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A Cantor set in the plane that is not σ-monotone

by

Aleš Nekvinda and Ondřej Zindulka (Praha)

Abstract. A metric space (X, d) is monotone if there is a linear order < on X and
a constant c such that d(x, y) ≤ cd(x, z) for all x < y < z in X, and σ-monotone if it is
a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set
that is not σ-monotone is constructed and investigated. It follows that there is a metric
on a Cantor set that is not σ-monotone. This answers a question raised by the second
author.

1. Introduction. The following notions were introduced in [4]:

Definition 1.1. A metric space (X, d) is called

• monotone if there is a linear order < on X and a constant c such that
d(x, y) ≤ cd(x, z) for all x < y < z in X,
• σ-monotone if it is a countable union of monotone subspaces.

Topological properties of monotone and σ-monotone spaces are investi-
gated in [1]. We quote some results: A subspace of a monotone metric space
is monotone. A metric space with a dense monotone subspace is monotone.
Every monotone space topologically embeds into a linearly orderable metriz-
able topological space, but does not have to be linearly orderable. Every
separable monotone space topologically embeds into the line. The topologi-
cal dimension of a σ-monotone space is at most 1. Every ultrametric space
is monotone. Every topologically discrete metric space is σ-monotone, but
not necessarily monotone.

Fractal properties of monotone and σ-monotone sets in Euclidean spaces,
namely porosity, Hausdorff measures and Hausdorff dimensions and rectifi-
ability, and functions with a σ-monotone graph are investigated in [2].

An application appears in [3], where σ-monotone sets serve as a tool for
a characterization of Borel sets in a Euclidean space Rn that map onto a
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cube [0, 1]m (m ≤ n) by a quasi-Lipschitz mapping, i.e. a mapping that is
β-Hölder for each β < 1.

The very first application of σ-monotone spaces appears in [4]: Let dim
and dimH denote, respectively, the topological and Hausdorff dimensions. It
is shown that every analytic σ-monotone metric space X contains a Lipschitz
preimage of every self-similar set S satisfying the strong separation condition
with dimH S < dimHX. A number of results are derived from this theorem.
E.g., any analytic metric space X contains a universal measure zero set
E ⊆ X such that dimHE ≥ dimX; any analytic σ-monotone metric space
X contains a universal measure zero set E ⊆ X such that dimHE ≥ dimX;
and any analytic set X ⊆ Rn contains a universal measure zero set E ⊆ X
such that dimHE = dimHX.

As explained in [4], the following question raised in [5] is of particular
interest:

Question 1.2 ([5]). Is every compatible metric on the Cantor set σ-mon-
otone?

The goal of the present paper is to provide a negative answer to this
question by constructing a set X in the plane that is homeomorphic to
the Cantor set but is not, as a metric subspace of the Euclidean plane,
σ-monotone.

In Section 2 we state and prove a combinatorial lemma that is essential
for the construction of the set X, which is performed in Section 3. In Section 4
we calculate the linear Hausdorff measure of X and its Hausdorff dimension.
In Section 5 we prove that every σ-monotone subset of X is contained in a
σ-compact set that is meager in X and has linear Hausdorff measure zero.
In particular, X is not σ-monotone.

Throughout the paper we use the following notation and terminology.
N denotes the set of all positive integers, excluding zero. The cardinality of
a set A is denoted |A|. A metric on a metrizable space is compatible if it
induces the topology of X. If (X, ρ) is a metric space and x ∈ X, the symbol
Bρ(x, r) (or just B(x, r)) denotes the closed ball centered at x with radius r.
If X,Y are metric spaces, a mapping f : X → Y is termed bi-Lipschitz if
it is bijective and both f and its inverse are Lipschitz mappings. Of course,
a bi-Lipschitz mapping is a homeomorphism. The metric spaces X,Y are
bi-Lipschitz equivalent if there is a bi-Lipschitz mapping f : X → Y .

We will need the following facts established in [1].

Lemma 1.3. A metric space that is bi-Lipschitz equivalent to a monotone
space is monotone.

Lemma 1.4. If X is σ-monotone, then it is a countable union of closed
monotone subspaces.
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2. Polygons

Definition 2.1. Consider the cyclic group Zn = {0, 1, . . . , n − 1} for
n ∈ N. Define a metric on Zn by

ρn(i, j) = min(|i− j|, n− |i− j|).
The metric spaces (Zn, ρn) are thought of as abstract regular polygons.

They serve as building blocks for the construction of X. The following com-
binatorial lemma is crucial.

Lemma 2.2. Let A ⊆ Zn, |A| ≥ 3. For each linear order ≺ on A there
are i, j, k ∈ A such that i ≺ j ≺ k and

ρn(i, j)
ρn(i, k)

≥ 1
2

|A| − 1
n− (|A| − 1)

.

Proof. Denote |A| = m. If n = m = 3, then 1 = ρn(i, j) for any distinct
i, j ∈ A. If n > m = 3, then 1 ≤ ρn(i, j) ≤ n/2 for any distinct i, j ∈ A.
In either case, the inequality trivially holds for any triple i, j, k of distinct
elements of Zn. We shall thus assume that |A| > 3. Let A = {az : z ∈ Zm} be
the unique increasing enumeration of A (with respect to the natural order).

Throughout the proof, addition is modulo m. Denote by ` the integer
part of m/2.

Order Zm by zC z′ iff az ≺ az′ . Let N = {z ∈ Zm : zC z+ `}. If N = ∅,
then z B z + ` for all z and thus

0 B `B 2`B 3`B · · ·Bm` = 0.

Therefore N 6= ∅. If N = Zm, then z C z + ` for all z and thus

0 C `C 2`C 3`C · · ·Cm` = 0.

Therefore N 6= Zm. So there are z1 ∈ N and z2 /∈ N . Let z be the last term
in the sequence z1, z1 + 1, . . . z2 − 1 that satisfies z ∈ N . Clearly z + 1 /∈ N .
Consider two cases:

• z+`Cz+1: Since z ∈ N , we have zCz+`Cz+1. Put i = az, j = az+`
and k = az+1. Clearly i ≺ j ≺ k. There are at most n −m nodes strictly
between az and az+1. Hence ρn(i, k) ≤ n− (m− 1). There are at least `− 1
nodes strictly between az and az+` both clockwise and counterclockwise.
Hence ρn(i, j) ≥ `. Thus

(1)
ρn(i, j)
ρn(i, k)

≥ `

n− (m− 1)
≥ 1

2
|A| − 1

n− (|A| − 1)
.

• z+ `D z+ 1: Obviously |A| > 3 yields z+ ` 6= z+ 1. Thus z+ `B z+ 1.
Since z+ 1 /∈ N , we have z+ 1 + `C z+ 1 C z+ `. Put i = az+1+`, j = az+1

and k = az+`. Clearly i ≺ j ≺ k. The inequality (1) follows by the same
reasoning as above.
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Remark 2.3. Since the set A ⊆ (Zn, ρn) in the lemma is finite, it is
trivially monotone. The lemma says that a constant witnessing its mono-
tonicity cannot be less than 1

2
|A|−1

n−(|A|−1) . In particular, a constant witnessing
monotonicity of (Zn, ρn) cannot be less than (n− 1)/2.

Remark 2.4. The particular case A = Zn can be phrased this easy
way: Whatever linear order ≺ a regular polygon is equipped with, there
are neighboring vertices x, z and a vertex y opposite to them such that
x ≺ y ≺ z.

3. Construction of the set. In this section we define a rather regular
compact set in the plane that

• is homeomorphic to the Cantor set,
• has positive and finite Hausdorff length,
• is not σ-monotone.

The set is constructed so that every nonempty open subset contains for
each n a bi-Lipschitz copy of the polygon (Zn, ρn) described in the previous
section. It is a continuous image of a cartesian product of the groups Zn,
provided with a suitable metric.

Definition 3.1. Let

Z =
∞∏
n=1

Zn = {x ∈ (N ∪ {0})N : x(n) < n for all n ∈ N}.

Provide Z with the product topology. Recall Definition 2.1 and define a
metric ρ on Z by

ρ(x, y) = sup
n∈N

ρn(x(n), y(n))
n!

.

Since Z is a countable product of finite topological groups, it is obviously
a zero-dimensional compact topological group. It has no isolated points.
Thus it is homeomorphic to the Cantor ternary set.

The verification that ρ is a metric compatible with the topology of Z is
straightforward. Thus (Z, ρ) is a metric space homeomorphic to the Cantor
set.

Since

(2)
ρn(x(n), y(n))

n!
≥ 1
n!
≥ m

m!
>
ρm(x(m), y(m))

m!
whenever n < m and x(n) 6= y(n), ρ is equivalently described by the follow-
ing formula that we shall often use: if x 6= y, then

ρ(x, y) =
ρκ(x,y)

(
x(κ(x, y)), y(κ(x, y))

)
κ(x, y)!

,
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where

(3) κ(x, y) = min{n : x(n) 6= y(n)}.
Throughout the paper, Z• =

⋃∞
m=1

∏m
n=1 Zn denotes the set of initial seg-

ments of elements of Z. For E ⊆ Z set

E• = {p ∈ Z• : p ⊆ x for some x ∈ E}.
For p ∈ Z•, [[p]] = {x ∈ Z : p ⊆ x} denotes the cylinder consisting of
all elements of Z that extend p. Note that cylinders are clopen sets that
form a base for the topology of Z. Recall that |p| denotes the cardinality =
length of p. If p ∈ Z• and k ≥ 0 is an integer, then p_k denotes the usual
concatenation.

The usual product (= Haar) measure on Z is denoted µZ. Note that
µZ([[p]]) = 1/|p|! for all p ∈ Z•.

We now define a planar set X that is bi-Lipschitz equivalent to the metric
space Z. It is the set announced at the beginning of the section.

Definition 3.2. Define a mapping φ : Z→ R2 thus:

φ(x) =
( ∞∑
n=1

cos 2π x(n)
n

2(n− 1)!
,
∞∑
n=1

sin 2π x(n)
n

2(n− 1)!

)
=
∞∑
n=1

exp
(
2πix(n)

n

)
2(n− 1)!

.

Let X = φ(Z) ⊆ R2 and provide it with the Euclidean metric.

Proposition 3.3. φ : (Z, ρ)→ X is bi-Lipschitz.

Fig. 1. The set X = φ(Z). The two triangular shapes are centered at the endpoints of a
segment. The six square shapes are centered at the vertices of the triangles. The twenty
four pentagonal shapes are centered at the vertices of the squares, et cetera ad infinitum.
One of the vertices of the pentagons is shown magnified in the circle.



226 A. Nekvinda and O. Zindulka

Proof. Let x, y ∈ Z, x 6= y. Throughout the proof we use the following
notation: κ = κ(x, y), j = ρκ(x(κ), y(κ)),

Sn = exp
(

2πi
x(n)
n

)
− exp

(
2πi

y(n)
n

)
.

Note that κ ≥ 2, j ≥ 1 and ρ(x, y) = j/κ!.
Since Sn = 0 for all n < κ and |Sn| ≤ 2 for all n,

(4)
|Sκ|

2(κ− 1)!
−
∞∑
n=κ

1
n!
≤ |φ(x)− φ(y)| ≤ |Sκ|

2(κ− 1)!
+
∞∑
n=κ

1
n!
.

The vectors exp
(
2πix(κ)κ

)
and exp

(
2πiy(κ)κ

)
span an angle of 2πj/κ. There-

fore

(5) |Sκ| = 2 sin
2πj/κ

2
= 2 sin

πj

κ
.

Use elementary estimates (2/π)t ≤ sin t ≤ t that hold for all t ∈ [0, π/2] to
get

(6)
4j
κ
≤ |Sκ| ≤

2πj
κ
.

One more inequality we need:

(7)
∞∑
n=κ

1
n!
≤ 1
κ!

∞∑
i=0

1
(κ+ 1)i

≤ 1
κ!

(
1 +

1
κ

)
.

Combining these inequalities with (4) and recalling that κ ≥ 2 and ρ(x, y) =
j/κ! yields on one hand

|φ(x)− φ(y)| ≤ 1
(κ− 1)!

πj

κ
+

3/2
κ!
≤ j

κ!

(
π +

3/2
j

)
≤ ρ(x, y)(π + 3/2)

and on the other hand

|φ(x)− φ(y)| ≥ 1
(κ− 1)!

2j
κ
− 3/2

κ!
≥ j

κ!

(
2− 3/2

j

)
≥ 1

2
ρ(x, y),

which shows that φ is bi-Lipschitz.

Most properties of Z and its subsets we are after, e.g. monotonicity,
Hausdorff measure zero, Hausdorff dimension, meagerness, are bi-Lipschitz
invariant. Thus, as regards these properties, Z and X are indistinguishable.
In the next section we show that the mapping φ doubles Hausdorff measure.

4. Hausdorff measure of the set. We now calculate Hausdorff mea-
sures and dimensions of Z and X. The s-dimensional Hausdorff measure and
related approximation pre-measures are denoted Hs and Hsδ, respectively,
and dimH denotes Hausdorff dimension. A refinement of the above proposi-
tion is needed:
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Lemma 4.1. For each ε > 0 there is δ > 0 such that if ρ(x, y) < δ, then

|φ(x)− φ(y)| ≥ (2− ε)ρ(x, y).

Proof. Fix ε > 0 small enough to satisfy

(8) π(1− ε)− (1 + ε) ≥ 2.

Choose m ∈ N subject to ε > 1/m and

(9) sin t ≥ (1− ε)t whenever 0 ≤ t ≤ 2π
εm

and put δ = 1/m!.
We refer to the previous proof, including notation. Suppose ρ(x, y) < δ.

Then κ ≥ m. Combine (7) with ε > 1/κ and (4) to get

(10) |φ(x)− φ(y)| ≥ |Sκ|
2(κ− 1)!

− 1 + ε

κ!
.

Distinguish two cases: If j ≥ 2/ε, use (10) and (6):

|φ(x)− φ(y)| ≥ 2j
κ!
− 1 + ε

κ!
=

2j
κ!

(
1− 1 + ε

2j

)
≥ 2j
κ!

(
1− ε1 + ε

4

)
≥ 2j
κ!

(
1− ε

2

)
≥ ρ(x, y)(2− ε).

If j < 2/ε, use (10), (5), (9) with t = πj/κ and (8):

|φ(x)− φ(y)| ≥ 2πj(1− ε)
2κ!

− 1 + ε

κ!
=

j

κ!

(
π(1− ε)− 1 + ε

j

)
≥ ρ(x, y)(π(1− ε)− (1 + ε)) ≥ 2ρ(x, y).

Proposition 4.2.

(i) H1(E) = 1
2µZ(E) for any Borel set E ⊆ Z. In particular, H1(Z) =

1/2 and dimH Z = 1.
(ii) H1(E) = 2H1(φ−1[E]) = µZ(φ−1[E]) for any Borel set E ⊆ X. In

particular, H1(X) = 1 and dimH X = 1.

Proof. We prove (i) first. For n ∈ N denote by [n/2] the integer part of
n/2. Note that for all p ∈ Z•,

(11) diam [[p]] =
[(|p|+ 1)/2]

(|p|+ 1)!
≤ 1

2|p|!
.

Let A ⊆ Z be a Borel set. We first estimate diamA from below by µZ(A).
Since the closure A of A is compact, there are x, y ∈ A such that ρ(x, y) =
diamA. Therefore there are unique n ∈ N and j ≤ [n/2] such that diamA =
j/n!. Hence there is p ∈ Z• with |p| = n − 1 such that A ⊆ [[p]] and
ρn(x(n), y(n)) ≤ j for all x, y ∈ A. Consequently:



228 A. Nekvinda and O. Zindulka

• If j < [n/2], then there is i ∈ Zn such that x(n) ∈ {i, i+ 1, . . . , i+ j}
for all x ∈ A. It follows that A ⊆

⋃i+j
k=i[[p

_k]]. Therefore (11) yields

µZ(A) ≤
i+j∑
k=i

µZ([[p_k]]) = (j + 1)
1
n!

=
j + 1
j

j

n!
≤ 2 diamA.

• If j = [n/2], then A ⊆ [[p]] and (11) yield

µZ(A) ≤ µZ([[p]]) =
1

(n− 1)!
=

n

[n/2]
[n/2]
n!
≤ 2

n

n− 1
diamA.

In either case, diamA ≥ 1
2(1− 1/n)µZ(A).

Let now E be a Borel set. Let m ∈ N and δ < 1/m! and suppose {Ak}
is a cover of E by Borel sets of diameters at most δ. Then diamAk ≥
1
2(1− 1/m)µZ(Ak) for all k. Thus∑

k

diamAk ≥
1
2

(
1− 1

m

)∑
k

µZ(Ak) ≥
1
2

(
1− 1

m

)
µZ(E).

Therefore H1
δ(E) ≥ 1

2(1−1/m)µZ(E). Let m→∞ to get H1(E) ≥ 1
2µZ(E).

To prove the opposite inequality it suffices to show H1(Z) ≤ 1/2. Let m
be as above and δ = 1/m!. Cover Z by the family E = {[[p]] : p ∈ Z•, |p| = m}.
Since |E| = m!, (11) yields

H1
δ(Z) ≤

∑
|p|=m

diam [[p]] ≤ m! · 1
2m!

=
1
2
.

Let m→∞ to get H1(Z) ≤ 1/2.
The family E can also be used to show that H1(X) ≤ 1: Since diamφ([[p]])

≤
∑∞

n=|p| 1/n! for all p ∈ Z•, one may use (7) to show that given any ε > 0
there is m large enough so that the family {φE : E ∈ E} is a cover of X by
sets of diameters below (1 + ε)/m! and thus witnesses H1

δ(X) ≤ 1 + ε with
δ = (1 + ε)/m!. Let m→∞ and ε→ 0 to get H1(X) ≤ 1.

It remains to prove that H1(E) ≥ 2H1(φ−1[E]) = µZ(φ−1[E]) for every
set E ⊆ X. But that follows immediately from Lemma 4.1 and part (i).

5. The set is not σ-monotone. We now show that large subsets of Z
and X are not σ-monotone. To that end we prepare a combinatorial lemma.

Definition 5.1. Let E ⊆ Z. For p ∈ E• denote

degE(p) = |{k ∈ Z|p|+1 : p_k ∈ E•}|,
the number of immediate successors of p in E•.

Say that a node p ∈ E• is bad if

∀α < 1 ∀n ∈ N ∃q ∈ E•
(
p ⊆ q & |q| ≥ n & degE(q) > α(|q|+ 1)

)
.
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Say that a node p ∈ E• is good if it is not bad, i.e.

(12) ∃α < 1 ∃n ∈ N ∀m ≥ n
(
p ⊆ q & |q| ≥ m ⇒ degE(q) ≤ α(|q|+ 1)

)
.

Lemma 5.2. If E ⊆ Z is monotone, then each node p ∈ E• is good.

Proof. Suppose < and c are the order and the constant witnessing the
monotonicity of E. Choose n ∈ N such that

α :=
2c

1 + 2c
+

1
n+ 1

< 1.

Aiming at a contradiction assume there is a bad node p ∈ E•. Thus there
is an extension q ⊇ p such that |q| ≥ n and degE(q) > α(|q|+ 1). Therefore

degE(q)− 1 >
(

2c
1 + 2c

+
1

(|q|+ 1)

)
(|q|+ 1)− 1 =

2c(|q|+ 1)
1 + 2c

.

Denote m = |q| + 1 and A = {a ∈ Zm : q_a ∈ E•}. Clearly |A| = degE(q).
For each a ∈ A choose xa ∈ E such that q_a ⊆ xa. Order A by a ≺ b iff
xa < xb. Since < is a linear order, so is ≺. Now apply Lemma 2.2: There
are i, j, k ∈ A such that i ≺ j ≺ k and

ρm(i, j)
ρm(i, k)

≥ 1
2

|A| − 1
m− (|A| − 1)

=
1
2

degE(q)− 1
m− (degE(q)− 1)

>
1
2

2cm
1+2c

m− 2cm
1+2c

= c.

Since ρ(xa, xb) = ρm(a, b)/m! for all a, b ∈ A, the last estimate yields
ρ(xi, xj) > cρ(xi, xk) and since clearly xi < xj < xk, the points xi, xj , xk
in E break monotonicity of E: a contradiction.

Theorem 5.3. If E ⊆ X is σ-monotone, then there is an Fσ-set F ⊇ E
that is meager (in X) and such that H1(F ) = 0. In particular, E is meager
and H1(E) = 0.

Proof. According to Lemma 1.3 and Propositions 3.3 and 4.2 we may
work in Z. Due to Lemma 1.4, E may be assumed to be Fσ. Since meagerness
and measure zero are countably additive properties, we may actually assume
that E is closed and monotone. By the preceding lemma any node p ∈ E•
satisfies condition (12). Consequently, there are α < 1 and n such that

µZ({x ∈ E : p ⊆ x}) ≤
∏
m>n

αm

m
=
∏
m>n

α = 0.

Since E• is countable and E ⊆
⋃
p∈E•{x ∈ E : p ⊆ x}, it follows that

µZ(E) ≤
∑
p∈E•

µZ({x ∈ E : p ⊆ x}) = 0.

Apply Proposition 4.2 to get H1(E) = 0 and notice that if E were not
meager, being closed it would contain a nonempty open set and thus would
have positive measure.
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Since X is homeomorphic to the Cantor set, the theorem yields a negative
answer to Question 1.2:

Corollary 5.4. There is a compatible metric on the Cantor set that is
not σ-monotone.

The theorem says that σ-monotone subsets of X are small with respect to
measure and category. There are, however, monotone sets of large Hausdorff
dimension. Perhaps it is not accidental: What if any compatible metric on
the Cantor set admits a σ-monotone subset of full Hausdorff dimension? To
date we do not have much to say about this phenomenon.

Proposition 5.5. There is a monotone closed set F ⊆ X such that
dimH F = 1.

Proof. Work in Z. Use the idea and notation of the proof of Proposi-
tion 4.2. For each n ∈ N set Fn = {0, 1, . . . , [n/2]} and define

F =
∞∏
n=1

Fn = {x ∈ Z : x(n) ≤ [n/2]}.

Then F is obviously compact. We first show that dimH F = 1. Let µF be
the uniformly distributed product measure on F . Clearly

(13) µF ([[p]] ∩ F ) =
|p|∏
i=1

1
[i/2] + 1

≤
|p|∏
i=1

2
i

=
2|p|

|p|!
, p ∈ F •.

Proceed as in the proof of Proposition 4.2: Let A ⊆ F be a Borel set and
let n, j ∈ N with j ≤ [n/2] be the unique numbers such that diamA = j/n!.
There is p ∈ F • with |p| = n−1 such that A ⊆ [[p]]∩F and ρn(x(n), y(n)) ≤ j
for all x, y ∈ A.

• If j < [n/2], then there is i ∈ Zn such that

µF (A) ≤
i+j∑
k=i

µF ([[p_k]] ∩ F )
(13)

≤ (j + 1)
2n

n!
.

• If j = [n/2], then A ⊆ [[p]]. Hence

µF (A) ≤ µF ([[p]] ∩ F )
(13)

≤ 2n−1

(n− 1)!
=
n

2
2n

n!
≤ ([n/2] + 1)

2n

n!
.

In either case we have

(14) µF (A) ≤ 2n(j + 1)
n!

.

Fix s < 1 and let m ∈ N be large enough so that n2n ≤ (n!)1−s for all
n ≥ m. Then

2n(j + 1)
n!

≤ n2n

n!
≤ (n!)1−s

n!
≤
(

1
n!

)s
≤
(
j

n!

)s
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whenever n ≥ m and 1 ≤ j ≤ [n/2]. So if diamA ≤ 1/m!, then (14) yields
µF (A) ≤ (diamA)s. It follows that if F is covered by a family {Ak} of sets
with diameters not exceeding 1/m!, then∑

k

(diamAk)s ≥
∑
k

µF (Ak) ≥ µF
(⋃
k

Ak

)
≥ µF (F ) = 1.

Therefore Hs(F ) ≥ Hs1/m!(F ) ≥ µF (F ) = 1. Since s < 1 was arbitrary, we
conclude that dimH F = 1.

It remains to show that F is monotone. Let < be the lexicographic order
on F . Assume x < y < z. Three configurations are possible (recall (3)):

• κ(x, z) = κ(y, z) < κ(x, y): Then (2) yields ρ(x, y) ≤ ρ(x, z).
• κ(x, z) = κ(x, y) < κ(y, z): Then (2) yields ρ(x, y) = ρ(x, z).
• κ(x, y) = κ(x, z) = κ(y, z): Let κ denote this common value. Since
x < y < z, we have 0 ≤ x(κ) < y(κ) < z(κ) ≤ [κ/2]. Therefore

ρκ(x(κ), z(κ)) = z(κ)− x(κ) > y(κ)− x(κ) = ρκ(x(κ), y(κ))

and thus ρ(x, z) ≥ ρ(x, y), as required.

There are also non-σ-monotone subsets of X with small Hausdorff di-
mension:

Proposition 5.6. There is a closed set F ⊆ X with dimH F = 0 that is
not σ-monotone.

Proof. Work in Z. Choose a strictly increasing sequence 〈nk : k ∈ N〉
such that

n1 . . . nk ≤ (nk!)1/k

(nk = 4k will do), put I = {nk : k ∈ N} and set

F = {x ∈ Z : x(n) = 0 if n /∈ I}.
Fix s > 0 and let k ∈ N with 1/k < s. Consider the family E = {[[p]] : p ∈ F •,
|p| = nk}. It is obviously a cover of F and |E| = n1 . . . nk. According to (11),
diamE ≤ 1/nk! for each E ∈ E . Therefore

Hs1/nk!(F ) ≤
∑
E∈E

(diamE)s ≤ n1 . . . nk

(
1
nk!

)s
≤ (nk!)1/k

(
1
nk!

)1/k

= 1.

Let k → ∞ to get Hs(F ) ≤ 1. Since this holds for all s > 0, we get
dimH F = 0.

It remains to show that F is not σ-monotone. Assume the contrary. Since
F is compact, using Lemma 1.4 and the Baire category theorem there is a
nonempty open (in F ) set U that is monotone. There is p ∈ F • such that
[[p]] ∩ F = {x ∈ F : p ⊆ x} ⊆ U . Since degU (q) = nk for any k ∈ N and
any q ∈ U• of length nk − 1, the node p is bad (for U). Apply Lemma 5.2
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to conclude that U is not monotone: a contradiction proving that F is not
σ-monotone.
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