Boolean space [16, Theorem 2.1.5].
Whenever it is clear from the context which space of orderings we consider,
we shall simply write H(a) instead of HX(a).

For any multiplicative group G of exponent 2 with distinguished ele-
ment −1, we set X = {x ∈ χ(G) : x(−1) = −1} and call the pair (X,G)
a fan. A fan is also a space of orderings [16, Theorem 3.1.1]. We can also
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consider fans within a bigger space of orderings, and for this we need the
notion of a subspace of a space (X,G): a subset Y ⊆ X is called a subspace
of (X,G) if Y is expressible in the form

⋂
a∈S HX(a) for some subset S ⊆ G.

For any subspace Y we will denote by G|Y the group of all restrictions a|Y ,
a ∈ G. The pair (Y,G|Y ) is a space of orderings itself ([16, Theorem 2.4.3],
[10, Theorem 2.2]). Finally, if (X,G) is a space of orderings, by a fan in
(X,G) we understand a subspace V such that the space (V,G|V ) is a fan.
One easily checks that any one- or two-element subset of a space of orderings
forms a fan—thus one- or two-element fans are called trivial fans.

The stability index stab(X,G) of a space of orderings (X,G) is the max-
imum n such that there exists a fan V ⊆ X with |V | = 2n (or ∞ if there is
no such n). It can be shown that the stability index of a space (X,G) is at
most equal to k if every basic set in X can be expressed as an intersection of
k Harrison sets ([16, Theorem 3.4.2], [12, Theorem 6.2]). Spaces of stability
index 1 are also called spaces with the strong approximation property or SAP
spaces.

We say that (X,G) is the direct sum of the spaces of orderings (Xi, Gi),
i ∈ {1, . . . , n}, denoted (X,G) =

∐n
i=1(Xi, Gi) = (X1, G1)t· · ·t(Xn, Gn), if

X is the disjoint union of the sets X1, . . . , Xn, and G consists of all functions
a : X → {−1, 1} such that a|Xi ∈ Gi, i ∈ {1, . . . , n}. In this case G =
G1 ⊕ · · · ⊕ Gn, with the role of the distinguished element −1 played by
(−1, . . . ,−1). Further, we say that (X,G) is a group extension of the space
of orderings (X,G) if G is a group of exponent 2, G is a subgroup of G,
and X = {x ∈ χ(G) : x|G ∈ X}. Since G decomposes as G = G × H, we
shall also write (X,G) = (X,G)×H to denote group extensions. Both direct
sums and group extensions are spaces of orderings ([16, Theorem 4.1.1], [11,
Remarks 2.8, 3.7]).

For S ⊆ G, 〈S〉 denotes the subgroup of G generated by S. For S ⊆ χ(G),
S⊥ := {g ∈ G : σ(g) = 1 ∀σ ∈ S} and 〈S〉 := χ(G/S⊥), the closed subgroup
of χ(G) generated by S.

For a space of orderings (X,G) we define the connectivity relation ∼ as
follows: if x1, x2 ∈ X, then x1 ∼ x2 if and only if either x1 = x2 or there
exists a four-element fan V in (X,G) such that x1, x2 ∈ V . The equivalence
classes with respect to ∼ are called the connected components of (X,G). It
is known that if (X,G) is a finite space of orders and X1, . . . , Xn are its con-
nected components, then (X,G) = (X1, G|X1)t · · · t (Xn, G|Xn). Moreover,
the (Xi, G|Xi) are either one-element spaces or proper group extensions
([16, Theorem 4.2.2], [10, Theorem 4.10]).

For any space of orderings (X,G), a quadratic form with entries in G
is an n-tuple φ = (a1, . . . , an), a1, . . . , an ∈ G; we call n the dimension of φ,
and, for each x ∈ X, the signature of φ at x is sgnx φ =

∑n
i=1 ai(x) ∈ Z.
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We set
φ⊕ ψ = (a1, . . . , an, b1, . . . , bm),

cφ = (ca1, . . . , can),

φ⊗ ψ = a1ψ ⊕ · · · ⊕ anψ,
((a1, . . . , an)) = (1, a1)⊗ · · · ⊗ (1, an),

k × φ = φ⊕ · · · ⊕ φ︸ ︷︷ ︸
k

.

Two forms φ and ψ are isometric, written φ ∼= ψ, if they are of the same
dimension and signatures for all x ∈ X. We say that φ and ψ are Witt
equivalent , denoted φ ∼ ψ, if there exist integers k, l ≥ 0 such that

φ⊕ k × (1,−1) ∼= ψ ⊕ l × (1,−1).

The sum⊕ and the product⊗ of quadratic forms induce binary operations on
the set of equivalence classes of the relation ∼ making it into a commutative
ring with 1, which is denoted byW (X,G) and called theWitt ring associated
to the space of orderings (X,G). The ideal of the ring W (X,G) additively
generated by the set {(1, a) : a ∈ G} is denoted by I(X,G) and called the
fundamental ideal of W (X,G).

For a formally real field k denote by Xk the set of all orderings of k, and
by Gk the multiplicative group k∗/(Σk2)∗ of all classes of sums of squares
of k. Then Gk is naturally identified with a subgroup of {−1, 1}Xk via the
homomorphism

k∗ 3 a 7→ a ∈ {−1, 1}Xk , where a(σ) =

{
1, if a ∈ σ,
−1, if a /∈ σ,

for σ ∈ Xk,

whose kernel is the set (Σk2)∗ of all non-zero sums of squares of k, and
(Xk, Gk) is a space of orderings [16, Theorem 2.1.4]. For simplicity we shall
denote by the same symbol a both an element a ∈ k∗, a class of sums of
squares a ∈ k∗/(Σk2)∗, and a function a ∈ {−1, 1}Xk .

Since the invention of abstract spaces of orderings there has been a con-
siderable interest in the question of when such a space is realized as a space
of orderings of a field. It seems likely that there exist spaces of orderings
that are not so realized but, so far, no such examples are known. A possible
way of proving that a space of orderings is not realized in such a way is to
give an example of a form φ ∈W (X,G) such that

∀σ ∈ X (sgnσ φ ≡ 0 mod 2n) and φ /∈ In(X,G).

Here In(X,G) denotes the nth power of the fundamental ideal of W (X,G).
The equivalence

∀σ ∈ X (sgnσ φ ≡ 0 mod 2n) if and only if φ ∈ In(X,G)

is valid for any n ∈ N if (X,G) is a space of orderings of a field. This



Quotients of index two and general quotients 259

was conjectured by Marshall and is also known as Lam’s Open Problem B
(see [9]). For n ≤ 2 the equivalence is easy to show, but for n ≥ 3 the proof
uses a deep result from [19] and [20], and was first given by Dickmann and
Miraglia [4] (see also [5] for a more general version of the result, and [17]
for a short explanation of how to derive the equivalence from the results of
Orlov, Vishik and Voevodsky).

The problem also has an affirmative solution for all spaces of orderings of
stability index no greater than 3 [12, Theorem 6.2]. It is, therefore, desirable
to seek for examples of spaces of orderings of high stability indices. A possible
way of finding such spaces is to investigate quotients of already known spaces:
for a given space of orderings (X,G) one can imagine some large subset of
X that is itself not a fan, but, by descending to an appropriate subgroup G0

of G, can be forced to become a fan in the quotient space (X|G0 , G0), thus
increasing the stability index. The main problem, of course, is that in doing
so one obtains a myriad of quotient structures with no way of knowing if
they are actually quotient spaces.

We begin our discussion in Section 2 with the case when G0 is a subgroup
of G of index two and provide a necessary and sufficient condition for a
quotient structure of an SAP space (X,G) to be a quotient space. We then
refine our condition and show that this refined condition is both necessary
and sufficient for spaces of stability index two that satisfy an extra technical
condition. The refinement process can be continued and provides a sequence
of necessary conditions—unfortunately, other than in the two aforementioned
cases and the finite case, we do not know when these conditions are sufficient.

In Section 3 we consider the special case when (X,G) is the space of
orderings of the field Q(x). The refined condition for spaces of stability index
two is here also sufficient and, moreover, is also equivalent to saying that the
quotient space is profinite. This generalizes results previously obtained in [6].

Section 4 contains a handful of examples to illustrate the theory.
Finally, in Section 5, we generalize the necessary conditions to the case

of subgroups of arbitrary (possibly infinite) index and discuss some of the
instances when they are also sufficient. Surprisingly enough, the theory sim-
plifies significantly in the case of the space of orderings of the field Q(x), and
we show that a quotient structure of any finite index is a quotient space if
and only if it is profinite.

2. Quotients of index two. Let (X,G) be a space of orderings, and
(X0, G0) a quotient structure of (X,G). We search for necessary and suffi-
cient conditions on G0 for (X0, G0) to be a quotient space of (X,G).

Example 2.1. Suppose G0 is a subgroup of G and −1 ∈ G0. Suppose
σ0 : G0 → {±1} is a character satisfying σ0(−1) = −1. Let σ : G → {±1}
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be an extension of σ0 to a character on G. If (X,G) is a fan then σ ∈ X,
so σ0 ∈ X0. Thus if (X,G) is a fan and −1 ∈ G0 then (X0, G0) is also a
fan. In particular, (X0, G0) is a quotient space of (X,G), and any quotient
structure of a fan is a quotient space that is a fan itself.

Assume now that G0 is a subgroup of index 2 in G, −1 ∈ G0. Since G0

has index 2 and −1 ∈ G0, G0 is determined by a character on G/{±1}, i.e.,
there exists a unique γ ∈ χ(G), γ(−1) = 1, such that G0 = ker(γ).

Theorem 2.2.

(i) Suppose (X0, G0) is a quotient space of (X,G), (Y,G/Y ⊥) is a sub-
space of (X,G), γ ∈ 〈Y 〉 and Y0 = Y |G0. Then (Y0, G0/Y

⊥) is a
quotient space of (Y,G/Y ⊥).

(ii) Suppose (X,G) is a group extension of (X ′, G′) and γ′ = γ|G′ . If
γ′ = 1, then (X0, G0) is a quotient space of (X,G). If γ′ 6= 1, then
(X0, G0) is a quotient space of (X,G) iff (X ′0, G

′
0) is a quotient space

of (X ′, G′). Here, G′0 := ker(γ′), X ′0 := X ′|G′0.

Proof. (i) (Y0, G0/Y
⊥) is a subspace of (X0, G0), so the assertion is clear.

(ii) If γ′ = 1, then (X0, G0) is a group extension of (X ′, G′). If γ′ 6= 1,
then (X0, G0) is a group extension of (X ′0, G

′
0). In either case the result is

clear, e.g., by [16, Theorems 4.11(2) and 4.1.3(2)].

One needs to realize that the situation where (X0, G0) is a space of
orderings is rather special.

Example 2.3. Consider the space (X,G) of six orderings {σ1, . . . , σ6}
and of stability index 1, so that |G| = 26. Let γ = σ1 · . . . · σ6. The
quotient structure (X0, G0) consists of six orderings σ1, . . . , σ6 with σ6 =
σ1 · . . . · σ5, and |G0| = 25. By the structure theorem for finite spaces of
orderings ([16, Theorem 4.2.2], [10, Theorem 4.10]), (X0, G0) is not a space
of orderings (e.g., because it is not SAP but contains no 4-element fans).

Theorem 2.4. A necessary condition for (X0, G0) to be a quotient of
(X,G) is that γ ∈ X4.

Here Xk := {
∏k
i=1 σi : σi ∈ X, i = 1, . . . , k}. Since the σi are not

required to be distinct, {1} ⊆ X2 ⊆ X4. If (X,G) is a fan then X4 = X2 =
{γ ∈ χ(G) : γ(−1) = 1}.

Proof. Suppose first that the restriction map r : X → X0 is not injective,
so there exist σ, τ ∈ X, σ 6= τ , with r(σ) = r(τ). In this case, G0 = ker(στ),
so γ = στ ∈ X2. Suppose next that r is injective. Since r is continuous and
injective and X is compact, r is a homeomorphism. Fix g ∈ G, g /∈ G0,
and define φ : X0 → {±1} by φ(r(σ)) = σ(g). Then φ is well-defined and
continuous.
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Claim. φ is not in the image of G0 under the natural injection ˆ: G0 →
Cont(X0, {±1}).

For suppose φ = ĥ, h ∈ G0. Then, for any σ ∈ X, σ(h) = r(σ)(h) =

ĥ(r(σ)) = φ(r(σ)) = σ(g), so g = h ∈ G0, contradicting g /∈ G0.

Suppose now that (X0, G0) is a space of orderings. By the Claim and
[16, Theorem 3.2.4] there exists a 4-element fan V inX0 with

∏
α∈V φ(α) 6= 1.

The character γ′ :=
∏
α∈V r

−1(α) ∈ X4 is 6= 1 (because γ′(g) =
∏
α∈V φ(α)

6= 1), but the restriction of γ′ to G0 is equal to 1 (because V is a fan). Thus
γ = γ′ ∈ X4, as required.

Theorem 2.5. If the space of orderings (X,G) is SAP, then the neces-
sary condition in Theorem 2.4 is also sufficient.

Proof. Suppose first that γ ∈ X2, say γ = σ1σ2, σ1, σ2 ∈ X. Let
φ : X0 → {±1} be continuous. Then φ ◦ r : X → {±1} is continuous. Since
(X,G) is SAP, the natural injectionˆ: G ↪→ Cont(X, {±1}) is surjective, i.e.,
φ ◦ r = ĝ for some g ∈ G. Then σ1(g) = φ(r(σ1)) = φ(r(σ2)) = σ2(g), so
g ∈ G0. This implies that the natural injection G0 ↪→ Cont(X0, {±1}) is an
isomorphism. Suppose next that γ ∈ X4, γ /∈ X2, say γ =

∏4
i=1 σi, σi ∈ X,

i = 1, . . . , 4. In this case one sees, by a similar argument, that the natural
injection G0 ↪→ Cont(X0, {±1}) identifies G0 with{

φ ∈ Cont(X0, {±1}) :
4∏
i=1

φ(r(σi)) = 1
}
.

In either case, (X0, G0) can be viewed as the space of global sections of a
sheaf of spaces of orderings as defined in [14, Chapter 8], so (X0, G0) is a
space of orderings by Theorem 6.1 below, more specifically, by Corollary 6.2.
Note: If γ ∈ X2 then all of the stalks are singleton spaces; if γ ∈ X4 \ X2

then one of the stalks is a 4-element fan and the rest are singleton spaces.

Example 2.6. Theorems 2.4 and 2.5 provide a convenient description
of quotients of index 2 of the space of orderings of the field R(x), or more
generally, of the space of orderings of any formally real function field of
transcendence degree 1 over a real closed field. This is because spaces of
orderings of this sort are SAP.

Example 2.7. The condition of Theorem 2.5 fails to be sufficient if the
stability index of the space (X,G) is greater than 1.

(1) Consider the space (X,G), where
X = {σ1, σ2, σ3, σ1σ2σ3, σ4, σ5, σ6, σ4σ5σ6},

with |G| = 26. This is the direct sum of two 4-element fans. Let
γ = σ1σ4. The quotient structure (X0, G0) with G0 = ker γ is not a
quotient space.
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(2) Consider the space (X,G), where

X = {σ1, σ2, σ3, σ1σ2σ3, σ4, σ5, σ6},
with |G| = 26. This is the direct sum of a 4-element fan and three
singleton spaces. Let γ = σ1σ4σ5σ6. The quotient structure (X0, G0)
with G0 = ker γ is not a quotient space.

(3) Consider the space (X,G), where

X = {σ1, σ2, σ3, σ4, σ1σ3σ4, σ2σ3σ4, σ5, σ6},
with |G| = 26. This is the direct sum of a connected space of six
elements and two singleton spaces. Let γ = σ1σ2σ5σ6. The quotient
structure (X0, G0) with G0 = ker γ is not a quotient space.

(4) Consider the space (X,G), where

X = {σ1, σ2, σ3, σ4, σ1σ3σ4, σ2σ3σ4, σ5, σ6, σ7, σ8, σ5σ7σ8, σ6σ7σ8},
with |G| = 28. This is the direct sum of two connected spaces, each
consisting of six elements. Let γ = σ1σ2σ5σ6. The quotient structure
(X0, G0) with G0 = ker γ is not a quotient space.

Details of proofs are left to the reader. In each case one uses the structure
theorem ([16, Theorem 4.2.2], [10, Theorem 4.10]) for the finite spaces of
orderings (X0, G0) and shows that the resulting quotient structure is con-
structed in a way contradicting the theorem.

To simplify things we assume from now on that the space of orderings
(X,G) contains no infinite fans. This is the case, for example, if the stability
index of (X,G) is finite. Recall that, for δ ∈ χ(G), Xδ := {σ ∈ X : σδ ∈ X}
= X ∩ δX. Since (X,G) has no infinite fans, every connected component
of (X,G) is either singleton or has the form Xδ for some δ ∈ χ(G), δ 6= 1,
|Xδ| ≥ 4 ([16, Theorem 4.6.1], [13, Theorem 2.6]).

The requirement that γ ∈ X4 can be substantially refined as follows:

Theorem 2.8. A necessary condition for (X0, G0) to be a quotient of
(X,G) is that γ =

∏k
i=1 σi, σi ∈ X, k = 2 or k = 4 and γ /∈ X2, and, in the

case where not all σi are in the same connected component of (X,G) and the
connected components of the σi in (X,G) are not all singleton, either k = 2
and exactly one of the connected components of the σi is not singleton, or
k = 4, γ /∈ X2 and, after reindexing suitably, the connected component of σ3
and σ4 is Xσ3σ4 and either the connected component of σ1 and σ2 is Xσ1σ2,
or the connected component of σi is singleton for i = 1, 2.

Proof. Denote by Y the union of the connected components of (X,G)
which meet the set {σ1, . . . , σk}. By [15, Theorem 3.6] we see that Y , or more
precisely (Y,G/∆) where ∆ := Y ⊥, is a subspace of (X,G). Denote by Y0
the set of restrictions of elements of Y to G0. If we assume that (X0, G0) is
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a quotient space of (X,G) then (Y0, G0/∆) is a quotient space of (Y,G/∆),
by Theorem 2.2. In this way, we are reduced to the case where X = Y , i.e.,
each connected component of (X,G) meets the set {σ1, . . . , σk}.

Denote by (Zj , G/Z
⊥
j ), j ∈ J , the connected components of (X,G). Each

Zj is singleton or has the form Xδ, δ 6= 1, |Xδ| ≥ 4, and Zj∩{σ1, . . . , σk} 6= ∅
for each j, so |J | ≤ k. By hypothesis, 2 ≤ |J | and not all Zj are singleton.
According to [14, Corollary 7.5], (X,G) is the direct sum of the (Zj , G/Z

⊥
j ),

j ∈ J . In particular, χ(G) =
∏
j∈J〈Zj〉 (direct product of groups), where

〈Zj〉 is the closed subgroup of χ(G) generated by Zj . Since |J | ≥ 2 this
implies in particular that γ /∈ 〈Zj〉 for each j.

The restriction map r : X → X0 is injective on each Zj . This is clear if Zj
is singleton. If Zj = Xδ, δ 6= 1, |Xδ| ≥ 4, then injectivity follows from the fact
that γ /∈ 〈Zj〉. We also see in this latter case that r(Zj) ⊆ (X0)δ0 , where δ0
denotes the restriction of δ to G0, and δ0 6= 1 (because γ /∈ 〈Zj〉). It follows,
using [10, Lemma 4.6] repeatedly (see [13, Remark 2.1]), that the space of
orderings (X0, G0) is connected and, moreover, that there exists µ0 ∈ χ(G0),
µ0 6= 1 such that X0 = (X0)µ0 . This implies in turn that X = Xµ ∪ Xγµ

where µ is some fixed extension of µ0 to a character on G. Since |X| ≥ 5
it follows that at least one of |Xµ|, |Xγµ| is ≥ 4. Reindexing we can assume
|Xγµ| ≥ 4.

If |Xµ| is also ≥ 4 then, since X has at least two connected compo-
nents, Xµ ∩ Xγµ = ∅ and Xµ and Xγµ are the connected components of
X, so χ(G) = 〈Xµ〉 × 〈Xγµ〉. If k = 2 then, after reindexing, σ1 ∈ Xµ and
σ2 ∈ Xγµ and since the two decompositions γ = (µ)(γµ) and γ = (σ1)(σ2)
must be the same (because the product is direct), µ = σ1 and γµ = σ2.
Since σ1(−1) = −1 and µ(−1) = 1, this is not possible. If k = 4 then, argu-
ing as before with the two decompositions of γ, we see that, after reindexing
suitably, σ1, σ2 ∈ Xµ, σ3, σ4 ∈ Xγµ, µ = σ1σ2 and γµ = σ3σ4.

This leaves the case |Xµ| = 2, |Xγµ| ≥ 4. If k = 2 then X has two compo-
nents, one singleton and one equal to Xγµ. Suppose now that k = 4, γ /∈ X2.
Reindexing, we can suppose σ3, σ4 ∈ Xγµ. There are two subcases: either
Xµ∩Xγµ = ∅ or Xµ∩Xγµ 6= ∅. Suppose first that Xµ∩Xγµ = ∅. Then Xµ =
{σ1, σ2}, µ = σ1σ2, γµ = σ3σ4. In this case the connected components are
{σ1}, {σ2} and Xσ3σ4 . Suppose now that Xµ ∩Xγµ 6= ∅. Reindexing we may
assume Xµ = {σ1, σ1µ}, σ1µ ∈ Xγµ. Then (σ1µ)(γµ) = σ1γ = σ2σ3σ4 ∈ X,
contradicting γ /∈ X2. Thus this case cannot occur.

We remark that the quotient structures appearing in Example 2.7 are
precisely those for which the conditions of Theorem 2.8 fail to be satisfied.

It is natural to wonder if the necessary conditions of Theorem 2.8 are
sufficient when (X,G) has stability index two. We are unable to prove this
in general. We are however able to prove the following:
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Theorem 2.9. If (X,G) has stability index two and just finitely many
non-singleton connected components, then the necessary conditions of Theo-
rem 2.8 are sufficient.

Proof. By assumption, γ =
∏k
i=1 σi, σi ∈ X, k = 2 or k = 4 and γ /∈ X2.

Claim. One can reduce to the case where each connected component of
(X,G) has non-empty intersection with {σ1, . . . , σk}.

Define the subspace (Y,G/∆) and the quotient structure (Y0, G0/∆) of
(Y,G/∆) as in the proof of Theorem 2.8. Let (Xi, Gi), i ∈ I0, be the con-
nected components of (X,G) which do not meet (Y,G/∆). Let I = I0 ∪{i0}
where i0 is a new symbol, and let (Xi0 , Gi0) = (Y,G/∆). Let π : X → I
denote the projection defined by π(σ) = i if σ ∈ Xi, and give I the quotient
topology. SinceX is a Boolean space and eachXi is closed, and all but finitely
many of the Xi are singleton, it follows that I is a Boolean space. From
[16, Theorem 3.2.4] we deduce that (X,G) is the space of global sections of
a sheaf of spaces of orderings on I with stalks (Xi, Gi), i ∈ I. Using this fact
and Corollary 6.2 one checks easily that, if (Y0, G0/∆) is a space of orderings,
then (X0, G0) is the space of global sections of a sheaf of spaces of orderings
on I with stalks (Xi, Gi) for i ∈ I, i 6= i0, and stalk (Y0, G0/∆) at i = i0.
This proves the Claim.

By the Claim we can assume X = Y . If each connected component is
singleton, then either k = 2 and (X0, G0) is a singleton space, or k = 4,
γ /∈ X2 and (X0, G0) is a 4-element fan. Suppose (X,G) has at least two
connected components and at least one of these is not singleton. If k = 2
then (X,G) has exactly two connected components, one singleton and one
non-singleton, and (X0, G0) is isomorphic to the non-singleton component of
(X,G). If k = 4, γ /∈ X2, then either (X,G) has two connected components
which, after reindexing, areXσ1σ3 andXσ3σ4 , or three connected components
which, after reindexing, are {σ1}, {σ2} and Xσ3σ4 . In either case, (X0, G0) is
a group extension by a group of order 2 of the direct sum of the residue space
ofXσ1σ2 associated to σ1σ2 and the residue space ofXσ3σ4 associated to σ3σ4.
Note: In the case where {σ1} and {σ2} are connected components, we have
Xσ1σ2 = {σ1, σ2} and the associated residue space is a singleton space. This
leaves us with the case where (X,G) has just one connected component.
If γX = X then (X0, G0) is the residue space of (X,G) associated to γ.
Suppose γX 6= X. Then (X,G) is a group extension of an SAP space of
orderings (X ′, G′) by a cyclic group of order two. Let γ′ denote the restriction
of γ to G′. The pair (X ′0, G

′
0) associated to γ′ is a quotient of (X ′, G′), by

Theorem 2.5. We conclude that (X0, G0) is a group extension of (X ′0, G
′
0) by

a cyclic group of order two.

Remark 2.10. When the stability index of (X,G) is three or more,
there are additional necessary conditions. Suppose σ1, . . . , σk all belong to
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the same connected component (Z,H) of (X,G), γZ 6= Z, and (Z,H) is a
group extension of a space of orderings (Z ′, H ′) by a cyclic group of order 2.
Let γ′ =

∏k
i=1 σ

′
i, where γ

′, resp. σ′i, denotes the restriction of γ, resp. σi,
to H ′. By Theorem 2.2, if (X0, G0) is a space of orderings then so is the
associated quotient structure (Z ′0, H

′
0) of (Z ′, H ′). Replacing (X,G) and γ

by (Z ′, H ′) and γ′, additional necessary conditions are obtained recursively,
in an obvious way. In particular, the conditions of Theorem 2.8 must hold
for (Z ′, H ′) and γ′. It is not known if these recursively defined necessary
conditions are sufficient. It is easy to see that they are sufficient if the space
of orderings (X,G) is finite.

3. The space of orderings of Q(x). We consider the space of orderings
of Q(x), the function field in a single variable x over the field Q of rational
numbers. This space of orderings is studied in [3], [6] and [7]. We will denote
this space of orderings by (X,G) for short, i.e., in this section

(X,G) := (XQ(x), GQ(x)).

For a real monic irreducible p in the polynomial ring Q[x], set np := the
number of real roots of p and set Xp := the set of elements of X compatible
with the discrete valuation vp of Q(x) associated to p, so |Xp| = 2np. Set
X∞ := the set of orderings compatible with the discrete valuation v1/x, so
|X∞| = 2. For a transcendental real number r, set σr := the archimedean
ordering of Q(x) corresponding to the embedding Q(x) ↪→ R given by x 7→ r.
Then X is the (disjoint) union of the sets Xp, p running through the real
monic irreducibles in Q[x], X∞, and {σr}, r running through the transcen-
dental real numbers. The non-singleton connected components of (X,G) are
the Xp, p a real monic irreducible of Q[x], np ≥ 2.

Every monic irreducible p of Q[x] which is not real is positive at every
element of X, i.e., it is equal to 1 in G. The set of elements

{−1} ∪ {p : p is a real monic irreducible in Q[x]},

more precisely, the image of this set in G, forms a Z/2Z-basis for G, i.e.,
every element of G is expressible uniquely as

(−1)δ0
k∏
i=1

pδii ,

k ≥ 0, p1, . . . , pk distinct real monic irreducibles in Q[x], δ0, . . . , δk ∈ {0, 1}.
Fix A and B, where A is a finite set of real monic irreducible polynomials

of Q[x] and B is a finite set of transcendental real numbers. Set

Y :=
( ⋃
p∈A

Xp

)
∪X∞ ∪ {σr : r ∈ B}.
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Consider the set r1 < · · · < rm of real numbers consisting of the real roots
of the various polynomials p ∈ A together with the elements of B. Clearly
m :=

∑
p∈A np + |B|. Choose rational numbers s1, . . . , sm+1 such that

−∞ < s1 < r1 < s2 < r2 < · · · < sm < rm < sm+1 < +∞.

Set H := the subgroup of G generated by −1, the elements p ∈ A, and the
elements x− si, i = 1, . . . ,m+ 1.

Lemma 3.1.

(i) (Y,G/Y ⊥) is a subspace of (X,G).
(ii) (Y,G/Y ⊥) is the direct sum of the subspaces (Xp, G/X

⊥
p ), p ∈ A,

(X∞, G/X
⊥
∞), and ({σr}, G/{σr}⊥), r ∈ B.

(iii) (X|H , H) is a quotient space of (X,G).
(iv) The spaces of orderings (Y,G/Y ⊥) and (X|H , H) are isomorphic via

the natural maps H ↪→ G→ G/Y ⊥, Y ↪→ X → X|H .

Proof. (i) and (ii) are consequences of [15, Theorem 3.6] and [14, Corol-
lary 7.5], respectively. One can also prove (ii) using the approximation theo-
rem for V -topologies (see e.g. [21]). (iii) is a consequence of (iv), so it suffices
to prove (iv).

Claim 1. The map Y → X|H is bijective.

Let S0 := the set of orderings satisfying x < s1, Sm+1 be the set of
orderings satisfying x > sm+1, and Si be the set of orderings satisfying
si < x < si+1, i = 1, . . . ,m. Clearly X = S0 ∪ · · · ∪ Sm+1 (disjoint union)
and X|H = S0|H ∪ · · · ∪ Sm+1|H (disjoint union). Each p ∈ A has constant
sign on S0. For instance, if np is even (resp. odd) then p is constantly pos-
itive (resp. constantly negative) on S0. It follows that S0|H is a singleton
set. Also, Y ∩ S0 is a singleton set. A similar argument shows that Sm+1|H
and Sm+1 ∩ Y are singleton sets. For 1 ≤ i ≤ m, there are two cases. If
ri ∈ B, then each p ∈ A has constant sign on Si, so Si|H is a singleton set.
In this case Si ∩ Y is also a singleton set. If ri /∈ B, then ri is a root of some
unique p ∈ A. In this case p changes sign at ri and the other elements of A
have constant sign on Si, so Si|H has two elements. In this case, Si ∩ Y also
has two elements. Moreover, different elements of Si ∩ Y map to different
elements of Si|H .

From the surjectivity of the map Y → X|H it follows that the group
homomorphismH → G/Y ⊥ is injective. Consequently, to complete the proof
it suffices to establish the following:

Claim 2. |H| = |G/Y ⊥|.
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The elements of {−1}∪A∪{x− si : i = 1, . . . ,m+ 1} form a Z/2Z-basis
of H, so |H| = 2|A|+m+2. Using (ii) we see that

|G/Y ⊥| =
∏
p∈A
|G/X⊥p | · |G/X⊥∞| ·

∏
r∈B
|G/‖σr}⊥|

=
∏
p∈A

2np+1 · 22 ·
∏
r∈B

2 = 2
∑
p∈A np+|A|+2+|B|.

At the same time we have m =
∑

p∈A np + |B|, so |A| + m + 2 =∑
p∈A np + |A|+ 2 + |B|.
As an immediate consequence of Lemma 3.1 we obtain a result of Gładki

and Jacob [6, Theorem 1].

Theorem 3.2. The space of orderings (X,G) is profinite.

Proof. It suffices to show that for any finite subset S of G there exists a
finite quotient (X|H , H) of (X,G) such that S ⊆ H. Define H as in the proof
of Lemma 3.1, taking A to be the set of real monic irreducible polynomials
appearing in the factorization of the elements of S and B = ∅. Then H
contains S and (X|H , H) has the required properties.

We mention another consequence of Lemma 3.1. Following the notation
of Section 2, we fix a character γ of G, γ 6= 1, γ(−1) = 1, define G0 = ker γ,
and X0 = X|G0 .

Theorem 3.3. The following are equivalent:

(1) (X0, G0) is a quotient space of (X,G);
(2) γ satisfies the necessary conditions of Theorem 2.8;
(3) (X0, G0) is a profinite space of orderings.

We remark that [7, Theorem 8] already asserts (1)⇒(3).

Proof. (1)⇒(2) is a consequence of Theorem 2.8.
(3)⇒(1) is trivial (since every profinite space of orderings is, in particular,

a space of orderings).
(2)⇒(3). Assume (2) holds. Let γ =

∏k
i=1 σi, σi ∈ X, k = 2 or k = 4

and γ /∈ X4. To prove (3) it suffices to show that for any finite subset S of
G0 there exists a finite quotient space (X|H , H) of (X,G) such that S ⊆ H
and (X|H∩G0 , H ∩ G0) is a quotient space of (X|H , H). Define H, Y as in
the preamble to Lemma 3.1, taking A to be any finite set of real monic irre-
ducibles in Q[x] containing all real monic irreducible factors of elements of S
together with all real monic irreducibles p such that Xp ∩ {σ1, . . . , σk} 6= ∅,
and taking B to be any finite set of transcendental real numbers such that,
for each i = 1, . . . , k, if σi is an archimedian ordering then the corresponding
transcendental real number belongs to B. Obviously S ⊆ H. By Lemma 3.1,
(X|H , H) is a quotient space of (X,G) which is naturally identified with the
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subspace (Y,G/Y ⊥) of (X,G). By construction, Y is a union of connected
components of (X,G) and contains all components of (X,G) meeting the set
{σ1, . . . , σk}. Also, (Y,G/Y ⊥) is finite and has stability index 1 or 2. It fol-
lows from Theorem 2.5 if the stability index is 1, or from Theorem 2.9 if the
stability index is 2, that (Y |G0 , G0/Y

⊥) is a quotient space of (Y,G/Y ⊥).
Since (X|H∩G0 , H ∩G0) is identified with (Y |G0 , G0/Y

⊥) under the isomor-
phism (X|H , H) ∼= (Y,G/Y ⊥), this completes the proof.

4. Examples of quotients of the space of orderings of Q(x). The-
orem 3.3 provides us with an elegant criterion for checking whether a given
quotient structure (X0, G0) of (XQ(x), GQ(x)) is a quotient space. In practice,
however, there seems to be no good way of checking this criterion if G0 is
given in terms of generators, and we can, in fact, do this only in a few cases.
We shall discuss this in some detail now.

Let (X,G) be the space of orderings (XQ(x), GQ(x)), and let I denote the
set of all (classes of) monic irreducible polynomials in Q[x] with at least
one real root. Let (X0, G0) be a fixed quotient structure of (X,G) with
(G : G0) = 2. Moreover, let J ⊆ I be the set such that

G0 = 〈{−1} ∪ J ∪ (I \ J)(I \ J)〉.

Observe also that J = {p ∈ I : p ∈ G0}, so J determines uniquely and is
uniquely determined by G0.

Example 4.1. If J = I \ {p} for some p ∈ I, then (X0, G0) is a quotient
space. Indeed, suppose that r ∈ R is a root of p, and that σ−r and σ+r are the
two orderings corresponding to r, one making p positive, and one making p
negative. Let γ = σ−r ·σ+r . Then, readily, G0 = ker γ, and (X0, G0) is a space
of orderings by Theorem 3.3.

Example 4.2. If J = I \ {p1, p2} for some p1, p2 ∈ I, p1 6= p2, then
(X0, G0) is a quotient space. As before, let r1, r2 ∈ R be real roots of p1, p2,
respectively, and let σ−ri and σ+ri be the two orderings corresponding to ri,
i ∈ {1, 2}. Let γ = σ−r1σ

+
r1σ
−
r2σ

+
r2 . Then, as before, (X0, G0) is a quotient

space by Theorem 3.3 with G0 = ker γ.

Example 4.3. If J = I \{p1, . . . , pn} for some n ≥ 3, and p1, . . . , pn ∈ I
pairwise distinct, then (X0, G0) is never a quotient space. Let r1, . . . , rn ∈ R
be real roots of p1, . . . , pn, respectively, and let σ−ri and σ

+
ri be the two order-

ings corresponding to ri, i ∈ {1, . . . , n}. Then G0 = ker(σ−r1σ
+
r1 · . . . ·σ

−
rnσ

+
rn).

Suppose that (X0, G0) is a quotient space, and that G0 = ker γ with γ =
τ1 · . . . · τ4 for some τ1, . . . , τ4 ∈ X. Following an argument that will be later
discussed in detail in the proof of Remark 5.3(2), we see that the presentation
σ−r1σ

+
r1 · . . . · σ

−
rnσ

+
rn cannot be shortened, and thus yields a contradiction.
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Example 4.4. If J is finite, then (X0, G0) is never a quotient space.
For suppose (X0, G0) is a quotient space with G0 = ker γ for some γ =
σ1 · . . . ·σ4, σ1, . . . , σ4 ∈ X. Let S be the finite set of all points on the real line
corresponding to the orderings σ1, . . . , σ4. Take an irreducible polynomial
q ∈ I, strictly positive on the set S, but not belonging to J ; we note that
such a q always exists, in fact, there are infinitely many such q. Then q ∈ G0,
which contradicts q /∈ J .

The case of both J and I \ J being infinite is widely open.

Example 4.5. Let r1, . . . , r4 be the complete set of distinct real roots of
an irreducible polynomial q ∈ Q[x]. Let

J =
{
p ∈ I : p is positive at an even number of roots ri, i ∈ {1, . . . , 4}

}
∪ {q}.

Then (X0, G0) is a quotient space. Indeed, one checks that if σ−ri and σ+ri
are the two orderings corresponding to ri, i ∈ {1, . . . , 4}, then G0 = ker γ
for γ = σ−r1σ

−
r2σ
−
r3σ
−
r4 , with σ−r1 , σ

−
r2 , σ

−
r3 , σ

−
r4 all coming from one connected

component. We note that instead of σ−r1σ
−
r2σ
−
r3σ
−
r4 we can use any other com-

bination of σεri , i ∈ {1, . . . , 4}, ε ∈ {−,+}, making q positive: at the end,
they all define the same γ, since σ−riσ

+
riσ
−
rjσ

+
rj = 1 for i 6= j, i, j ∈ {1, . . . , 4}.

Example 4.6. Let r1, . . . , r4 be four real algebraic numbers again, but
now suppose that r1, r2 are roots of an irreducible polynomial q1, and r3, r4
are roots of an irreducible q2. Furthermore, assume that q1 and q2 have no
roots other than r1, . . . , r4. Let

J =
{
p ∈ I : p is positive at an even number of roots ri, i ∈ {1, . . . , 4}

}
∪ {q1, q2}.

Then (X0, G0) is a quotient space. Indeed, denote by σ−ri and σ+ri the two
orderings corresponding to ri, the first one making the minimal polynomial
of ri negative, and the second one positive, i ∈ {1, . . . , 4}. Depending on how
the polynomials q1 and q2 overlap, there are different ways of defining γ. Say,
for example, that q1 and q2 are related as in Figure 1. Set γ = σ−r1σ

−
r3σ

+
r2σ

+
r4 .

Fig. 1. Irreducible polynomials q1 and q2
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One checks that the conditions of Theorem 3.3 are satisfied. The reader might
wish to experiment with different ways of structuring roots of q1 and q2.

We note that if polynomials q1 and q2 in Example 4.6 have more than just
two roots each, the quotient structure (X0, G0) is, in general, not a quotient
space. As details at this level are becoming too technical, we are not going
to discuss this any further.

5. General quotients. We continue to assume that (X,G) is a space
of orderings. Fix a subgroup G0 of G containing −1, possibly having infinite
index in G, and let X0 denote the set of all restrictions of elements of X
to G0. Denote the restriction of σ ∈ X to G0 by σ. Let S := X4 ∩χ(G/G0).
Theorem 2.4 generalizes as follows:

Theorem 5.1. A necessary condition for the quotient structure (X0, G0)
of (X,G) to be a space of orderings is that S generates χ(G/G0) as a topolog-
ical group, i.e., χ(G/G0) is the closure of the subgroup of χ(G/G0) generated
by S, i.e., S⊥ = G0.

Proof. It suffices to show that, for each g ∈ G \ G0, there is a γ ∈ S
such that γ(g) 6= 1. Fix g ∈ G \ G0. Case 1: there are σ, τ ∈ X such that
σ(g) 6= τ(g) and σ = τ . In this case we take γ = στ . Case 2: for all σ, τ ∈ X,
σ = τ ⇒ σ(g) = τ(g). In this case, the function φ : X0 → {±1} given by
φ(σ) = σ(g) is well-defined and continuous, and is not in the image of the
natural map G0 ↪→ Cont(X0, {±1}). Thus, by [12, Theorem 7.2], there is a
4-element fan σ1, σ2, σ3, σ4 in X0 such that

∏4
i=1 φ(σi) 6= 1. In this case we

take γ =
∏4
i=1 σi.

For each γ ∈ S, γ 6= 1, γ has some (not necessarily unique) minimal ex-
pression γ =

∏k
i=1 σi, σi ∈ X, k = 2 or 4. Denote by (Y,G/∆) = (Y,G/Y ⊥)

the subspace of (X,G) generated by the connected components of the vari-
ous σi, i = 1, . . . , k, γ running through S \ {1}, and let Y0 denote the set of
restrictions of elements of Y to G0.

Theorem 5.2. A necessary condition for the quotient structure (X0, G0)
of (X,G) to be a space of orderings is that S generates χ(G/G0) as a topo-
logical group and the quotient structure (Y0, G0/∆) of (Y,G/∆) is a space of
orderings.

Proof. If the quotient structure (X0, G0) of (X,G) is a space of orderings
then the quotient structure (Y0, G0/∆) of (Y,G/∆) is a subspace of (X0, G0),
so it is itself a space of orderings.

The subspace (Y,G/∆) of (X,G) defined above will be referred to as the
core of the space of orderings (X,G) with respect to the quotient structure
(X0, G0).
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Remark 5.3. (1) The connected components occurring in the definition
of the core (Y,G/∆) do not depend on the particular minimal presentations
of the elements γ ∈ S \ {1}. If we have two minimal presentations

γ = σ1 . . . σk, γ = τ1 . . . τ`, σi, τj ∈ X, k, ` ∈ {2, 4},
then, using [10, Lemma 3.2], we see that for every i there is j such that
σi ∼ τj , and similarly, for every j there is i such that τj ∼ σi.

Proof. Since σ1 . . . σk = τ1 . . . τ` it follows that σ1 . . . σkτ1 . . . τ` = 1.
By hypothesis σ1, . . . , σk are linearly independent and k ≥ 1. After rein-
dexing suitably, we can assume that σ1, . . . , σk, τ1, . . . , τt−1, 1 ≤ t ≤ `, is
a maximal linearly independent subset of σ1, . . . , σk, τ1, . . . , τ`. Then τt is
some linear combination of σ1, . . . , σk, τ1, . . . , τt−1, say τt =

∏
i∈I σi

∏
j∈J τj ,

I ⊆ {1, . . . , k}, J ⊆ {1, . . . , t − 1}. Since τ1, . . . , τ` are linearly indepen-
dent we see that I 6= ∅. According to [10, Lemma 3.2], σi ∼ τt for each
i ∈ I. If I = {1, . . . .k} we are done. Otherwise, after canceling, we obtain∏
i∈I′ σi

∏
j∈J ′ τj = 1 where I ′ = {1, . . . , k} \ I, J ′ = {1, . . . , `} \ (J ∪ {t}).

The result follows now by induction on k.

(2) If T is a maximal linearly independent subset of S then the con-
nected components coming from the elements of S \ {1} are the same as the
connected components coming from the elements of T .

Proof. Suppose γ ∈ S \ {1}, γ = γ1 . . . γm, γj ∈ T . Choose minimal
presentations γ =

∏k
i=1 σi, γj =

∏kj
p=1 τjp, σi, τjp ∈ X. We want to show

that for each i, σi ∼ τjp for some j, p. This reduces to showing that if
σ1 . . . σk = τ1 . . . τ`, σi, τj ∈ X, and σ1, . . . , σk are linearly independent, then
for each i there exists j such that σi ∼ τj . Since it is possible to reduce
further to the case where τ1, . . . , τ` are linearly independent (by canceling
whatever relations exist between the τj , one by one), we see that this follows
by the same argument used in (1).

(3) Suppose (X,G) has no infinite fans, (G : G0) = 2m <∞, S generates
χ(G/G0) as a (topological) group, and γ1, . . . , γm is some basis for χ(G/G0)
chosen so that each γi belongs to S, and each γi has a minimal presentation
γi =

∏ki
j=1 σij , σij ∈ X. Then the core of the space of orderings (X,G)

with respect to the quotient structure (X0, G0) is the union of the connected
components of the various σij .

Proof. This follows from (2) in conjunction with the fact that any finite
union of connected components is a subspace, by [15, Theorem 3.6].

Again it is natural to wonder if the necessary conditions for a quotient
structure to be a quotient space given by Theorem 5.2 are sufficient. Al-
though we are unable to prove this, we are able to show it is true in certain
cases.
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Theorem 5.4. For a space of orderings (X,G) with finitely many non-
singleton connected components and no infinite fans and a quotient structure
(X0, G0) of (X,G) of finite index, the following are equivalent:

(1) (X0, G0) is a space of orderings;
(2) X4 ∩ χ(G/G0) generates χ(G/G0) and the quotient structure

(Y0, G0/∆) of the core (Y,G/∆) is a space of orderings.

Proof. (1)⇒(2) follows from Theorem 5.2.
(2)⇒(1). Let (Xi, Gi), i ∈ I0, be the connected components of (X,G)

which do not meet (Y,G/∆). Let I = I0∪{i0} where i0 is a new symbol, and
let (Xi0 , Gi0) = (Y,G/∆). Let π : X → I denote the projection defined by
π(σ) = i if σ ∈ Xi, and give I the quotient topology. Arguing as in the proof
of Theorem 2.9 we see that I is a Boolean space and (X0, G0) is the space
of global sections of a sheaf of spaces of orderings on I with stalks (Xi, Gi)
for i ∈ I, i 6= i0, and stalk (Y0, G0/∆) at i = i0.

Observe that Theorem 5.4 applies, in particular, to finite spaces of or-
derings and to SAP spaces of orderings.

Theorem 5.5. For the space of orderings (X,G) = (XQ(x), GQ(x)) and
a quotient structure (X0, G0) of (X,G) of finite index, the following are
equivalent:

(1) (X0, G0) is a space of orderings;
(2) X4 ∩ χ(G/G0) generates χ(G/G0) and the quotient structure

(Y0, G/∆) of the core (Y,G/∆) is a space of orderings;
(3) (X0, G0) is a profinite space of orderings.

Proof. (1)⇒(2) is a consequence of Theorem 5.2.
(3)⇒(1) is trivial (since every profinite space of orderings is, in particular,

a space of orderings).
(2)⇒(3). Assume (2) holds. Let (G : G0) = 2m, and choose γi =

∏ki
j=1 σij ,

σij ∈ X, i = 1, . . . ,m, as in Remark 5.3(3). To prove (3) it suffices to
show that for any finite subset W of G0 there exists a finite quotient space
(X|H , H) of (X,G) such that W ⊆ H and (X|H∩G0 , H ∩ G0) is a quotient
space of (X|H , H). Define H, Y as in the preamble to Lemma 3.1, taking
A to be any finite set of real monic irreducibles in Q[x] containing all real
monic irreducible factors of elements of W together with all real monic ir-
reducibles p such that Xp ∩

⋃
{σij : i = 1, . . . ,m, j = 1, . . . , ki} 6= ∅, and

taking B to be any finite set of transcendental real numbers such that, for
each i = 1, . . . ,m and each j = 1, . . . , ki, if σij is an archimedian ordering
then the corresponding transcendental real number belongs to B. Obviously
W ⊆ H. By Lemma 3.1, (X|H , H) is a quotient space of (X,G) which is
naturally identified with the quotient space (Y,G/Y ⊥) of (X,G). By con-
struction, Y is a union of connected components of (X,G) and contains all
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components of (X,G) meeting the set {σij : i = 1, . . . ,m, j = 1, . . . , ki}.
Also, (Y,G/Y ⊥) is finite and has stability index 1 or 2. It follows from
Theorem 5.4 applied to the finite space of orderings (Y,G/Y ⊥) and as-
sumption (2) that (Y |G0 , G0/Y

⊥) is a quotient space of (Y,G/Y ⊥). Since
(X|H∩G0 , H ∩G0) is identified with (Y |G0 , G0/Y

⊥) under the isomorphism
(X|H , H) ∼= (Y,G/Y ⊥), this completes the proof.

Remark 5.6. In [2, Proposition 6] and [6, Theorem 2] it has been shown
that Lam’s Open Problem B holds true for any profinite spaces of orderings.
Thus Theorem 5.5 shows, in particular, that a conceivable method of finding
non-realizable spaces of orderings among quotients of the space of orderings
of Q(x) of finite index will prove fruitless. At the same time, it remains
an open problem whether profinite spaces of orderings are realizable. We
note here that the dual question of whether direct limits of finite spaces of
orderings are realizable was partially answered already in the early 1980s
in [8], and recently completely resolved in [1].

6. Appendix: The sheaf construction. We recall the sheaf construc-
tion in [14, Chapter 8]. There, the results are phrased in terms of reduced
Witt rings, not spaces of orderings, but the two categories are equivalent, so
these results are valid for spaces of orderings.

Theorem 6.1. Suppose (Xi, Gi) is a space of orderings for each i ∈ I,
where I is a Boolean space. Suppose X =

⋃̇
i∈IXi is equipped with a topology

such that

(1) X is a Boolean space,
(2) the inclusion map Xi ↪→ X is continuous for each i ∈ I,
(3) the projection map π : X → I is continuous, and
(4) if (iλ)λ∈D is any net in I converging to i ∈ I and if σλ1 , σ

λ
2 , σ

λ
3 , σ

λ
4 is

a 4-element fan in Xiλ such that σλj converges to σj ∈ Xi for each
j = 1, 2, 3, 4, then σ1σ2σ3σ4 = 1.

Then (X,G) is a space of orderings, where

G := {φ ∈ Cont(X, {±1}) : φ|Xi ∈ Ĝi ∀i ∈ I}.

Proof. See [14, Theorem 8.5].

We need only the following special case of Theorem 6.1:

Corollary 6.2. Suppose (Xi, Gi) is a space of orderings for each i ∈ I,
where I is a Boolean space, and (Xi, Gi) is SAP for all but finitely many i.
Suppose X =

⋃̇
i∈IXi is equipped with a topology such that X is a Boolean

space, the inclusion map Xi ↪→ X is continuous for each i ∈ I, and the
projection map π : X → I is continuous. Then (X,G) is a space of orderings,
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where
G := {φ ∈ Cont(X, {±1}) : φ|Xi ∈ Ĝi for all i ∈ I}.

Proof. It suffices to show that condition (4) of Theorem 6.1 holds. Sup-
pose (iλ)λ∈D is a net in I satisfying the hypothesis of (4). For each λ ∈ D,Xiλ

contains a 4-element fan (so, in particular, the space of orderings (Xiλ , Giλ)
is not SAP), hence the set {iλ : λ ∈ D} is finite. Replacing the net (iλ)λ∈D
by a suitable subnet, we can assume (iλ)λ∈D is constant. In this case, the
conclusion of (iv) is obvious, using the continuity of the multiplication in the
character group χ(Gi).
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