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Involutions of 3-dimensional handlebodies

by

Andrea Pantaleoni and Riccardo Piergallini (Camerino)

Abstract. We study the orientation preserving involutions of the orientable 3-dimen-
sional handlebody Hg, for any genus g. A complete classification of such involutions is given
in terms of their fixed points.

Introduction. Involutions of the 3-dimensional orientable handlebody
Hg of genus g have already been classified in [6], [7], [10] and [9] for g ≤ 2.
Moreover, a classification of the orientation reversing involutions of Hg was
given in [5, Theorem 3.6].

In this paper, we complete the study of the subject, by providing a
classification of the orientation preserving involutions of Hg for any g ≥ 0.
Our argument is direct and elementary. The same result can also be derived
from the general theory of actions on handlebodies developed in [8].

Namely, we prove the following theorem.

Theorem. Let h : Hg → Hg be an orientation preserving involution. If
h is free, then g = 2n+1 for some n ≥ 0 and h is equivalent to the involution
Ig depicted in Figure 1. If h is not free, then there exist n,m, l ≥ 0 with
1 ≤ n+ 2m ≤ n+ 2m+ 2l = g+ 1 such that h is equivalent to the involution
Ln,m

g depicted in Figure 2.

Ig Hg=2n+1

handlesn handlesn

Fig. 1. The free involution Ig for g = 2n + 1
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Ln,m
g

Hg=n+2m+2l−1

fixed arcsn fixed loops handlesm 2l

Fig. 2. The non-free involution Ln,m
g

The free involution Ig : Hg → Hg with g = 2n + 1 can be realized by
embedding Hg in R3 as in Figure 1 and rotating by π radians around the
axis orthogonal to the plane of the picture at the dot.

The description of the involution Ln,m
g : Hg → Hg with g = n+2m+2l−1

is a little more involved. The fixed point set FixLn,m
g consists of n arcs and

m loops, all dashed in Figure 2. We think of Hg as Hn+m+2l−1 with m extra
handles attached to it. The handlebody Hn+m+2l−1 is embedded in R3 in
such a way that it is symmetric with respect to the median horizontal line
and meets it in n+m arcs, while the m extra handles are the non-symmetric
ones. Then, the restriction of Ln,m

g to Hn+m+2l−1 is given by the rotation by
π radians around this axis. Of course, the fixed point set of this involution of
Hn+m+2l−1 consists of n+m arcs. Now, we attach each one of the m extra
handles to two disks centered at the end points of a fixed arc. Finally, we
extend the rotation to the extra handle as the rotation by π radians around
its core. Hence, the fixed arc closes up to give a fixed loop.

We remark that Lg+1,0
g coincides with the hyperelliptic involution of Hg.

As a consequence of our classification, we see that any orientation pre-
serving involution of Hg is uniquely determined, up to equivalence, by its
restriction to the boundary Tg = BdHg. However, it is worth observing that
the restrictions to Tg of non-equivalent involutions of Hg can be equivalent
as involutions of Tg, by a PL homeomorphism of Tg which does not extend
to Hg. Actually, two involutions of Tg are equivalent if and only if they have
the same number of fixed points and they give rise to quotient surfaces of
the same genus g′, which follows from the Hurwitz classification of branched
coverings between surfaces ([4], see also [1]).

From a different point of view, the quotient of Hg under the action of any
orientation preserving involution turns out to be a handlebody Hg′ . Namely,
g′ = (g + 1)/2 = n + 1 for Hg=2n+1/Ig and g′ = (g − n + 1)/2 = m + l for
Hg=n+2m+2l−1/L

n,m
g . Therefore, our result could also be reformulated in

terms of double branched coverings Hg → Hg′ between handlebodies.
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1. Preliminaries. An involution of a PL manifold X is any PL hom-
eomorphism h : X → X such that h 6= idX and h2 = idX . We denote by
Fixh = {x ∈ X |h(x) = x} the fixed point set of h. The involution h is
called free if Fixh = ∅.

If h′ : X ′ → X ′ is another involution of the PL manifold X ′, then we say
that h and h′ are equivalent if there exists a PL homeomorphism η : X → X ′

such that h′ = η ◦ h ◦ η−1.
Here, we focus on orientation preserving involutions. The 3-dimensional

handlebody Hg consists of one 0-handle and g orientable 1-handles attached
to it, for any g ≥ 0. If h : Hg → Hg is such an orientation preserving
involution, then Fixh is a (possibly empty) proper PL 1-submanifold of Hg.
Moreover, the canonical projection π : Hg → Hg/h turns out to be a double
branched covering.

In particular, we want to prove the theorem stated in the introduction,
providing a complete classification, up to equivalence, of the orientation
preserving involutions of Hg for any g ≥ 0.

The proof proceeds by induction on the number g of 1-handles, starting
from the trivial case of g = 0. In this case, we have H0

∼= B3 ⊂ R3, whose
only orientation preserving involution, up to equivalence, is the symmetry
(x, y, z) 7→ (x,−y,−z) with respect to the x-axis (cf. [7] and [10]), which
coincides with L1,0

0 .
The following lemma, concerning involutions of 1-handles, tells us how

a given orientation preserving involution of a disjoint union of orientable
handlebodies can be extended to some extra 1-handles equivariantly at-
tached to it. As an immediate consequence, such an extension is uniquely
determined by the equivalence class of the involution induced on the pairs of
attaching disks. This fact will be used when performing the inductive step.

Lemma 1. The 3-dimensional 1-handle B1 ×B2 ⊂ R3 has only two in-
volutions preserving the attaching disks {−1, 1}×B2, up to equivalence pre-
serving such disks. Namely, they are the symmetries (x, y, z) 7→ (x,−y,−z)
and (x, y, z) 7→ (−x, y,−z). The first one fixes the core B1 × {0} of the
handle and sends each attaching disk onto itself, while the second one fixes
the diameter {0} ×B1 of the co-core of the handle and swaps the attaching
disks.

Proof. Taking into account what we have said about involutions of B3,
the lemma can be easily derived just by considering the possible positions
of the arc fixed by the involution with respect to the attaching disks.

The other main tool for the inductive step is the next lemma, which
allows us to split any orientation preserving involution of Hg as a boundary
connected sum of involutions of simpler handlebodies.
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We recall that a properly embedded PL 2-disk D in a bounded 3-man-
ifold M is called boundary parallel if there exists a 2-disk E ⊂ BdM such
that BdD = BdE and D ∪ E bounds a 3-cell in M . Moreover, if D′ is
another properly embedded PL 2-disk in M , then D and D′ are called
parallel if they are disjoint and there exists an annulus A ⊂ BdM such that
BdA = BdD ∪ BdD′ and the 2-sphere D ∪A ∪D′ bounds a 3-cell in M .

Lemma 2. Let h : Hg → Hg be an orientation preserving involution with
g ≥ 1. Then there exists a properly embedded PL 2-disk D in Hg which is not
boundary parallel and is such that either h(D) ∩D = ∅, or h(D) = D and
this disk meets Fixh transversally at one point. In the first case, denoting
by N a regular neighborhood of h(D)∪D, we can assume that Cl(Hg−N) is
PL homeomorphic to Hg−2 or Hg1 tHg2 with g1 + g2 = g− 1. In the second
case, if N denotes a regular neighborhood of h(D) = D, then Cl(Hg −N) is
PL homeomorphic to Hg−1 or Hg1 tHg2 with g1 + g2 = g.

Proof. The first part of the statement follows from Theorem 3 of [2].
Concerning the second part, we first observe that Cl(Hg −N) is a disjoint
union of handlebodies (cf. [3]) and Hg can be thought of as Cl(Hg − N)
with one (when h(D) = D) or two (when h(D)∩D = ∅) 1-handles attached
to it. Hence, the only non-trivial fact to prove is that Cl(Hg − N) can be
assumed to have at most two components. In fact, if h(D) ∩ D = ∅ then
Cl(Hg − N) could also have three components, say C1, C2 and C3. It is
not difficult to see that in this case h swaps two of them, say C1 and C2,
and sends the remaining one onto itself. Since D is not boundary paral-
lel, C1

∼= C2
∼= Hg′ with g′ ≥ 1. Hence, we can replace the disk D by a

non-separating disk in C1. Then we have h(D) ∩ D = ∅, and Cl(Hg − N)
turns out to be connected.

By previous lemmas, one can easily determine the orientation preserving
involutions of H1

∼= S1 ×B2 ⊂ C2. Since these are known (cf. [9] or [6]), we
limit ourselves to listing them without proof. Up to equivalence, they are
I1 : (x, y) 7→ (−x, y), L0,1

1 : (x, y) 7→ (−x, y) and L2,0
1 : (x, y) 7→ (x̄, ȳ), where

the bar denotes complex conjugation, for any (x, y) ∈ S1 × B2. The first
involution is free, while the fixed point sets of the last two are respectively
S1 × {0} and {−1, 1} × [−1, 1].

We conclude this section by a characterization of the hyperelliptic invo-
lutions of Hg for g ≥ 2. This will be useful in order to simplify the induction
argument for the non-free case in the next section.

Lemma 3. Let h be a non-free orientation preserving involution of Hg

with g≥1. If for any 2-disk D in Hg given by Lemma 2 the union h(D)∪D
(possibly coinciding with D itself ) disconnects Hg, then h is equivalent
to Lg+1,0

g .
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Proof. We proceed by induction on g. For g = 0, 1 the statement follows
from the above classification of the orientation preserving involutions of H0

and H1.
Now, assume g > 1. Given a disk D ⊂ Hg as in Lemma 2, we denote

by N a regular neighborhood of D∪h(D). Then Cl(Hg−N) is disconnected
by hypothesis, and the second part of that lemma implies that Cl(Hg−N) =
C1 tC2, where Ci

∼= Hgi for i = 1, 2, with g1 + g2 = g− 1 if h(D) = D, and
g1 + g2 = g − 2 if h(D) ∩D = ∅.

Since h is non-free, we deduce that each of C1 and C2 is sent onto itself
by h. Actually, h could in principle swap C1 and C2 (with g1 = g2) when
h(D)∩D = ∅, but in this case it would be free. Moreover, both restrictions
hi = h|Ci

: Ci → Ci obviously satisfy the condition of the lemma. Therefore,
by the inductive hypothesis we have Ci

∼= Lgi+1,0
gi for i = 1, 2.

At this point, we can easily conclude that h ∼= Lg+1,0
g by Lemma 1, after

observing that N consists of one (if h(D) = D) or two (if h(D) ∩ D = ∅)
1-handles attached to C1 t C2 to give Hg.

2. Proof of the theorem. Assume first that h is free. Since the Euler
characteristic χ(Hg) = 1 − g is even, g = 2n + 1 for some n ≥ 0. We will
prove that h ∼= Ig by induction on n, based on the case n = 0, which follows
from the above classification of the involutions of H1.

So, suppose n > 0. Let D ⊂ Hg be a disk as in Lemma 2. Then h(D)∩D
= ∅, since h is free. Now, denoting by N a regular neighborhood of h(D)∪D
and putting H ′ = Cl(Hg −N), we have three cases.

Case 1: H ′ ∼= Hg−2. By the inductive hypothesis, h′ = h|H′ ∼= Ig−2.
Moreover, N consists of a pair of 1-handles equivariantly attached to H ′,
which are swapped by h. Then, up to equivalence, h is the unique possible
extension of h′ to Hg. Since, up to equivariant PL homeomorphisms, Ig can
be obtained in the same way from Ig−2, for example by considering as D
the leftmost meridian disk in Figure 1, we have h ∼= Ig.

Case 2: H ′ = C1 tC2, with Ci
∼= Hgi and h(Ci) = Ci for i = 1, 2. Since

g1 < g, by the inductive hypothesis h|C1
∼= Ig1 . Now, if g1 > 1 we know that

there exists a disk D′ ⊂ C1
∼= Hg1 such that C1− (h(D′)∪D′) is connected.

Then, by replacing D with D′ thought of as a disk in Hg, we are reduced
to Case 1. On the other hand, if g1 = 1, for any disk D′ in C1, we find that
C1−(h(D′)∪D′) has two components and these are swapped by h|C1

. Then,
since also the two attaching disks of the 1-handles given by N are swapped
by h|C1

, we can easily conclude that Hg − (h(D′)∪D′) is connected. So, we
can once again reduce ourselves to Case 1.
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Case 3: H ′ = C1 t C2, with Ci
∼= Hgi and h(Ci) = C3−i for i = 1, 2. In

this case we have 1 ≤ g1 = g2 < g. Then there exists a disk D′ ⊂ C1

such that C1 − D′ is connected. Since h(D′) ⊂ C2 and also C2 − h(D′) is
connected (being PL homeomorphic to C1−D′), we see thatHg−(h(D′)∪D′)
is connected too. This allows the reduction to Case 1 as above.

Now, we assume that h is non-free. We will prove that h ∼= Ln,m
g by

induction on g, based on the cases g = 0, 1, which follow from the above
classification of the involutions of H0 and H1, and on the cases considered
in Lemma 3.

So, suppose g > 1. Let D ⊂ Hg be a disk as in Lemma 2. If for any
such disk D the union h(D) ∪D disconnects Hg, we are done by Lemma 3.
Hence, we can assume that Hg − (h(D) ∪D) is connected. Then, denoting
by N a regular neighborhood of h(D)∪D and putting H ′ = Cl(Hg−N), we
have H ′ ∼= Hg−1 if h(D) = D and H ′ ∼= Hg−2 if h(D) ∩D = ∅. We consider
these two cases separately.

Case 1: h(D) = D. By the inductive hypothesis, h′ = h|H′ ∼= Ln,m
g−1 for

some n and m such that 1 ≤ n + 2m ≤ g. Moreover, N consists of one
1-handle attached to H ′, whose attaching disks D1, D2 ⊂ BdH ′ are such
that h′(Di) = Di and Di ∩ Fixh′ = {pi} ⊂ IntDi, for i = 1, 2. We have the
following two subcases.

Subcase 1.1: p1 and p2 are end points of the same arc A ⊂ Fixh′. In
this case, when attaching N to H ′, the arc A closes up to give a fixed loop
for h. Now, if A is the rightmost fixed arc in Figure 2, then clearly h ∼=
Ln−1,m+1

g . On the other hand, the half-twists on the disks E and E′ = h′(E)
on the right of Figure 3 allow us to equivariantly exchange two consecutive
arcs in Fixh′, hence all the arcs in Fixh′ are equivalent by an equivariant
PL homeomorphism. Therefore, the final result is the same for any fixed arc
A ⊂ Fixh′.

E

E′

E

E′

Fig. 3. Equivariantly inverting a fixed arc and exchanging two fixed arcs

Subcase 1.2: p1 and p2 are end points of different arcs A1, A2 ⊂ Fixh′.
In this case, when attaching N to H ′, the arcs A1 and A2 are joined to give
one fixed arc in Fixh. Now, if A1 and A2 are the rightmost fixed arcs in
Figure 2 and the points p1 and p2 are the end points closest to them, then it
is not difficult to see that h ∼= Ln−1,m

g . On the other hand, the half-twists on
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the disks E and E′ = h′(E) on the left of Figure 3 allow us to equivariantly
exchange the two end points of the same arc in Fixh′. Then, using this PL
homeomorphism, together with that used in the previous case to exchange
two consecutive arcs in Fixh′, we can always equivariantly move the points
p1 and p2 in the preferred position described above. Hence, h ∼= Ln−1,m

g

whatever p1 and p2 are.

Case 2: h(D) ∩D = ∅. By the inductive hypothesis, h′ = h|H′ ∼= Ln,m
g−2

for some n and m such that 1 ≤ n + 2m ≤ g − 1. Moreover, N consists of
a pair of 1-handles equivariantly attached to H ′, which are swapped by h.
Then, up to equivalence, h is the unique possible extension of h′ to Hg. Since,
up to equivariant PL homeomorphisms, Ln,m

g can be obtained in the same
way from Ln,m

g−2, for example by considering as D and h(D) the rightmost
meridian disks in Figure 2, we have h ∼= Ln,m

g .
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