Rainbow Ramsey theorems for colorings establishing negative partition relations

by
András Hajnal (Budapest)

Abstract

Given a function f, a subset of its domain is a rainbow subset for f if f is one-to-one on it. We start with an old Erdős problem: Assume f is a coloring of the pairs of ω_{1} with three colors such that every subset A of ω_{1} of size ω_{1} contains a pair of each color. Does there exist a rainbow triangle? We investigate rainbow problems and results of this style for colorings of pairs establishing negative "square bracket" relations.

1. Introduction and history. Anti-Ramsey theorems appeared probably for the first time in the 1973 paper [9] of Richard Rado, claiming the existence of subsets with elements of different colors of the domain of a given coloring. Later in the game, the more expressive name of rainbow subset was coined. In this paper we will mostly consider 2 -partitions, i.e. colorings f of unordered pairs of a set. A subset of pairs will be called a rainbow subset (for f) if f is one-to-one on it. Our starting point will be a problem of Paul Erdős, stated long before any of these names were coined:

Assume $f:\left[\omega_{1}\right]^{2} \rightarrow 3$ is a 2 -partition of ω_{1} with three colors such that each subset $A \subseteq \omega_{1}$ of size ω_{1} contains a pair of each color. Does there exist a rainbow triangle for f ?

This is Problem 68 of [3] written in 1967. We restate it in the jargon of partition relations developed in [5]:

Problem 1.1. Assume $f:\left[\omega_{1}\right]^{2} \rightarrow 3$ establishes $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{3}^{2}$. Does there exist a rainbow triangle for f ?

We knew that the answer is affirmative under some stronger conditions e.g.

[^0]FACT 1.2. Assume $f:\left[\omega_{1}\right]^{2} \rightarrow 3$ establishes $\omega_{1} \nrightarrow\left[\left(\omega, \omega_{1}\right)\right]_{3}^{2}$ (i.e. for $A \in\left[\omega_{1}\right]^{\omega}$ and $B \in\left[\omega_{1}\right]^{\omega_{1}}$, f takes all three values on $\left.[A, B]^{1,1}\right)$. Then there exists a rainbow triangle for f.

However, in those early days, we could only construct an f satisfying the condition of 1.2 using CH.

Definition 1.3. For a coloring $d:[k]^{2} \rightarrow \omega_{1}, k \leq \omega$ we write $d \Rightarrow f$ if there is a one-to-one map $\Phi: k \rightarrow \omega_{1}$ such that

$$
d(\{n, m\})=f(\{\Phi(n), \Phi(m)\}) \quad \text { for } n, m \in k .
$$

We could generalize 1.2 to
FACT 1.4. Assume $f:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ establishes $\omega_{1} \nrightarrow\left[\left(\omega, \omega_{1}\right)\right]_{\omega_{1}}^{2}$. Then $d \Rightarrow f$ for an arbitrary $d:[\omega]^{2} \rightarrow \omega_{1}$.

As already mentioned, we were not able to verify in ZFC that this does not hold vacuously and it bothered us that we could not lift it e.g. replacing ω, ω_{1} by ω_{1}, ω_{2} respectively. The next steps were taken in a paper of Shelah [10] written in 1975. He proved

Theorem 1.5 (Shelah [10]).

1. CH implies that 1.1 fails for some f with ω colors.
$2 . \diamond$ implies that 1.1 fails for an f with ω_{1} colors.
Shelah also showed in [10] that a possible "lifting" of Fact 1.4 is consistently false say adding one Cohen real to a model of GCH. In more detail, he constructed a graph of size ω_{1} from the Cohen real which does not embed isomorphically into any graph of the ground model. Then any graph of the ground model establishing the partition relation $\omega_{2} \nrightarrow\left[\left(\omega_{2}, \omega_{1}\right)\right]_{\omega_{1}}^{2}$ satisfies the same relation in the new model, and we have a graph of size ω_{1} that does not embed into it.

Knowing all this, in our 1978 paper [2] we stated implicitly a generalization of 1.4.

Theorem 1.6 ([2]). Assume that f establishes $\omega_{1} \nrightarrow\left[\left(\omega_{1} ; \omega_{1}\right)\right]{ }_{\omega}^{2}$. Then $d \Rightarrow f$ for an arbitrary $d:[\omega]^{2} \rightarrow \omega$.

The symbol with the semi-colon ";" means that all ω_{1} by ω_{1} "half-graphs" are totally multicolored, i.e. for all $A, B \subseteq \omega_{1}$ with $|A|=|B|=\omega_{1}$ and $n<\omega$ there are $\alpha \in A$ and $\beta \in B$ with $\alpha<\beta$ such that $f(\{\alpha, \beta\})=n$. I want to mention that [2] seems to be the first paper in print where this important concept was used. I think it was invented (discovered) by Fred Galvin. The following was proved 37 years later by Justin Moore:

Theorem 1.7 (Moore [7]). (ZFC) There is an f establishing

$$
\left.\omega_{1} \nrightarrow\left[\left(\omega_{1} ; \omega_{1}\right)\right]\right]_{\omega_{1}}^{2} .
$$

This is a byproduct of Moore's result [7] showing the existence of L spaces in ZFC. All the above justifies revisiting the old Problem 1.1.
2. \nRightarrow relations. First we remark that we still do not know if the conclusions of either clauses of Theorem 1.5 can be proved under weaker conditions. Next we want to show that a Theorem 1.7 type generalization cannot hold if we only assume that each $[A]^{2}$ with $|A|=\omega_{1}$ is totally multicolored.

TheOrem 2.1. There exist a rainbow $d:[4]^{2} \rightarrow 6$ and an $f:\left[\omega_{1}\right]^{2} \rightarrow 6$ establishing $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{6}^{2}$ such that

$$
d \nRightarrow f
$$

Proof. First we define $e:[4]^{2} \rightarrow W$ and $g:\left[\omega_{1}\right]^{2} \rightarrow W$ where

$$
W=\{(+,+),(+,-),(-,+),(-,-)\} .
$$

Let

$$
\begin{array}{lll}
e(\{0,1\})=(+,-), & e(\{1,2\})=(-,+), & e(\{2,3\})=(+,-) \\
e(\{0,3\})=(-,+), & e(\{0,2\})=(+,+), & e(\{1,3\})=(-,-)
\end{array}
$$

Let $<_{R}$ and $<_{A}$ be real and Aronszajn type orderings of ω_{1}. For $\alpha<$ $\beta<\omega_{1}$ let $g(\alpha, \beta)=(u, v)$ with $u, v \in\{+,-\}$, where $u=+\operatorname{iff} \alpha<_{A} \beta$, and $v=+$ iff $\alpha<_{R} \beta$.

It is a well known property of these orderings that for all $B \in\left[\omega_{1}\right]^{\omega_{1}}$ there are $C, D, E, F \in[B]^{\omega_{1}}$ such that $C<_{A} D, C<_{R} D, E<_{A} F$ and $F<{ }_{R} E$. This implies that each $B \in\left[\omega_{1}\right]^{\omega_{1}}$ contains a complete ω_{1} by ω_{1} half-graph for g in each of the colors in W.

It is an easy exercise to see that $e \nRightarrow g$. Let now h be as in Moore's Theorem 1.7. Then $k=(g, h)$ establishes $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$. Using k and e it is a matter of easy calculation to get f and d as required in the theorem.

Next we are going to investigate the cases when f establishes

$$
\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{\gamma}^{2}
$$

i.e. all ω_{1} by ω_{1} subgraphs are totally multicolored for some γ.

FACT 2.2. Assume f establishes $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{3}^{2}$. Let $d:[3]^{2} \rightarrow 3$ be one-to-one. Then $d \Rightarrow f$, i.e. all possible rainbow triangles exist.

Proof. The assumption implies that for some $\alpha \in \omega_{1}$ both sets

$$
\left\{\beta \in \omega_{1}: f(\alpha, \beta)=d(0,1)\right\}, \quad\left\{\gamma \in \omega_{1}: f(\alpha, \gamma)=d(0,2)\right\}
$$

are of cardinality ω_{1}.
FACT 2.3. There exist a rainbow $d:[5]^{2} \rightarrow 10$ and an $f:\left[\omega_{1}\right]^{2} \rightarrow 10$ establishing $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{10}^{2}$ such that

$$
d \nRightarrow f
$$

Proof (outline). Define $e:[5]^{2} \rightarrow 2$ by the stipulation

$$
e(\{i, j\})=0 \quad \text { for } i<5 \text { and } j \equiv i+1 \bmod 5 .
$$

That is, e is a "pentagon without a diagonal". Let $d:[5]^{2} \rightarrow 10$ be one-to-one such that $d(\{i, i+1\})<5$ iff $e(\{i, i+1\})=0$. Let $<_{R}$ be a real type ordering of ω_{1}. Let $g(\alpha, \beta):\left[\omega_{1}\right]^{2} \rightarrow 2$ be the "Sierpiński" partition, that is, $g(\alpha, \beta)=0$ iff $\alpha<_{R} \beta$ for $\alpha<\beta<\omega_{1}$. It is well known that every complete bipartite ω_{1} by ω_{1} half-graph contains a complete bipartite ω_{1} by ω_{1} half-graph in both colors for g. Again by Moore's theorem, we can take an h establishing $\omega_{1} \nrightarrow\left[\left(\omega_{1} ; \omega_{1}\right)\right]_{5}^{2}$. Set $f=g \cdot 5+h$. Then f establishes $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{10}^{2}$ and $d \Rightarrow f$ would imply $e \Rightarrow g$, which is known to be false.

Problem 2.4. Can we improve 2.3 to have $a d:[4]^{2} \rightarrow 6$ and an f establishing $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{6}^{2}$?

3. Rainbow theorems

Theorem 3.1. Assume $f:\left[\omega_{1}\right]^{2} \rightarrow \omega$ establishes $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]{ }_{\omega}^{2}$. Then there exists an infinite rainbow set.

Proof. We use A, B, C, \ldots to denote subsets of ω_{1} of size ω_{1}, and N, M, \ldots to denote infinite subsets of ω; moreover, we set

$$
f_{j}(x)=\left\{y \in \omega_{1}: f(x, y)=f(\{x, y\})=j\right\}
$$

for $j<\omega$ and $x \in \omega_{1}$.
3.1.1. Assume $B \cap C=\emptyset$ and

$$
\forall n \in M \forall x \in B\left(\left|f_{n}(x) \cap C\right| \leq \omega\right) .
$$

Then

$$
\forall n \in M \forall C^{\prime} \subseteq C \exists y \in C^{\prime}\left(\left|f_{n}(y) \cap B\right|=\omega_{1}\right) .
$$

Otherwise we could pick, by transfinite induction, a pair ($B^{\prime}, C^{\prime \prime}$) omitting the color n.

Let $(*)(A, N)$ be the following property of A and N : There are $B, C \subseteq A$ and $M \subseteq N$ such that

$$
\forall B^{\prime} \subseteq B \forall C^{\prime} \subseteq C \forall m \in M \exists x \in B^{\prime}\left(\left|f_{m}(x) \cap C^{\prime}\right|=\omega_{1}\right)
$$

When $(*)(A, N)$ holds we denote by

$$
B(A, N), C(A, N), M(A, N)
$$

the relevant sets B, C, M respectively, with $B \cap C=\emptyset$.
3.1.2. Assume that for some $A_{0}, N_{0},(*)(A, N)$ holds for all $A \subseteq A_{0}$ and $N \subseteq N_{0}$. Then there is an infinite rainbow subset.

Define A_{k}, B_{k}, N_{k} by induction on $k<\omega$. Assume A_{k}, N_{k} are defined. Let $B_{k}=B\left(A_{k}, N_{k}\right), A_{k+1}=C\left(A_{k}, N_{k}\right), N_{k+1}=N\left(A_{k}, N_{k}\right)$. Let $\left\{N_{k}^{\prime}: k<\omega\right\}$ be a disjoint refinement of $\left\{N_{k}: k<\omega\right\}$ and let

$$
N_{k}^{\prime}=\left\{n_{i}^{k}: i<\omega\right\}
$$

be a one-to-one enumeration of N_{k}^{\prime} for $k<\omega$. It is now easy to pick $x_{i} \in A_{i}$ for $i<\omega$ in such a way that $c\left(x_{i}, x_{j}\right)=n_{j}^{i}$ for $i<j<\omega$. This proves 3.1.2, as $\left\{x_{i}: i<\omega\right\}$ is an infinite rainbow set.

Hence to finish the proof of Theorem 3.1 it is sufficient to prove
3.1.3. Assume $(*)(A, N)$ is false for some A and N. Then A has an infinite rainbow subset.

Let $N=\bigcup_{k<\omega} N_{k}, A=\bigcup_{k<\omega} A_{k}$ be disjoint partitions. To prove 3.1.3 we first prove
3.1.4. There are $x \in A_{0}$ and $\left\{n_{i} \in N_{0}: 1 \leq i<\omega\right\}$ one-to-one such that

$$
\left|f_{n_{i}}(x) \cap A_{i}\right|=\omega_{1} \quad \text { for } 1 \leq i<\omega
$$

For an $x \in A_{0}$ we try to choose $n_{i}, 1 \leq i<\omega$, by induction on i. Assume we have chosen $n_{k}, 1 \leq k \leq i$, with $\left|f_{n_{k}}(x) \cap A_{k}\right|=\omega_{1}$. If there is always an n such that

$$
\begin{equation*}
n \in N_{0} \backslash\left\{n_{k}: 1 \leq k \leq i\right\} \quad \text { and } \quad\left|f_{n}(x) \cap A_{i+1}\right|=\omega_{1} \tag{+}
\end{equation*}
$$

we can choose n_{i+1} to be the smallest of these and 3.1.3 is true. If not, let $i(x)$ be the smallest i for which $(+)$ fails. If $(+)$ fails for all $x \in A_{0}$ then for some $1 \leq i<\omega$ and $M=N_{0} \backslash\left\{n_{k}: 1 \leq i\right\}$,

$$
C=\left\{x \in A_{0}: i(x)=i\right\}
$$

has cardinality ω_{1}. Choosing $B=A_{i+1}$ we find that

$$
\left|f_{n}(x) \cap B\right| \leq \omega \quad \text { for } n \in M \text { and } x \in C
$$

But then, by 3.1.2, for all $n \in M$ there is $x \in B$ with $\left|f_{n}(x) \cap C\right|=\omega_{1}$, a contradiction to the assumption that $(*)(A, N)$ is false. This shows 3.1.4. To finish the proof of 3.1.3 and Theorem 3.1, we can use 3.1.4 inductively.

Here is a problem that has not been looked at very thoroughly:
Problem 3.2. Under the conditions of 3.1 , is there a rainbow set containing all the colors?

Theorem 3.3. For every $1<k<\omega$ there is an $n \in \omega$ with $\binom{k}{2} \leq n$ such that every f satisfying $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{n}^{2}$ has a rainbow set of size k.

Proof. We prove the following statement by induction on $2 \leq k<\omega$. There is an $n<\omega$ such that if $\operatorname{Dom}(f) \subseteq\left[\omega_{1}\right]^{2}$ satisfies $\omega_{1} \nrightarrow\left[\left(\omega_{1}, \omega_{1}\right)\right]_{n}^{2}$ (note that this means that for all $A, B \subseteq \omega_{1}$ with $|A|=|B|=\omega_{1}$ and for all $i<n$ there are $\alpha \in A$ and $\beta \in B$ with $\{\alpha, \beta\} \in \operatorname{Dom}(f)$ such that
$f(\{\alpha, \beta\})=i$) and $\left\{A_{i}: i<n\right\}$ are pairwise disjoint subsets of ω_{1} of size ω_{1}, then there is a rainbow partial transversal $P\left([P]^{2} \subseteq \operatorname{Dom}(f)\right)$ of size k for these sets. Just as in the proof of 3.1, put

$$
f_{j}(x)=\left\{y \in \omega_{1}: f(x, y)=f(\{x, y\})=j\right\}
$$

for $j<\omega$ and $x \in \omega_{1}$. Assume n is good for k and $A_{0}, \ldots, A_{2 n-1}$ are pairwise disjoint subsets of ω_{1} of size ω_{1} with union A.

Let (*) denote the following statement: There are $x, i_{x}, N_{x}, \varphi_{x}$ such that $x \in A_{i_{x}}, N_{x} \subseteq 2 n \backslash\left\{i_{x}\right\}, \varphi_{x}: N_{x} \rightarrow 2 n$ is one-to-one,

$$
\left|f_{\varphi_{x}(j)}(x) \cap A_{j}\right|=\omega_{1} \quad \text { for } j \in N_{x}
$$

and $\left|N_{x}\right|=n$. If $(*)$ holds for an x then applying the induction hypothesis for the sets

$$
f_{\varphi_{x}(j)}(x) \cap A_{j}, \quad j \in N_{x}
$$

and for the color set $2 n \backslash \varphi\left[N_{x}\right]$ we get a rainbow partial transversal of size k for these sets, and adding x to it we get a rainbow transversal of size $k+1$ for the sets $A_{0}, \ldots, A_{2 n-1}$.

If $(*)$ is false, choosing an N_{x} of maximal size for $x \in A$ we will have $\left|N_{x}\right| \leq n-1$ for $x \in A$. By thinning out, we get sets $B_{i} \subseteq A_{i}, i<2 n$, of size ω_{1} and $N_{i}, M_{i} \subseteq 2 n, i<2 n$, such that $N_{x}=N_{i}$ and $M_{i}=\varphi_{x}\left[N_{i}\right]$ for $x \in B_{i}$ for $i<2 n$.

Then $i \mapsto N_{i}$ is a set mapping of order at most $n-1$ on $2 n$. By a theorem of de Bruijn and Erdős, from 1951, there are $i \neq j$ such that $i \notin N_{j}$ and $j \notin N_{i}$. As $\left|M_{i} \cup M_{j}\right|<2 n$ we can choose $l \notin M_{i} \cup M_{j}$. By the maximality of N_{i} we know that $\left|f_{l}(x) \cap B_{j}\right| \leq \omega$ for $x \in B_{i}$ and likewise $\left|f_{l}(x) \cap B_{i}\right| \leq \omega$ for $x \in B_{j}$. We could then pick, by an easy transfinite induction, sets $C_{i} \subseteq B_{i}$ and $C_{j} \subseteq B_{j}$, both of size ω_{1}, such that the color l is missing from the bipartite $\left(\omega_{1}, \omega_{1}\right)$ determined by C_{i} and $C j$. This contradicts the assumption. -

Corollary 3.4. In Theorem 3.3, n can be chosen to be 2^{k-2} for $2 \leq$ $k<\omega$.

Problem 3.5. Can n be taken to be $\binom{k}{2}$ in Theorem 3.3?
4. Resurrecting the problem for larger cardinals. We explained in Section 1 how Shelah's example described in 1.5 forced us to consider problems only for underlying sets of size at most ω_{1}. In [2] written in 1978 we tried to ask if we can get every graph of size ω_{1} as an induced subgraph provided the graph shows $\omega_{2} \nrightarrow\left[\left(\omega_{1}, \omega\right)\right]_{\omega_{1}}^{2}$, a stronger assumption that one can only make consistent. Recently Soukup showed that the simple method of adding one Cohen real gives a negative answer as well. Working through the material of this paper I realized that this trick only kills questions of \Rightarrow type. The following is probably the simplest problem I cannot solve:

Problem 4.1. Assume GCH and let f establish

$$
\omega_{2} \nrightarrow\left[\left(\omega_{1}, \omega_{2}\right)\right]_{\omega_{1}}^{2} .
$$

Does there exist a rainbow subset of size ω_{1} for f ?
In fact, we do not know a single case where for some $\kappa>\lambda>\omega$ some f : $[\kappa]^{2} \rightarrow \lambda$ establishes $\kappa \nrightarrow[(\kappa, \kappa)]_{\lambda}^{2}$ and for all such f there is an uncountable rainbow set.
5. Finitary problems. In our paper [4] we considered finitary Ramsey problems and proved in 1989

Theorem 5.1 (Erdős-Hajnal [4, Theorem 1.3]). Assume $2 \leq k, s<\omega$ and $d:[k]^{2} \rightarrow s$. Then there are n_{0} and a real number $r>0$ such that for all $f:[n]^{2} \rightarrow s$ establishing

$$
n \nrightarrow\left[e^{r \sqrt{\log n}}\right]_{s}^{2},
$$

$d \Rightarrow f$ holds.
In fact, we only wrote down the proof of this result for $s=2$. Janos Pach kindly communicated to us that he can prove a much stronger result for a great many cases. Most relevant to this paper, he can prove:

Theorem 5.2 (Fox-Pach [6]). There are n_{0} and $\varepsilon>0$ such that for any $n>n_{0}$ and f establishing

$$
n \nrightarrow\left[n^{\varepsilon}\right]_{3}^{2}
$$

there is a rainbow triangle for f.

References

[1] P. Erdős, F. Galvin and A. Hajnal, On set-systems having large chromatic number and not containing prescribed subsystems, in: Colloq. Math. Soc. J. Bolyai 10, NorthHolland, 1975, 425-513.
[2] P. Erdős and A. Hajnal, Embedding theorems for graphs establishing negative partition relations, Period. Math. Hungar. 9 (1978), 205-230.
[3] —, 一, Unsolved problems in set theory, in: Proc. Sympos. Pure Math. 13, Part I, Amer. Math. Soc., Providence, RI, 1971, 17-48.
[4] -, 一, Ramsey type theorems, Discrete Appl. Math. 25 (1989), 39-52.
[5] P. Erdős, A. Hajnal, A. Máté and R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Studies Logic Found. Math. 106, Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1984.
[6] J. Fox and J. Pach, Erdős-Hajnal-type results on intersection patterns of geometric objects, Israel J. Math., to appear.
[7] J. T. Moore, A solution to the L space problem and related ZFC constructions, preprint, 2005.
[8] -, A solution to the L space problem, J. Amer. Math. Soc. 9 (2006), 717-736.
[9] R. Rado, Anti-Ramsey theorems, in: Colloq. Math. Soc. J. Bolyai 10, Vol. III, NorthHolland, 1975, 1159-1168.
[10] S. Shelah, Colouring without triangles and partition relations, Israel J. Math. 20 (1975), 1-12.

Rényi Institute
Reáltanoda u. 13-15
1053 Budapest, Hungary
E-mail: ahajnal@renyi.hu

Received 12 December 2006;
in revised form 13 November 2007

[^0]: 2000 Mathematics Subject Classification: Primary 03E05.
 Key words and phrases: partition relation, rainbow subset, coloring.
 Research partially supported by Hungarian National Research Grants T 61600 and K 68262.

